1 | MODULE LSCP_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
8 | SUBROUTINE LSCP(dtime,paprs,pplay,t,q,ptconv,ratqs, & |
---|
9 | d_t, d_q, d_ql, d_qi, rneb, radliq, radicefrac, & |
---|
10 | rain, snow, & |
---|
11 | pfrac_impa, pfrac_nucl, pfrac_1nucl, & |
---|
12 | frac_impa, frac_nucl, beta, & |
---|
13 | prfl, psfl, rhcl, zqta, fraca, & |
---|
14 | ztv, zpspsk, ztla, zthl, iflag_cld_th, & |
---|
15 | iflag_ice_thermo) |
---|
16 | |
---|
17 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
18 | ! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD) |
---|
19 | ! A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD) |
---|
20 | !-------------------------------------------------------------------------------- |
---|
21 | ! Date: 01/2021 |
---|
22 | !-------------------------------------------------------------------------------- |
---|
23 | ! Aim: Large Scale Clouds and Precipitation (LSCP) |
---|
24 | ! |
---|
25 | ! This code is a new version of the fisrtilp.F90 routine, which is itself a |
---|
26 | ! fusion of 'first' (superrsaturation physics, P. LeVan K. Laval) |
---|
27 | ! and 'ilp' (il pleut, L. Li) |
---|
28 | ! |
---|
29 | ! Compared to fisrtilp, LSCP |
---|
30 | ! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.) |
---|
31 | ! -> consider always precipitation thermalisation (fl_cor_ebil>0) |
---|
32 | ! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T) |
---|
33 | ! -> option "oldbug" by JYG has been removed |
---|
34 | ! -> iflag_t_glace >0 always |
---|
35 | ! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always) |
---|
36 | ! -> rectangular distribution from L. Li no longer available |
---|
37 | ! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt) |
---|
38 | !-------------------------------------------------------------------------------- |
---|
39 | ! References: |
---|
40 | ! |
---|
41 | ! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y |
---|
42 | ! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3 |
---|
43 | ! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046 |
---|
44 | ! ------------------------------------------------------------------------------- |
---|
45 | ! Code structure: |
---|
46 | ! |
---|
47 | ! P0> Thermalization of the precipitation coming from the overlying layer |
---|
48 | ! P1> Evaporation of the precipitation (falling from the k+1 level) |
---|
49 | ! P2> Cloud formation (at the k level) |
---|
50 | ! P2.A.0> Cloud properties calculation from a rectangular pdf |
---|
51 | ! P2.A.1> With the new PDFs, calculation of cloud properties using the inital |
---|
52 | ! values of T and Q |
---|
53 | ! P2.A.2> Coupling between condensed water and temperature |
---|
54 | ! P2.A.3> Calculation of final quantities associated with cloud formation |
---|
55 | ! P2.B> 'All or nothing' cloud |
---|
56 | ! P2.C> Release of Latent heat after cloud formation |
---|
57 | ! P3> Autoconversion to precipitation (k-level) |
---|
58 | ! P4> Wet scavenging |
---|
59 | !------------------------------------------------------------------------------ |
---|
60 | ! Some preliminary comments (JBM) : |
---|
61 | ! |
---|
62 | ! The cloud water that the radiation scheme sees is not the same that the cloud |
---|
63 | ! water used in the physics and the dynamics |
---|
64 | ! |
---|
65 | ! During the autoconversion to precipitation (P3 step), radliq (cloud water used |
---|
66 | ! by the radiation scheme) is calculated as an average of the water that remains |
---|
67 | ! in the cloud during the precipitation and not the water remaining at the end |
---|
68 | ! of the time step. The latter is used in the rest of the physics and advected |
---|
69 | ! by the dynamics. |
---|
70 | ! |
---|
71 | ! In summary: |
---|
72 | ! |
---|
73 | ! Radiation: |
---|
74 | ! xflwc(newmicro)+xfiwc(newmicro) = |
---|
75 | ! cldliq(physiq)=radliq(fisrt)=lwcon(nc)+iwcon(nc) |
---|
76 | ! |
---|
77 | ! Physics/Dynamics: |
---|
78 | ! ql_seri(physiq)+qs_seri(physiq)=ocond(nc) |
---|
79 | ! |
---|
80 | ! Notetheless, be aware of: |
---|
81 | ! |
---|
82 | ! radliq(fisrt) .NE. ocond(nc) |
---|
83 | ! i.e.: |
---|
84 | ! lwcon(nc)+iwcon(nc) .NE. ocond(nc) |
---|
85 | ! (which is not trivial) |
---|
86 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
87 | |
---|
88 | USE dimphy |
---|
89 | USE print_control_mod, ONLY: prt_level, lunout |
---|
90 | USE cloudth_mod |
---|
91 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
92 | USE phys_local_var_mod, ONLY: ql_seri,qs_seri |
---|
93 | USE phys_local_var_mod, ONLY: rneblsvol |
---|
94 | USE lscp_tools_mod, ONLY : CALC_QSAT_ECMWF, ICEFRAC_LSCP, CALC_GAMMASAT, FALLICE_VELOCITY |
---|
95 | |
---|
96 | |
---|
97 | IMPLICIT NONE |
---|
98 | |
---|
99 | |
---|
100 | |
---|
101 | !=============================================================================== |
---|
102 | ! VARIABLE DECLARATION |
---|
103 | !=============================================================================== |
---|
104 | |
---|
105 | include "YOMCST.h" |
---|
106 | include "YOETHF.h" |
---|
107 | include "FCTTRE.h" |
---|
108 | include "fisrtilp.h" |
---|
109 | include "nuage.h" |
---|
110 | |
---|
111 | |
---|
112 | ! INPUT VARIABLES: |
---|
113 | !----------------- |
---|
114 | |
---|
115 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
116 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! inter-layer pressure [Pa] |
---|
117 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! mid-layer pressure [Pa] |
---|
118 | REAL, DIMENSION(klon,klev), INTENT(IN) :: t ! temperature (K) |
---|
119 | REAL, DIMENSION(klon,klev), INTENT(IN) :: q ! specific humidity [kg/kg] |
---|
120 | INTEGER, INTENT(IN) :: iflag_cld_th ! flag that determines the distribution of convective clouds |
---|
121 | INTEGER, INTENT(IN) :: iflag_ice_thermo! flag to activate the ice thermodynamics |
---|
122 | ! CR: if iflag_ice_thermo=2, only convection is active |
---|
123 | LOGICAL, DIMENSION(klon,klev), INTENT(IN) :: ptconv ! grid points where deep convection scheme is active |
---|
124 | |
---|
125 | |
---|
126 | !Inputs associated with thermal plumes |
---|
127 | |
---|
128 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ztv ! virtual potential temperature [K] |
---|
129 | REAL, DIMENSION(klon,klev), INTENT(IN) :: zqta ! specific humidity within thermals [kg/kg] |
---|
130 | REAL, DIMENSION(klon,klev), INTENT(IN) :: fraca ! fraction of thermals within the mesh [-] |
---|
131 | REAL, DIMENSION(klon,klev), INTENT(IN) :: zpspsk ! exner potential (p/100000)**(R/cp) |
---|
132 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ztla ! liquid temperature within thermals [K] |
