| 1 | ! $Id: newmicro.F90 4368 2022-12-05 23:01:16Z idelkadi $ |
|---|
| 2 | |
|---|
| 3 | SUBROUTINE newmicro(flag_aerosol, ok_cdnc, bl95_b0, bl95_b1, paprs, pplay, t, pqlwp, picefra, pclc, & |
|---|
| 4 | pcltau, pclemi, pch, pcl, pcm, pct, pctlwp, xflwp, xfiwp, xflwc, xfiwc, & |
|---|
| 5 | mass_solu_aero, mass_solu_aero_pi, pcldtaupi, latitude_deg,re, fl, reliq, reice, & |
|---|
| 6 | reliq_pi, reice_pi) |
|---|
| 7 | |
|---|
| 8 | USE dimphy |
|---|
| 9 | USE phys_local_var_mod, ONLY: scdnc, cldncl, reffclwtop, lcc, reffclws, & |
|---|
| 10 | reffclwc, cldnvi, lcc3d, lcc3dcon, lcc3dstra, icc3dcon, icc3dstra, & |
|---|
| 11 | zfice, dNovrN, ptconv |
|---|
| 12 | USE phys_state_var_mod, ONLY: rnebcon, clwcon |
|---|
| 13 | USE icefrac_lsc_mod ! computes ice fraction (JBM 3/14) |
|---|
| 14 | USE ioipsl_getin_p_mod, ONLY : getin_p |
|---|
| 15 | USE print_control_mod, ONLY: lunout |
|---|
| 16 | USE lscp_tools_mod, only: icefrac_lscp |
|---|
| 17 | |
|---|
| 18 | |
|---|
| 19 | |
|---|
| 20 | IMPLICIT NONE |
|---|
| 21 | ! ====================================================================== |
|---|
| 22 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
|---|
| 23 | ! O. Boucher (LMD/CNRS) mise a jour en 201212 |
|---|
| 24 | ! I. Musat (LMD/CNRS) : prise en compte de la meme hypothese de recouvrement |
|---|
| 25 | ! pour les nuages que pour le rayonnement rrtm via |
|---|
| 26 | ! le parametre novlp de radopt.h : 20160721 |
|---|
| 27 | ! Objet: Calculer epaisseur optique et emmissivite des nuages |
|---|
| 28 | ! ====================================================================== |
|---|
| 29 | ! Arguments: |
|---|
| 30 | ! ok_cdnc-input-L-flag pour calculer les rayons a partir des aerosols |
|---|
| 31 | |
|---|
| 32 | ! t-------input-R-temperature |
|---|
| 33 | ! pqlwp---input-R-eau liquide nuageuse dans l'atmosphere dans la maille (kg/kg) |
|---|
| 34 | ! picefra--input-R-fraction de glace dans les nuages |
|---|
| 35 | ! pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
|---|
| 36 | ! mass_solu_aero-----input-R-total mass concentration for all soluble |
|---|
| 37 | ! aerosols[ug/m^3] |
|---|
| 38 | ! mass_solu_aero_pi--input-R-ditto, pre-industrial value |
|---|
| 39 | |
|---|
| 40 | ! bl95_b0-input-R-a PARAMETER, may be varied for tests (s-sea, l-land) |
|---|
| 41 | ! bl95_b1-input-R-a PARAMETER, may be varied for tests ( -"- ) |
|---|
| 42 | ! latitude_deg-input latitude in degrees |
|---|
| 43 | |
|---|
| 44 | ! re------output-R-Cloud droplet effective radius multiplied by fl [um] |
|---|
| 45 | ! fl------output-R-Denominator to re, introduced to avoid problems in |
|---|
| 46 | ! the averaging of the output. fl is the fraction of liquid |
|---|
| 47 | ! water clouds within a grid cell |
|---|
| 48 | |
|---|
| 49 | ! pcltau--output-R-epaisseur optique des nuages |
|---|
| 50 | ! pclemi--output-R-emissivite des nuages (0 a 1) |
|---|
| 51 | ! pcldtaupi-output-R-pre-industrial value of cloud optical thickness, |
|---|
| 52 | |
|---|
| 53 | ! pcl-output-R-2D low-level cloud cover |
|---|
| 54 | ! pcm-output-R-2D mid-level cloud cover |
|---|
| 55 | ! pch-output-R-2D high-level cloud cover |
|---|
| 56 | ! pct-output-R-2D total cloud cover |
|---|
| 57 | ! ====================================================================== |
|---|
| 58 | |
|---|
| 59 | include "YOMCST.h" |
|---|
| 60 | include "nuage.h" |
|---|
| 61 | include "radepsi.h" |
|---|
| 62 | include "radopt.h" |
|---|
| 63 | include "clesphys.h" |
|---|
| 64 | |
|---|
| 65 | ! choix de l'hypothese de recouvrement nuageuse via radopt.h (IM, 19.07.2016) |
|---|
| 66 | ! !novlp=1: max-random |
|---|
| 67 | ! !novlp=2: maximum |
|---|
| 68 | ! !novlp=3: random |
|---|
| 69 | ! LOGICAL random, maximum_random, maximum |
|---|
| 70 | ! PARAMETER (random=.FALSE., maximum_random=.TRUE., maximum=.FALSE.) |
|---|
| 71 | |
|---|
| 72 | LOGICAL, SAVE :: first = .TRUE. |
|---|
| 73 | !$OMP THREADPRIVATE(FIRST) |
|---|
| 74 | INTEGER flag_max |
|---|
| 75 | |
|---|
| 76 | ! threshold PARAMETERs |
|---|
| 77 | REAL thres_tau, thres_neb |
|---|
| 78 | PARAMETER (thres_tau=0.3, thres_neb=0.001) |
|---|
| 79 | |
|---|
| 80 | REAL phase3d(klon, klev) |
|---|
