[3999] | 1 | MODULE LSCP_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
| 7 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4368] | 8 | SUBROUTINE LSCP(dtime,missing_val, & |
---|
| 9 | paprs,pplay,t,q,ptconv,ratqs, & |
---|
| 10 | d_t, d_q, d_ql, d_qi, rneb, rneb_seri, & |
---|
| 11 | radliq, radicefrac, rain, snow, & |
---|
[3999] | 12 | pfrac_impa, pfrac_nucl, pfrac_1nucl, & |
---|
| 13 | frac_impa, frac_nucl, beta, & |
---|
| 14 | prfl, psfl, rhcl, zqta, fraca, & |
---|
| 15 | ztv, zpspsk, ztla, zthl, iflag_cld_th, & |
---|
[4368] | 16 | iflag_ice_thermo, ok_ice_sursat) |
---|
[3999] | 17 | |
---|
| 18 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 19 | ! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD) |
---|
| 20 | ! A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD) |
---|
| 21 | !-------------------------------------------------------------------------------- |
---|
| 22 | ! Date: 01/2021 |
---|
| 23 | !-------------------------------------------------------------------------------- |
---|
| 24 | ! Aim: Large Scale Clouds and Precipitation (LSCP) |
---|
[4368] | 25 | ! |
---|
[3999] | 26 | ! This code is a new version of the fisrtilp.F90 routine, which is itself a |
---|
[4368] | 27 | ! merge of 'first' (superrsaturation physics, P. LeVan K. Laval) |
---|
[3999] | 28 | ! and 'ilp' (il pleut, L. Li) |
---|
| 29 | ! |
---|
| 30 | ! Compared to fisrtilp, LSCP |
---|
| 31 | ! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.) |
---|
| 32 | ! -> consider always precipitation thermalisation (fl_cor_ebil>0) |
---|
| 33 | ! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T) |
---|
| 34 | ! -> option "oldbug" by JYG has been removed |
---|
| 35 | ! -> iflag_t_glace >0 always |
---|
| 36 | ! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always) |
---|
| 37 | ! -> rectangular distribution from L. Li no longer available |
---|
| 38 | ! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt) |
---|
| 39 | !-------------------------------------------------------------------------------- |
---|
| 40 | ! References: |
---|
| 41 | ! |
---|
| 42 | ! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y |
---|
| 43 | ! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3 |
---|
| 44 | ! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046 |
---|
| 45 | ! ------------------------------------------------------------------------------- |
---|
| 46 | ! Code structure: |
---|
| 47 | ! |
---|
[4368] | 48 | ! P0> Thermalization of the precipitation coming from the overlying layer |
---|
[3999] | 49 | ! P1> Evaporation of the precipitation (falling from the k+1 level) |
---|
| 50 | ! P2> Cloud formation (at the k level) |
---|
| 51 | ! P2.A.0> Cloud properties calculation from a rectangular pdf |
---|
| 52 | ! P2.A.1> With the new PDFs, calculation of cloud properties using the inital |
---|
| 53 | ! values of T and Q |
---|
| 54 | ! P2.A.2> Coupling between condensed water and temperature |
---|
| 55 | ! P2.A.3> Calculation of final quantities associated with cloud formation |
---|
| 56 | ! P2.B> 'All or nothing' cloud |
---|
| 57 | ! P2.C> Release of Latent heat after cloud formation |
---|
| 58 | ! P3> Autoconversion to precipitation (k-level) |
---|
| 59 | ! P4> Wet scavenging |
---|
| 60 | !------------------------------------------------------------------------------ |
---|
| 61 | ! Some preliminary comments (JBM) : |
---|
| 62 | ! |
---|
| 63 | ! The cloud water that the radiation scheme sees is not the same that the cloud |
---|
| 64 | ! water used in the physics and the dynamics |
---|
| 65 | ! |
---|
| 66 | ! During the autoconversion to precipitation (P3 step), radliq (cloud water used |
---|
| 67 | ! by the radiation scheme) is calculated as an average of the water that remains |
---|
| 68 | ! in the cloud during the precipitation and not the water remaining at the end |
---|
| 69 | ! of the time step. The latter is used in the rest of the physics and advected |
---|
| 70 | ! by the dynamics. |
---|
| 71 | ! |
---|
| 72 | ! In summary: |
---|
| 73 | ! |
---|
| 74 | ! Radiation: |
---|
| 75 | ! xflwc(newmicro)+xfiwc(newmicro) = |
---|
| 76 | ! cldliq(physiq)=radliq(fisrt)=lwcon(nc)+iwcon(nc) |
---|
| 77 | ! |
---|
| 78 | ! Physics/Dynamics: |
---|
| 79 | ! ql_seri(physiq)+qs_seri(physiq)=ocond(nc) |
---|
| 80 | ! |
---|
| 81 | ! Notetheless, be aware of: |
---|
| 82 | ! |
---|
| 83 | ! radliq(fisrt) .NE. ocond(nc) |
---|
| 84 | ! i.e.: |
---|
| 85 | ! lwcon(nc)+iwcon(nc) .NE. ocond(nc) |
---|
| 86 | ! (which is not trivial) |
---|
| 87 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4368] | 88 | ! |
---|
[3999] | 89 | USE dimphy |
---|
| 90 | USE print_control_mod, ONLY: prt_level, lunout |
---|
| 91 | USE cloudth_mod |
---|
| 92 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
| 93 | USE phys_local_var_mod, ONLY: ql_seri,qs_seri |
---|
| 94 | USE phys_local_var_mod, ONLY: rneblsvol |
---|
| 95 | USE lscp_tools_mod, ONLY : CALC_QSAT_ECMWF, ICEFRAC_LSCP, CALC_GAMMASAT, FALLICE_VELOCITY |
---|
[4368] | 96 | USE ice_sursat_mod |
---|
| 97 | !--ice supersaturation |
---|
| 98 | USE phys_local_var_mod, ONLY: zqsats, zqsatl |
---|
| 99 | USE phys_local_var_mod, ONLY: qclr, qcld, qss, qvc, rnebclr, rnebss, gamma_ss |
---|
| 100 | USE phys_local_var_mod, ONLY: Tcontr, qcontr, qcontr2, fcontrN, fcontrP |
---|
[3999] | 101 | |
---|
| 102 | IMPLICIT NONE |
---|
| 103 | |
---|
| 104 | !=============================================================================== |
---|
| 105 | ! VARIABLE DECLARATION |
---|
| 106 | !=============================================================================== |
---|
| 107 | |
---|
| 108 | include "YOMCST.h" |
---|
| 109 | include "YOETHF.h" |
---|
| 110 | include "FCTTRE.h" |
---|
| 111 | include "fisrtilp.h" |
---|
| 112 | include "nuage.h" |
---|
| 113 | |
---|
| 114 | ! INPUT VARIABLES: |
---|
| 115 | !----------------- |
---|
| 116 | |
---|
| 117 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
[4368] | 118 | REAL, INTENT(IN) :: missing_val ! missing value for output |
---|
| 119 | |
---|
[3999] | 120 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! inter-layer pressure [Pa] |
---|
| 121 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! mid-layer pressure [Pa] |
---|
| 122 | REAL, DIMENSION(klon,klev), INTENT(IN) :: t ! temperature (K) |
---|
| 123 | REAL, DIMENSION(klon,klev), INTENT(IN) :: q ! specific humidity [kg/kg] |
---|
| 124 | INTEGER, INTENT(IN) :: iflag_cld_th ! flag that determines the distribution of convective clouds |
---|
| 125 | INTEGER, INTENT(IN) :: iflag_ice_thermo! flag to activate the ice thermodynamics |
---|
[4368] | 126 | ! CR: if iflag_ice_thermo=2, only convection is active |
---|
| 127 | LOGICAL, INTENT(IN) :: ok_ice_sursat ! flag to determine if ice sursaturation is activated |
---|
| 128 | |
---|
[3999] | 129 | LOGICAL, DIMENSION(klon,klev), INTENT(IN) :: ptconv ! grid points where deep convection scheme is active |
---|
| 130 | |
---|
[4368] | 131 | |
---|
[3999] | 132 | !Inputs associated with thermal plumes |
---|
[4368] | 133 | |
---|
[3999] | 134 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ztv ! virtual potential temperature [K] |
---|
| 135 | REAL, DIMENSION(klon,klev), INTENT(IN) :: zqta ! specific humidity within thermals [kg/kg] |
---|
| 136 | REAL, DIMENSION(klon,klev), INTENT(IN) :: fraca ! fraction of thermals within the mesh [-] |
---|
| 137 | REAL, DIMENSION(klon,klev), INTENT(IN) :: zpspsk ! exner potential (p/100000)**(R/cp) |