---|
133 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: zthl ! liquid potential temperature [K] |
---|
134 | |
---|
135 | ! INPUT/OUTPUT variables |
---|
136 | !------------------------ |
---|
137 | |
---|
138 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: ratqs ! function of pressure that sets the large-scale |
---|
139 | ! cloud PDF (sigma=ratqs*qt) |
---|
140 | |
---|
141 | ! OUTPUT variables |
---|
142 | !----------------- |
---|
143 | |
---|
144 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t ! temperature increment [K] |
---|
145 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_q ! specific humidity increment [kg/kg] |
---|
146 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_ql ! liquid water increment [kg/kg] |
---|
147 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_qi ! cloud ice mass increment [kg/kg] |
---|
148 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneb ! cloud fraction [-] |
---|
149 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radliq ! condensed water used in the radiation scheme [kg/kg] |
---|
150 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radicefrac ! ice fraction of condensed water for radiation scheme |
---|
151 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rhcl ! clear-sky relative humidity [-] |
---|
152 | REAL, DIMENSION(klon), INTENT(OUT) :: rain ! large-scale rainfall [kg/s/m2] |
---|
153 | REAL, DIMENSION(klon), INTENT(OUT) :: snow ! large-scale snowfall [kg/s/m2] |
---|
154 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: prfl ! large-scale rainfall flux in the column [kg/s/m2] |
---|
155 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: psfl ! large-scale snowfall flux in the column [kg/s/m2] |
---|
156 | |
---|
157 | |
---|
158 | ! cofficients of scavenging fraction (for off-line) |
---|
159 | |
---|
160 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfrac_nucl ! scavenging fraction due tu nucleation [-] |
---|
161 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfrac_1nucl ! scavenging fraction due tu nucleation with a -1 factor [-] |
---|
162 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfrac_impa ! scavening fraction due to impaction [-] |
---|
163 | |
---|
164 | ! fraction of aerosol scavenging through impaction and nucleation (for on-line) |
---|
165 | |
---|
166 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_impa ! scavenging fraction due tu impaction [-] |
---|
167 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_nucl ! scavenging fraction due tu nucleation [-] |
---|
168 | |
---|
169 | |
---|
170 | |
---|
171 | |
---|
172 | ! PROGRAM PARAMETERS: |
---|
173 | !-------------------- |
---|
174 | |
---|
175 | |
---|
176 | REAL, SAVE :: seuil_neb=0.001 ! cloud fraction threshold: a cloud really exists when exceeded |
---|
177 | !$OMP THREADPRIVATE(seuil_neb) |
---|
178 | |
---|
179 | INTEGER, SAVE :: ninter=5 ! number of iterations to calculate autoconversion to precipitation |
---|
180 | !$OMP THREADPRIVATE(ninter) |
---|
181 | |
---|
182 | INTEGER,SAVE :: iflag_evap_prec=1 ! precipitation evap. flag. 0: nothing, 1: "old way", 2: Max cloud fraction above to calculate the max of reevaporation |
---|
183 | ! 4: LTP'method i.e. evaporation in the clear-sky fraction of the mesh only |
---|
184 | !$OMP THREADPRIVATE(iflag_evap_prec) |
---|
185 | |
---|
186 | |
---|
187 | REAL t_coup ! temperature threshold which determines the phase |
---|
188 | PARAMETER (t_coup=234.0) ! for which the saturation vapor pressure is calculated |
---|
189 | |
---|
190 | REAL DDT0 ! iteration parameter |
---|
191 | PARAMETER (DDT0=.01) |
---|
192 | |
---|
193 | REAL ztfondue ! parameter to calculate melting fraction of precipitation |
---|
194 | PARAMETER (ztfondue=278.15) |
---|
195 | |
---|
196 | REAL, SAVE :: rain_int_min=0.001 ! Minimum local rain intensity [mm/s] before the decrease in associates precipitation fraction |
---|
197 | !$OMP THREADPRIVATE(rain_int_min) |
---|
198 | |
---|
199 | |
---|
200 | |
---|
201 | ! LOCAL VARIABLES: |
---|
202 | !---------------- |
---|
203 | |
---|
204 | |
---|
205 | REAL qsl, qsi |
---|
206 | REAL zct, zcl |
---|
207 | REAL ctot(klon,klev) |
---|
208 | REAL ctot_vol(klon,klev) |
---|
209 | INTEGER mpc_bl_points(klon,klev) |
---|
210 | REAL zqs(klon), zdqs(klon), zdelta, zcor, zcvm5 |
---|
211 | REAL zdqsdT_raw(klon) |
---|
212 | REAL gammasat(klon),dgammasatdt(klon) ! coefficient to make cold condensation at the correct RH and derivative wrt T |
---|
213 | REAL Tbef(klon),qlbef(klon),DT(klon),num,denom |
---|
214 | REAL cste |
---|
215 | REAL zpdf_sig(klon),zpdf_k(klon),zpdf_delta(klon) |
---|
216 | REAL Zpdf_a(klon),zpdf_b(klon),zpdf_e1(klon),zpdf_e2(klon) |
---|
217 | REAL erf |
---|
218 | REAL qcloud(klon), icefrac_mpc(klon,klev), qincloud_mpc(klon) |
---|
219 | REAL zrfl(klon), zrfln(klon), zqev, zqevt |
---|
220 | REAL zifl(klon), zifln(klon), zqev0,zqevi, zqevti |
---|
221 | REAL zoliq(klon), zcond(klon), zq(klon), zqn(klon) |
---|
222 | REAL zoliqp(klon), zoliqi(klon) |
---|
223 | REAL zt(klon) |
---|
224 | REAL zdz(klon),zrho(klon),ztot, zrhol(klon) |
---|
225 | REAL zchau,zfroi,zfice(klon),zneb(klon),znebprecip(klon) |
---|
226 | REAL zmelt,zpluie,zice |
---|
227 | REAL dzfice(klon) |
---|
228 | REAL zsolid,qtot,dqsl,dqsi |
---|
229 | REAL smallestreal |
---|
230 | ! Variables for Bergeron process |
---|
231 | REAL zcp, coef1, DeltaT, Deltaq, Deltaqprecl |
---|
232 | REAL zqpreci(klon), zqprecl(klon) |
---|
233 | ! Variables precipitation energy conservation |
---|
234 | REAL zmqc(klon) |
---|
235 | ! Variables for tracers |
---|
236 | ! temporary: alpha parameter for scavenging |
---|
237 | ! 4 possible scavenging processes |
---|
238 | REAL a_tr_sca(4) |
---|
239 | save a_tr_sca |
---|
240 | !$OMP THREADPRIVATE(a_tr_sca) |
---|
241 | REAL zalpha_tr |
---|
242 | REAL zfrac_lessi |
---|
243 | REAL zprec_cond(klon) |
---|
244 | REAL beta(klon,klev) ! conversion rate of condensed water |
---|
245 | REAL zmair(klon), zcpair, zcpeau |
---|
246 | REAL zlh_solid(klon), zm_solid ! for liquid -> solid conversion |
---|
247 | REAL zrflclr(klon), zrflcld(klon) |
---|
248 | REAL d_zrfl_clr_cld(klon), d_zifl_clr_cld(klon) |
---|
249 | REAL d_zrfl_cld_clr(klon), d_zifl_cld_clr(klon) |
---|
250 | REAL ziflclr(klon), ziflcld(klon) |
---|
251 | REAL znebprecipclr(klon), znebprecipcld(klon) |
---|
252 | REAL tot_zneb(klon), tot_znebn(klon), d_tot_zneb(klon) |
---|
253 | REAL d_znebprecip_clr_cld(klon), d_znebprecip_cld_clr(klon) |
---|
254 | REAL velo(klon) |
---|
255 | REAL qlmpc, qimpc, rnebmpc |