| 81 | REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) |
|---|
| 82 | |
|---|
| 83 | REAL paprs(klon, klev+1) |
|---|
| 84 | REAL pplay(klon, klev) |
|---|
| 85 | REAL t(klon, klev) |
|---|
| 86 | REAL pclc(klon, klev) |
|---|
| 87 | REAL pqlwp(klon, klev), picefra(klon,klev) |
|---|
| 88 | REAL pcltau(klon, klev) |
|---|
| 89 | REAL pclemi(klon, klev) |
|---|
| 90 | REAL pcldtaupi(klon, klev) |
|---|
| 91 | REAL latitude_deg(klon) |
|---|
| 92 | |
|---|
| 93 | REAL pct(klon) |
|---|
| 94 | REAL pcl(klon) |
|---|
| 95 | REAL pcm(klon) |
|---|
| 96 | REAL pch(klon) |
|---|
| 97 | REAL pctlwp(klon) |
|---|
| 98 | |
|---|
| 99 | LOGICAL lo |
|---|
| 100 | |
|---|
| 101 | ! !Abderr modif JL mail du 19.01.2011 18:31 |
|---|
| 102 | ! REAL cetahb, cetamb |
|---|
| 103 | ! PARAMETER (cetahb = 0.45, cetamb = 0.80) |
|---|
| 104 | ! Remplacer |
|---|
| 105 | ! cetahb*paprs(i,1) par prmhc |
|---|
| 106 | ! cetamb*paprs(i,1) par prlmc |
|---|
| 107 | REAL prmhc ! Pressure between medium and high level cloud in Pa |
|---|
| 108 | REAL prlmc ! Pressure between low and medium level cloud in Pa |
|---|
| 109 | PARAMETER (prmhc=440.*100., prlmc=680.*100.) |
|---|
| 110 | |
|---|
| 111 | INTEGER i, k |
|---|
| 112 | REAL xflwp(klon), xfiwp(klon) |
|---|
| 113 | REAL xflwc(klon, klev), xfiwc(klon, klev) |
|---|
| 114 | |
|---|
| 115 | REAL radius |
|---|
| 116 | |
|---|
| 117 | REAL coef_froi, coef_chau |
|---|
| 118 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
|---|
| 119 | |
|---|
| 120 | REAL seuil_neb |
|---|
| 121 | PARAMETER (seuil_neb=0.001) |
|---|
| 122 | |
|---|
| 123 | ! JBM (3/14) nexpo is replaced by exposant_glace |
|---|
| 124 | ! INTEGER nexpo ! exponentiel pour glace/eau |
|---|
| 125 | ! PARAMETER (nexpo=6) |
|---|
| 126 | ! PARAMETER (nexpo=1) |
|---|
| 127 | ! if iflag_t_glace=0, the old values are used: |
|---|
| 128 | REAL, PARAMETER :: t_glace_min_old = 258. |
|---|
| 129 | REAL, PARAMETER :: t_glace_max_old = 273.13 |
|---|
| 130 | |
|---|
| 131 | REAL rel, tc, rei, iwc, dei, deimin, deimax |
|---|
| 132 | REAL k_ice0, k_ice, df |
|---|
| 133 | PARAMETER (k_ice0=0.005) ! units=m2/g |
|---|
| 134 | PARAMETER (df=1.66) ! diffusivity factor |
|---|
| 135 | |
|---|
| 136 | ! jq for the aerosol indirect effect |
|---|
| 137 | ! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
|---|
| 138 | ! jq |
|---|
| 139 | REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] |
|---|
| 140 | REAL mass_solu_aero_pi(klon, klev) ! - " - (pre-industrial value) |
|---|
| 141 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
|---|
| 142 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
|---|
| 143 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
|---|
| 144 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
|---|
| 145 | |
|---|
| 146 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds |
|---|
| 147 | ! within the grid cell) |
|---|
| 148 | |
|---|
| 149 | INTEGER flag_aerosol |
|---|
| 150 | LOGICAL ok_cdnc |
|---|
| 151 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
|---|
| 152 | |
|---|
| 153 | ! jq-end |
|---|
| 154 | ! IM cf. CR:parametres supplementaires |
|---|
| 155 | REAL dzfice(klon,klev) |
|---|
| 156 | REAL zclear(klon) |
|---|
| 157 | REAL zcloud(klon) |
|---|
| 158 | REAL zcloudh(klon) |
|---|
| 159 | REAL zcloudm(klon) |
|---|
| 160 | REAL zcloudl(klon) |
|---|
| 161 | REAL rhodz(klon, klev) !--rho*dz pour la couche |
|---|
| 162 | REAL zrho(klon, klev) !--rho pour la couche |
|---|
| 163 | REAL dh(klon, klev) !--dz pour la couche |
|---|
| 164 | REAL rad_chaud(klon, klev) !--rayon pour les nuages chauds |
|---|
| 165 | REAL rad_chaud_pi(klon, klev) !--rayon pour les nuages chauds pre-industriels |
|---|
| 166 | REAL zflwp_var, zfiwp_var |
|---|
| 167 | REAL d_rei_dt |
|---|
| 168 | |
|---|
| 169 | ! Abderrahmane oct 2009 |
|---|
| 170 | REAL reliq(klon, klev), reice(klon, klev) |
|---|
| 171 | REAL reliq_pi(klon, klev), reice_pi(klon, klev) |
|---|
| 172 | |
|---|
| 173 | REAL,SAVE :: cdnc_min=-1. |
|---|
| 174 | REAL,SAVE :: cdnc_min_m3 |
|---|
| 175 | !$OMP THREADPRIVATE(cdnc_min,cdnc_min_m3) |
|---|
| 176 | REAL,SAVE :: cdnc_max=-1. |
|---|
| 177 | REAL,SAVE :: cdnc_max_m3 |
|---|
| 178 | !$OMP THREADPRIVATE(cdnc_max,cdnc_max_m3) |
