1 | !OPTIONS XOPT(HSFUN) |
---|
2 | SUBROUTINE LWTTM ( KIDIA, KFDIA, KLON, PGA , PGB, PUU1 , PUU2 , PTT ) |
---|
3 | |
---|
4 | !**** *LWTTM* - LONGWAVE TRANSMISSION FUNCTIONS |
---|
5 | |
---|
6 | ! PURPOSE. |
---|
7 | ! -------- |
---|
8 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
9 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
---|
10 | ! INTERVALS. |
---|
11 | |
---|
12 | !** INTERFACE. |
---|
13 | ! ---------- |
---|
14 | ! *LWTTM* IS CALLED FROM *LWVD* |
---|
15 | |
---|
16 | |
---|
17 | ! EXPLICIT ARGUMENTS : |
---|
18 | ! -------------------- |
---|
19 | ! ==== INPUTS === |
---|
20 | ! PGA, PGB ; PADE APPROXIMANTS |
---|
21 | ! PUU1 : (KLON,NUA) ; ABSORBER AMOUNTS FROM TOP TO LEVEL 1 |
---|
22 | ! PUU2 : (KLON,NUA) ; ABSORBER AMOUNTS FROM TOP TO LEVEL 2 |
---|
23 | ! ==== OUTPUTS === |
---|
24 | ! PTT : (KLON,NTRA) ; TRANSMISSION FUNCTIONS |
---|
25 | |
---|
26 | ! IMPLICIT ARGUMENTS : NONE |
---|
27 | ! -------------------- |
---|
28 | |
---|
29 | ! METHOD. |
---|
30 | ! ------- |
---|
31 | |
---|
32 | ! 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
---|
33 | ! COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
---|
34 | ! 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
---|
35 | ! 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
---|
36 | ! A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
---|
37 | |
---|
38 | ! EXTERNALS. |
---|
39 | ! ---------- |
---|
40 | |
---|
41 | ! NONE |
---|
42 | |
---|
43 | ! REFERENCE. |
---|
44 | ! ---------- |
---|
45 | |
---|
46 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
47 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
48 | |
---|
49 | ! AUTHOR. |
---|
50 | ! ------- |
---|
51 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
52 | |
---|
53 | ! MODIFICATIONS. |
---|
54 | ! -------------- |
---|
55 | ! ORIGINAL : 88-12-15 |
---|
56 | ! 97-04-18 JJ Morcrette Revised continuum |
---|
57 | |
---|
58 | !----------------------------------------------------------------------- |
---|
59 | |
---|
60 | #include "tsmbkind.h" |
---|
61 | |
---|
62 | USE YOELW , ONLY : NTRA ,NUA ,RPTYPE ,RETYPE ,& |
---|
63 | &RO1H ,RO2H ,RPIALF0 |
---|
64 | |
---|
65 | |
---|
66 | IMPLICIT NONE |
---|
67 | |
---|
68 | |
---|
69 | ! DUMMY INTEGER SCALARS |
---|
70 | INTEGER_M :: KFDIA |
---|
71 | INTEGER_M :: KIDIA |
---|
72 | INTEGER_M :: KLON |
---|
73 | |
---|
74 | |
---|
75 | |
---|
76 | ! ------------------------------------------------------------------ |
---|
77 | |
---|
78 | !* 0.1 ARGUMENTS |
---|
79 | ! --------- |
---|
80 | |
---|