---|
256 | REAL radliqi(klon,klev) |
---|
257 | |
---|
258 | INTEGER i, k, n, kk |
---|
259 | INTEGER n_i(klon), iter |
---|
260 | INTEGER ncoreczq |
---|
261 | INTEGER,SAVE :: itap=0 |
---|
262 | !$OMP THREADPRIVATE(itap) |
---|
263 | |
---|
264 | |
---|
265 | LOGICAL lognormale(klon) |
---|
266 | LOGICAL convergence(klon) |
---|
267 | LOGICAL appel1er |
---|
268 | SAVE appel1er |
---|
269 | !$OMP THREADPRIVATE(appel1er) |
---|
270 | |
---|
271 | |
---|
272 | CHARACTER (len = 20) :: modname = 'lscp' |
---|
273 | CHARACTER (len = 80) :: abort_message |
---|
274 | |
---|
275 | |
---|
276 | DATA appel1er /.TRUE./ |
---|
277 | |
---|
278 | |
---|
279 | |
---|
280 | |
---|
281 | !=============================================================================== |
---|
282 | ! INITIALISATION |
---|
283 | !=============================================================================== |
---|
284 | |
---|
285 | ! Few initial checksS |
---|
286 | |
---|
287 | IF (iflag_t_glace.EQ.0) THEN |
---|
288 | abort_message = 'lscp cannot be used if iflag_t_glace=0' |
---|
289 | CALL abort_physic(modname,abort_message,1) |
---|
290 | ENDIF |
---|
291 | |
---|
292 | IF (.NOT.((iflag_ice_thermo .EQ. 1).OR.(iflag_ice_thermo .GE. 3))) THEN |
---|
293 | abort_message = 'lscp cannot be used without ice thermodynamics' |
---|
294 | CALL abort_physic(modname,abort_message,1) |
---|
295 | ENDIF |
---|
296 | |
---|
297 | IF (.NOT.thermcep) THEN |
---|
298 | abort_message = 'lscp cannot be used when thermcep=false' |
---|
299 | CALL abort_physic(modname,abort_message,1) |
---|
300 | ENDIF |
---|
301 | |
---|
302 | IF (iflag_fisrtilp_qsat .LT. 0) THEN |
---|
303 | abort_message = 'lscp cannot be used with iflag_fisrtilp<0' |
---|
304 | CALL abort_physic(modname,abort_message,1) |
---|
305 | ENDIF |
---|
306 | |
---|
307 | |
---|
308 | ! Few initialisations |
---|
309 | |
---|
310 | itap=itap+1 |
---|
311 | znebprecip(:)=0. |
---|
312 | ctot_vol(1:klon,1:klev)=0.0 |
---|
313 | rneblsvol(1:klon,1:klev)=0.0 |
---|
314 | smallestreal=1.e-9 |
---|
315 | znebprecipclr(:)=0. |
---|
316 | znebprecipcld(:)=0. |
---|
317 | mpc_bl_points(:,:)=0 |
---|
318 | |
---|
319 | IF (prt_level>9) WRITE(lunout,*) 'NUAGES4 A. JAM' |
---|
320 | |
---|
321 | IF (appel1er) THEN |
---|
322 | CALL getin_p('ninter',ninter) |
---|
323 | CALL getin_p('iflag_evap_prec',iflag_evap_prec) |
---|
324 | CALL getin_p('seuil_neb',seuil_neb) |
---|
325 | CALL getin_p('rain_int_min',rain_int_min) |
---|
326 | WRITE(lunout,*) 'lscp, ninter:', ninter |
---|
327 | WRITE(lunout,*) 'lscp, iflag_evap_prec:', iflag_evap_prec |
---|
328 | WRITE(lunout,*) 'lscp, seuil_neb:', seuil_neb |
---|
329 | WRITE(lunout,*) 'lscp, rain_int_min:', rain_int_min |
---|
330 | |
---|
331 | ! check for precipitation sub-time steps |
---|
332 | IF (ABS(dtime/REAL(ninter)-360.0).GT.0.001) THEN |
---|
333 | WRITE(lunout,*) 'lscp: it is not expected, see Z.X.Li', dtime |
---|
334 | WRITE(lunout,*) 'I would prefer a 6 min sub-timestep' |
---|
335 | ENDIF |
---|
336 | |
---|
337 | !AA Temporary initialisation |
---|
338 | a_tr_sca(1) = -0.5 |
---|
339 | a_tr_sca(2) = -0.5 |
---|
340 | a_tr_sca(3) = -0.5 |
---|
341 | a_tr_sca(4) = -0.5 |
---|
342 | |
---|
343 | !AA Set scavenged fractions to 1 |
---|
344 | DO k = 1, klev |
---|
345 | DO i = 1, klon |
---|
346 | pfrac_nucl(i,k)=1. |
---|
347 | pfrac_1nucl(i,k)=1. |
---|
348 | pfrac_impa(i,k)=1. |
---|
349 | beta(i,k)=0. |
---|
350 | ENDDO |
---|
351 | ENDDO |
---|
352 | |
---|
353 | appel1er = .FALSE. |
---|
354 | |
---|
355 | ENDIF !(appel1er) |
---|
356 | |
---|
357 | ! AA for 'safety' reasons |
---|
358 | zalpha_tr = 0. |
---|
359 | zfrac_lessi = 0. |
---|
360 | |
---|
361 | |
---|
362 | ! Initialisation of output variables (JYG): |
---|
363 | prfl(:,:) = 0.0 |
---|
364 | psfl(:,:) = 0.0 |
---|
365 | |
---|
366 | d_t(:,:) = 0.0 |
---|
367 | d_q(:,:) = 0.0 |
---|
368 | d_ql(:,:) = 0.0 |
---|
369 | d_qi(:,:) = 0.0 |
---|
370 | rneb(:,:) = 0.0 |
---|
371 | radliq(:,:) = 0.0 |
---|
372 | radicefrac(:,:) = 0.0 |
---|
373 | frac_nucl(:,:) = 1. |
---|
374 | frac_impa(:,:) = 1. |
---|
375 | |
---|
376 | rain(:) = 0.0 |
---|
377 | snow(:) = 0.0 |
---|
378 | zoliq(:)=0. |
---|
379 | zrfl(:) = 0.0 |
---|
380 | zifl(:) = 0.0 |
---|
381 | zneb(:) = seuil_neb |
---|
382 | zrflclr(:) = 0.0 |
---|
383 | ziflclr(:) = 0.0 |
---|
384 | zrflcld(:) = 0.0 |
---|
385 | ziflcld(:) = 0.0 |
---|
386 | tot_zneb(:) = 0.0 |
---|
387 | tot_znebn(:) = 0.0 |
---|
388 | d_tot_zneb(:) = 0.0 |
---|
389 | |
---|
390 | |
---|
391 | !=============================================================================== |
---|
392 | ! BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM |
---|
393 | !=============================================================================== |
---|
394 | |
---|
395 | ncoreczq=0 |
---|
396 | |
---|
397 | DO k = klev, 1, -1 |
---|
398 | |
---|
399 | |
---|
400 | ! Initialisation temperature and specific humidity |
---|
401 | DO i = 1, klon |
---|
402 | zt(i)=t(i,k) |
---|
403 | zq(i)=q(i,k) |
---|
404 | ENDDO |
---|
405 | |
---|
406 | ! -------------------------------------------------------------------- |
---|
407 | ! P0> Thermalization of precipitation falling from the overlying layer |
---|
408 | ! -------------------------------------------------------------------- |
---|
409 | ! Computes air temperature variation due to latent heat transported by |
---|
410 | ! precipitation. Precipitation is then thermalized with the air in the |
---|
411 | ! layer. |
---|
412 | ! The precipitation should remain thermalized throughout the different |
---|
413 | ! thermodynamical transformations. The corresponding water mass should |
---|
414 | ! be added when calculating the layer's enthalpy change with |
---|
415 | ! temperature |
---|
416 | ! --------------------------------------------------------------------- |
---|
417 | |
---|
418 | IF (k.LE.klevm1) THEN |
---|
419 | |
---|
420 | DO i = 1, klon |
---|
421 | |
---|
422 | zmair(i)=(paprs(i,k)-paprs(i,k+1))/RG |
---|
423 | ! no condensed water so cp=cp(vapor+dry air) |
---|
424 | ! RVTMP2=rcpv/rcpd-1 |
---|
425 | zcpair=RCPD*(1.0+RVTMP2*zq(i)) |
---|
426 | zcpeau=RCPD*RVTMP2 |
---|
427 | |
---|
428 | ! zmqc: precipitation mass that has to be thermalized with |
---|
429 | ! layer's air so that precipitation at the ground has the |
---|
430 | ! same temperature as the lowermost layer |
---|
431 | zmqc(i) = (zrfl(i)+zifl(i))*dtime/zmair(i) |
---|
432 | ! t(i,k+1)+d_t(i,k+1): new temperature of the overlying layer |
---|
433 | zt(i) = ( (t(i,k+1)+d_t(i,k+1))*zmqc(i)*zcpeau + zcpair*zt(i) ) & |