|---|
| 179 | |
|---|
| 180 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 181 | ! FH : 2011/05/24 |
|---|
| 182 | |
|---|
| 183 | ! rei = ( rei_max - rei_min ) * T(°C) / 81.4 + rei_max |
|---|
| 184 | ! to be used for a temperature in celcius T(°C) < 0 |
|---|
| 185 | ! rei=rei_min for T(°C) < -81.4 |
|---|
| 186 | |
|---|
| 187 | ! Calcul de la pente de la relation entre rayon effective des cristaux |
|---|
| 188 | ! et la température. |
|---|
| 189 | ! Pour retrouver les résultats numériques de la version d'origine, |
|---|
| 190 | ! on impose 0.71 quand on est proche de 0.71 |
|---|
| 191 | |
|---|
| 192 | if (first) THEN |
|---|
| 193 | call getin_p('cdnc_min',cdnc_min) |
|---|
| 194 | cdnc_min_m3=cdnc_min*1.E6 |
|---|
| 195 | IF (cdnc_min_m3<0.) cdnc_min_m3=20.E6 ! astuce pour retrocompatibilite |
|---|
| 196 | write(lunout,*)'cdnc_min=', cdnc_min_m3/1.E6 |
|---|
| 197 | call getin_p('cdnc_max',cdnc_max) |
|---|
| 198 | cdnc_max_m3=cdnc_max*1.E6 |
|---|
| 199 | IF (cdnc_max_m3<0.) cdnc_max_m3=1000.E6 ! astuce pour retrocompatibilite |
|---|
| 200 | write(lunout,*)'cdnc_max=', cdnc_max_m3/1.E6 |
|---|
| 201 | ENDIF |
|---|
| 202 | |
|---|
| 203 | d_rei_dt = (rei_max-rei_min)/81.4 |
|---|
| 204 | IF (abs(d_rei_dt-0.71)<1.E-4) d_rei_dt = 0.71 |
|---|
| 205 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 206 | |
|---|
| 207 | ! Calculer l'epaisseur optique et l'emmissivite des nuages |
|---|
| 208 | ! IM inversion des DO |
|---|
| 209 | |
|---|
| 210 | xflwp = 0.D0 |
|---|
| 211 | xfiwp = 0.D0 |
|---|
| 212 | xflwc = 0.D0 |
|---|
| 213 | xfiwc = 0.D0 |
|---|
| 214 | |
|---|
| 215 | reliq = 0. |
|---|
| 216 | reice = 0. |
|---|
| 217 | reliq_pi = 0. |
|---|
| 218 | reice_pi = 0. |
|---|
| 219 | |
|---|
| 220 | IF (iflag_t_glace.EQ.0) THEN |
|---|
| 221 | DO k = 1, klev |
|---|
| 222 | DO i = 1, klon |
|---|
| 223 | ! -layer calculation |
|---|
| 224 | rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 |
|---|
| 225 | zrho(i, k) = pplay(i, k)/t(i, k)/rd ! kg/m3 |
|---|
| 226 | dh(i, k) = rhodz(i, k)/zrho(i, k) ! m |
|---|
| 227 | ! -Fraction of ice in cloud using a linear transition |
|---|
| 228 | zfice(i, k) = 1.0 - (t(i,k)-t_glace_min_old)/(t_glace_max_old-t_glace_min_old) |
|---|
| 229 | zfice(i, k) = min(max(zfice(i,k),0.0), 1.0) |
|---|
| 230 | ! -IM Total Liquid/Ice water content |
|---|
| 231 | xflwc(i, k) = (1.-zfice(i,k))*pqlwp(i, k) |
|---|
| 232 | xfiwc(i, k) = zfice(i, k)*pqlwp(i, k) |
|---|
| 233 | ENDDO |
|---|
| 234 | ENDDO |
|---|
| 235 | ELSE ! of IF (iflag_t_glace.EQ.0) |
|---|
| 236 | DO k = 1, klev |
|---|
| 237 | |
|---|
| 238 | ! JBM: icefrac_lsc is now contained icefrac_lsc_mod |
|---|
| 239 | ! zfice(i, k) = icefrac_lsc(t(i,k), t_glace_min, & |
|---|
| 240 | ! t_glace_max, exposant_glace) |
|---|
| 241 | |
|---|
| 242 | IF (ok_new_lscp) THEN |
|---|
| 243 | CALL icefrac_lscp(klon,t(:,k),pplay(:,k)/paprs(:,1),zfice(:,k),dzfice(:,k)) |
|---|
| 244 | ELSE |
|---|
| 245 | CALL icefrac_lsc(klon,t(:,k),pplay(:,k)/paprs(:,1),zfice(:,k)) |
|---|
| 246 | ENDIF |
|---|
| 247 | |
|---|
| 248 | DO i = 1, klon |
|---|
| 249 | |
|---|
| 250 | IF ((.NOT. ptconv(i,k)) .AND. ok_new_lscp .AND. ok_icefra_lscp) THEN |
|---|
| 251 | ! EV: take the ice fraction directly from the lscp code |
|---|
| 252 | ! consistent only for non convective grid points |
|---|
| 253 | ! critical for mixed phase clouds |
|---|
| 254 | zfice(i,k)=picefra(i,k) |
|---|
| 255 | ENDIF |
|---|
| 256 | |
|---|
| 257 | ! -layer calculation |
|---|
| 258 | rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 |
|---|
| 259 | zrho(i, k) = pplay(i, k)/t(i, k)/rd ! kg/m3 |
|---|
| 260 | dh(i, k) = rhodz(i, k)/zrho(i, k) ! m |
|---|
| 261 | ! -IM Total Liquid/Ice water content |
|---|
| 262 | xflwc(i, k) = (1.-zfice(i,k))*pqlwp(i, k) |
|---|
| 263 | xfiwc(i, k) = zfice(i, k)*pqlwp(i, k) |
|---|
| 264 | ENDDO |
|---|
| 265 | ENDDO |
|---|
| 266 | ENDIF |
|---|
| 267 | |
|---|
| 268 | IF (ok_cdnc) THEN |
|---|
| 269 | |
|---|
| 270 | ! --we compute cloud properties as a function of the aerosol load |
|---|
| 271 | |
|---|
| 272 | DO k = 1, klev |
|---|
| 273 | DO i = 1, klon |
|---|
| 274 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
|---|
