source: LMDZ6/branches/Ocean_skin/libf/phylmd/ecrad/rrtm_taumol15.F90 @ 5198

Last change on this file since 5198 was 3908, checked in by idelkadi, 3 years ago

Online implementation of the radiative transfer code ECRAD in the LMDZ model.

  • Inclusion of the ecrad directory containing the sources of the ECRAD code
    • interface routine : radiation_scheme.F90
  • Adaptation of compilation scripts :
    • compilation under CPP key CPP_ECRAD
    • compilation with option "-rad ecard" or "-ecard true"
    • The "-rad old/rtm/ecran" build option will need to replace the "-rrtm true" and "-ecrad true" options in the future.
  • Runing LMDZ simulations with ecrad, you need :
    • logical key iflag_rrtm = 2 in physiq.def
    • namelist_ecrad (DefLists?)
    • the directory "data" containing the configuration files is temporarily placed in ../libfphylmd/ecrad/
  • Compilation and execution are tested in the 1D case. The repository under svn would allow to continue the implementation work: tests, verification of the results, ...
File size: 12.0 KB
Line 
1!----------------------------------------------------------------------------
2SUBROUTINE RRTM_TAUMOL15 (KIDIA,KFDIA,KLEV,P_TAU,&
3 & P_TAUAERL,P_FAC00,P_FAC01,P_FAC10,P_FAC11,P_FORFAC,P_FORFRAC,K_INDFOR,K_JP,K_JT,K_JT1,P_ONEMINUS,&
4 & P_COLH2O,P_COLCO2,P_COLN2O,K_LAYTROP,P_SELFFAC,P_SELFFRAC,K_INDSELF,PFRAC, &
5 & PRAT_N2OCO2, PRAT_N2OCO2_1,PMINORFRAC,KINDMINOR,PSCALEMINOR,PCOLBRD) 
6
7!     BAND 15:  2380-2600 cm-1 (low - N2O,CO2; high - nothing)
8
9!     AUTHOR.
10!     -------
11!      JJMorcrette, ECMWF
12
13!     MODIFICATIONS.
14!     --------------
15!      M.Hamrud      01-Oct-2003 CY28 Cleaning
16!      NEC           25-Oct-2007 Optimisations
17!      JJMorcrette 20110613 flexible number of g-points
18!     ABozzo 2001306 updated to rrtmg v4.85
19!     band 15:  2380-2600 cm-1 (low - n2o,co2; low minor - n2)
20!                              (high - nothing)
21! ---------------------------------------------------------------------------
22
23USE PARKIND1  ,ONLY : JPIM     ,JPRB
24USE YOMHOOK   ,ONLY : LHOOK,   DR_HOOK
25
26USE PARRRTM  , ONLY : JPBAND
27USE YOERRTM  , ONLY : JPGPT  ,NGS14  ,NG15
28USE YOERRTWN , ONLY : NSPA   
29USE YOERRTA15, ONLY : ABSA   ,KA_MN2,FRACREFA,SELFREF,FORREF
30USE YOERRTRF, ONLY : CHI_MLS
31
32IMPLICIT NONE
33
34INTEGER(KIND=JPIM),INTENT(IN)    :: KIDIA
35INTEGER(KIND=JPIM),INTENT(IN)    :: KFDIA
36INTEGER(KIND=JPIM),INTENT(IN)    :: KLEV
37REAL(KIND=JPRB)   ,INTENT(OUT)   :: P_TAU(KIDIA:KFDIA,JPGPT,KLEV)
38REAL(KIND=JPRB)   ,INTENT(IN)    :: P_TAUAERL(KIDIA:KFDIA,KLEV,JPBAND)
39REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC00(KIDIA:KFDIA,KLEV)
40REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC01(KIDIA:KFDIA,KLEV)
41REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC10(KIDIA:KFDIA,KLEV)
42REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC11(KIDIA:KFDIA,KLEV)
43INTEGER(KIND=JPIM),INTENT(IN)    :: K_JP(KIDIA:KFDIA,KLEV)
44INTEGER(KIND=JPIM),INTENT(IN)    :: K_JT(KIDIA:KFDIA,KLEV)
45INTEGER(KIND=JPIM),INTENT(IN)    :: K_JT1(KIDIA:KFDIA,KLEV)
46REAL(KIND=JPRB)   ,INTENT(IN)    :: P_ONEMINUS
47REAL(KIND=JPRB)   ,INTENT(IN)    :: P_COLH2O(KIDIA:KFDIA,KLEV)
48REAL(KIND=JPRB)   ,INTENT(IN)    :: P_COLCO2(KIDIA:KFDIA,KLEV)
49REAL(KIND=JPRB)   ,INTENT(IN)    :: P_COLN2O(KIDIA:KFDIA,KLEV)
50INTEGER(KIND=JPIM),INTENT(IN)    :: K_LAYTROP(KIDIA:KFDIA)
51REAL(KIND=JPRB)   ,INTENT(IN)    :: P_SELFFAC(KIDIA:KFDIA,KLEV)
52REAL(KIND=JPRB)   ,INTENT(IN)    :: P_SELFFRAC(KIDIA:KFDIA,KLEV)
53INTEGER(KIND=JPIM),INTENT(IN)    :: K_INDSELF(KIDIA:KFDIA,KLEV)
54REAL(KIND=JPRB)   ,INTENT(OUT)   :: PFRAC(KIDIA:KFDIA,JPGPT,KLEV)
55
56REAL(KIND=JPRB)   ,INTENT(IN)   :: PRAT_N2OCO2(KIDIA:KFDIA,KLEV)
57REAL(KIND=JPRB)   ,INTENT(IN)   :: PRAT_N2OCO2_1(KIDIA:KFDIA,KLEV)
58INTEGER(KIND=JPIM),INTENT(IN)   :: K_INDFOR(KIDIA:KFDIA,KLEV)
59REAL(KIND=JPRB)   ,INTENT(IN)   :: P_FORFAC(KIDIA:KFDIA,KLEV)
60REAL(KIND=JPRB)   ,INTENT(IN)   :: P_FORFRAC(KIDIA:KFDIA,KLEV)
61REAL(KIND=JPRB)   ,INTENT(IN)   :: PMINORFRAC(KIDIA:KFDIA,KLEV)
62INTEGER(KIND=JPIM),INTENT(IN)   :: KINDMINOR(KIDIA:KFDIA,KLEV)
63REAL(KIND=JPRB)   ,INTENT(IN)    :: PSCALEMINOR(KIDIA:KFDIA,KLEV)
64REAL(KIND=JPRB)   ,INTENT(IN)    :: PCOLBRD(KIDIA:KFDIA,KLEV)         
65! ---------------------------------------------------------------------------
66
67INTEGER(KIND=JPIM) :: IG, IND0, IND1, INDS,INDF,INDM, JS,JS1,JPL,JMN2, JLAY
68INTEGER(KIND=JPIM) :: JLON
69REAL(KIND=JPRB) :: ZREFRAT_PLANCK_A, ZREFRAT_M_A
70REAL(KIND=JPRB) :: ZTAUFOR,ZTAUSELF,ZTAU_MAJOR,ZTAU_MAJOR1, ZN2M1, ZN2M2, ZTAUN2,ZSCALEN2
71REAL(KIND=JPRB) ::  Z_FAC000, Z_FAC100, Z_FAC200,&
72 & Z_FAC010, Z_FAC110, Z_FAC210, &
73 & Z_FAC001, Z_FAC101, Z_FAC201, &
74 & Z_FAC011, Z_FAC111, Z_FAC211
75REAL(KIND=JPRB) :: ZP, ZP4, ZFK0, ZFK1, ZFK2
76
77REAL(KIND=JPRB) :: Z_FS, Z_SPECMULT, Z_SPECPARM,Z_SPECCOMB,  &
78& Z_FS1, Z_SPECMULT1, Z_SPECPARM1,Z_SPECCOMB1, &
79& Z_FMN2, Z_SPECMULT_MN2, Z_SPECPARM_MN2,Z_SPECCOMB_MN2, &
80& Z_FPL, Z_SPECMULT_PLANCK, Z_SPECPARM_PLANCK,Z_SPECCOMB_PLANCK
81REAL(KIND=JPRB) :: ZHOOK_HANDLE
82! ---------------------------------------------------------------------------
83! Minor gas mapping level :
84!     Lower - Nitrogen Continuum, P = 1053., T = 294.
85
86! Calculate reference ratio to be used in calculation of Planck
87! fraction in lower atmosphere.
88! P = 1053. mb (Level 1)
89      Zrefrat_planck_a = chi_mls(4,1)/chi_mls(2,1)
90
91! P = 1053.
92      Zrefrat_m_a = chi_mls(4,1)/chi_mls(2,1)
93
94! Compute the optical depth by interpolating in ln(pressure),
95! temperature, and appropriate species.  Below laytrop, the water
96! vapor self-continuum and foreign continuum is interpolated
97! (in temperature) separately. 