---|
| 138 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ztla ! liquid temperature within thermals [K] |
---|
[4368] | 139 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: zthl ! liquid potential temperature [K] |
---|
[3999] | 140 | |
---|
| 141 | ! INPUT/OUTPUT variables |
---|
| 142 | !------------------------ |
---|
| 143 | |
---|
| 144 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: ratqs ! function of pressure that sets the large-scale |
---|
[4368] | 145 | |
---|
| 146 | ! Input sursaturation en glace |
---|
| 147 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: rneb_seri ! fraction nuageuse en memoire |
---|
[3999] | 148 | |
---|
| 149 | ! OUTPUT variables |
---|
| 150 | !----------------- |
---|
| 151 | |
---|
| 152 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t ! temperature increment [K] |
---|
| 153 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_q ! specific humidity increment [kg/kg] |
---|
| 154 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_ql ! liquid water increment [kg/kg] |
---|
| 155 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_qi ! cloud ice mass increment [kg/kg] |
---|
| 156 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneb ! cloud fraction [-] |
---|
| 157 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radliq ! condensed water used in the radiation scheme [kg/kg] |
---|
| 158 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radicefrac ! ice fraction of condensed water for radiation scheme |
---|
| 159 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rhcl ! clear-sky relative humidity [-] |
---|
| 160 | REAL, DIMENSION(klon), INTENT(OUT) :: rain ! large-scale rainfall [kg/s/m2] |
---|
| 161 | REAL, DIMENSION(klon), INTENT(OUT) :: snow ! large-scale snowfall [kg/s/m2] |
---|
| 162 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: prfl ! large-scale rainfall flux in the column [kg/s/m2] |
---|
| 163 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: psfl ! large-scale snowfall flux in the column [kg/s/m2] |
---|
| 164 | |
---|
| 165 | ! cofficients of scavenging fraction (for off-line) |
---|
| 166 | |
---|
| 167 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfrac_nucl ! scavenging fraction due tu nucleation [-] |
---|
| 168 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfrac_1nucl ! scavenging fraction due tu nucleation with a -1 factor [-] |
---|
| 169 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfrac_impa ! scavening fraction due to impaction [-] |
---|
| 170 | |
---|
| 171 | ! fraction of aerosol scavenging through impaction and nucleation (for on-line) |
---|
| 172 | |
---|
| 173 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_impa ! scavenging fraction due tu impaction [-] |
---|
| 174 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_nucl ! scavenging fraction due tu nucleation [-] |
---|
| 175 | |
---|
| 176 | ! PROGRAM PARAMETERS: |
---|
| 177 | !-------------------- |
---|
| 178 | |
---|
[4368] | 179 | REAL, SAVE :: seuil_neb=0.001 ! cloud fraction threshold: a cloud really exists when exceeded |
---|
[3999] | 180 | !$OMP THREADPRIVATE(seuil_neb) |
---|
| 181 | |
---|
[4368] | 182 | INTEGER, SAVE :: ninter=5 ! number of iterations to calculate autoconversion to precipitation |
---|
[3999] | 183 | !$OMP THREADPRIVATE(ninter) |
---|
| 184 | |
---|
[4368] | 185 | INTEGER,SAVE :: iflag_evap_prec=1 ! precipitation evaporation flag. 0: nothing, 1: "old way", |
---|
| 186 | ! 2: Max cloud fraction above to calculate the max of reevaporation |
---|
| 187 | ! 4: LTP'method i.e. evaporation in the clear-sky fraction of the mesh only |
---|
[3999] | 188 | !$OMP THREADPRIVATE(iflag_evap_prec) |
---|
| 189 | |
---|
[4368] | 190 | REAL t_coup ! temperature threshold which determines the phase |
---|
| 191 | PARAMETER (t_coup=234.0) ! for which the saturation vapor pressure is calculated |
---|
[3999] | 192 | |
---|
[4368] | 193 | REAL DDT0 ! iteration parameter |
---|
[3999] | 194 | PARAMETER (DDT0=.01) |
---|
| 195 | |
---|
[4368] | 196 | REAL ztfondue ! parameter to calculate melting fraction of precipitation |
---|
[3999] | 197 | PARAMETER (ztfondue=278.15) |
---|
| 198 | |
---|
[4368] | 199 | REAL, SAVE :: rain_int_min=0.001 ! Minimum local rain intensity [mm/s] before the decrease in associated precipitation fraction |
---|
[3999] | 200 | !$OMP THREADPRIVATE(rain_int_min) |
---|
| 201 | |
---|
| 202 | |
---|
| 203 | ! LOCAL VARIABLES: |
---|
| 204 | !---------------- |
---|
| 205 | |
---|
| 206 | |
---|
[4368] | 207 | REAL qsl(klon), qsi(klon) |
---|
[3999] | 208 | REAL zct, zcl |
---|
| 209 | REAL ctot(klon,klev) |
---|
| 210 | REAL ctot_vol(klon,klev) |
---|
[4368] | 211 | REAL zqs(klon), zdqs(klon), zdelta, zcor, zcvm5 |
---|
[3999] | 212 | REAL zdqsdT_raw(klon) |
---|
[4368] | 213 | REAL gammasat(klon),dgammasatdt(klon) ! coefficient to make cold condensation at the correct RH and derivative wrt T |
---|
[3999] | 214 | REAL Tbef(klon),qlbef(klon),DT(klon),num,denom |
---|
| 215 | REAL cste |
---|
| 216 | REAL zpdf_sig(klon),zpdf_k(klon),zpdf_delta(klon) |
---|
| 217 | REAL Zpdf_a(klon),zpdf_b(klon),zpdf_e1(klon),zpdf_e2(klon) |
---|
[4368] | 218 | REAL erf |
---|
[3999] | 219 | REAL qcloud(klon), icefrac_mpc(klon,klev), qincloud_mpc(klon) |
---|
| 220 | REAL zrfl(klon), zrfln(klon), zqev, zqevt |
---|
[4368] | 221 | REAL zifl(klon), zifln(klon), ziflprev(klon),zqev0,zqevi, zqevti |
---|
[3999] | 222 | REAL zoliq(klon), zcond(klon), zq(klon), zqn(klon) |
---|
[4368] | 223 | REAL zoliql(klon), zoliqi(klon) |
---|
[3999] | 224 | REAL zt(klon) |
---|
[4368] | 225 | REAL zdz(klon),zrho(klon,klev),iwc(klon) |
---|
[3999] | 226 | REAL zchau,zfroi,zfice(klon),zneb(klon),znebprecip(klon) |
---|
[4368] | 227 | REAL zmelt,zrain,zsnow,zprecip |
---|
[3999] | 228 | REAL dzfice(klon) |
---|
[4368] | 229 | REAL zsolid |
---|
| 230 | REAL qtot(klon), qzero(klon) |
---|
| 231 | REAL dqsl(klon),dqsi(klon) |
---|
[3999] | 232 | REAL smallestreal |
---|
| 233 | ! Variables for Bergeron process |
---|
| 234 | REAL zcp, coef1, DeltaT, Deltaq, Deltaqprecl |
---|
| 235 | REAL zqpreci(klon), zqprecl(klon) |
---|
| 236 | ! Variables precipitation energy conservation |
---|
| 237 | REAL zmqc(klon) |
---|
| 238 | ! Variables for tracers |
---|
| 239 | ! temporary: alpha parameter for scavenging |
---|
| 240 | ! 4 possible scavenging processes |
---|
[4368] | 241 | REAL,SAVE :: a_tr_sca(4) |
---|
| 242 | !$OMP THREADPRIVATE(a_tr_sca) |
---|
[3999] | 243 | REAL zalpha_tr |
---|
| 244 | REAL zfrac_lessi |
---|
| 245 | REAL zprec_cond(klon) |
---|
| 246 | REAL beta(klon,klev) ! conversion rate of condensed water |
---|
| 247 | REAL zmair(klon), zcpair, zcpeau |
---|
| 248 | REAL zlh_solid(klon), zm_solid ! for liquid -> solid conversion |
---|
[4368] | 249 | REAL zrflclr(klon), zrflcld(klon) |
---|
| 250 | REAL d_zrfl_clr_cld(klon), d_zifl_clr_cld(klon) |
---|
[3999] | 251 | REAL d_zrfl_cld_clr(klon), d_zifl_cld_clr(klon) |
---|
[4368] | 252 | REAL ziflclr(klon), ziflcld(klon) |
---|
| 253 | REAL znebprecipclr(klon), znebprecipcld(klon) |
---|
| 254 | REAL tot_zneb(klon), tot_znebn(klon), d_tot_zneb(klon) |
---|
[3999] | 255 | REAL d_znebprecip_clr_cld(klon), d_znebprecip_cld_clr(klon) |
---|
[4368] | 256 | REAL velo(klon,klev), vr |
---|
[3999] | 257 | REAL qlmpc, qimpc, rnebmpc |
---|
[4368] | 258 | REAL radliqi(klon,klev), radliql(klon,klev) |
---|
[3999] | 259 | |
---|
| 260 | INTEGER i, k, n, kk |
---|