| 275 | ! Cloud droplet number concentration (CDNC) is restricted |
|---|
| 276 | ! to be within [20, 1000 cm^3] |
|---|
| 277 | |
|---|
| 278 | ! --pre-industrial case |
|---|
| 279 | cdnc_pi(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero_pi(i,k), & |
|---|
| 280 | 1.E-4))/log(10.))*1.E6 !-m-3 |
|---|
| 281 | cdnc_pi(i, k) = min(cdnc_max_m3, max(cdnc_min_m3,cdnc_pi(i,k))) |
|---|
| 282 | |
|---|
| 283 | ENDDO |
|---|
| 284 | ENDDO |
|---|
| 285 | |
|---|
| 286 | !--flag_aerosol=7 => MACv2SP climatology |
|---|
| 287 | !--in this case there is an enhancement factor |
|---|
| 288 | IF (flag_aerosol .EQ. 7) THEN |
|---|
| 289 | |
|---|
| 290 | !--present-day |
|---|
| 291 | DO k = 1, klev |
|---|
| 292 | DO i = 1, klon |
|---|
| 293 | cdnc(i, k) = cdnc_pi(i,k)*dNovrN(i) |
|---|
| 294 | ENDDO |
|---|
| 295 | ENDDO |
|---|
| 296 | |
|---|
| 297 | !--standard case |
|---|
| 298 | ELSE |
|---|
| 299 | |
|---|
| 300 | DO k = 1, klev |
|---|
| 301 | DO i = 1, klon |
|---|
| 302 | |
|---|
| 303 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
|---|
| 304 | ! Cloud droplet number concentration (CDNC) is restricted |
|---|
| 305 | ! to be within [20, 1000 cm^3] |
|---|
| 306 | |
|---|
| 307 | ! --present-day case |
|---|
| 308 | cdnc(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero(i,k), & |
|---|
| 309 | 1.E-4))/log(10.))*1.E6 !-m-3 |
|---|
| 310 | cdnc(i, k) = min(cdnc_max_m3, max(cdnc_min_m3,cdnc(i,k))) |
|---|
| 311 | |
|---|
| 312 | ENDDO |
|---|
| 313 | ENDDO |
|---|
| 314 | |
|---|
| 315 | ENDIF !--flag_aerosol |
|---|
| 316 | |
|---|
| 317 | !--computing cloud droplet size |
|---|
| 318 | DO k = 1, klev |
|---|
| 319 | DO i = 1, klon |
|---|
| 320 | |
|---|
| 321 | ! --present-day case |
|---|
| 322 | rad_chaud(i, k) = 1.1*((pqlwp(i,k)*pplay(i, & |
|---|
| 323 | k)/(rd*t(i,k)))/(4./3*rpi*1000.*cdnc(i,k)))**(1./3.) |
|---|
| 324 | rad_chaud(i, k) = max(rad_chaud(i,k)*1.E6, 5.) |
|---|
| 325 | |
|---|
| 326 | ! --pre-industrial case |
|---|
| 327 | rad_chaud_pi(i, k) = 1.1*((pqlwp(i,k)*pplay(i, & |
|---|
| 328 | k)/(rd*t(i,k)))/(4./3.*rpi*1000.*cdnc_pi(i,k)))**(1./3.) |
|---|
| 329 | rad_chaud_pi(i, k) = max(rad_chaud_pi(i,k)*1.E6, 5.) |
|---|
| 330 | |
|---|
| 331 | ! --pre-industrial case |
|---|
| 332 | ! --liquid/ice cloud water paths: |
|---|
| 333 | IF (pclc(i,k)<=seuil_neb) THEN |
|---|
| 334 | |
|---|
| 335 | pcldtaupi(i, k) = 0.0 |
|---|
| 336 | |
|---|
| 337 | ELSE |
|---|
| 338 | |
|---|
| 339 | zflwp_var = 1000.*(1.-zfice(i,k))*pqlwp(i, k)/pclc(i, k)* & |
|---|
| 340 | rhodz(i, k) |
|---|
| 341 | zfiwp_var = 1000.*zfice(i, k)*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) |
|---|
| 342 | ! Calculation of ice cloud effective radius in micron |
|---|
| 343 | IF (iflag_rei .EQ. 1) THEN |
|---|
| 344 | ! when we account for precipitation in the radiation scheme, |
|---|
| 345 | ! It is recommended to use the rei formula from Sun and Rikkus 1999 with a revision |
|---|
| 346 | ! from Sun 2001 (as in the IFS model) |
|---|
| 347 | iwc=zfice(i, k)*pqlwp(i, k)/pclc(i,k)*zrho(i,k)*1000. !in cloud ice water content in g/m3 |
|---|
| 348 | dei=(1.2351+0.0105*(t(i,k)-273.15))*(45.8966*(iwc**0.2214) + & |
|---|
| 349 | & 0.7957*(iwc**0.2535)*(t(i,k)-83.15)) |
|---|
| 350 | !deimax=155.0 |
|---|
| 351 | !deimin=20.+40*cos(abs(latitude_deg(i))/180.*RPI) |
|---|
| 352 | !Etienne: deimax and deimin controled by rei_max and rei_min in physiq.def |
|---|
| 353 | deimax=rei_max*2.0 |
|---|
| 354 | deimin=2.0*rei_min+40*cos(abs(latitude_deg(i))/180.*RPI) |
|---|
| 355 | dei=min(dei,deimax) |
|---|
| 356 | dei=max(dei,deimin) |
|---|
| 357 | rei=3.*sqrt(3.)/8.*dei |
|---|
| 358 | ELSE |
|---|
| 359 | ! Default |
|---|
| 360 | ! for ice clouds: as a function of the ambiant temperature |
|---|
| 361 | ! [formula used by Iacobellis and Somerville (2000), with an |
|---|
| 362 | ! asymptotical value of 3.5 microns at T<-81.4 C added to be |
|---|
| 363 | ! consistent with observations of Heymsfield et al. 1986]: |
|---|
| 364 | ! 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as |
|---|
| 365 | ! rei_max=61.29 |
|---|
| 366 | tc = t(i, k) - 273.15 |
|---|
| 367 | rei = d_rei_dt*tc + rei_max |
|---|
| 368 | IF (tc<=-81.4) rei = rei_min |