98 
99ASSOCIATE(NFLEVG=>KLEV)
100IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL15',0,ZHOOK_HANDLE)
101
102DO JLAY = 1, KLEV
103  DO JLON = KIDIA, KFDIA
104    IF (JLAY <= K_LAYTROP(JLON)) THEN
105
106      Z_SPECCOMB = P_COLN2O(JLON,JLAY) + PRAT_N2OCO2(JLON,JLAY)*P_COLCO2(JLON,JLAY)
107      Z_SPECPARM = P_COLN2O(JLON,JLAY)/Z_SPECCOMB
108      Z_SPECPARM = MIN(Z_SPECPARM,P_ONEMINUS)
109      Z_SPECMULT = 8._JPRB*(Z_SPECPARM)
110      JS = 1 + INT(Z_SPECMULT)
111      Z_FS = MOD(Z_SPECMULT,1.0_JPRB)
112
113      Z_SPECCOMB1 = P_COLN2O(JLON,JLAY) + PRAT_N2OCO2_1(JLON,JLAY)*P_COLCO2(JLON,JLAY)
114      Z_SPECPARM1 = P_COLN2O(JLON,JLAY)/Z_SPECCOMB1
115      IF (Z_SPECPARM1 >= P_ONEMINUS) Z_SPECPARM1 = P_ONEMINUS
116      Z_SPECMULT1 = 8._JPRB*(Z_SPECPARM1)
117      JS1 = 1 + INT(Z_SPECMULT1)
118      Z_FS1 = MOD(Z_SPECMULT1,1.0_JPRB)
119
120      Z_SPECCOMB_MN2 = P_COLN2O(JLON,JLAY) + ZREFRAT_M_A*P_COLCO2(JLON,JLAY)
121      Z_SPECPARM_MN2 = P_COLN2O(JLON,JLAY)/Z_SPECCOMB_MN2
122      IF (Z_SPECPARM_MN2 >= P_ONEMINUS) Z_SPECPARM_MN2 = P_ONEMINUS
123      Z_SPECMULT_MN2 = 8._JPRB*Z_SPECPARM_MN2
124      JMN2 = 1 + INT(Z_SPECMULT_MN2)
125      Z_FMN2 = MOD(Z_SPECMULT_MN2,1.0_JPRB)
126     
127      Z_SPECCOMB_PLANCK = P_COLN2O(JLON,JLAY)+ZREFRAT_PLANCK_A*P_COLCO2(JLON,JLAY)
128      Z_SPECPARM_PLANCK = P_COLN2O(JLON,JLAY)/Z_SPECCOMB_PLANCK
129      IF (Z_SPECPARM_PLANCK >= P_ONEMINUS) Z_SPECPARM_PLANCK=P_ONEMINUS
130      Z_SPECMULT_PLANCK = 8._JPRB*Z_SPECPARM_PLANCK
131      JPL= 1 + INT(Z_SPECMULT_PLANCK)
132      Z_FPL = MOD(Z_SPECMULT_PLANCK,1.0_JPRB)
133
134      IND0 = ((K_JP(JLON,JLAY)-1)*5+(K_JT(JLON,JLAY)-1))*NSPA(15) + JS
135      IND1 = (K_JP(JLON,JLAY)*5+(K_JT1(JLON,JLAY)-1))*NSPA(15) + JS1
136      INDS = K_INDSELF(JLON,JLAY)
137      INDF = K_INDFOR(JLON,JLAY)
138      INDM = KINDMINOR(JLON,JLAY)
139 
140      ZSCALEN2 = PCOLBRD(JLON,JLAY)*PSCALEMINOR(JLON,JLAY)
141
142IF (Z_SPECPARM < 0.125_JPRB) THEN
143            ZP = Z_FS - 1
144            ZP4 = ZP**4
145            ZFK0 = ZP4
146            ZFK1 = 1 - ZP - 2.0_JPRB*ZP4
147            ZFK2 = ZP + ZP4
148            Z_FAC000 = ZFK0*P_FAC00(JLON,JLAY)
149            Z_FAC100 = ZFK1*P_FAC00(JLON,JLAY)
150            Z_FAC200 = ZFK2*P_FAC00(JLON,JLAY)
151            Z_FAC010 = ZFK0*P_FAC10(JLON,JLAY)
152            Z_FAC110 = ZFK1*P_FAC10(JLON,JLAY)
153            Z_FAC210 = ZFK2*P_FAC10(JLON,JLAY)
154      ELSEIF (Z_SPECPARM > 0.875_JPRB) THEN
155            ZP = -Z_FS
156            ZP4 = ZP**4
157            ZFK0 = ZP4
158            ZFK1 = 1 - ZP - 2.0_JPRB*ZP4
159            ZFK2 = ZP + ZP4
160            Z_FAC000 = ZFK0*P_FAC00(JLON,JLAY)
161            Z_FAC100 = ZFK1*P_FAC00(JLON,JLAY)
162            Z_FAC200 = ZFK2*P_FAC00(JLON,JLAY)
163            Z_FAC010 = ZFK0*P_FAC10(JLON,JLAY)