81 | REAL_B :: PUU1(KLON,NUA), PUU2(KLON,NUA), PTT(KLON,NTRA)& |
---|
82 | &, PGA(KLON,8,2) , PGB(KLON,8,2) |
---|
83 | |
---|
84 | ! LOCAL INTEGER SCALARS |
---|
85 | INTEGER_M :: JA, JL |
---|
86 | |
---|
87 | ! LOCAL REAL SCALARS |
---|
88 | REAL_B :: ZA11, ZA12, ZAERCN, ZEU, ZEU10, ZEU11, ZEU12,& |
---|
89 | &ZEU13, ZODH41, ZODH42, ZODN21, ZODN22, ZPU, & |
---|
90 | &ZPU10, ZPU11, ZPU12, ZPU13, ZSQ1, ZSQ2, ZSQH41, & |
---|
91 | &ZSQH42, ZSQN21, ZSQN22, ZTO1, ZTO2, ZTTF11, & |
---|
92 | &ZTTF12, ZUU11, ZUU12, ZUXY, ZVXY, ZX, ZXCH4, & |
---|
93 | &ZXD, ZXN, ZXN2O, ZY, ZYCH4, ZYN2O, ZZ |
---|
94 | |
---|
95 | |
---|
96 | ! ------------------------------------------------------------------ |
---|
97 | !DIR$ VFUNCTION SQRTHF |
---|
98 | |
---|
99 | |
---|
100 | !* 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
---|
101 | ! ----------------------------------------------- |
---|
102 | |
---|
103 | DO JA = 1 , 8 |
---|
104 | DO JL = KIDIA,KFDIA |
---|
105 | ZZ = SQRT(PUU1(JL,JA) - PUU2(JL,JA)) |
---|
106 | ZXD = PGB( JL,JA,1) + ZZ * (PGB( JL,JA,2) + ZZ ) |
---|
107 | ZXN = PGA( JL,JA,1) + ZZ * (PGA( JL,JA,2) ) |
---|
108 | PTT(JL,JA) = ZXN / ZXD |
---|
109 | ENDDO |
---|
110 | ENDDO |
---|
111 | |
---|
112 | DO JL = KIDIA,KFDIA |
---|
113 | PTT(JL,3)=MAX(PTT(JL,3),_ZERO_) |
---|
114 | ENDDO |
---|
115 | ! ------------------------------------------------------------------ |
---|
116 | |
---|
117 | !* 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
---|
118 | ! --------------------------------------------------- |
---|
119 | |
---|
120 | DO JL = KIDIA,KFDIA |
---|
121 | PTT(JL, 9) = PTT(JL, 8) |
---|
122 | |
---|
123 | !- CONTINUUM ABSORPTION: E- AND P-TYPE |
---|
124 | |
---|
125 | ZPU = (PUU1(JL,10) - PUU2(JL,10)) |
---|
126 | ZPU10 = RPTYPE(1) * ZPU |
---|
127 | ZPU11 = RPTYPE(2) * ZPU |
---|
128 | ZPU12 = RPTYPE(3) * ZPU |
---|
129 | ZPU13 = RPTYPE(4) * ZPU |
---|
130 | ZEU = (PUU1(JL,11) - PUU2(JL,11)) |
---|
131 | ZEU10 = RETYPE(1) * ZEU |
---|
132 | ZEU11 = RETYPE(2) * ZEU |
---|
133 | ZEU12 = RETYPE(3) * ZEU |
---|
134 | ZEU13 = RETYPE(4) * ZEU |
---|
135 | |
---|
136 | !- OZONE ABSORPTION |
---|
137 | |
---|
138 | ZX = (PUU1(JL,12) - PUU2(JL,12)) |
---|
139 | ZY = (PUU1(JL,13) - PUU2(JL,13)) |
---|
140 | ZUXY = 4._JPRB * ZX * ZX / (RPIALF0 * ZY) |
---|
141 | ZSQ1 = SQRT(_ONE_ + RO1H * ZUXY ) - _ONE_ |
---|
142 | ZSQ2 = SQRT(_ONE_ + RO2H * ZUXY ) - _ONE_ |
---|
143 | ZVXY = RPIALF0 * ZY / (_TWO_ * ZX) |
---|
144 | ZAERCN = (PUU1(JL,17) -PUU2(JL,17)) + ZEU12 + ZPU12 |
---|
145 | ZTO1 = EXP( - ZVXY * ZSQ1 - ZAERCN ) |
---|