| 261 | INTEGER n_i(klon), iter |
---|
[4368] | 262 | INTEGER ncoreczq |
---|
| 263 | INTEGER mpc_bl_points(klon,klev) |
---|
[3999] | 264 | INTEGER,SAVE :: itap=0 |
---|
| 265 | !$OMP THREADPRIVATE(itap) |
---|
| 266 | |
---|
| 267 | LOGICAL lognormale(klon) |
---|
| 268 | LOGICAL convergence(klon) |
---|
[4368] | 269 | LOGICAL,SAVE :: appel1er |
---|
[3999] | 270 | !$OMP THREADPRIVATE(appel1er) |
---|
| 271 | |
---|
| 272 | CHARACTER (len = 20) :: modname = 'lscp' |
---|
| 273 | CHARACTER (len = 80) :: abort_message |
---|
| 274 | |
---|
| 275 | DATA appel1er /.TRUE./ |
---|
| 276 | |
---|
| 277 | !=============================================================================== |
---|
| 278 | ! INITIALISATION |
---|
| 279 | !=============================================================================== |
---|
| 280 | |
---|
[4368] | 281 | ! Few initial checks |
---|
[3999] | 282 | |
---|
| 283 | IF (iflag_t_glace.EQ.0) THEN |
---|
| 284 | abort_message = 'lscp cannot be used if iflag_t_glace=0' |
---|
| 285 | CALL abort_physic(modname,abort_message,1) |
---|
| 286 | ENDIF |
---|
| 287 | |
---|
| 288 | IF (.NOT.((iflag_ice_thermo .EQ. 1).OR.(iflag_ice_thermo .GE. 3))) THEN |
---|
| 289 | abort_message = 'lscp cannot be used without ice thermodynamics' |
---|
| 290 | CALL abort_physic(modname,abort_message,1) |
---|
| 291 | ENDIF |
---|
| 292 | |
---|
| 293 | IF (.NOT.thermcep) THEN |
---|
[4368] | 294 | abort_message = 'lscp cannot be used when thermcep=false' |
---|
| 295 | CALL abort_physic(modname,abort_message,1) |
---|
[3999] | 296 | ENDIF |
---|
| 297 | |
---|
| 298 | IF (iflag_fisrtilp_qsat .LT. 0) THEN |
---|
[4368] | 299 | abort_message = 'lscp cannot be used with iflag_fisrtilp<0' |
---|
| 300 | CALL abort_physic(modname,abort_message,1) |
---|
[3999] | 301 | ENDIF |
---|
| 302 | |
---|
| 303 | ! Few initialisations |
---|
| 304 | |
---|
| 305 | itap=itap+1 |
---|
[4368] | 306 | znebprecip(:)=0.0 |
---|
[3999] | 307 | ctot_vol(1:klon,1:klev)=0.0 |
---|
| 308 | rneblsvol(1:klon,1:klev)=0.0 |
---|
[4368] | 309 | smallestreal=1.e-9 |
---|
| 310 | znebprecipclr(:)=0.0 |
---|
| 311 | znebprecipcld(:)=0.0 |
---|
[3999] | 312 | mpc_bl_points(:,:)=0 |
---|
| 313 | |
---|
| 314 | IF (prt_level>9) WRITE(lunout,*) 'NUAGES4 A. JAM' |
---|
| 315 | |
---|
| 316 | IF (appel1er) THEN |
---|
| 317 | CALL getin_p('ninter',ninter) |
---|
| 318 | CALL getin_p('iflag_evap_prec',iflag_evap_prec) |
---|
| 319 | CALL getin_p('seuil_neb',seuil_neb) |
---|
| 320 | CALL getin_p('rain_int_min',rain_int_min) |
---|
| 321 | WRITE(lunout,*) 'lscp, ninter:', ninter |
---|
| 322 | WRITE(lunout,*) 'lscp, iflag_evap_prec:', iflag_evap_prec |
---|
| 323 | WRITE(lunout,*) 'lscp, seuil_neb:', seuil_neb |
---|
| 324 | WRITE(lunout,*) 'lscp, rain_int_min:', rain_int_min |
---|
| 325 | |
---|
| 326 | ! check for precipitation sub-time steps |
---|
| 327 | IF (ABS(dtime/REAL(ninter)-360.0).GT.0.001) THEN |
---|
| 328 | WRITE(lunout,*) 'lscp: it is not expected, see Z.X.Li', dtime |
---|
| 329 | WRITE(lunout,*) 'I would prefer a 6 min sub-timestep' |
---|
| 330 | ENDIF |
---|
[4368] | 331 | |
---|
[3999] | 332 | !AA Temporary initialisation |
---|
| 333 | a_tr_sca(1) = -0.5 |
---|
| 334 | a_tr_sca(2) = -0.5 |
---|
| 335 | a_tr_sca(3) = -0.5 |
---|
| 336 | a_tr_sca(4) = -0.5 |
---|
| 337 | |
---|
| 338 | !AA Set scavenged fractions to 1 |
---|
| 339 | DO k = 1, klev |
---|
| 340 | DO i = 1, klon |
---|
[4368] | 341 | pfrac_nucl(i,k)=1.0 |
---|
| 342 | pfrac_1nucl(i,k)=1.0 |
---|
| 343 | pfrac_impa(i,k)=1.0 |
---|
| 344 | beta(i,k)=0.0 |
---|
[3999] | 345 | ENDDO |
---|
| 346 | ENDDO |
---|
| 347 | |
---|
[4368] | 348 | IF (ok_ice_sursat) CALL ice_sursat_init() |
---|
| 349 | |
---|
[3999] | 350 | appel1er = .FALSE. |
---|
| 351 | |
---|
[4368] | 352 | ENDIF !(appel1er) |
---|
[3999] | 353 | |
---|
| 354 | ! AA for 'safety' reasons |
---|
| 355 | zalpha_tr = 0. |
---|
| 356 | zfrac_lessi = 0. |
---|
| 357 | |
---|
| 358 | ! Initialisation of output variables (JYG): |
---|
| 359 | prfl(:,:) = 0.0 |
---|
| 360 | psfl(:,:) = 0.0 |
---|
| 361 | |
---|
| 362 | d_t(:,:) = 0.0 |
---|
| 363 | d_q(:,:) = 0.0 |
---|
| 364 | d_ql(:,:) = 0.0 |
---|
| 365 | d_qi(:,:) = 0.0 |
---|
| 366 | rneb(:,:) = 0.0 |
---|
| 367 | radliq(:,:) = 0.0 |
---|
| 368 | radicefrac(:,:) = 0.0 |
---|
[4368] | 369 | frac_nucl(:,:) = 1.0 |
---|
| 370 | frac_impa(:,:) = 1.0 |
---|
[3999] | 371 | |
---|
| 372 | rain(:) = 0.0 |
---|
| 373 | snow(:) = 0.0 |
---|
[4368] | 374 | zoliq(:)=0.0 |
---|
| 375 | zfice(:)=0.0 |
---|
| 376 | dzfice(:)=0.0 |
---|
| 377 | zqprecl(:)=0.0 |
---|
| 378 | zqpreci(:)=0.0 |
---|
[3999] | 379 | zrfl(:) = 0.0 |
---|
| 380 | zifl(:) = 0.0 |
---|
[4368] | 381 | ziflprev(:)=0.0 |
---|
[3999] | 382 | zneb(:) = seuil_neb |
---|
[4368] | 383 | zrflclr(:) = 0.0 |
---|
| 384 | ziflclr(:) = 0.0 |
---|
| 385 | zrflcld(:) = 0.0 |
---|
| 386 | ziflcld(:) = 0.0 |
---|
| 387 | tot_zneb(:) = 0.0 |
---|
| 388 | tot_znebn(:) = 0.0 |
---|
| 389 | d_tot_zneb(:) = 0.0 |
---|
| 390 | qzero(:) = 0.0 |
---|
[3999] | 391 | |
---|
[4368] | 392 | !--ice sursaturation |
---|
| 393 | gamma_ss(:,:) = 1.0 |
---|
| 394 | qss(:,:) = 0.0 |
---|
| 395 | rnebss(:,:) = 0.0 |
---|
| 396 | Tcontr(:,:) = missing_val |
---|
| 397 | qcontr(:,:) = missing_val |
---|
| 398 | qcontr2(:,:) = missing_val |
---|
| 399 | fcontrN(:,:) = 0.0 |
---|
| 400 | fcontrP(:,:) = 0.0 |
---|
[3999] | 401 | |
---|
| 402 | !=============================================================================== |
---|
| 403 | ! BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM |
---|
| 404 | !=============================================================================== |
---|
| 405 | |
---|
| 406 | ncoreczq=0 |
---|
| 407 | |
---|
| 408 | DO k = klev, 1, -1 |
---|
| 409 | |
---|
| 410 | ! Initialisation temperature and specific humidity |
---|
| 411 | DO i = 1, klon |
---|
| 412 | zt(i)=t(i,k) |
---|
| 413 | zq(i)=q(i,k) |
---|
| 414 | ENDDO |
---|
| 415 | |
---|
| 416 | ! -------------------------------------------------------------------- |
---|
| 417 | ! P0> Thermalization of precipitation falling from the overlying layer |
---|
| 418 | ! -------------------------------------------------------------------- |
---|
| 419 | ! Computes air temperature variation due to latent heat transported by |
---|
| 420 | ! precipitation. Precipitation is then thermalized with the air in the |
---|
| 421 | ! layer. |
---|
| 422 | ! The precipitation should remain thermalized throughout the different |
---|
| 423 | ! thermodynamical transformations. The corresponding water mass should |
---|
| 424 | ! be added when calculating the layer's enthalpy change with |
---|
| 425 | ! temperature |
---|
| 426 | ! --------------------------------------------------------------------- |
---|
| 427 | |
---|
| 428 | IF (k.LE.klevm1) THEN |
---|
| 429 | |
---|
| 430 | DO i = 1, klon |
---|
| 431 | |
---|
| 432 | zmair(i)=(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 433 | ! no condensed water so cp=cp(vapor+dry air) |
---|
| 434 | ! RVTMP2=rcpv/rcpd-1 |
---|
| 435 | zcpair=RCPD*(1.0+RVTMP2*zq(i)) |
---|
[4368] | 436 | zcpeau=RCPD*RVTMP2 |
---|
| 437 | |
---|
[3999] | 438 | ! zmqc: precipitation mass that has to be thermalized with |
---|
| 439 | ! layer's air so that precipitation at the ground has the |
---|
| 440 | ! same temperature as the lowermost layer |
---|
| 441 | zmqc(i) = (zrfl(i)+zifl(i))*dtime/zmair(i) |
---|
| 442 | ! t(i,k+1)+d_t(i,k+1): new temperature of the overlying layer |