---|
434 | / (zcpair + zmqc(i)*zcpeau) |
---|
435 | |
---|
436 | ENDDO |
---|
437 | |
---|
438 | ELSE |
---|
439 | |
---|
440 | DO i = 1, klon |
---|
441 | zmair(i)=(paprs(i,k)-paprs(i,k+1))/RG |
---|
442 | zmqc(i) = 0. |
---|
443 | ENDDO |
---|
444 | |
---|
445 | ENDIF |
---|
446 | |
---|
447 | ! -------------------------------------------------------------------- |
---|
448 | ! P1> Precipitation evaporation/sublimation |
---|
449 | ! -------------------------------------------------------------------- |
---|
450 | ! A part of the precipitation coming from above is evaporated/sublimated. |
---|
451 | ! |
---|
452 | ! -------------------------------------------------------------------- |
---|
453 | |
---|
454 | |
---|
455 | IF (iflag_evap_prec.GE.1) THEN |
---|
456 | |
---|
457 | |
---|
458 | DO i = 1, klon |
---|
459 | |
---|
460 | ! if precipitation |
---|
461 | IF (zrfl(i)+zifl(i).GT.0.) THEN |
---|
462 | |
---|
463 | CALL CALC_QSAT_ECMWF(zt(i),0.,pplay(i,k),RTT,0,.false.,zqs(i),zdqs(i)) |
---|
464 | |
---|
465 | ! LTP: we only account for precipitation evaporation in the clear-sky (iflag_evap_prec=4). |
---|
466 | IF (iflag_evap_prec.EQ.4) THEN |
---|
467 | zrfl(i) = zrflclr(i) |
---|
468 | zifl(i) = ziflclr(i) |
---|
469 | ENDIF |
---|
470 | |
---|
471 | IF (iflag_evap_prec.EQ.1) THEN |
---|
472 | znebprecip(i)=zneb(i) |
---|
473 | ELSE |
---|
474 | znebprecip(i)=MAX(zneb(i),znebprecip(i)) |
---|
475 | ENDIF |
---|
476 | |
---|
477 | |
---|
478 | IF (iflag_evap_prec.EQ.4) THEN |
---|
479 | ! Max evaporation not to saturate the whole mesh |
---|
480 | zqev0 = MAX(0.0, zqs(i)-zq(i)) |
---|
481 | ELSE |
---|
482 | ! Max evap not to saturate the fraction below the cloud |
---|
483 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecip(i)) |
---|
484 | ENDIF |
---|
485 | |
---|
486 | ! A. JAM |
---|
487 | ! We consider separately qsatice and qstal |
---|
488 | ! qsat wrt liquid phase according to thermcep |
---|
489 | CALL CALC_QSAT_ECMWF(zt(i),0.,pplay(i,k),RTT,1,.false.,qsl,dqsl) |
---|
490 | |
---|
491 | |
---|
492 | ! Evaporation of liquid precipitation coming from above |
---|
493 | ! dP/dz=beta*(1-q/qsat)*sqrt(P) |
---|
494 | ! formula from Sundquist 1988, Klemp & Wilhemson 1978 |
---|
495 | ! LTP: evaporation only in the clear sky part (iflag_evap_prec=4) |
---|
496 | |
---|
497 | IF (iflag_evap_prec.EQ.3) THEN |
---|
498 | zqevt = znebprecip(i)*coef_eva*(1.0-zq(i)/qsl) & |
---|
499 | *SQRT(zrfl(i)/max(1.e-4,znebprecip(i))) & |
---|
500 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
501 | ELSE IF (iflag_evap_prec.EQ.4) THEN |
---|
502 | zqevt = znebprecipclr(i)*coef_eva*(1.0-zq(i)/qsl) & |
---|
503 | *SQRT(zrfl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
504 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
505 | ELSE |
---|
506 | zqevt = 1.*coef_eva*(1.0-zq(i)/qsl)*SQRT(zrfl(i)) & |
---|
507 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
508 | ENDIF |
---|
509 | |
---|
510 | |
---|
511 | zqevt = MAX(0.0,MIN(zqevt,zrfl(i))) & |
---|
512 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
---|
513 | |
---|
514 | ! qsat wrt ice according to thermcep |
---|
515 | CALL CALC_QSAT_ECMWF(zt(i),0.,pplay(i,k),RTT,2,.false.,qsi,dqsi) |
---|
516 | |
---|
517 | ! sublimation of the solid precipitation coming from above |
---|
518 | IF (iflag_evap_prec.EQ.3) THEN |
---|
519 | zqevti = znebprecip(i)*coef_eva*(1.0-zq(i)/qsi) & |
---|
520 | *SQRT(zifl(i)/max(1.e-4,znebprecip(i))) & |
---|
521 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
522 | ELSE IF (iflag_evap_prec.EQ.4) THEN |
---|
523 | zqevti = znebprecipclr(i)*coef_eva*(1.0-zq(i)/qsi) & |
---|
524 | *SQRT(zifl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
525 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
526 | ELSE |
---|
527 | zqevti = 1.*coef_eva*(1.0-zq(i)/qsi)*SQRT(zifl(i)) & |
---|
528 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
529 | ENDIF |
---|
530 | |
---|
531 | zqevti = MAX(0.0,MIN(zqevti,zifl(i))) & |
---|
532 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
---|
533 | |
---|
534 | ! A. JAM |
---|
535 | ! Evaporation limit: we ensure that the layer's fraction below |
---|
536 | ! the cloud or the whole mesh (depending on iflag_evap_prec) |
---|
537 | ! does not reach saturation. In this case, we |
---|
538 | ! redistribute zqev0 conserving the ratio liquid/ice |
---|
539 | |
---|
540 | IF (zqevt+zqevti.GT.zqev0) THEN |
---|
541 | zqev=zqev0*zqevt/(zqevt+zqevti) |
---|
542 | zqevi=zqev0*zqevti/(zqevt+zqevti) |
---|
543 | ELSE |
---|
544 | zqev=zqevt |
---|
545 | zqevi=zqevti |
---|
546 | ENDIF |
---|
547 | |
---|
548 | |
---|
549 | ! EV: agrees with JL's comments below so correct and comment |
---|
550 | ! JLD: I do not understand the lines below. We distribute the liquid |
---|
551 | ! and solid parts of the precipitation even if the layer does not get |
---|
552 | ! saturated. To my opinion, we should all replace with: |
---|
553 | ! zqev=zqevt |
---|
554 | ! zqevi=zqevti |
---|
555 | ! IF (zqevt+zqevti.GT.0.) THEN |
---|
556 | ! zqev=MIN(zqev0*zqevt/(zqevt+zqevti),zqevt) |
---|
557 | ! zqevi=MIN(zqev0*zqevti/(zqevt+zqevti),zqevti) |
---|
558 | ! ELSE |
---|
559 | ! zqev=0. |
---|
560 | ! zqevi=0. |
---|
561 | ! ENDIF |
---|
562 | ! ENDIF |
---|
563 | |
---|
564 | ! New solid and liquid precipitation fluxes |
---|
565 | zrfln(i) = Max(0.,zrfl(i) - zqev*(paprs(i,k)-paprs(i,k+1)) & |
---|
566 | /RG/dtime) |
---|
567 | zifln(i) = Max(0.,zifl(i) - zqevi*(paprs(i,k)-paprs(i,k+1)) & |
---|
568 | /RG/dtime) |
---|
569 | |
---|
570 | ! vapor, temperature, precip fluxes update |
---|
571 | zq(i) = zq(i) - (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
572 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
---|
573 | ! precip thermalization |
---|
574 | zmqc(i) = zmqc(i) + (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
575 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
---|
576 | zt(i) = zt(i) + (zrfln(i)-zrfl(i)) & |
---|
577 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
---|
578 | * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) & |
---|
579 | + (zifln(i)-zifl(i)) & |
---|
580 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
---|
581 | * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
582 | |
---|
583 | ! New values of liquid and solid precipitation |
---|
584 | zrfl(i) = zrfln(i) |
---|
585 | zifl(i) = zifln(i) |
---|
586 | |
---|
587 | IF (iflag_evap_prec.EQ.4) THEN |
---|
588 | zrflclr(i) = zrfl(i) |
---|
589 | ziflclr(i) = zifl(i) |
---|
590 | IF(zrflclr(i) + ziflclr(i).LE.0) THEN |
---|
591 | znebprecipclr(i) = 0. |