164            Z_FAC110 = ZFK1*P_FAC10(JLON,JLAY)
165            Z_FAC210 = ZFK2*P_FAC10(JLON,JLAY)
166      ELSE
167            Z_FAC000 = (1._JPRB - Z_FS) * P_FAC00(JLON,JLAY)
168            Z_FAC010 = (1._JPRB - Z_FS) * P_FAC10(JLON,JLAY)
169            Z_FAC100 = Z_FS * P_FAC00(JLON,JLAY)
170            Z_FAC110 = Z_FS * P_FAC10(JLON,JLAY)
171      ENDIF
172      IF (Z_SPECPARM1 < 0.125_JPRB) THEN
173            ZP = Z_FS1 - 1
174            ZP4 = ZP**4
175            ZFK0 = ZP4
176            ZFK1 = 1 - ZP - 2.0_JPRB*ZP4
177            ZFK2 = ZP + ZP4
178            Z_FAC001 = ZFK0*P_FAC01(JLON,JLAY)
179            Z_FAC101 = ZFK1*P_FAC01(JLON,JLAY)
180            Z_FAC201 = ZFK2*P_FAC01(JLON,JLAY)
181            Z_FAC011 = ZFK0*P_FAC11(JLON,JLAY)
182            Z_FAC111 = ZFK1*P_FAC11(JLON,JLAY)
183            Z_FAC211 = ZFK2*P_FAC11(JLON,JLAY)
184      ELSEIF (Z_SPECPARM1 > 0.875_JPRB) THEN
185            ZP = -Z_FS1
186            ZP4 = ZP**4
187            ZFK0 = ZP4
188            ZFK1 = 1 - ZP - 2.0_JPRB*ZP4
189            ZFK2 = ZP + ZP4
190            Z_FAC001 = ZFK0*P_FAC01(JLON,JLAY)
191            Z_FAC101 = ZFK1*P_FAC01(JLON,JLAY)
192            Z_FAC201 = ZFK2*P_FAC01(JLON,JLAY)
193            Z_FAC011 = ZFK0*P_FAC11(JLON,JLAY)
194            Z_FAC111 = ZFK1*P_FAC11(JLON,JLAY)
195            Z_FAC211 = ZFK2*P_FAC11(JLON,JLAY)
196      ELSE
197            Z_FAC001 = (1._JPRB - Z_FS1) * P_FAC01(JLON,JLAY)
198            Z_FAC011 = (1._JPRB - Z_FS1) * P_FAC11(JLON,JLAY)
199            Z_FAC101 = Z_FS1 * P_FAC01(JLON,JLAY)
200            Z_FAC111 = Z_FS1 * P_FAC11(JLON,JLAY)
201      ENDIF
202
203
204!-- DS_990714 
205!-- jjm20110728 re-establishing the loop instead of specified IG to allow a flexible number of NG15
206      DO IG = 1, NG15
207        ZTAUSELF = P_SELFFAC(JLON,JLAY)* (SELFREF(INDS,IG) + P_SELFFRAC(JLON,JLAY) * &
208          &       (SELFREF(INDS+1,IG) - SELFREF(INDS,IG)))
209        ZTAUFOR = P_FORFAC(JLON,JLAY) * (FORREF(INDF,IG) + P_FORFRAC(JLON,JLAY) * &
210          &       (FORREF(INDF+1,IG) - FORREF(INDF,IG)))
211        ZN2M1 = KA_MN2(JMN2,INDM,IG) + Z_FMN2 * &
212          &       (KA_MN2(JMN2+1,INDM,IG) - KA_MN2(JMN2,INDM,IG))
213        ZN2M2 = KA_MN2(JMN2,INDM+1,IG) + Z_FMN2 * &
214          &       (KA_MN2(JMN2+1,INDM+1,IG) - KA_MN2(JMN2,INDM+1,IG))
215        ZTAUN2 = ZSCALEN2 * (ZN2M1 + PMINORFRAC(JLON,JLAY) * (ZN2M2 - ZN2M1))
216
217     IF (Z_SPECPARM < 0.125_JPRB) THEN
218               ZTAU_MAJOR = Z_SPECCOMB * &
219                 &   (Z_FAC000 * ABSA(IND0,IG) + &
220                 &   Z_FAC100 * ABSA(IND0+1,IG) + &
221                 &   Z_FAC200 * ABSA(IND0+2,IG) + &
222                 &   Z_FAC010 * ABSA(IND0+9,IG) + &
223                 &   Z_FAC110 * ABSA(IND0+10,IG) + &
224                 &   Z_FAC210 * ABSA(IND0+11,IG))