---|
| 443 | zt(i) = ( (t(i,k+1)+d_t(i,k+1))*zmqc(i)*zcpeau + zcpair*zt(i) ) & |
---|
| 444 | / (zcpair + zmqc(i)*zcpeau) |
---|
[4368] | 445 | |
---|
[3999] | 446 | ENDDO |
---|
| 447 | |
---|
[4368] | 448 | ELSE |
---|
[3999] | 449 | |
---|
| 450 | DO i = 1, klon |
---|
| 451 | zmair(i)=(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 452 | zmqc(i) = 0. |
---|
| 453 | ENDDO |
---|
| 454 | |
---|
| 455 | ENDIF |
---|
| 456 | |
---|
| 457 | ! -------------------------------------------------------------------- |
---|
| 458 | ! P1> Precipitation evaporation/sublimation |
---|
| 459 | ! -------------------------------------------------------------------- |
---|
| 460 | ! A part of the precipitation coming from above is evaporated/sublimated. |
---|
| 461 | ! -------------------------------------------------------------------- |
---|
| 462 | |
---|
| 463 | IF (iflag_evap_prec.GE.1) THEN |
---|
| 464 | |
---|
[4368] | 465 | ! Calculation of saturation specific humidity |
---|
| 466 | ! depending on temperature: |
---|
| 467 | CALL CALC_QSAT_ECMWF(klon,zt(:),qzero(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
---|
| 468 | ! wrt liquid water |
---|
| 469 | CALL CALC_QSAT_ECMWF(klon,zt(:),qzero(:),pplay(:,k),RTT,1,.false.,qsl(:),dqsl(:)) |
---|
| 470 | ! wrt ice |
---|
| 471 | CALL CALC_QSAT_ECMWF(klon,zt(:),qzero(:),pplay(:,k),RTT,2,.false.,qsi(:),dqsi(:)) |
---|
[3999] | 472 | |
---|
| 473 | DO i = 1, klon |
---|
[4368] | 474 | |
---|
[3999] | 475 | ! if precipitation |
---|
| 476 | IF (zrfl(i)+zifl(i).GT.0.) THEN |
---|
| 477 | |
---|
| 478 | ! LTP: we only account for precipitation evaporation in the clear-sky (iflag_evap_prec=4). |
---|
[4368] | 479 | IF (iflag_evap_prec.EQ.4) THEN |
---|
| 480 | zrfl(i) = zrflclr(i) |
---|
| 481 | zifl(i) = ziflclr(i) |
---|
| 482 | ENDIF |
---|
[3999] | 483 | |
---|
| 484 | IF (iflag_evap_prec.EQ.1) THEN |
---|
| 485 | znebprecip(i)=zneb(i) |
---|
| 486 | ELSE |
---|
| 487 | znebprecip(i)=MAX(zneb(i),znebprecip(i)) |
---|
| 488 | ENDIF |
---|
| 489 | |
---|
[4368] | 490 | IF (iflag_evap_prec.EQ.4) THEN |
---|
| 491 | ! Max evaporation not to saturate the whole mesh |
---|
| 492 | zqev0 = MAX(0.0, zqs(i)-zq(i)) |
---|
| 493 | ELSE |
---|
| 494 | ! Max evap not to saturate the fraction below the cloud |
---|
| 495 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecip(i)) |
---|
| 496 | ENDIF |
---|
[3999] | 497 | |
---|
| 498 | ! Evaporation of liquid precipitation coming from above |
---|
| 499 | ! dP/dz=beta*(1-q/qsat)*sqrt(P) |
---|
| 500 | ! formula from Sundquist 1988, Klemp & Wilhemson 1978 |
---|
| 501 | ! LTP: evaporation only in the clear sky part (iflag_evap_prec=4) |
---|
| 502 | |
---|
| 503 | IF (iflag_evap_prec.EQ.3) THEN |
---|
[4368] | 504 | zqevt = znebprecip(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
---|
[3999] | 505 | *SQRT(zrfl(i)/max(1.e-4,znebprecip(i))) & |
---|
| 506 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 507 | ELSE IF (iflag_evap_prec.EQ.4) THEN |
---|
[4368] | 508 | zqevt = znebprecipclr(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
---|
[3999] | 509 | *SQRT(zrfl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
| 510 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 511 | ELSE |
---|
[4368] | 512 | zqevt = 1.*coef_eva*(1.0-zq(i)/qsl(i))*SQRT(zrfl(i)) & |
---|
[3999] | 513 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 514 | ENDIF |
---|
| 515 | |
---|
| 516 | zqevt = MAX(0.0,MIN(zqevt,zrfl(i))) & |
---|
[4368] | 517 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
---|
[3999] | 518 | |
---|
| 519 | ! sublimation of the solid precipitation coming from above |
---|
| 520 | IF (iflag_evap_prec.EQ.3) THEN |
---|
[4368] | 521 | zqevti = znebprecip(i)*coef_eva_i*(1.0-zq(i)/qsi(i)) & |
---|
[3999] | 522 | *SQRT(zifl(i)/max(1.e-4,znebprecip(i))) & |
---|
| 523 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 524 | ELSE IF (iflag_evap_prec.EQ.4) THEN |
---|
[4368] | 525 | zqevti = znebprecipclr(i)*coef_eva_i*(1.0-zq(i)/qsi(i)) & |
---|
[3999] | 526 | *SQRT(zifl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
| 527 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 528 | ELSE |
---|
[4368] | 529 | zqevti = 1.*coef_eva_i*(1.0-zq(i)/qsi(i))*SQRT(zifl(i)) & |
---|
[3999] | 530 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 531 | ENDIF |
---|
[4368] | 532 | |
---|
[3999] | 533 | zqevti = MAX(0.0,MIN(zqevti,zifl(i))) & |
---|
[4368] | 534 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
---|
[3999] | 535 | |
---|
| 536 | ! A. JAM |
---|
| 537 | ! Evaporation limit: we ensure that the layer's fraction below |
---|
| 538 | ! the cloud or the whole mesh (depending on iflag_evap_prec) |
---|
| 539 | ! does not reach saturation. In this case, we |
---|
| 540 | ! redistribute zqev0 conserving the ratio liquid/ice |
---|
[4368] | 541 | |
---|
[3999] | 542 | IF (zqevt+zqevti.GT.zqev0) THEN |
---|
| 543 | zqev=zqev0*zqevt/(zqevt+zqevti) |
---|
| 544 | zqevi=zqev0*zqevti/(zqevt+zqevti) |
---|
| 545 | ELSE |
---|
| 546 | zqev=zqevt |
---|
| 547 | zqevi=zqevti |
---|
| 548 | ENDIF |
---|
| 549 | |
---|
| 550 | |
---|
| 551 | ! New solid and liquid precipitation fluxes |
---|
| 552 | zrfln(i) = Max(0.,zrfl(i) - zqev*(paprs(i,k)-paprs(i,k+1)) & |
---|
| 553 | /RG/dtime) |
---|
| 554 | zifln(i) = Max(0.,zifl(i) - zqevi*(paprs(i,k)-paprs(i,k+1)) & |
---|
| 555 | /RG/dtime) |
---|
| 556 | |
---|
| 557 | ! vapor, temperature, precip fluxes update |
---|
| 558 | zq(i) = zq(i) - (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
| 559 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
---|
| 560 | ! precip thermalization |
---|
| 561 | zmqc(i) = zmqc(i) + (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
| 562 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
---|
| 563 | zt(i) = zt(i) + (zrfln(i)-zrfl(i)) & |
---|
| 564 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
---|
| 565 | * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) & |
---|
| 566 | + (zifln(i)-zifl(i)) & |
---|
| 567 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
---|
| 568 | * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
| 569 | |
---|
| 570 | ! New values of liquid and solid precipitation |
---|
| 571 | zrfl(i) = zrfln(i) |
---|
| 572 | zifl(i) = zifln(i) |
---|
| 573 | |
---|
[4368] | 574 | IF (iflag_evap_prec.EQ.4) THEN |
---|
| 575 | zrflclr(i) = zrfl(i) |
---|
| 576 | ziflclr(i) = zifl(i) |
---|
| 577 | IF(zrflclr(i) + ziflclr(i).LE.0) THEN |
---|
| 578 | znebprecipclr(i) = 0.0 |
---|
| 579 | ENDIF |
---|
| 580 | zrfl(i) = zrflclr(i) + zrflcld(i) |
---|
| 581 | zifl(i) = ziflclr(i) + ziflcld(i) |
---|
| 582 | ENDIF |
---|
[3999] | 583 | |
---|
| 584 | |
---|
| 585 | ! CR Be careful: ice melting has been moved |
---|
| 586 | zmelt = ((zt(i)-273.15)/(ztfondue-273.15)) ! JYG |
---|
| 587 | ! precip fraction that is melted |
---|
| 588 | zmelt = MIN(MAX(zmelt,0.),1.) |
---|
| 589 | ! Ice melting |
---|
[4368] | 590 | IF (iflag_evap_prec.EQ.4) THEN |
---|
| 591 | zrflclr(i)=zrflclr(i)+zmelt*ziflclr(i) |
---|
| 592 | zrflcld(i)=zrflcld(i)+zmelt*ziflcld(i) |
---|
| 593 | zrfl(i)=zrflclr(i)+zrflcld(i) |
---|
| 594 | ELSE |
---|
| 595 | zrfl(i)=zrfl(i)+zmelt*zifl(i) |
---|
| 596 | ENDIF |
---|
[3999] | 597 | |
---|
| 598 | ! Latent heat of melting with precipitation thermalization |
---|
| 599 | zt(i)=zt(i)-zifl(i)*zmelt*(RG*dtime)/(paprs(i,k)-paprs(i,k+1)) & |
---|
| 600 | *RLMLT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