---|
592 | ENDIF |
---|
593 | zrfl(i) = zrflclr(i) + zrflcld(i) |
---|
594 | zifl(i) = ziflclr(i) + ziflcld(i) |
---|
595 | ENDIF |
---|
596 | |
---|
597 | |
---|
598 | ! CR Be careful: ice melting has been moved |
---|
599 | zmelt = ((zt(i)-273.15)/(ztfondue-273.15)) ! JYG |
---|
600 | ! precip fraction that is melted |
---|
601 | zmelt = MIN(MAX(zmelt,0.),1.) |
---|
602 | ! Ice melting |
---|
603 | IF (iflag_evap_prec.EQ.4) THEN |
---|
604 | zrflclr(i)=zrflclr(i)+zmelt*ziflclr(i) |
---|
605 | zrflcld(i)=zrflcld(i)+zmelt*ziflcld(i) |
---|
606 | zrfl(i)=zrflclr(i)+zrflcld(i) |
---|
607 | ELSE |
---|
608 | zrfl(i)=zrfl(i)+zmelt*zifl(i) |
---|
609 | ENDIF |
---|
610 | |
---|
611 | ! Latent heat of melting with precipitation thermalization |
---|
612 | zt(i)=zt(i)-zifl(i)*zmelt*(RG*dtime)/(paprs(i,k)-paprs(i,k+1)) & |
---|
613 | *RLMLT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
614 | |
---|
615 | IF (iflag_evap_prec.EQ.4) THEN |
---|
616 | ziflclr(i)=ziflclr(i)*(1.-zmelt) |
---|
617 | ziflcld(i)=ziflcld(i)*(1.-zmelt) |
---|
618 | zifl(i)=ziflclr(i)+ziflcld(i) |
---|
619 | ELSE |
---|
620 | zifl(i)=zifl(i)*(1.-zmelt) |
---|
621 | ENDIF |
---|
622 | |
---|
623 | ELSE |
---|
624 | ! if no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
625 | znebprecip(i)=0. |
---|
626 | |
---|
627 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
---|
628 | |
---|
629 | ENDDO |
---|
630 | |
---|
631 | ENDIF ! (iflag_evap_prec>=1) |
---|
632 | |
---|
633 | ! -------------------------------------------------------------------- |
---|
634 | ! End precip evaporation |
---|
635 | ! -------------------------------------------------------------------- |
---|
636 | |
---|
637 | |
---|
638 | |
---|
639 | |
---|
640 | ! Calculation of qsat, L/Cp*dqsat/dT and ncoreczq counter |
---|
641 | !------------------------------------------------------- |
---|
642 | |
---|
643 | DO i = 1, klon |
---|
644 | zdelta = MAX(0.,SIGN(1.,RTT-zt(i))) |
---|
645 | qtot=zq(i)+zmqc(i) |
---|
646 | CALL CALC_QSAT_ECMWF(zt(i),qtot,pplay(i,k),RTT,0,.false.,zqs(i),zdqs(i)) |
---|
647 | zdqsdT_raw(i) = zdqs(i)* & |
---|
648 | & RCPD*(1.0+RVTMP2*zq(i)) / (RLVTT*(1.-zdelta) + RLSTT*zdelta) |
---|
649 | |
---|
650 | IF (zq(i) .LT. 1.e-15) THEN |
---|
651 | ncoreczq=ncoreczq+1 |
---|
652 | zq(i)=1.e-15 |
---|
653 | ENDIF |
---|
654 | |
---|
655 | ENDDO |
---|
656 | |
---|
657 | |
---|
658 | ! -------------------------------------------------------------------- |
---|
659 | ! P2> Cloud formation |
---|
660 | !--------------------------------------------------------------------- |
---|
661 | ! |
---|
662 | ! Unlike fisrtilp, we always assume a 'fractional cloud' approach |
---|
663 | ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution |
---|
664 | ! is prescribed and depends on large scale variables and boundary layer |
---|
665 | ! properties) |
---|
666 | ! The decrease in condensed part due tu latent heating is taken into |
---|
667 | ! account |
---|
668 | ! ------------------------------------------------------------------- |
---|
669 | |
---|
670 | |
---|
671 | ! P2.1> With the PDFs (log-normal, bigaussian) |
---|
672 | ! cloud propertues calculation with the initial values of t and q |
---|
673 | ! ---------------------------------------------------------------- |
---|
674 | |
---|
675 | ! initialise gammasat and qincloud_mpc |
---|
676 | gammasat(:)=1. |
---|
677 | qincloud_mpc(:)=0. |
---|
678 | |
---|
679 | |
---|
680 | |
---|
681 | IF (iflag_cld_th.GE.5) THEN |
---|
682 | |
---|
683 | IF (iflag_mpc_bl .LT. 1) THEN |
---|
684 | |
---|
685 | IF (iflag_cloudth_vert.LE.2) THEN |
---|
686 | |
---|
687 | CALL cloudth(klon,klev,k,ztv, & |
---|
688 | zq,zqta,fraca, & |
---|
689 | qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
690 | ratqs,zqs,t) |
---|
691 | |
---|
692 | ELSEIF (iflag_cloudth_vert.GE.3 .AND. iflag_cloudth_vert.LE.5) THEN |
---|
693 | |
---|
694 | CALL cloudth_v3(klon,klev,k,ztv, & |
---|
695 | zq,zqta,fraca, & |
---|
696 | qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
697 | ratqs,zqs,t) |
---|
698 | |
---|
699 | |
---|
700 | !Jean Jouhaud's version, Decembre 2018 |
---|
701 | !------------------------------------- |
---|
702 | |
---|
703 | ELSEIF (iflag_cloudth_vert.EQ.6) THEN |
---|
704 | |
---|
705 | CALL cloudth_v6(klon,klev,k,ztv, & |
---|
706 | zq,zqta,fraca, & |
---|
707 | qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
708 | ratqs,zqs,t) |
---|
709 | |
---|
710 | ENDIF |
---|
711 | |
---|
712 | ELSE |
---|
713 | ! cloudth_v3 + cold microphysical considerations |
---|
714 | ! + stationary mixed-phase cloud model |
---|
715 | |
---|
716 | CALL cloudth_mpc(klon,klev,k,mpc_bl_points, & |
---|
717 | t,ztv,zq,zqta,fraca, zpspsk, & |
---|
718 | paprs,pplay,ztla,zthl,ratqs,zqs,psfl, & |
---|
719 | qcloud,qincloud_mpc,icefrac_mpc,ctot,ctot_vol) |
---|
720 | |
---|
721 | ENDIF ! iflag_mpc_bl |
---|
722 | |
---|
723 | DO i=1,klon |
---|
724 | rneb(i,k)=ctot(i,k) |
---|
725 | rneblsvol(i,k)=ctot_vol(i,k) |
---|
726 | zqn(i)=qcloud(i) |
---|
727 | ENDDO |
---|
728 | |
---|
729 | ENDIF |
---|
730 | |
---|
731 | IF (iflag_cld_th .LE. 4) THEN |
---|
732 | |
---|
733 | ! lognormal |
---|
734 | lognormale = .TRUE. |
---|
735 | |
---|
736 | ELSEIF (iflag_cld_th .GE. 6) THEN |
---|
737 | |
---|
738 | ! lognormal distribution when no thermals |
---|
739 | lognormale = fraca(:,k) < 1e-10 |
---|
740 | |
---|
741 | ELSE |
---|
742 | ! When iflag_cld_th=5, we always assume |
---|
743 | ! bi-gaussian distribution |
---|
744 | lognormale = .FALSE. |
---|
745 | |
---|
746 | ENDIF |
---|
747 | |
---|
748 | |
---|
749 | DT(:) = 0. |
---|
750 | n_i(:)=0 |
---|
751 | Tbef(:)=zt(:) |
---|
752 | qlbef(:)=0. |
---|
753 | |
---|
754 | ! Treatment of non-boundary layer clouds (lognormale) |
---|
755 | ! condensation with qsat(T) variation (adaptation) |
---|
756 | ! Iterative Loop to converge towards qsat |
---|
757 | |
---|
758 | |
---|
759 | DO iter=1,iflag_fisrtilp_qsat+1 |
---|
760 | |
---|
761 | DO i=1,klon |
---|
762 | |
---|
763 | ! convergence = .true. since convergence is not satisfied |
---|
764 | convergence(i)=ABS(DT(i)).GT.DDT0 |
---|
765 | |
---|
766 | IF ((convergence(i) .OR. (n_i(i) .EQ. 0)) .AND. lognormale(i)) THEN |
---|
767 | |
---|
768 | ! if not convergence: |
---|
769 | |
---|
770 | ! P2.2.1> cloud fraction and condensed water mass calculation |
---|
771 | ! Calculated variables: |
---|
772 | ! rneb : cloud fraction |
---|
773 | ! zqn : total water within the cloud |
---|
774 | ! zcond: mean condensed water within the mesh |
---|
775 | ! rhcl: clear-sky relative humidity |