|---|
| 369 | ENDIF |
|---|
| 370 | |
|---|
| 371 | ! -- cloud optical thickness : |
|---|
| 372 | ! [for liquid clouds, traditional formula, |
|---|
| 373 | ! for ice clouds, Ebert & Curry (1992)] |
|---|
| 374 | |
|---|
| 375 | IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. |
|---|
| 376 | pcldtaupi(i, k) = 3.0/2.0*zflwp_var/rad_chaud_pi(i, k) + & |
|---|
| 377 | zfiwp_var*(3.448E-03+2.431/rei) |
|---|
| 378 | |
|---|
| 379 | ENDIF |
|---|
| 380 | |
|---|
| 381 | ENDDO |
|---|
| 382 | ENDDO |
|---|
| 383 | |
|---|
| 384 | ELSE !--not ok_cdnc |
|---|
| 385 | |
|---|
| 386 | ! -prescribed cloud droplet radius |
|---|
| 387 | |
|---|
| 388 | DO k = 1, min(3, klev) |
|---|
| 389 | DO i = 1, klon |
|---|
| 390 | rad_chaud(i, k) = rad_chau2 |
|---|
| 391 | rad_chaud_pi(i, k) = rad_chau2 |
|---|
| 392 | ENDDO |
|---|
| 393 | ENDDO |
|---|
| 394 | DO k = min(3, klev) + 1, klev |
|---|
| 395 | DO i = 1, klon |
|---|
| 396 | rad_chaud(i, k) = rad_chau1 |
|---|
| 397 | rad_chaud_pi(i, k) = rad_chau1 |
|---|
| 398 | ENDDO |
|---|
| 399 | ENDDO |
|---|
| 400 | |
|---|
| 401 | ENDIF !--ok_cdnc |
|---|
| 402 | |
|---|
| 403 | ! --computation of cloud optical depth and emissivity |
|---|
| 404 | ! --in the general case |
|---|
| 405 | |
|---|
| 406 | DO k = 1, klev |
|---|
| 407 | DO i = 1, klon |
|---|
| 408 | |
|---|
| 409 | IF (pclc(i,k)<=seuil_neb) THEN |
|---|
| 410 | |
|---|
| 411 | ! effective cloud droplet radius (microns) for liquid water clouds: |
|---|
| 412 | ! For output diagnostics cloud droplet effective radius [um] |
|---|
| 413 | ! we multiply here with f * xl (fraction of liquid water |
|---|
| 414 | ! clouds in the grid cell) to avoid problems in the averaging of the |
|---|
| 415 | ! output. |
|---|
| 416 | ! In the output of IOIPSL, derive the REAL cloud droplet |
|---|
| 417 | ! effective radius as re/fl |
|---|
| 418 | |
|---|
| 419 | fl(i, k) = seuil_neb*(1.-zfice(i,k)) |
|---|
| 420 | re(i, k) = rad_chaud(i, k)*fl(i, k) |
|---|
| 421 | rel = 0. |
|---|
| 422 | rei = 0. |
|---|
| 423 | pclc(i, k) = 0.0 |
|---|
| 424 | pcltau(i, k) = 0.0 |
|---|
| 425 | pclemi(i, k) = 0.0 |
|---|
| 426 | |
|---|
| 427 | ELSE |
|---|
| 428 | |
|---|
| 429 | ! -- liquid/ice cloud water paths: |
|---|
| 430 | |
|---|
| 431 | zflwp_var = 1000.*(1.-zfice(i,k))*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) |
|---|
| 432 | zfiwp_var = 1000.*zfice(i, k)*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) |
|---|
| 433 | |
|---|
| 434 | ! effective cloud droplet radius (microns) for liquid water clouds: |
|---|
| 435 | ! For output diagnostics cloud droplet effective radius [um] |
|---|
| 436 | ! we multiply here with f * xl (fraction of liquid water |
|---|
| 437 | ! clouds in the grid cell) to avoid problems in the averaging of the |
|---|
| 438 | ! output. |
|---|
| 439 | ! In the output of IOIPSL, derive the REAL cloud droplet |
|---|
| 440 | ! effective radius as re/fl |
|---|
| 441 | |
|---|
| 442 | fl(i, k) = pclc(i, k)*(1.-zfice(i,k)) |
|---|
| 443 | re(i, k) = rad_chaud(i, k)*fl(i, k) |
|---|
| 444 | |
|---|
| 445 | rel = rad_chaud(i, k) |
|---|
| 446 | |
|---|
| 447 | ! Calculation of ice cloud effective radius in micron |
|---|
| 448 | |
|---|
| 449 | |
|---|
| 450 | IF (iflag_rei .GT. 0) THEN |
|---|
| 451 | |
|---|
| 452 | ! when we account for precipitation in the radiation scheme, |
|---|
| 453 | ! we use the rei formula from Sun and Rikkus 1999 with a revision |
|---|
| 454 | ! from Sun 2001 (as in the IFS model) |
|---|
| 455 | iwc=zfice(i, k)*pqlwp(i, k)/pclc(i,k)*zrho(i,k)*1000. !in cloud ice water content in g/m3 |
|---|
| 456 | dei=(1.2351+0.0105*(t(i,k)-273.15))*(45.8966*(iwc**0.2214) + & |
|---|
| 457 | &0.7957*(iwc**0.2535)*(t(i,k)-83.15)) |
|---|
| 458 | !deimax=155.0 |
|---|
| 459 | !deimin=20.+40*cos(abs(latitude_deg(i))/180.*RPI) |
|---|
| 460 | !Etienne: deimax and deimin controled by rei_max and rei_min in physiq.def |
|---|
| 461 | deimax=rei_max*2.0 |
|---|
| 462 | deimin=2.0*rei_min+40*cos(abs(latitude_deg(i))/180.*RPI) |
|---|
| 463 | dei=min(dei,deimax) |
|---|
| 464 | dei=max(dei,deimin) |
|---|
| 465 | rei=3.*sqrt(3.)/8.*dei |
|---|
| 466 | |
|---|
| 467 | ELSE |
|---|
| 468 | ! Default |
|---|