| 601 | |
---|
[4368] | 602 | IF (iflag_evap_prec.EQ.4) THEN |
---|
| 603 | ziflclr(i)=ziflclr(i)*(1.-zmelt) |
---|
| 604 | ziflcld(i)=ziflcld(i)*(1.-zmelt) |
---|
| 605 | zifl(i)=ziflclr(i)+ziflcld(i) |
---|
| 606 | ELSE |
---|
| 607 | zifl(i)=zifl(i)*(1.-zmelt) |
---|
[3999] | 608 | ENDIF |
---|
| 609 | |
---|
| 610 | ELSE |
---|
| 611 | ! if no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
| 612 | znebprecip(i)=0. |
---|
| 613 | |
---|
| 614 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
---|
| 615 | |
---|
| 616 | ENDDO |
---|
[4368] | 617 | |
---|
[3999] | 618 | ENDIF ! (iflag_evap_prec>=1) |
---|
| 619 | |
---|
| 620 | ! -------------------------------------------------------------------- |
---|
| 621 | ! End precip evaporation |
---|
| 622 | ! -------------------------------------------------------------------- |
---|
| 623 | |
---|
| 624 | ! Calculation of qsat, L/Cp*dqsat/dT and ncoreczq counter |
---|
| 625 | !------------------------------------------------------- |
---|
[4368] | 626 | |
---|
| 627 | qtot(:)=zq(:)+zmqc(:) |
---|
| 628 | CALL CALC_QSAT_ECMWF(klon,zt(:),qtot(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
---|
| 629 | DO i = 1, klon |
---|
[3999] | 630 | zdelta = MAX(0.,SIGN(1.,RTT-zt(i))) |
---|
[4368] | 631 | zdqsdT_raw(i) = zdqs(i)*RCPD*(1.0+RVTMP2*zq(i)) / (RLVTT*(1.-zdelta) + RLSTT*zdelta) |
---|
[3999] | 632 | IF (zq(i) .LT. 1.e-15) THEN |
---|
| 633 | ncoreczq=ncoreczq+1 |
---|
| 634 | zq(i)=1.e-15 |
---|
| 635 | ENDIF |
---|
| 636 | |
---|
[4368] | 637 | ENDDO |
---|
[3999] | 638 | |
---|
| 639 | ! -------------------------------------------------------------------- |
---|
| 640 | ! P2> Cloud formation |
---|
| 641 | !--------------------------------------------------------------------- |
---|
| 642 | ! |
---|
| 643 | ! Unlike fisrtilp, we always assume a 'fractional cloud' approach |
---|
| 644 | ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution |
---|
| 645 | ! is prescribed and depends on large scale variables and boundary layer |
---|
| 646 | ! properties) |
---|
| 647 | ! The decrease in condensed part due tu latent heating is taken into |
---|
| 648 | ! account |
---|
| 649 | ! ------------------------------------------------------------------- |
---|
| 650 | |
---|
| 651 | ! P2.1> With the PDFs (log-normal, bigaussian) |
---|
| 652 | ! cloud propertues calculation with the initial values of t and q |
---|
| 653 | ! ---------------------------------------------------------------- |
---|
| 654 | |
---|
| 655 | ! initialise gammasat and qincloud_mpc |
---|
| 656 | gammasat(:)=1. |
---|
| 657 | qincloud_mpc(:)=0. |
---|
| 658 | |
---|
| 659 | IF (iflag_cld_th.GE.5) THEN |
---|
| 660 | |
---|
| 661 | IF (iflag_mpc_bl .LT. 1) THEN |
---|
| 662 | |
---|
| 663 | IF (iflag_cloudth_vert.LE.2) THEN |
---|
| 664 | |
---|
| 665 | CALL cloudth(klon,klev,k,ztv, & |
---|
| 666 | zq,zqta,fraca, & |
---|
| 667 | qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
| 668 | ratqs,zqs,t) |
---|
| 669 | |
---|
| 670 | ELSEIF (iflag_cloudth_vert.GE.3 .AND. iflag_cloudth_vert.LE.5) THEN |
---|
| 671 | |
---|
| 672 | CALL cloudth_v3(klon,klev,k,ztv, & |
---|
| 673 | zq,zqta,fraca, & |
---|
| 674 | qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
| 675 | ratqs,zqs,t) |
---|
| 676 | |
---|
[4368] | 677 | !Jean Jouhaud's version, Decembre 2018 |
---|
| 678 | !------------------------------------- |
---|
[3999] | 679 | |
---|
| 680 | ELSEIF (iflag_cloudth_vert.EQ.6) THEN |
---|
| 681 | |
---|
| 682 | CALL cloudth_v6(klon,klev,k,ztv, & |
---|
| 683 | zq,zqta,fraca, & |
---|
| 684 | qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
| 685 | ratqs,zqs,t) |
---|
| 686 | |
---|
| 687 | ENDIF |
---|
| 688 | |
---|
| 689 | ELSE |
---|
| 690 | ! cloudth_v3 + cold microphysical considerations |
---|
| 691 | ! + stationary mixed-phase cloud model |
---|
| 692 | |
---|
| 693 | CALL cloudth_mpc(klon,klev,k,mpc_bl_points, & |
---|
| 694 | t,ztv,zq,zqta,fraca, zpspsk, & |
---|
| 695 | paprs,pplay,ztla,zthl,ratqs,zqs,psfl, & |
---|
| 696 | qcloud,qincloud_mpc,icefrac_mpc,ctot,ctot_vol) |
---|
| 697 | |
---|
| 698 | ENDIF ! iflag_mpc_bl |
---|
| 699 | |
---|
| 700 | DO i=1,klon |
---|
| 701 | rneb(i,k)=ctot(i,k) |
---|
| 702 | rneblsvol(i,k)=ctot_vol(i,k) |
---|
| 703 | zqn(i)=qcloud(i) |
---|
| 704 | ENDDO |
---|
| 705 | |
---|
| 706 | ENDIF |
---|
| 707 | |
---|
| 708 | IF (iflag_cld_th .LE. 4) THEN |
---|
| 709 | |
---|
| 710 | ! lognormal |
---|
| 711 | lognormale = .TRUE. |
---|
| 712 | |
---|
| 713 | ELSEIF (iflag_cld_th .GE. 6) THEN |
---|
| 714 | |
---|
| 715 | ! lognormal distribution when no thermals |
---|
| 716 | lognormale = fraca(:,k) < 1e-10 |
---|
| 717 | |
---|
| 718 | ELSE |
---|
[4368] | 719 | ! When iflag_cld_th=5, we always assume |
---|
[3999] | 720 | ! bi-gaussian distribution |
---|
| 721 | lognormale = .FALSE. |
---|
| 722 | |
---|
| 723 | ENDIF |
---|
| 724 | |
---|
| 725 | DT(:) = 0. |
---|
| 726 | n_i(:)=0 |
---|
| 727 | Tbef(:)=zt(:) |
---|
| 728 | qlbef(:)=0. |
---|
| 729 | |
---|
| 730 | ! Treatment of non-boundary layer clouds (lognormale) |
---|
| 731 | ! condensation with qsat(T) variation (adaptation) |
---|
| 732 | ! Iterative Loop to converge towards qsat |
---|
[4368] | 733 | |
---|
[3999] | 734 | DO iter=1,iflag_fisrtilp_qsat+1 |
---|
[4368] | 735 | |
---|
[3999] | 736 | DO i=1,klon |
---|
| 737 | |
---|
[4368] | 738 | ! convergence = .true. until when convergence is not satisfied |
---|
[3999] | 739 | convergence(i)=ABS(DT(i)).GT.DDT0 |
---|
[4368] | 740 | |
---|
[3999] | 741 | IF ((convergence(i) .OR. (n_i(i) .EQ. 0)) .AND. lognormale(i)) THEN |
---|
[4368] | 742 | |
---|
[3999] | 743 | ! if not convergence: |
---|
| 744 | |
---|
| 745 | ! P2.2.1> cloud fraction and condensed water mass calculation |
---|
| 746 | ! Calculated variables: |
---|
| 747 | ! rneb : cloud fraction |
---|
| 748 | ! zqn : total water within the cloud |
---|
| 749 | ! zcond: mean condensed water within the mesh |
---|
| 750 | ! rhcl: clear-sky relative humidity |
---|
| 751 | !--------------------------------------------------------------- |
---|
| 752 | |
---|
| 753 | ! new temperature: |
---|
| 754 | Tbef(i)=Tbef(i)+DT(i) |
---|
| 755 | |
---|
| 756 | ! Rneb, qzn and zcond for lognormal PDFs |
---|
[4368] | 757 | qtot(i)=zq(i)+zmqc(i) |
---|
[3999] | 758 | |
---|
[4368] | 759 | ENDIF |
---|
| 760 | |
---|
| 761 | ENDDO |
---|
| 762 | |
---|
| 763 | ! Calculation of saturation specific humidity and ce fraction |
---|
| 764 | CALL calc_qsat_ecmwf(klon,Tbef(:),qtot(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
---|
| 765 | CALL calc_gammasat(klon,Tbef(:),qtot(:),pplay(:,k),gammasat(:),dgammasatdt(:)) |
---|
| 766 | ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs |
---|
| 767 | zdqs(:) = gammasat(:)*zdqs(:)+zqs(:)*dgammasatdt(:) |
---|
| 768 | CALL icefrac_lscp(klon, zt(:),pplay(:,k)/paprs(:,1),zfice(:),dzfice(:)) |
---|
| 769 | |
---|
| 770 | DO i=1,klon |
---|
| 771 | |
---|
| 772 | IF ((convergence(i) .OR. (n_i(i) .EQ. 0)) .AND. lognormale(i)) THEN |
---|
| 773 | |
---|
[3999] | 774 | zpdf_sig(i)=ratqs(i,k)*zq(i) |
---|
| 775 | zpdf_k(i)=-sqrt(log(1.+(zpdf_sig(i)/zq(i))**2)) |
---|
| 776 | zpdf_delta(i)=log(zq(i)/(gammasat(i)*zqs(i))) |
---|
| 777 | zpdf_a(i)=zpdf_delta(i)/(zpdf_k(i)*sqrt(2.)) |
---|
| 778 | zpdf_b(i)=zpdf_k(i)/(2.*sqrt(2.)) |
---|
| 779 | zpdf_e1(i)=zpdf_a(i)-zpdf_b(i) |
---|
| 780 | zpdf_e1(i)=sign(min(ABS(zpdf_e1(i)),5.),zpdf_e1(i)) |