---|
776 | !--------------------------------------------------------------- |
---|
777 | |
---|
778 | ! new temperature: |
---|
779 | Tbef(i)=Tbef(i)+DT(i) |
---|
780 | |
---|
781 | |
---|
782 | ! Rneb, qzn and zcond for lognormal PDFs |
---|
783 | qtot=zq(i)+zmqc(i) |
---|
784 | CALL CALC_QSAT_ECMWF(Tbef(i),qtot,pplay(i,k),RTT,0,.false.,zqs(i),zdqs(i)) |
---|
785 | CALL CALC_GAMMASAT(Tbef(i),qtot,pplay(i,k),gammasat(i),dgammasatdt(i)) |
---|
786 | |
---|
787 | ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs |
---|
788 | zdqs(i) = gammasat(i)*zdqs(i)+zqs(i)*dgammasatdt(i) |
---|
789 | |
---|
790 | zpdf_sig(i)=ratqs(i,k)*zq(i) |
---|
791 | zpdf_k(i)=-sqrt(log(1.+(zpdf_sig(i)/zq(i))**2)) |
---|
792 | zpdf_delta(i)=log(zq(i)/(gammasat(i)*zqs(i))) |
---|
793 | zpdf_a(i)=zpdf_delta(i)/(zpdf_k(i)*sqrt(2.)) |
---|
794 | zpdf_b(i)=zpdf_k(i)/(2.*sqrt(2.)) |
---|
795 | zpdf_e1(i)=zpdf_a(i)-zpdf_b(i) |
---|
796 | zpdf_e1(i)=sign(min(ABS(zpdf_e1(i)),5.),zpdf_e1(i)) |
---|
797 | zpdf_e1(i)=1.-erf(zpdf_e1(i)) |
---|
798 | zpdf_e2(i)=zpdf_a(i)+zpdf_b(i) |
---|
799 | zpdf_e2(i)=sign(min(ABS(zpdf_e2(i)),5.),zpdf_e2(i)) |
---|
800 | zpdf_e2(i)=1.-erf(zpdf_e2(i)) |
---|
801 | |
---|
802 | IF (zpdf_e1(i).LT.1.e-10) THEN |
---|
803 | rneb(i,k)=0. |
---|
804 | zqn(i)=gammasat(i)*zqs(i) |
---|
805 | ELSE |
---|
806 | rneb(i,k)=0.5*zpdf_e1(i) |
---|
807 | zqn(i)=zq(i)*zpdf_e2(i)/zpdf_e1(i) |
---|
808 | ENDIF |
---|
809 | |
---|
810 | ! If vertical heterogeneity, change fraction by volume as well |
---|
811 | IF (iflag_cloudth_vert.GE.3) THEN |
---|
812 | ctot_vol(i,k)=rneb(i,k) |
---|
813 | rneblsvol(i,k)=ctot_vol(i,k) |
---|
814 | ENDIF |
---|
815 | |
---|
816 | |
---|
817 | ! P2.2.2> Approximative calculation of temperature variation DT |
---|
818 | ! due to condensation. |
---|
819 | ! Calculated variables: |
---|
820 | ! dT : temperature change due to condensation |
---|
821 | ! --------------------------------------------------------------- |
---|
822 | |
---|
823 | ! EV: calculation of icefrac in one sole function |
---|
824 | CALL icefrac_lscp(klon, zt(:),pplay(:,k)/paprs(:,1),zfice(:),dzfice(:)) |
---|
825 | |
---|
826 | |
---|
827 | IF (zfice(i).LT.1) THEN |
---|
828 | cste=RLVTT |
---|
829 | ELSE |
---|
830 | cste=RLSTT |
---|
831 | ENDIF |
---|
832 | |
---|
833 | qlbef(i)=max(0.,zqn(i)-zqs(i)) |
---|
834 | num = -Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT & |
---|
835 | & +zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*qlbef(i) |
---|
836 | denom = 1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) & |
---|
837 | -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*rneb(i,k) & |
---|
838 | & *qlbef(i)*dzfice(i) |
---|
839 | DT(i)=num/denom |
---|
840 | n_i(i)=n_i(i)+1 |
---|
841 | |
---|
842 | ENDIF ! end convergence |
---|
843 | |
---|
844 | ENDDO ! end loop on i |
---|
845 | |
---|
846 | ENDDO ! iter=1,iflag_fisrtilp_qsat+1 |
---|
847 | |
---|
848 | |
---|
849 | |
---|
850 | ! P2.3> Final quantities calculation |
---|
851 | ! Calculated variables: |
---|
852 | ! rneb : cloud fraction |
---|
853 | ! zcond: mean condensed water in the mesh |
---|
854 | ! zqn : mean water vapor in the mesh |
---|
855 | ! zt : temperature |
---|
856 | ! rhcl : clear-sky relative humidity |
---|
857 | ! ---------------------------------------------------------------- |
---|
858 | |
---|
859 | |
---|
860 | |
---|
861 | ! Water vapor update, Phase determination and subsequent latent heat exchange |
---|
862 | |
---|
863 | ! Partition function in stratiform clouds (will be overwritten in boundary-layer MPCs) |
---|
864 | CALL icefrac_lscp(klon,zt(:),pplay(:,k)/paprs(:,1),zfice(:), dzfice(:)) |
---|
865 | |
---|
866 | DO i=1, klon |
---|
867 | |
---|
868 | |
---|
869 | IF (mpc_bl_points(i,k) .GT. 0) THEN |
---|
870 | zcond(i) = MAX(0.0,qincloud_mpc(i))*rneb(i,k) |
---|
871 | ! following line is very strange and probably wrong |
---|
872 | rhcl(i,k)= (zqs(i)+zq(i))/2./zqs(i) |
---|
873 | ! water vapor update and partition function if thermals |
---|
874 | zq(i) = zq(i) - zcond(i) |
---|
875 | zfice(i)=icefrac_mpc(i,k) |
---|
876 | |
---|
877 | ELSE |
---|
878 | |
---|
879 | ! Checks on rneb, rhcl and zqn |
---|
880 | IF (rneb(i,k) .LE. 0.0) THEN |
---|
881 | zqn(i) = 0.0 |
---|
882 | rneb(i,k) = 0.0 |
---|
883 | zcond(i) = 0.0 |
---|
884 | rhcl(i,k)=zq(i)/zqs(i) |
---|
885 | ELSE IF (rneb(i,k) .GE. 1.0) THEN |
---|
886 | zqn(i) = zq(i) |
---|
887 | rneb(i,k) = 1.0 |
---|
888 | zcond(i) = MAX(0.0,zqn(i)-gammasat(i)*zqs(i)) |
---|
889 | rhcl(i,k)=1.0 |
---|
890 | ELSE |
---|
891 | zcond(i) = MAX(0.0,zqn(i)-gammasat(i)*zqs(i))*rneb(i,k) |
---|
892 | ! following line is very strange and probably wrong: |
---|
893 | rhcl(i,k)=(zqs(i)+zq(i))/2./zqs(i) |
---|
894 | ENDIF |
---|
895 | |
---|
896 | |
---|
897 | ! water vapor update |
---|
898 | zq(i) = zq(i) - zcond(i) |
---|
899 | |
---|
900 | ENDIF |
---|
901 | |
---|
902 | ! temperature update due to phase change |
---|
903 | zt(i) = zt(i) + (1.-zfice(i))*zcond(i) & |
---|
904 | & * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) & |
---|
905 | +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
---|
906 | ENDDO |
---|
907 | |
---|
908 | |
---|
909 | ! If vertical heterogeneity, change volume fraction |
---|
910 | IF (iflag_cloudth_vert .GE. 3) THEN |
---|
911 | ctot_vol(1:klon,k)=min(max(ctot_vol(1:klon,k),0.),1.) |
---|
912 | rneblsvol(1:klon,k)=ctot_vol(1:klon,k) |
---|
913 | ENDIF |
---|
914 | |
---|
915 | ! ---------------------------------------------------------------- |
---|
916 | ! P3> Precipitation formation and calculation of condensed |
---|
917 | ! water seen by the radiation scheme |
---|
918 | ! ---------------------------------------------------------------- |
---|
919 | |
---|
920 | ! LTP: |
---|
921 | IF (iflag_evap_prec==4) THEN |
---|
922 | |
---|
923 | !Partitionning between precipitation coming from clouds and that coming from CS |
---|
924 | |
---|
925 | !0) Calculate tot_zneb, total cloud fraction above the cloud |
---|
926 | !assuming a maximum-random overlap (voir Jakob and Klein, 2000) |
---|
927 | |
---|
928 | DO i=1, klon |
---|
929 | tot_znebn(i) = 1 - (1-tot_zneb(i))*(1 - max(rneb(i,k),zneb(i))) & |
---|
930 | /(1-min(zneb(i),1-smallestreal)) |
---|
931 | d_tot_zneb(i) = tot_znebn(i) - tot_zneb(i) |
---|
932 | tot_zneb(i) = tot_znebn(i) |
---|
933 | |
---|
934 | |
---|
935 | !1) Cloudy to clear air |
---|
936 | d_znebprecip_cld_clr(i) = znebprecipcld(i) - min(rneb(i,k),znebprecipcld(i)) |
---|
937 | IF (znebprecipcld(i) .GT. 0) THEN |
---|
938 | d_zrfl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*zrflcld(i) |