| 469 | ! for ice clouds: as a function of the ambiant temperature |
|---|
| 470 | ! [formula used by Iacobellis and Somerville (2000), with an |
|---|
| 471 | ! asymptotical value of 3.5 microns at T<-81.4 C added to be |
|---|
| 472 | ! consistent with observations of Heymsfield et al. 1986]: |
|---|
| 473 | ! 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as |
|---|
| 474 | ! rei_max=61.29 |
|---|
| 475 | tc = t(i, k) - 273.15 |
|---|
| 476 | rei = d_rei_dt*tc + rei_max |
|---|
| 477 | IF (tc<=-81.4) rei = rei_min |
|---|
| 478 | ENDIF |
|---|
| 479 | ! -- cloud optical thickness : |
|---|
| 480 | ! [for liquid clouds, traditional formula, |
|---|
| 481 | ! for ice clouds, Ebert & Curry (1992)] |
|---|
| 482 | |
|---|
| 483 | IF (zflwp_var==0.) rel = 1. |
|---|
| 484 | IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. |
|---|
| 485 | pcltau(i, k) = 3.0/2.0*(zflwp_var/rel) + zfiwp_var*(3.448E-03+2.431/ & |
|---|
| 486 | rei) |
|---|
| 487 | |
|---|
| 488 | ! -- cloud infrared emissivity: |
|---|
| 489 | ! [the broadband infrared absorption coefficient is PARAMETERized |
|---|
| 490 | ! as a function of the effective cld droplet radius] |
|---|
| 491 | ! Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
|---|
| 492 | |
|---|
| 493 | k_ice = k_ice0 + 1.0/rei |
|---|
| 494 | |
|---|
| 495 | pclemi(i, k) = 1.0 - exp(-coef_chau*zflwp_var-df*k_ice*zfiwp_var) |
|---|
| 496 | |
|---|
| 497 | ENDIF |
|---|
| 498 | |
|---|
| 499 | reice(i, k) = rei |
|---|
| 500 | |
|---|
| 501 | xflwp(i) = xflwp(i) + xflwc(i, k)*rhodz(i, k) |
|---|
| 502 | xfiwp(i) = xfiwp(i) + xfiwc(i, k)*rhodz(i, k) |
|---|
| 503 | |
|---|
| 504 | ENDDO |
|---|
| 505 | ENDDO |
|---|
| 506 | |
|---|
| 507 | ! --if cloud droplet radius is fixed, then pcldtaupi=pcltau |
|---|
| 508 | |
|---|
| 509 | IF (.NOT. ok_cdnc) THEN |
|---|
| 510 | DO k = 1, klev |
|---|
| 511 | DO i = 1, klon |
|---|
| 512 | pcldtaupi(i, k) = pcltau(i, k) |
|---|
| 513 | reice_pi(i, k) = reice(i, k) |
|---|
| 514 | ENDDO |
|---|
| 515 | ENDDO |
|---|
| 516 | ENDIF |
|---|
| 517 | |
|---|
| 518 | DO k = 1, klev |
|---|
| 519 | DO i = 1, klon |
|---|
| 520 | reliq(i, k) = rad_chaud(i, k) |
|---|
| 521 | reliq_pi(i, k) = rad_chaud_pi(i, k) |
|---|
| 522 | reice_pi(i, k) = reice(i, k) |
|---|
| 523 | ENDDO |
|---|
| 524 | ENDDO |
|---|
| 525 | |
|---|
| 526 | ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
|---|
| 527 | ! IM cf. CR:test: calcul prenant ou non en compte le recouvrement |
|---|
| 528 | ! initialisations |
|---|
| 529 | |
|---|
| 530 | DO i = 1, klon |
|---|
| 531 | zclear(i) = 1. |
|---|
| 532 | zcloud(i) = 0. |
|---|
| 533 | zcloudh(i) = 0. |
|---|
| 534 | zcloudm(i) = 0. |
|---|
| 535 | zcloudl(i) = 0. |
|---|
| 536 | pch(i) = 1.0 |
|---|
| 537 | pcm(i) = 1.0 |
|---|
| 538 | pcl(i) = 1.0 |
|---|
| 539 | pctlwp(i) = 0.0 |
|---|
| 540 | ENDDO |
|---|
| 541 | |
|---|
| 542 | ! --calculation of liquid water path |
|---|
| 543 | |
|---|
| 544 | DO k = klev, 1, -1 |
|---|
| 545 | DO i = 1, klon |
|---|
| 546 | pctlwp(i) = pctlwp(i) + pqlwp(i, k)*rhodz(i, k) |
|---|
| 547 | ENDDO |
|---|
| 548 | ENDDO |
|---|
| 549 | |
|---|
| 550 | ! --calculation of cloud properties with cloud overlap |
|---|
| 551 | |
|---|
| 552 | IF (novlp==1) THEN |
|---|
| 553 | DO k = klev, 1, -1 |
|---|
| 554 | DO i = 1, klon |
|---|
| 555 | zclear(i) = zclear(i)*(1.-max(pclc(i,k),zcloud(i)))/(1.-min(real( & |
|---|
| 556 | zcloud(i),kind=8),1.-zepsec)) |
|---|
| 557 | pct(i) = 1. - zclear(i) |
|---|
| 558 | IF (paprs(i,k)<prmhc) THEN |
|---|
| 559 | pch(i) = pch(i)*(1.-max(pclc(i,k),zcloudh(i)))/(1.-min(real(zcloudh & |
|---|
| 560 | (i),kind=8),1.-zepsec)) |
|---|
| 561 | zcloudh(i) = pclc(i, k) |
|---|
| 562 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
|---|
| 563 | pcm(i) = pcm(i)*(1.-max(pclc(i,k),zcloudm(i)))/(1.-min(real(zcloudm & |
|---|
| 564 | (i),kind=8),1.-zepsec)) |
|---|
| 565 | zcloudm(i) = pclc(i, k) |
|---|
| 566 | ELSE IF (paprs(i,k)>=prlmc) THEN |
|---|
| 567 | pcl(i) = pcl(i)*(1.-max(pclc(i,k),zcloudl(i)))/(1.-min(real(zcloudl & |
|---|
| 568 | (i),kind=8),1.-zepsec)) |
|---|
| 569 | zcloudl(i) = pclc(i, k) |
|---|
| 570 | ENDIF |
|---|
| 571 | zcloud(i) = pclc(i, k) |
|---|
| 572 | ENDDO |
|---|