---|
| 781 | zpdf_e1(i)=1.-erf(zpdf_e1(i)) |
---|
| 782 | zpdf_e2(i)=zpdf_a(i)+zpdf_b(i) |
---|
| 783 | zpdf_e2(i)=sign(min(ABS(zpdf_e2(i)),5.),zpdf_e2(i)) |
---|
| 784 | zpdf_e2(i)=1.-erf(zpdf_e2(i)) |
---|
[4368] | 785 | |
---|
| 786 | !--ice sursaturation by Audran |
---|
| 787 | IF ((.NOT.ok_ice_sursat).OR.(Tbef(i).GT.t_glace_min)) THEN |
---|
| 788 | |
---|
| 789 | IF (zpdf_e1(i).LT.1.e-10) THEN |
---|
| 790 | rneb(i,k)=0. |
---|
| 791 | zqn(i)=gammasat(i)*zqs(i) |
---|
| 792 | ELSE |
---|
| 793 | rneb(i,k)=0.5*zpdf_e1(i) |
---|
| 794 | zqn(i)=zq(i)*zpdf_e2(i)/zpdf_e1(i) |
---|
| 795 | ENDIF |
---|
| 796 | |
---|
| 797 | rnebss(i,k)=0.0 !--added by OB (needed because of the convergence loop on time) |
---|
| 798 | fcontrN(i,k)=0.0 !--idem |
---|
| 799 | fcontrP(i,k)=0.0 !--idem |
---|
| 800 | qss(i,k)=0.0 !--idem |
---|
| 801 | |
---|
[3999] | 802 | ELSE |
---|
| 803 | |
---|
[4368] | 804 | !------------------------------------ |
---|
| 805 | ! ICE SUPERSATURATION |
---|
| 806 | !------------------------------------ |
---|
| 807 | |
---|
| 808 | CALL ice_sursat(pplay(i,k), paprs(i,k)-paprs(i,k+1), dtime, i, k, t(i,k), zq(i), & |
---|
| 809 | gamma_ss(i,k), zqs(i), Tbef(i), rneb_seri(i,k), ratqs(i,k), & |
---|
| 810 | rneb(i,k), zqn(i), rnebss(i,k), qss(i,k), & |
---|
| 811 | Tcontr(i,k), qcontr(i,k), qcontr2(i,k), fcontrN(i,k), fcontrP(i,k) ) |
---|
| 812 | |
---|
| 813 | ENDIF ! ((flag_ice_sursat.eq.0).or.(Tbef(i).gt.t_glace_min)) |
---|
| 814 | |
---|
[3999] | 815 | ! If vertical heterogeneity, change fraction by volume as well |
---|
| 816 | IF (iflag_cloudth_vert.GE.3) THEN |
---|
| 817 | ctot_vol(i,k)=rneb(i,k) |
---|
| 818 | rneblsvol(i,k)=ctot_vol(i,k) |
---|
| 819 | ENDIF |
---|
| 820 | |
---|
| 821 | |
---|
[4368] | 822 | ! P2.2.2> Approximative calculation of temperature variation DT |
---|
| 823 | ! due to condensation. |
---|
| 824 | ! Calculated variables: |
---|
| 825 | ! dT : temperature change due to condensation |
---|
| 826 | !--------------------------------------------------------------- |
---|
[3999] | 827 | |
---|
| 828 | |
---|
| 829 | IF (zfice(i).LT.1) THEN |
---|
| 830 | cste=RLVTT |
---|
| 831 | ELSE |
---|
| 832 | cste=RLSTT |
---|
| 833 | ENDIF |
---|
| 834 | |
---|
| 835 | qlbef(i)=max(0.,zqn(i)-zqs(i)) |
---|
| 836 | num = -Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT & |
---|
[4368] | 837 | +zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*qlbef(i) |
---|
[3999] | 838 | denom = 1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) & |
---|
| 839 | -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*rneb(i,k) & |
---|
[4368] | 840 | *qlbef(i)*dzfice(i) |
---|
[3999] | 841 | DT(i)=num/denom |
---|
| 842 | n_i(i)=n_i(i)+1 |
---|
| 843 | |
---|
| 844 | ENDIF ! end convergence |
---|
| 845 | |
---|
| 846 | ENDDO ! end loop on i |
---|
| 847 | |
---|
| 848 | ENDDO ! iter=1,iflag_fisrtilp_qsat+1 |
---|
| 849 | |
---|
| 850 | ! P2.3> Final quantities calculation |
---|
| 851 | ! Calculated variables: |
---|
| 852 | ! rneb : cloud fraction |
---|
| 853 | ! zcond: mean condensed water in the mesh |
---|
| 854 | ! zqn : mean water vapor in the mesh |
---|
| 855 | ! zt : temperature |
---|
| 856 | ! rhcl : clear-sky relative humidity |
---|
| 857 | ! ---------------------------------------------------------------- |
---|
| 858 | |
---|
| 859 | ! Water vapor update, Phase determination and subsequent latent heat exchange |
---|
| 860 | |
---|
| 861 | ! Partition function in stratiform clouds (will be overwritten in boundary-layer MPCs) |
---|
| 862 | CALL icefrac_lscp(klon,zt(:),pplay(:,k)/paprs(:,1),zfice(:), dzfice(:)) |
---|
| 863 | |
---|
| 864 | DO i=1, klon |
---|
| 865 | |
---|
| 866 | |
---|
| 867 | IF (mpc_bl_points(i,k) .GT. 0) THEN |
---|
| 868 | zcond(i) = MAX(0.0,qincloud_mpc(i))*rneb(i,k) |
---|
| 869 | ! following line is very strange and probably wrong |
---|
| 870 | rhcl(i,k)= (zqs(i)+zq(i))/2./zqs(i) |
---|
| 871 | ! water vapor update and partition function if thermals |
---|
| 872 | zq(i) = zq(i) - zcond(i) |
---|
| 873 | zfice(i)=icefrac_mpc(i,k) |
---|
| 874 | |
---|
| 875 | ELSE |
---|
| 876 | |
---|
| 877 | ! Checks on rneb, rhcl and zqn |
---|
| 878 | IF (rneb(i,k) .LE. 0.0) THEN |
---|
| 879 | zqn(i) = 0.0 |
---|
| 880 | rneb(i,k) = 0.0 |
---|
| 881 | zcond(i) = 0.0 |
---|
| 882 | rhcl(i,k)=zq(i)/zqs(i) |
---|
| 883 | ELSE IF (rneb(i,k) .GE. 1.0) THEN |
---|
| 884 | zqn(i) = zq(i) |
---|
| 885 | rneb(i,k) = 1.0 |
---|
| 886 | zcond(i) = MAX(0.0,zqn(i)-gammasat(i)*zqs(i)) |
---|
| 887 | rhcl(i,k)=1.0 |
---|
| 888 | ELSE |
---|
| 889 | zcond(i) = MAX(0.0,zqn(i)-gammasat(i)*zqs(i))*rneb(i,k) |
---|
| 890 | ! following line is very strange and probably wrong: |
---|
| 891 | rhcl(i,k)=(zqs(i)+zq(i))/2./zqs(i) |
---|
| 892 | ENDIF |
---|
| 893 | |
---|
[4368] | 894 | ! water vapor update |
---|
| 895 | zq(i) = zq(i) - zcond(i) |
---|
[3999] | 896 | |
---|
| 897 | ENDIF |
---|
| 898 | |
---|
| 899 | ! temperature update due to phase change |
---|
| 900 | zt(i) = zt(i) + (1.-zfice(i))*zcond(i) & |
---|
| 901 | & * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) & |
---|
| 902 | +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
---|
| 903 | ENDDO |
---|
| 904 | |
---|
| 905 | ! If vertical heterogeneity, change volume fraction |
---|
| 906 | IF (iflag_cloudth_vert .GE. 3) THEN |
---|
| 907 | ctot_vol(1:klon,k)=min(max(ctot_vol(1:klon,k),0.),1.) |
---|
| 908 | rneblsvol(1:klon,k)=ctot_vol(1:klon,k) |
---|
| 909 | ENDIF |
---|
| 910 | |
---|
| 911 | ! ---------------------------------------------------------------- |
---|
[4368] | 912 | ! P3> Precipitation formation |
---|
[3999] | 913 | ! ---------------------------------------------------------------- |
---|
[4368] | 914 | |
---|
[3999] | 915 | ! LTP: |
---|
| 916 | IF (iflag_evap_prec==4) THEN |
---|
| 917 | |
---|
| 918 | !Partitionning between precipitation coming from clouds and that coming from CS |
---|
| 919 | |
---|
| 920 | !0) Calculate tot_zneb, total cloud fraction above the cloud |
---|
| 921 | !assuming a maximum-random overlap (voir Jakob and Klein, 2000) |
---|
| 922 | |
---|
| 923 | DO i=1, klon |
---|
| 924 | tot_znebn(i) = 1 - (1-tot_zneb(i))*(1 - max(rneb(i,k),zneb(i))) & |
---|
| 925 | /(1-min(zneb(i),1-smallestreal)) |
---|
| 926 | d_tot_zneb(i) = tot_znebn(i) - tot_zneb(i) |
---|
| 927 | tot_zneb(i) = tot_znebn(i) |
---|
| 928 | |
---|
| 929 | |
---|
| 930 | !1) Cloudy to clear air |
---|
| 931 | d_znebprecip_cld_clr(i) = znebprecipcld(i) - min(rneb(i,k),znebprecipcld(i)) |
---|
| 932 | IF (znebprecipcld(i) .GT. 0) THEN |
---|
| 933 | d_zrfl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*zrflcld(i) |
---|
| 934 | d_zifl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*ziflcld(i) |
---|
| 935 | ELSE |
---|
| 936 | d_zrfl_cld_clr(i) = 0. |
---|
| 937 | d_zifl_cld_clr(i) = 0. |
---|
| 938 | ENDIF |
---|
| 939 | |
---|
| 940 | !2) Clear to cloudy air |
---|
[4368] | 941 | d_znebprecip_clr_cld(i) = max(0., min(znebprecipclr(i), rneb(i,k) - d_tot_zneb(i) - zneb(i))) |
---|
[3999] | 942 | IF (znebprecipclr(i) .GT. 0) THEN |
---|
| 943 | d_zrfl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*zrflclr(i) |
---|
| 944 | d_zifl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*ziflclr(i) |
---|
| 945 | ELSE |
---|
| 946 | d_zrfl_clr_cld(i) = 0. |
---|
| 947 | d_zifl_clr_cld(i) = 0. |
---|
| 948 | ENDIF |
---|
| 949 | |
---|
| 950 | !Update variables |
---|