---|
939 | d_zifl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*ziflcld(i) |
---|
940 | ELSE |
---|
941 | d_zrfl_cld_clr(i) = 0. |
---|
942 | d_zifl_cld_clr(i) = 0. |
---|
943 | ENDIF |
---|
944 | |
---|
945 | !2) Clear to cloudy air |
---|
946 | d_znebprecip_clr_cld(i) = max(0., min(znebprecipclr(i), rneb(i,k) & |
---|
947 | - d_tot_zneb(i) - zneb(i))) |
---|
948 | IF (znebprecipclr(i) .GT. 0) THEN |
---|
949 | d_zrfl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*zrflclr(i) |
---|
950 | d_zifl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*ziflclr(i) |
---|
951 | ELSE |
---|
952 | d_zrfl_clr_cld(i) = 0. |
---|
953 | d_zifl_clr_cld(i) = 0. |
---|
954 | ENDIF |
---|
955 | |
---|
956 | !Update variables |
---|
957 | znebprecipcld(i) = znebprecipcld(i) + d_znebprecip_clr_cld(i) - d_znebprecip_cld_clr(i) |
---|
958 | znebprecipclr(i) = znebprecipclr(i) + d_znebprecip_cld_clr(i) - d_znebprecip_clr_cld(i) |
---|
959 | zrflcld(i) = zrflcld(i) + d_zrfl_clr_cld(i) - d_zrfl_cld_clr(i) |
---|
960 | ziflcld(i) = ziflcld(i) + d_zifl_clr_cld(i) - d_zifl_cld_clr(i) |
---|
961 | zrflclr(i) = zrflclr(i) + d_zrfl_cld_clr(i) - d_zrfl_clr_cld(i) |
---|
962 | ziflclr(i) = ziflclr(i) + d_zifl_cld_clr(i) - d_zifl_clr_cld(i) |
---|
963 | |
---|
964 | ENDDO |
---|
965 | ENDIF |
---|
966 | |
---|
967 | ! Initialisation of zoliq and radliq variables |
---|
968 | |
---|
969 | DO i = 1, klon |
---|
970 | IF (rneb(i,k).GT.0.0) THEN |
---|
971 | zoliq(i) = zcond(i) |
---|
972 | zrho(i) = pplay(i,k) / zt(i) / RD |
---|
973 | zdz(i) = (paprs(i,k)-paprs(i,k+1)) / (zrho(i)*RG) |
---|
974 | |
---|
975 | zneb(i) = MAX(rneb(i,k), seuil_neb) |
---|
976 | radliq(i,k) = zoliq(i)/REAL(ninter+1) |
---|
977 | radicefrac(i,k) = zfice(i) |
---|
978 | radliqi(i,k)=zoliq(i)*zfice(i)/REAL(ninter+1) |
---|
979 | ENDIF |
---|
980 | ENDDO |
---|
981 | |
---|
982 | ! ------------------------------------------------------------------------------- |
---|
983 | ! Iterations to calculate a "mean" cloud water content during the precipitation |
---|
984 | ! Comment: it is not the remaining water after precipitation but a mean |
---|
985 | ! remaining water in the cloud during the time step that is seen by the radiation |
---|
986 | ! ------------------------------------------------------------------------------- |
---|
987 | |
---|
988 | |
---|
989 | DO n = 1, ninter |
---|
990 | |
---|
991 | DO i=1,klon |
---|
992 | IF (rneb(i,k).GT.0.0) THEN |
---|
993 | zrhol(i) = zrho(i) * zoliq(i) / zneb(i) |
---|
994 | ENDIF |
---|
995 | ENDDO |
---|
996 | |
---|
997 | CALL FALLICE_VELOCITY(klon,zrhol(:),zt(:),zrho(:),pplay(:,k),ptconv(:,k),velo(:)) |
---|
998 | |
---|
999 | DO i = 1, klon |
---|
1000 | |
---|
1001 | IF (rneb(i,k).GT.0.0) THEN |
---|
1002 | |
---|
1003 | ! Initialization of zpluie, zice and ztot: |
---|
1004 | zpluie=0. |
---|
1005 | zice=0. |
---|
1006 | ztot=0. |
---|
1007 | |
---|
1008 | IF (zneb(i).EQ.seuil_neb) THEN |
---|
1009 | ztot = 0.0 |
---|
1010 | zice = 0.0 |
---|
1011 | zpluie= 0.0 |
---|
1012 | ELSE |
---|
1013 | ! water quantity to remove: zchau (Sundqvist, 1978) |
---|
1014 | ! same thing for the ice: zfroi (Zender & Kiehl, 1997) |
---|
1015 | IF (ptconv(i,k)) THEN ! if convective point |
---|
1016 | zcl=cld_lc_con |
---|
1017 | zct=1./cld_tau_con |
---|
1018 | zfroi = dtime/REAL(ninter)/zdz(i)*zoliq(i)*velo(i)*zfice(i) |
---|
1019 | ELSE |
---|
1020 | zcl=cld_lc_lsc |
---|
1021 | zct=1./cld_tau_lsc |
---|
1022 | zfroi = dtime/REAL(ninter)/zdz(i)*zoliq(i) & ! dqice/dt=1/rho*d(rho*wice*qice)/dz |
---|
1023 | *velo(i) * zfice(i) |
---|
1024 | ENDIF |
---|
1025 | |
---|
1026 | ! if vertical heterogeneity is taken into account, we use |
---|
1027 | ! the "true" volume fraction instead of a modified |
---|
1028 | ! surface fraction (which is larger and artificially |
---|
1029 | ! reduces the in-cloud water). |
---|
1030 | IF ((iflag_cloudth_vert.GE.3).AND.(iflag_rain_incloud_vol.EQ.1)) THEN |
---|
1031 | zchau = zct *dtime/REAL(ninter) * zoliq(i) & |
---|
1032 | *(1.0-EXP(-(zoliq(i)/ctot_vol(i,k)/zcl)**2)) *(1.-zfice(i)) |
---|
1033 | ELSE |
---|
1034 | zchau = zct *dtime/REAL(ninter) * zoliq(i) & |
---|
1035 | *(1.0-EXP(-(zoliq(i)/zneb(i)/zcl)**2)) *(1.-zfice(i)) ! dqliq/dt=-qliq/tau*(1-exp(-qcin/clw)**2) |
---|
1036 | ENDIF |
---|
1037 | |
---|
1038 | zpluie = MIN(MAX(zchau,0.0),zoliq(i)*(1.-zfice(i))) |
---|
1039 | zice = MIN(MAX(zfroi,0.0),zoliq(i)*zfice(i)) |
---|
1040 | ztot = MAX(zpluie + zice,0.0) |
---|
1041 | |
---|
1042 | ENDIF |
---|
1043 | |
---|
1044 | ztot = MIN(ztot,zoliq(i)) |
---|
1045 | zice = MIN(zice,ztot) |
---|
1046 | zpluie = MIN(zpluie,ztot) |
---|
1047 | |
---|
1048 | zoliqp(i) = MAX(zoliq(i)*(1.-zfice(i))-1.*zpluie , 0.0) |
---|
1049 | zoliqi(i) = MAX(zoliq(i)*zfice(i)-1.*zice , 0.0) |
---|
1050 | zoliq(i) = MAX(zoliq(i)-ztot , 0.0) |
---|
1051 | |
---|
1052 | radliq(i,k) = radliq(i,k) + zoliq(i)/REAL(ninter+1) |
---|
1053 | radliqi(i,k) = radliqi(i,k) + zoliqi(i)/REAL(ninter+1) |
---|
1054 | |
---|
1055 | ENDIF |
---|
1056 | |
---|
1057 | ENDDO ! i = 1,klon |
---|
1058 | |
---|
1059 | ENDDO ! n = 1,niter |
---|
1060 | |
---|
1061 | |
---|
1062 | ! Caculate the percentage of ice in "radliq" so cloud+precip seen by the radiation scheme |
---|
1063 | DO i=1,klon |
---|
1064 | IF (radliq(i,k) .GT. 0) THEN |
---|
1065 | radicefrac(i,k)=MIN(MAX(radliqi(i,k)/radliq(i,k),0.),1.) |
---|
1066 | ENDIF |
---|
1067 | ENDDO |
---|
1068 | |
---|
1069 | |
---|
1070 | ! CR&JYG: We account for the Wegener-Findeisen-Bergeron process in the precipitation flux: |
---|
1071 | ! If T<0C, liquid precip are converted into ice, which leads to an increase in |
---|
1072 | ! temperature DeltaT. The effect of DeltaT on condensates and precipitation is roughly |
---|
1073 | ! taken into account through a linearization of the equations and by approximating |
---|
1074 | ! the liquid precipitation process with a "threshold" process. We assume that |
---|
1075 | ! condensates are not modified during this operation. Liquid precipitation is |
---|
1076 | ! removed (in the limit DeltaT<273.15-T). Solid precipitation increases. |
---|
1077 | ! Water vapor increases as well |
---|
1078 | ! Note that compared to fisrtilp, we always assume iflag_bergeron=2 |
---|
1079 | |
---|
1080 | |
---|
1081 | |
---|
1082 | DO i = 1, klon |
---|
1083 | |
---|
1084 | IF (rneb(i,k) .GT. 0.0) THEN |
---|
1085 | |
---|
1086 | zqpreci(i)=(zcond(i)-zoliq(i))*zfice(i) |
---|
1087 | zqprecl(i)=(zcond(i)-zoliq(i))*(1.-zfice(i)) |
---|
1088 | zcp=RCPD*(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
---|