| 573 | ENDDO |
|---|
| 574 | ELSE IF (novlp==2) THEN |
|---|
| 575 | DO k = klev, 1, -1 |
|---|
| 576 | DO i = 1, klon |
|---|
| 577 | zcloud(i) = max(pclc(i,k), zcloud(i)) |
|---|
| 578 | pct(i) = zcloud(i) |
|---|
| 579 | IF (paprs(i,k)<prmhc) THEN |
|---|
| 580 | pch(i) = min(pclc(i,k), pch(i)) |
|---|
| 581 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
|---|
| 582 | pcm(i) = min(pclc(i,k), pcm(i)) |
|---|
| 583 | ELSE IF (paprs(i,k)>=prlmc) THEN |
|---|
| 584 | pcl(i) = min(pclc(i,k), pcl(i)) |
|---|
| 585 | ENDIF |
|---|
| 586 | ENDDO |
|---|
| 587 | ENDDO |
|---|
| 588 | ELSE IF (novlp==3) THEN |
|---|
| 589 | DO k = klev, 1, -1 |
|---|
| 590 | DO i = 1, klon |
|---|
| 591 | zclear(i) = zclear(i)*(1.-pclc(i,k)) |
|---|
| 592 | pct(i) = 1 - zclear(i) |
|---|
| 593 | IF (paprs(i,k)<prmhc) THEN |
|---|
| 594 | pch(i) = pch(i)*(1.0-pclc(i,k)) |
|---|
| 595 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
|---|
| 596 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
|---|
| 597 | ELSE IF (paprs(i,k)>=prlmc) THEN |
|---|
| 598 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
|---|
| 599 | ENDIF |
|---|
| 600 | ENDDO |
|---|
| 601 | ENDDO |
|---|
| 602 | ENDIF |
|---|
| 603 | |
|---|
| 604 | DO i = 1, klon |
|---|
| 605 | pch(i) = 1. - pch(i) |
|---|
| 606 | pcm(i) = 1. - pcm(i) |
|---|
| 607 | pcl(i) = 1. - pcl(i) |
|---|
| 608 | ENDDO |
|---|
| 609 | |
|---|
| 610 | ! ======================================================== |
|---|
| 611 | ! DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL |
|---|
| 612 | ! ======================================================== |
|---|
| 613 | ! change by Nicolas Yan (LSCE) |
|---|
| 614 | ! Cloud Droplet Number Concentration (CDNC) : 3D variable |
|---|
| 615 | ! Fractionnal cover by liquid water cloud (LCC3D) : 3D variable |
|---|
| 616 | ! Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable |
|---|
| 617 | ! Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable |
|---|
| 618 | ! Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable |
|---|
| 619 | |
|---|
| 620 | IF (ok_cdnc) THEN |
|---|
| 621 | |
|---|
| 622 | DO k = 1, klev |
|---|
| 623 | DO i = 1, klon |
|---|
| 624 | phase3d(i, k) = 1 - zfice(i, k) |
|---|
| 625 | IF (pclc(i,k)<=seuil_neb) THEN |
|---|
| 626 | lcc3d(i, k) = seuil_neb*phase3d(i, k) |
|---|
| 627 | ELSE |
|---|
| 628 | lcc3d(i, k) = pclc(i, k)*phase3d(i, k) |
|---|
| 629 | ENDIF |
|---|
| 630 | scdnc(i, k) = lcc3d(i, k)*cdnc(i, k) ! m-3 |
|---|
| 631 | ENDDO |
|---|
| 632 | ENDDO |
|---|
| 633 | |
|---|
| 634 | DO i = 1, klon |
|---|
| 635 | lcc(i) = 0. |
|---|
| 636 | reffclwtop(i) = 0. |
|---|
| 637 | cldncl(i) = 0. |
|---|
| 638 | IF (novlp.EQ.3 .OR. novlp.EQ.1) tcc(i) = 1. |
|---|
| 639 | IF (novlp.EQ.2) tcc(i) = 0. |
|---|
| 640 | ENDDO |
|---|
| 641 | |
|---|
| 642 | DO i = 1, klon |
|---|
| 643 | DO k = klev - 1, 1, -1 !From TOA down |
|---|
| 644 | |
|---|
| 645 | ! Test, if the cloud optical depth exceeds the necessary |
|---|
| 646 | ! threshold: |
|---|
| 647 | |
|---|
| 648 | IF (pcltau(i,k)>thres_tau .AND. pclc(i,k)>thres_neb) THEN |
|---|
| 649 | |
|---|
| 650 | IF (novlp.EQ.2) THEN |
|---|
| 651 | IF (first) THEN |
|---|
| 652 | WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM' |
|---|
| 653 | first = .FALSE. |
|---|
| 654 | ENDIF |
|---|
| 655 | flag_max = -1. |
|---|
| 656 | ftmp(i) = max(tcc(i), pclc(i,k)) |
|---|
| 657 | ENDIF |
|---|
| 658 | |
|---|
| 659 | IF (novlp.EQ.3) THEN |
|---|
| 660 | IF (first) THEN |
|---|
| 661 | WRITE (*, *) 'Hypothese de recouvrement: RANDOM' |
|---|
| 662 | first = .FALSE. |
|---|
| 663 | ENDIF |
|---|
| 664 | flag_max = 1. |
|---|
| 665 | ftmp(i) = tcc(i)*(1-pclc(i,k)) |
|---|
| 666 | ENDIF |
|---|
| 667 | |
|---|
| 668 | IF (novlp.EQ.1) THEN |
|---|
| 669 | IF (first) THEN |
|---|
| 670 | WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM_ & |
|---|
| 671 | & & |
|---|
| 672 | & RANDOM' |
|---|
| 673 | first = .FALSE. |
|---|
| 674 | ENDIF |
|---|
| 675 | flag_max = 1. |
|---|
| 676 | ftmp(i) = tcc(i)*(1.-max(pclc(i,k),pclc(i,k+1)))/(1.-min(pclc(i, & |
|---|
| 677 | k+1),1.-thres_neb)) |
|---|
| 678 | ENDIF |
|---|
| 679 | ! Effective radius of cloud droplet at top of cloud (m) |
|---|