[4368] | 951 | znebprecipcld(i) = znebprecipcld(i) + d_znebprecip_clr_cld(i) - d_znebprecip_cld_clr(i) |
---|
[3999] | 952 | znebprecipclr(i) = znebprecipclr(i) + d_znebprecip_cld_clr(i) - d_znebprecip_clr_cld(i) |
---|
| 953 | zrflcld(i) = zrflcld(i) + d_zrfl_clr_cld(i) - d_zrfl_cld_clr(i) |
---|
| 954 | ziflcld(i) = ziflcld(i) + d_zifl_clr_cld(i) - d_zifl_cld_clr(i) |
---|
| 955 | zrflclr(i) = zrflclr(i) + d_zrfl_cld_clr(i) - d_zrfl_clr_cld(i) |
---|
| 956 | ziflclr(i) = ziflclr(i) + d_zifl_cld_clr(i) - d_zifl_clr_cld(i) |
---|
| 957 | |
---|
| 958 | ENDDO |
---|
| 959 | ENDIF |
---|
| 960 | |
---|
| 961 | ! Initialisation of zoliq and radliq variables |
---|
| 962 | |
---|
| 963 | DO i = 1, klon |
---|
| 964 | zoliq(i) = zcond(i) |
---|
[4368] | 965 | zoliqi(i)= zoliq(i)*zfice(i) |
---|
| 966 | zoliql(i)= zoliq(i)*(1.-zfice(i)) |
---|
| 967 | zrho(i,k) = pplay(i,k) / zt(i) / RD |
---|
| 968 | zdz(i) = (paprs(i,k)-paprs(i,k+1)) / (zrho(i,k)*RG) |
---|
| 969 | iwc(i) = 0. |
---|
| 970 | zneb(i) = MAX(rneb(i,k),seuil_neb) |
---|
[3999] | 971 | radliq(i,k) = zoliq(i)/REAL(ninter+1) |
---|
| 972 | radicefrac(i,k) = zfice(i) |
---|
| 973 | radliqi(i,k)=zoliq(i)*zfice(i)/REAL(ninter+1) |
---|
[4368] | 974 | radliql(i,k)=zoliq(i)*(1.-zfice(i))/REAL(ninter+1) |
---|
[3999] | 975 | ENDDO |
---|
| 976 | |
---|
| 977 | ! ------------------------------------------------------------------------------- |
---|
[4368] | 978 | ! Autoconversion |
---|
[3999] | 979 | ! ------------------------------------------------------------------------------- |
---|
| 980 | |
---|
| 981 | DO n = 1, ninter |
---|
| 982 | |
---|
| 983 | DO i=1,klon |
---|
| 984 | IF (rneb(i,k).GT.0.0) THEN |
---|
[4368] | 985 | iwc(i) = zrho(i,k) * zoliqi(i) / zneb(i) ! in-cloud ice condensate content |
---|
[3999] | 986 | ENDIF |
---|
| 987 | ENDDO |
---|
| 988 | |
---|
[4368] | 989 | CALL fallice_velocity(klon,iwc(:),zt(:),zrho(:,k),pplay(:,k),ptconv(:,k),velo(:,k)) |
---|
[3999] | 990 | |
---|
| 991 | DO i = 1, klon |
---|
| 992 | |
---|
| 993 | IF (rneb(i,k).GT.0.0) THEN |
---|
| 994 | |
---|
[4368] | 995 | ! Initialization of zrain, zsnow and zprecip: |
---|
| 996 | zrain=0. |
---|
| 997 | zsnow=0. |
---|
| 998 | zprecip=0. |
---|
[3999] | 999 | |
---|
| 1000 | IF (zneb(i).EQ.seuil_neb) THEN |
---|
[4368] | 1001 | zprecip = 0.0 |
---|
| 1002 | zsnow = 0.0 |
---|
| 1003 | zrain= 0.0 |
---|
[3999] | 1004 | ELSE |
---|
| 1005 | ! water quantity to remove: zchau (Sundqvist, 1978) |
---|
| 1006 | ! same thing for the ice: zfroi (Zender & Kiehl, 1997) |
---|
| 1007 | IF (ptconv(i,k)) THEN ! if convective point |
---|
| 1008 | zcl=cld_lc_con |
---|
| 1009 | zct=1./cld_tau_con |
---|
[4368] | 1010 | zfroi = dtime/REAL(ninter)/zdz(i)*zoliq(i)*velo(i,k)*zfice(i) |
---|
[3999] | 1011 | ELSE |
---|
| 1012 | zcl=cld_lc_lsc |
---|
| 1013 | zct=1./cld_tau_lsc |
---|
| 1014 | zfroi = dtime/REAL(ninter)/zdz(i)*zoliq(i) & ! dqice/dt=1/rho*d(rho*wice*qice)/dz |
---|
[4368] | 1015 | *velo(i,k) * zfice(i) |
---|
[3999] | 1016 | ENDIF |
---|
| 1017 | |
---|
| 1018 | ! if vertical heterogeneity is taken into account, we use |
---|
| 1019 | ! the "true" volume fraction instead of a modified |
---|
| 1020 | ! surface fraction (which is larger and artificially |
---|
| 1021 | ! reduces the in-cloud water). |
---|
[4368] | 1022 | |
---|
[3999] | 1023 | IF ((iflag_cloudth_vert.GE.3).AND.(iflag_rain_incloud_vol.EQ.1)) THEN |
---|
| 1024 | zchau = zct *dtime/REAL(ninter) * zoliq(i) & |
---|
| 1025 | *(1.0-EXP(-(zoliq(i)/ctot_vol(i,k)/zcl)**2)) *(1.-zfice(i)) |
---|
| 1026 | ELSE |
---|
| 1027 | zchau = zct *dtime/REAL(ninter) * zoliq(i) & |
---|
| 1028 | *(1.0-EXP(-(zoliq(i)/zneb(i)/zcl)**2)) *(1.-zfice(i)) ! dqliq/dt=-qliq/tau*(1-exp(-qcin/clw)**2) |
---|
| 1029 | ENDIF |
---|
| 1030 | |
---|
[4368] | 1031 | zrain = MIN(MAX(zchau,0.0),zoliq(i)*(1.-zfice(i))) |
---|
| 1032 | zsnow = MIN(MAX(zfroi,0.0),zoliq(i)*zfice(i)) |
---|
| 1033 | zprecip = MAX(zrain + zsnow,0.0) |
---|
[3999] | 1034 | |
---|
| 1035 | ENDIF |
---|
| 1036 | |
---|
[4368] | 1037 | zoliql(i) = MAX(zoliq(i)*(1.-zfice(i))-1.*zrain , 0.0) |
---|
| 1038 | zoliqi(i) = MAX(zoliq(i)*zfice(i)-1.*zsnow , 0.0) |
---|
| 1039 | zoliq(i) = MAX(zoliq(i)-zprecip , 0.0) |
---|
[3999] | 1040 | |
---|
| 1041 | radliq(i,k) = radliq(i,k) + zoliq(i)/REAL(ninter+1) |
---|
[4368] | 1042 | radliql(i,k) = radliql(i,k) + zoliql(i)/REAL(ninter+1) |
---|
[3999] | 1043 | radliqi(i,k) = radliqi(i,k) + zoliqi(i)/REAL(ninter+1) |
---|
| 1044 | |
---|
[4368] | 1045 | ENDIF ! rneb >0 |
---|
| 1046 | |
---|
[3999] | 1047 | ENDDO ! i = 1,klon |
---|
| 1048 | |
---|
| 1049 | ENDDO ! n = 1,niter |
---|
| 1050 | |
---|
[4368] | 1051 | ! Precipitation flux calculation |
---|
[3999] | 1052 | |
---|
[4368] | 1053 | DO i = 1, klon |
---|
[3999] | 1054 | |
---|
[4368] | 1055 | ziflprev(i)=zifl(i) |
---|
[3999] | 1056 | |
---|
[4368] | 1057 | IF (rneb(i,k) .GT. 0.0) THEN |
---|
[3999] | 1058 | |
---|
[4368] | 1059 | ! CR&JYG: We account for the Wegener-Findeisen-Bergeron process in the precipitation flux: |
---|
| 1060 | ! If T<0C, liquid precip are converted into ice, which leads to an increase in |
---|
| 1061 | ! temperature DeltaT. The effect of DeltaT on condensates and precipitation is roughly |
---|
| 1062 | ! taken into account through a linearization of the equations and by approximating |
---|
| 1063 | ! the liquid precipitation process with a "threshold" process. We assume that |
---|
| 1064 | ! condensates are not modified during this operation. Liquid precipitation is |
---|
| 1065 | ! removed (in the limit DeltaT<273.15-T). Solid precipitation increases. |
---|
| 1066 | ! Water vapor increases as well |
---|
| 1067 | ! Note that compared to fisrtilp, we always assume iflag_bergeron=2 |
---|
[3999] | 1068 | |
---|
[4368] | 1069 | zqpreci(i)=(zcond(i)-zoliq(i))*zfice(i) |
---|
| 1070 | zqprecl(i)=(zcond(i)-zoliq(i))*(1.-zfice(i)) |
---|
| 1071 | zcp=RCPD*(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
---|
| 1072 | coef1 = rneb(i,k)*RLSTT/zcp*zdqsdT_raw(i) |
---|
| 1073 | ! Computation of DT if all the liquid precip freezes |
---|
| 1074 | DeltaT = RLMLT*zqprecl(i) / (zcp*(1.+coef1)) |
---|
| 1075 | ! T should not exceed the freezing point |
---|
| 1076 | ! that is Delta > RTT-zt(i) |
---|
| 1077 | DeltaT = max( min( RTT-zt(i), DeltaT) , 0. ) |
---|
| 1078 | zt(i) = zt(i) + DeltaT |
---|
| 1079 | ! water vaporization due to temp. increase |
---|
| 1080 | Deltaq = rneb(i,k)*zdqsdT_raw(i)*DeltaT |
---|
| 1081 | ! we add this vaporized water to the total vapor and we remove it from the precip |
---|
| 1082 | zq(i) = zq(i) + Deltaq |
---|
| 1083 | ! The three "max" lines herebelow protect from rounding errors |
---|
| 1084 | zcond(i) = max( zcond(i)- Deltaq, 0. ) |
---|
| 1085 | ! liquid precipitation converted to ice precip |
---|
| 1086 | Deltaqprecl = -zcp/RLMLT*(1.+coef1)*DeltaT |
---|
| 1087 | zqprecl(i) = max( zqprecl(i) + Deltaqprecl, 0. ) |
---|
| 1088 | ! iced water budget |
---|
| 1089 | zqpreci(i) = max (zqpreci(i) - Deltaqprecl - Deltaq, 0.) |
---|
[3999] | 1090 | |
---|
[4368] | 1091 | IF (iflag_evap_prec.EQ.4) THEN |
---|
| 1092 | zrflcld(i) = zrflcld(i)+zqprecl(i) & |
---|
| 1093 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
| 1094 | ziflcld(i) = ziflcld(i)+ zqpreci(i) & |
---|
| 1095 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
| 1096 | znebprecipcld(i) = rneb(i,k) |
---|
| 1097 | zrfl(i) = zrflcld(i) + zrflclr(i) |
---|
| 1098 | zifl(i) = ziflcld(i) + ziflclr(i) |
---|