146 | ZTO2 = EXP( - ZVXY * ZSQ2 - ZAERCN ) |
---|
147 | |
---|
148 | !-- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
---|
149 | |
---|
150 | !* CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
151 | |
---|
152 | ZXCH4 = (PUU1(JL,19) - PUU2(JL,19)) |
---|
153 | ZYCH4 = (PUU1(JL,20) - PUU2(JL,20)) |
---|
154 | ZUXY = 4._JPRB * ZXCH4*ZXCH4/(0.103_JPRB*ZYCH4) |
---|
155 | ZSQH41 = SQRT(_ONE_ + 33.7_JPRB * ZUXY) - _ONE_ |
---|
156 | ZVXY = 0.103_JPRB * ZYCH4 / (_TWO_ * ZXCH4) |
---|
157 | ZODH41 = ZVXY * ZSQH41 |
---|
158 | |
---|
159 | !* N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
160 | |
---|
161 | ZXN2O = (PUU1(JL,21) - PUU2(JL,21)) |
---|
162 | ZYN2O = (PUU1(JL,22) - PUU2(JL,22)) |
---|
163 | ZUXY = 4._JPRB * ZXN2O*ZXN2O/(0.416_JPRB*ZYN2O) |
---|
164 | ZSQN21 = SQRT(_ONE_ + 21.3_JPRB * ZUXY) - _ONE_ |
---|
165 | ZVXY = 0.416_JPRB * ZYN2O / (_TWO_ * ZXN2O) |
---|
166 | ZODN21 = ZVXY * ZSQN21 |
---|
167 | |
---|
168 | !* CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
169 | |
---|
170 | ZUXY = 4._JPRB * ZXCH4*ZXCH4/(0.113_JPRB*ZYCH4) |
---|
171 | ZSQH42 = SQRT(_ONE_ + 400._JPRB * ZUXY) - _ONE_ |
---|
172 | ZVXY = 0.113_JPRB * ZYCH4 / (_TWO_ * ZXCH4) |
---|
173 | ZODH42 = ZVXY * ZSQH42 |
---|
174 | |
---|
175 | !* N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
176 | |
---|
177 | ZUXY = 4._JPRB * ZXN2O*ZXN2O/(0.197_JPRB*ZYN2O) |
---|
178 | ZSQN22 = SQRT(_ONE_ + 2000._JPRB * ZUXY) - _ONE_ |
---|
179 | ZVXY = 0.197_JPRB * ZYN2O / (_TWO_ * ZXN2O) |
---|
180 | ZODN22 = ZVXY * ZSQN22 |
---|
181 | |
---|
182 | !* CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
183 | |
---|
184 | ZA11 = (PUU1(JL,23) - PUU2(JL,23)) * 4.404E+05_JPRB |
---|
185 | ZTTF11 = _ONE_ - ZA11 * 0.003225_JPRB |
---|
186 | |
---|
187 | !* CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
188 | |
---|
189 | ZA12 = (PUU1(JL,24) - PUU2(JL,24)) * 6.7435E+05_JPRB |
---|
190 | ZTTF12 = _ONE_ - ZA12 * 0.003225_JPRB |
---|
191 | |
---|
192 | ZUU11 = - (PUU1(JL,15) - PUU2(JL,15)) - ZEU10 - ZPU10 |
---|
193 | ZUU12 = - (PUU1(JL,16) - PUU2(JL,16)) - ZEU11 - ZPU11 -ZODH41 - ZODN21 |
---|
194 | PTT(JL,10) = EXP( - (PUU1(JL,14)- PUU2(JL,14)) ) |
---|
195 | PTT(JL,11) = EXP( ZUU11 ) |
---|
196 | PTT(JL,12) = EXP( ZUU12 ) * ZTTF11 * ZTTF12 |
---|
197 | PTT(JL,13) = 0.7554_JPRB * ZTO1 + 0.2446_JPRB * ZTO2 |
---|
198 | PTT(JL,14) = PTT(JL,10) * EXP( - ZEU13 - ZPU13 ) |
---|
199 | PTT(JL,15) = EXP( - (PUU1(JL,14) - PUU2(JL,14)) - ZODH42-ZODN22 ) |
---|
200 | |
---|
201 | ENDDO |
---|
202 | |
---|
203 | RETURN |
---|
204 | END SUBROUTINE LWTTM |
---|