1089 | coef1 = rneb(i,k)*RLSTT/zcp*zdqsdT_raw(i) |
---|
1090 | ! Computation of DT if all the liquid precip freezes |
---|
1091 | DeltaT = RLMLT*zqprecl(i) / (zcp*(1.+coef1)) |
---|
1092 | ! T should not exceed the freezing point |
---|
1093 | ! that is Delta > RTT-zt(i) |
---|
1094 | DeltaT = max( min( RTT-zt(i), DeltaT) , 0. ) |
---|
1095 | zt(i) = zt(i) + DeltaT |
---|
1096 | ! water vaporization due to temp. increase |
---|
1097 | Deltaq = rneb(i,k)*zdqsdT_raw(i)*DeltaT |
---|
1098 | ! we add this vaporized water to the total vapor and we remove it from the precip |
---|
1099 | zq(i) = zq(i) + Deltaq |
---|
1100 | ! The three "max" lines herebelow protect from rounding errors |
---|
1101 | zcond(i) = max( zcond(i)- Deltaq, 0. ) |
---|
1102 | ! liquid precipitation freezes oe evaporates |
---|
1103 | Deltaqprecl = -zcp/RLMLT*(1.+coef1)*DeltaT |
---|
1104 | zqprecl(i) = max( zqprecl(i) + Deltaqprecl, 0. ) |
---|
1105 | ! iced water budget |
---|
1106 | zqpreci(i) = max (zqpreci(i) - Deltaqprecl - Deltaq, 0.) |
---|
1107 | |
---|
1108 | d_ql(i,k) = (1-zfice(i))*zoliq(i) |
---|
1109 | d_qi(i,k) = zfice(i)*zoliq(i) |
---|
1110 | |
---|
1111 | IF (iflag_evap_prec.EQ.4) THEN |
---|
1112 | zrflcld(i) = zrflcld(i)+zqprecl(i) & |
---|
1113 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
1114 | ziflcld(i) = ziflcld(i)+ zqpreci(i) & |
---|
1115 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
1116 | znebprecipcld(i) = rneb(i,k) |
---|
1117 | zrfl(i) = zrflcld(i) + zrflclr(i) |
---|
1118 | zifl(i) = ziflcld(i) + ziflclr(i) |
---|
1119 | ELSE |
---|
1120 | zrfl(i) = zrfl(i)+ zqprecl(i) & |
---|
1121 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
1122 | zifl(i) = zifl(i)+ zqpreci(i) & |
---|
1123 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
1124 | ENDIF |
---|
1125 | |
---|
1126 | ENDIF ! rneb>0 |
---|
1127 | |
---|
1128 | ENDDO |
---|
1129 | |
---|
1130 | |
---|
1131 | |
---|
1132 | |
---|
1133 | ! LTP: limit of surface cloud fraction covered by precipitation when the local intensity of the flux is below rain_int_min |
---|
1134 | ! if iflag_evap_pre=4 |
---|
1135 | IF (iflag_evap_prec.EQ.4) THEN |
---|
1136 | |
---|
1137 | DO i=1, klon |
---|
1138 | |
---|
1139 | |
---|
1140 | IF ((zrflclr(i) + ziflclr(i)) .GT. 0. ) THEN |
---|
1141 | znebprecipclr(i) = min(znebprecipclr(i),max(zrflclr(i)/ & |
---|
1142 | (MAX(znebprecipclr(i),seuil_neb)*rain_int_min), ziflclr(i)/(MAX(znebprecipclr(i),seuil_neb)*rain_int_min))) |
---|
1143 | ELSE |
---|
1144 | znebprecipclr(i)=0. |
---|
1145 | ENDIF |
---|
1146 | |
---|
1147 | |
---|
1148 | IF ((zrflcld(i) + ziflcld(i)) .GT. 0.) THEN |
---|
1149 | znebprecipcld(i) = min(znebprecipcld(i), max(zrflcld(i)/ & |
---|
1150 | (MAX(znebprecipcld(i),seuil_neb)*rain_int_min), ziflcld(i)/(MAX(znebprecipcld(i),seuil_neb)*rain_int_min))) |
---|
1151 | ELSE |
---|
1152 | znebprecipcld(i)=0. |
---|
1153 | ENDIF |
---|
1154 | |
---|
1155 | |
---|
1156 | ENDDO |
---|
1157 | |
---|
1158 | ENDIF |
---|
1159 | |
---|
1160 | ! -------------------------------- |
---|
1161 | ! End of precipitation formation |
---|
1162 | ! -------------------------------- |
---|
1163 | |
---|
1164 | |
---|
1165 | ! Outputs: |
---|
1166 | ! Precipitation fluxes at layer interfaces |
---|
1167 | ! and temperature and vapor tendencies |
---|
1168 | DO i = 1, klon |
---|
1169 | psfl(i,k)=zifl(i) |
---|
1170 | prfl(i,k)=zrfl(i) |
---|
1171 | d_q(i,k) = zq(i) - q(i,k) |
---|
1172 | d_t(i,k) = zt(i) - t(i,k) |
---|
1173 | ENDDO |
---|
1174 | |
---|
1175 | |
---|
1176 | |
---|
1177 | ! ---------------------------------------------------------------- |
---|
1178 | ! P4> Wet scavenging |
---|
1179 | ! ---------------------------------------------------------------- |
---|
1180 | |
---|
1181 | |
---|
1182 | !Scavenging through nucleation in the layer |
---|
1183 | |
---|
1184 | DO i = 1,klon |
---|
1185 | |
---|
1186 | IF(zcond(i).GT.zoliq(i)+1.e-10) THEN |
---|
1187 | beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime |
---|
1188 | ELSE |
---|
1189 | beta(i,k) = 0. |
---|
1190 | ENDIF |
---|
1191 | |
---|
1192 | zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0) & |
---|
1193 | * (paprs(i,k)-paprs(i,k+1))/RG |
---|
1194 | |
---|
1195 | |
---|
1196 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
---|
1197 | |
---|
1198 | |
---|
1199 | IF (t(i,k) .GE. t_glace_min) THEN |
---|
1200 | zalpha_tr = a_tr_sca(3) |
---|
1201 | ELSE |
---|
1202 | zalpha_tr = a_tr_sca(4) |
---|
1203 | ENDIF |
---|
1204 | |
---|
1205 | |
---|
1206 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
---|
1207 | pfrac_nucl(i,k)=pfrac_nucl(i,k)*(1.-zneb(i)*zfrac_lessi) |
---|
1208 | frac_nucl(i,k)= 1.-zneb(i)*zfrac_lessi |
---|
1209 | |
---|
1210 | ! Nucleation with a factor of -1 instead of -0.5 |
---|
1211 | zfrac_lessi = 1. - EXP(-zprec_cond(i)/zneb(i)) |
---|
1212 | pfrac_1nucl(i,k)=pfrac_1nucl(i,k)*(1.-zneb(i)*zfrac_lessi) |
---|
1213 | |
---|
1214 | ENDIF |
---|
1215 | |
---|
1216 | ENDDO |
---|
1217 | |
---|
1218 | |
---|
1219 | ! Scavenging through impaction in the underlying layer |
---|
1220 | |
---|
1221 | DO kk = k-1, 1, -1 |
---|
1222 | |
---|
1223 | DO i = 1, klon |
---|
1224 | |
---|
1225 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
---|
1226 | |
---|
1227 | IF (t(i,kk) .GE. t_glace_min) THEN |
---|
1228 | zalpha_tr = a_tr_sca(1) |
---|
1229 | ELSE |
---|
1230 | zalpha_tr = a_tr_sca(2) |
---|
1231 | ENDIF |
---|
1232 | |
---|
1233 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
---|
1234 | pfrac_impa(i,kk)=pfrac_impa(i,kk)*(1.-zneb(i)*zfrac_lessi) |
---|
1235 | frac_impa(i,kk)= 1.-zneb(i)*zfrac_lessi |
---|
1236 | |
---|
1237 | ENDIF |
---|
1238 | |
---|
1239 | ENDDO |
---|
1240 | |
---|
1241 | ENDDO |
---|
1242 | |
---|
1243 | |
---|
1244 | END DO |
---|
1245 | |
---|
1246 | !====================================================================== |
---|
1247 | ! END OF VERTICAL LOOP |
---|
1248 | !====================================================================== |
---|
1249 | |
---|
1250 | |
---|
1251 | ! Rain or snow at the surface (depending on the first layer temperature) |
---|
1252 | DO i = 1, klon |
---|
1253 | snow(i) = zifl(i) |
---|
1254 | rain(i) = zrfl(i) |
---|
1255 | ENDDO |
---|
1256 | |
---|
1257 | |
---|
1258 | |
---|
1259 | IF (ncoreczq>0) THEN |
---|
1260 | WRITE(lunout,*)'WARNING : ZQ in LSCP ',ncoreczq,' val < 1.e-15.' |
---|
1261 | ENDIF |
---|
1262 | |
---|
1263 | |
---|
1264 | |
---|
1265 | |
---|
1266 | END SUBROUTINE LSCP |
---|
1267 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
1268 | |
---|
1269 | END MODULE LSCP_MOD |
---|