| 1099 | ELSE |
---|
[3999] | 1100 | zrfl(i) = zrfl(i)+ zqprecl(i) & |
---|
| 1101 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
| 1102 | zifl(i) = zifl(i)+ zqpreci(i) & |
---|
[4368] | 1103 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
[3999] | 1104 | ENDIF |
---|
| 1105 | |
---|
| 1106 | ENDIF ! rneb>0 |
---|
| 1107 | |
---|
| 1108 | ENDDO |
---|
| 1109 | |
---|
[4368] | 1110 | ! LTP: limit of surface cloud fraction covered by precipitation when the local intensity of the flux is below rain_int_min |
---|
[3999] | 1111 | ! if iflag_evap_pre=4 |
---|
[4368] | 1112 | IF (iflag_evap_prec.EQ.4) THEN |
---|
[3999] | 1113 | |
---|
[4368] | 1114 | DO i=1,klon |
---|
[3999] | 1115 | |
---|
[4368] | 1116 | IF ((zrflclr(i) + ziflclr(i)) .GT. 0. ) THEN |
---|
[3999] | 1117 | znebprecipclr(i) = min(znebprecipclr(i),max(zrflclr(i)/ & |
---|
| 1118 | (MAX(znebprecipclr(i),seuil_neb)*rain_int_min), ziflclr(i)/(MAX(znebprecipclr(i),seuil_neb)*rain_int_min))) |
---|
| 1119 | ELSE |
---|
[4368] | 1120 | znebprecipclr(i)=0.0 |
---|
| 1121 | ENDIF |
---|
[3999] | 1122 | |
---|
[4368] | 1123 | IF ((zrflcld(i) + ziflcld(i)) .GT. 0.) THEN |
---|
[3999] | 1124 | znebprecipcld(i) = min(znebprecipcld(i), max(zrflcld(i)/ & |
---|
| 1125 | (MAX(znebprecipcld(i),seuil_neb)*rain_int_min), ziflcld(i)/(MAX(znebprecipcld(i),seuil_neb)*rain_int_min))) |
---|
[4368] | 1126 | ELSE |
---|
| 1127 | znebprecipcld(i)=0.0 |
---|
| 1128 | ENDIF |
---|
[3999] | 1129 | |
---|
[4368] | 1130 | ENDDO |
---|
[3999] | 1131 | |
---|
[4368] | 1132 | ENDIF |
---|
[3999] | 1133 | |
---|
| 1134 | ! End of precipitation formation |
---|
| 1135 | ! -------------------------------- |
---|
| 1136 | |
---|
| 1137 | ! Outputs: |
---|
| 1138 | ! Precipitation fluxes at layer interfaces |
---|
[4368] | 1139 | ! and temperature and water species tendencies |
---|
[3999] | 1140 | DO i = 1, klon |
---|
| 1141 | psfl(i,k)=zifl(i) |
---|
| 1142 | prfl(i,k)=zrfl(i) |
---|
[4368] | 1143 | d_ql(i,k) = (1-zfice(i))*zoliq(i) |
---|
| 1144 | d_qi(i,k) = zfice(i)*zoliq(i) |
---|
[3999] | 1145 | d_q(i,k) = zq(i) - q(i,k) |
---|
| 1146 | d_t(i,k) = zt(i) - t(i,k) |
---|
| 1147 | ENDDO |
---|
| 1148 | |
---|
[4368] | 1149 | ! Calculation of the concentration of condensates seen by the radiation scheme |
---|
| 1150 | ! for liquid phase, we take radliql |
---|
| 1151 | ! for ice phase, we take radliqi if we neglect snowfall, otherwise (ok_radliq_snow=true) |
---|
| 1152 | ! we recaulate radliqi to account for contributions from the precipitation flux |
---|
[3999] | 1153 | |
---|
[4368] | 1154 | IF ((ok_radliq_snow) .AND. (k .LT. klev)) THEN |
---|
| 1155 | ! for the solid phase (crystals + snowflakes) |
---|
| 1156 | ! we recalculate radliqi by summing |
---|
| 1157 | ! the ice content calculated in the mesh |
---|
| 1158 | ! + the contribution of the non-evaporated snowfall |
---|
| 1159 | ! from the overlying layer |
---|
| 1160 | DO i=1,klon |
---|
| 1161 | IF (ziflprev(i) .NE. 0.0) THEN |
---|
| 1162 | radliqi(i,k)=zoliq(i)*zfice(i)+zqpreci(i)+ziflprev(i)/zrho(i,k+1)/velo(i,k+1) |
---|
| 1163 | ELSE |
---|
| 1164 | radliqi(i,k)=zoliq(i)*zfice(i)+zqpreci(i) |
---|
| 1165 | ENDIF |
---|
| 1166 | radliq(i,k)=radliql(i,k)+radliqi(i,k) |
---|
| 1167 | ENDDO |
---|
| 1168 | ENDIF |
---|
| 1169 | |
---|
| 1170 | ! caculate the percentage of ice in "radliq" so cloud+precip seen by the radiation scheme |
---|
| 1171 | DO i=1,klon |
---|
| 1172 | IF (radliq(i,k) .GT. 0.) THEN |
---|
| 1173 | radicefrac(i,k)=MIN(MAX(radliqi(i,k)/radliq(i,k),0.),1.) |
---|
| 1174 | ENDIF |
---|
| 1175 | ENDDO |
---|
| 1176 | |
---|
[3999] | 1177 | ! ---------------------------------------------------------------- |
---|
| 1178 | ! P4> Wet scavenging |
---|
| 1179 | ! ---------------------------------------------------------------- |
---|
| 1180 | |
---|
| 1181 | !Scavenging through nucleation in the layer |
---|
| 1182 | |
---|
| 1183 | DO i = 1,klon |
---|
| 1184 | |
---|
| 1185 | IF(zcond(i).GT.zoliq(i)+1.e-10) THEN |
---|
| 1186 | beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime |
---|
| 1187 | ELSE |
---|
| 1188 | beta(i,k) = 0. |
---|
| 1189 | ENDIF |
---|
| 1190 | |
---|
[4368] | 1191 | zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
[3999] | 1192 | |
---|
| 1193 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
---|
| 1194 | |
---|
| 1195 | IF (t(i,k) .GE. t_glace_min) THEN |
---|
| 1196 | zalpha_tr = a_tr_sca(3) |
---|
| 1197 | ELSE |
---|
| 1198 | zalpha_tr = a_tr_sca(4) |
---|
| 1199 | ENDIF |
---|
| 1200 | |
---|
| 1201 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
---|
| 1202 | pfrac_nucl(i,k)=pfrac_nucl(i,k)*(1.-zneb(i)*zfrac_lessi) |
---|
| 1203 | frac_nucl(i,k)= 1.-zneb(i)*zfrac_lessi |
---|
[4368] | 1204 | |
---|
[3999] | 1205 | ! Nucleation with a factor of -1 instead of -0.5 |
---|
| 1206 | zfrac_lessi = 1. - EXP(-zprec_cond(i)/zneb(i)) |
---|
| 1207 | pfrac_1nucl(i,k)=pfrac_1nucl(i,k)*(1.-zneb(i)*zfrac_lessi) |
---|
| 1208 | |
---|
| 1209 | ENDIF |
---|
| 1210 | |
---|
[4368] | 1211 | ENDDO |
---|
| 1212 | |
---|
[3999] | 1213 | ! Scavenging through impaction in the underlying layer |
---|
| 1214 | |
---|
| 1215 | DO kk = k-1, 1, -1 |
---|
| 1216 | |
---|
| 1217 | DO i = 1, klon |
---|
| 1218 | |
---|
| 1219 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
---|
| 1220 | |
---|
| 1221 | IF (t(i,kk) .GE. t_glace_min) THEN |
---|
| 1222 | zalpha_tr = a_tr_sca(1) |
---|
| 1223 | ELSE |
---|
| 1224 | zalpha_tr = a_tr_sca(2) |
---|
| 1225 | ENDIF |
---|
| 1226 | |
---|
| 1227 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
---|
| 1228 | pfrac_impa(i,kk)=pfrac_impa(i,kk)*(1.-zneb(i)*zfrac_lessi) |
---|
| 1229 | frac_impa(i,kk)= 1.-zneb(i)*zfrac_lessi |
---|
| 1230 | |
---|
| 1231 | ENDIF |
---|
| 1232 | |
---|
| 1233 | ENDDO |
---|
| 1234 | |
---|
| 1235 | ENDDO |
---|
| 1236 | |
---|
[4368] | 1237 | !--save some variables for ice supersaturation |
---|
| 1238 | ! |
---|
| 1239 | DO i = 1, klon |
---|
| 1240 | ! for memory |
---|
| 1241 | rneb_seri(i,k) = rneb(i,k) |
---|
[3999] | 1242 | |
---|
[4368] | 1243 | ! for diagnostics |
---|
| 1244 | rnebclr(i,k) = 1.0 - rneb(i,k) - rnebss(i,k) |
---|
| 1245 | |
---|
| 1246 | qvc(i,k) = zqs(i) * rneb(i,k) |
---|
| 1247 | qclr(i,k) = MAX(1.e-10,zq(i) - qvc(i,k) - qss(i,k)) !--added by OB because of pathologic cases with the lognormal |
---|
| 1248 | qcld(i,k) = qvc(i,k) + zcond(i) |
---|
| 1249 | ENDDO |
---|
| 1250 | !q_sat |
---|
| 1251 | CALL calc_qsat_ecmwf(klon,Tbef(:),qzero(:),pplay(:,k),RTT,1,.false.,zqsatl(:,k),zdqs(:)) |
---|
| 1252 | CALL calc_qsat_ecmwf(klon,Tbef(:),qzero(:),pplay(:,k),RTT,2,.false.,zqsats(:,k),zdqs(:)) |
---|
| 1253 | |
---|
| 1254 | ENDDO |
---|
| 1255 | |
---|
[3999] | 1256 | !====================================================================== |
---|
| 1257 | ! END OF VERTICAL LOOP |
---|
| 1258 | !====================================================================== |
---|
| 1259 | |
---|
| 1260 | ! Rain or snow at the surface (depending on the first layer temperature) |
---|
| 1261 | DO i = 1, klon |
---|
| 1262 | snow(i) = zifl(i) |
---|
| 1263 | rain(i) = zrfl(i) |
---|
| 1264 | ENDDO |
---|
| 1265 | |
---|
| 1266 | IF (ncoreczq>0) THEN |
---|
| 1267 | WRITE(lunout,*)'WARNING : ZQ in LSCP ',ncoreczq,' val < 1.e-15.' |
---|
| 1268 | ENDIF |
---|
| 1269 | |
---|
| 1270 | END SUBROUTINE LSCP |
---|
| 1271 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 1272 | |
---|
| 1273 | END MODULE LSCP_MOD |
---|