225            ELSEIF (Z_SPECPARM > 0.875_JPRB) THEN
226               ZTAU_MAJOR = Z_SPECCOMB * &
227                 &   (Z_FAC200 * ABSA(IND0-1,IG) + &
228                 &   Z_FAC100 * ABSA(IND0,IG) + &
229                 &   Z_FAC000 * ABSA(IND0+1,IG) + &
230                 &   Z_FAC210 * ABSA(IND0+8,IG) + &
231                 &   Z_FAC110 * ABSA(IND0+9,IG) + &
232                 &   Z_FAC010 * ABSA(IND0+10,IG))
233            ELSE
234               ZTAU_MAJOR = Z_SPECCOMB * &
235                 &   (Z_FAC000 * ABSA(IND0,IG) + &
236                 &   Z_FAC100 * ABSA(IND0+1,IG) + &
237                 &   Z_FAC010 * ABSA(IND0+9,IG) + &
238                 &   Z_FAC110 * ABSA(IND0+10,IG))
239            ENDIF
240
241            IF (Z_SPECPARM1 < 0.125_JPRB) THEN
242               ZTAU_MAJOR1 = Z_SPECCOMB1 * &
243                &    (Z_FAC001 * ABSA(IND1,IG) + &
244                &    Z_FAC101 * ABSA(IND1+1,IG) + &
245                &    Z_FAC201 * ABSA(IND1+2,IG) + &
246                &    Z_FAC011 * ABSA(IND1+9,IG) + &
247                &    Z_FAC111 * ABSA(IND1+10,IG) + &
248                &    Z_FAC211 * ABSA(IND1+11,IG))
249            ELSEIF (Z_SPECPARM1 > 0.875_JPRB) THEN
250               ZTAU_MAJOR1 = Z_SPECCOMB1 * &
251                &    (Z_FAC201 * ABSA(IND1-1,IG) + &
252                &    Z_FAC101 * ABSA(IND1,IG) + &
253                &    Z_FAC001 * ABSA(IND1+1,IG) + &
254                &    Z_FAC211 * ABSA(IND1+8,IG) + &
255                &    Z_FAC111 * ABSA(IND1+9,IG) + &
256                &    Z_FAC011 * ABSA(IND1+10,IG))
257            ELSE
258               ZTAU_MAJOR1 = Z_SPECCOMB1 * &
259                &    (Z_FAC001 * ABSA(IND1,IG) +  &
260                &    Z_FAC101 * ABSA(IND1+1,IG) + &
261                &    Z_FAC011 * ABSA(IND1+9,IG) + &
262                &    Z_FAC111 * ABSA(IND1+10,IG))
263            ENDIF
264
265
266        P_TAU(JLON,NGS14+IG,JLAY) = ZTAU_MAJOR + ZTAU_MAJOR1 &
267               & + ZTAUSELF + ZTAUFOR + ZTAUN2 &
268               & + P_TAUAERL(JLON,JLAY,15) 
269       PFRAC(JLON,NGS14+IG,JLAY) = FRACREFA(IG,JPL) + Z_FPL * &
270         & (FRACREFA(IG,JPL+1) - FRACREFA(IG,JPL)) 
271      ENDDO
272!-- jjm20110728
273!-- DS_990714 
274    ENDIF
275
276    IF (JLAY > K_LAYTROP(JLON)) THEN
277      DO IG = 1, NG15
278!-- jjm20110728 re-establishing the loop instead of specified IG to allow a flexible number of NG15
279!-- DS_990714 
280        P_TAU(JLON,NGS14+IG,JLAY) = P_TAUAERL(JLON,JLAY,15)
281        PFRAC(JLON,NGS14+IG,JLAY) = 0.0_JPRB
282      ENDDO
283!-- jjm20110728
284!-- DS_990714 
285    ENDIF
286  ENDDO
287ENDDO
288
289IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL15',1,ZHOOK_HANDLE)
290
291END ASSOCIATE
292END SUBROUTINE RRTM_TAUMOL15
Note: See TracBrowser for help on using the repository browser.