| 680 | reffclwtop(i) = reffclwtop(i) + rad_chaud(i, k)*1.0E-06*phase3d(i, & |
|---|
| 681 | k)*(tcc(i)-ftmp(i))*flag_max |
|---|
| 682 | ! CDNC at top of cloud (m-3) |
|---|
| 683 | cldncl(i) = cldncl(i) + cdnc(i, k)*phase3d(i, k)*(tcc(i)-ftmp(i))* & |
|---|
| 684 | flag_max |
|---|
| 685 | ! Liquid Cloud Content at top of cloud |
|---|
| 686 | lcc(i) = lcc(i) + phase3d(i, k)*(tcc(i)-ftmp(i))*flag_max |
|---|
| 687 | ! Total Cloud Content at top of cloud |
|---|
| 688 | tcc(i) = ftmp(i) |
|---|
| 689 | |
|---|
| 690 | ENDIF ! is there a visible, not-too-small cloud? |
|---|
| 691 | ENDDO ! loop over k |
|---|
| 692 | |
|---|
| 693 | IF (novlp.EQ.3 .OR. novlp.EQ.1) tcc(i) = 1. - tcc(i) |
|---|
| 694 | |
|---|
| 695 | ENDDO ! loop over i |
|---|
| 696 | |
|---|
| 697 | ! ! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC |
|---|
| 698 | ! REFFCLWS) |
|---|
| 699 | DO i = 1, klon |
|---|
| 700 | DO k = 1, klev |
|---|
| 701 | ! Weight to be used for outputs: eau_liquide*couverture nuageuse |
|---|
| 702 | lcc3dcon(i, k) = rnebcon(i, k)*phase3d(i, k)*clwcon(i, k) ! eau liquide convective |
|---|
| 703 | lcc3dstra(i, k) = pclc(i, k)*pqlwp(i, k)*phase3d(i, k) |
|---|
| 704 | lcc3dstra(i, k) = lcc3dstra(i, k) - lcc3dcon(i, k) ! eau liquide stratiforme |
|---|
| 705 | lcc3dstra(i, k) = max(lcc3dstra(i,k), 0.0) |
|---|
| 706 | !FC pour la glace (CAUSES) |
|---|
| 707 | icc3dcon(i, k) = rnebcon(i, k)*(1-phase3d(i, k))*clwcon(i, k) ! glace convective |
|---|
| 708 | icc3dstra(i, k)= pclc(i, k)*pqlwp(i, k)*(1-phase3d(i, k)) |
|---|
| 709 | icc3dstra(i, k) = icc3dstra(i, k) - icc3dcon(i, k) ! glace stratiforme |
|---|
| 710 | icc3dstra(i, k) = max( icc3dstra(i, k), 0.0) |
|---|
| 711 | !FC (CAUSES) |
|---|
| 712 | |
|---|
| 713 | ! Compute cloud droplet radius as above in meter |
|---|
| 714 | radius = 1.1*((pqlwp(i,k)*pplay(i,k)/(rd*t(i,k)))/(4./3*rpi*1000.* & |
|---|
| 715 | cdnc(i,k)))**(1./3.) |
|---|
| 716 | radius = max(radius, 5.E-6) |
|---|
| 717 | ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D |
|---|
| 718 | reffclwc(i, k) = radius |
|---|
| 719 | reffclwc(i, k) = reffclwc(i, k)*lcc3dcon(i, k) |
|---|
| 720 | ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D |
|---|
| 721 | reffclws(i, k) = radius |
|---|
| 722 | reffclws(i, k) = reffclws(i, k)*lcc3dstra(i, k) |
|---|
| 723 | ENDDO !klev |
|---|
| 724 | ENDDO !klon |
|---|
| 725 | |
|---|
| 726 | ! Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D |
|---|
| 727 | |
|---|
| 728 | DO i = 1, klon |
|---|
| 729 | cldnvi(i) = 0. |
|---|
| 730 | lcc_integrat(i) = 0. |
|---|
| 731 | height(i) = 0. |
|---|
| 732 | DO k = 1, klev |
|---|
| 733 | cldnvi(i) = cldnvi(i) + cdnc(i, k)*lcc3d(i, k)*dh(i, k) |
|---|
| 734 | lcc_integrat(i) = lcc_integrat(i) + lcc3d(i, k)*dh(i, k) |
|---|
| 735 | height(i) = height(i) + dh(i, k) |
|---|
| 736 | ENDDO ! klev |
|---|
| 737 | lcc_integrat(i) = lcc_integrat(i)/height(i) |
|---|
| 738 | IF (lcc_integrat(i)<=1.0E-03) THEN |
|---|
| 739 | cldnvi(i) = cldnvi(i)*lcc(i)/seuil_neb |
|---|
| 740 | ELSE |
|---|
| 741 | cldnvi(i) = cldnvi(i)*lcc(i)/lcc_integrat(i) |
|---|
| 742 | ENDIF |
|---|
| 743 | ENDDO ! klon |
|---|
| 744 | |
|---|
| 745 | DO i = 1, klon |
|---|
| 746 | DO k = 1, klev |
|---|
| 747 | IF (scdnc(i,k)<=0.0) scdnc(i, k) = 0.0 |
|---|
| 748 | IF (reffclws(i,k)<=0.0) reffclws(i, k) = 0.0 |
|---|
| 749 | IF (reffclwc(i,k)<=0.0) reffclwc(i, k) = 0.0 |
|---|
| 750 | IF (lcc3d(i,k)<=0.0) lcc3d(i, k) = 0.0 |
|---|
| 751 | IF (lcc3dcon(i,k)<=0.0) lcc3dcon(i, k) = 0.0 |
|---|
| 752 | IF (lcc3dstra(i,k)<=0.0) lcc3dstra(i, k) = 0.0 |
|---|
| 753 | !FC (CAUSES) |
|---|
| 754 | IF (icc3dcon(i,k)<=0.0) icc3dcon(i, k) = 0.0 |
|---|
| 755 | IF (icc3dstra(i,k)<=0.0) icc3dstra(i, k) = 0.0 |
|---|
| 756 | !FC (CAUSES) |
|---|
| 757 | ENDDO |
|---|
| 758 | IF (reffclwtop(i)<=0.0) reffclwtop(i) = 0.0 |
|---|
| 759 | IF (cldncl(i)<=0.0) cldncl(i) = 0.0 |
|---|
| 760 | IF (cldnvi(i)<=0.0) cldnvi(i) = 0.0 |
|---|
| 761 | IF (lcc(i)<=0.0) lcc(i) = 0.0 |
|---|
| 762 | ENDDO |
|---|
| 763 | |
|---|
| 764 | ENDIF !ok_cdnc |
|---|
| 765 | |
|---|
| 766 | first=.false. !to be sure |
|---|
| 767 | |
|---|
| 768 | RETURN |
|---|
| 769 | |
|---|
| 770 | END SUBROUTINE newmicro |
|---|