source: LMDZ6/branches/Ocean_skin/libf/phylmd/ecrad/radiation_matrix.F90 @ 5472

Last change on this file since 5472 was 3908, checked in by idelkadi, 4 years ago

Online implementation of the radiative transfer code ECRAD in the LMDZ model.

  • Inclusion of the ecrad directory containing the sources of the ECRAD code
    • interface routine : radiation_scheme.F90
  • Adaptation of compilation scripts :
    • compilation under CPP key CPP_ECRAD
    • compilation with option "-rad ecard" or "-ecard true"
    • The "-rad old/rtm/ecran" build option will need to replace the "-rrtm true" and "-ecrad true" options in the future.
  • Runing LMDZ simulations with ecrad, you need :
    • logical key iflag_rrtm = 2 in physiq.def
    • namelist_ecrad (DefLists?)
    • the directory "data" containing the configuration files is temporarily placed in ../libfphylmd/ecrad/
  • Compilation and execution are tested in the 1D case. The repository under svn would allow to continue the implementation work: tests, verification of the results, ...
File size: 32.3 KB
Line 
1! radiation_matrix.F90 - SPARTACUS matrix operations
2!
3! (C) Copyright 2014- ECMWF.
4!
5! This software is licensed under the terms of the Apache Licence Version 2.0
6! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
7!
8! In applying this licence, ECMWF does not waive the privileges and immunities
9! granted to it by virtue of its status as an intergovernmental organisation
10! nor does it submit to any jurisdiction.
11!
12! Author:  Robin Hogan
13! Email:   r.j.hogan@ecmwf.int
14!
15! Modifications
16!   2018-10-15  R. Hogan  Added fast_expm_exchange_[23]
17!
18! This module provides the neccessary mathematical functions for the
19! SPARTACUS radiation scheme: matrix multiplication, matrix solvers
20! and matrix exponentiation, but (a) multiple matrices are operated on
21! at once with array access indended to facilitate vectorization, and
22! (b) optimization for 2x2 and 3x3 matrices.  There is probably
23! considerable scope for further optimization. Note that this module
24! is not used by the McICA solver.
25
26module radiation_matrix
27
28  use parkind1, only : jprb
29
30  implicit none
31  public
32
33  ! Codes to describe sparseness pattern, where the SHORTWAVE
34  ! pattern is of the form:
35  ! (x x x)
36  ! (x x x)
37  ! (0 0 x)
38  ! where each element may itself be a square matrix. 
39  integer, parameter :: IMatrixPatternDense     = 0
40  integer, parameter :: IMatrixPatternShortwave = 1
41
42  public  :: mat_x_vec, singlemat_x_vec, mat_x_mat, &
43       &     singlemat_x_mat, mat_x_singlemat, &
44       &     identity_minus_mat_x_mat, solve_vec, solve_mat, expm, &
45       &     fast_expm_exchange_2, fast_expm_exchange_3
46
47  private :: solve_vec_2, solve_vec_3, solve_mat_2, &
48       &     solve_mat_3, lu_factorization, lu_substitution, solve_mat_n, &
49       &     diag_mat_right_divide_3
50
51  interface fast_expm_exchange
52    module procedure fast_expm_exchange_2, fast_expm_exchange_3
53  end interface fast_expm_exchange
54
55contains
56
57  ! --- MATRIX-VECTOR MULTIPLICATION ---
58
59  !---------------------------------------------------------------------
60  ! Treat A as n m-by-m square matrices (with the n dimension varying
61  ! fastest) and b as n m-element vectors, and perform matrix-vector
62  ! multiplications on first iend pairs
63  function mat_x_vec(n,iend,m,A,b,do_top_left_only_in)
64
65    use yomhook, only : lhook, dr_hook
66
67    integer,    intent(in)                   :: n, m, iend
68    real(jprb), intent(in), dimension(:,:,:) :: A
69    real(jprb), intent(in), dimension(:,:)   :: b
70    logical,    intent(in), optional         :: do_top_left_only_in
71    real(jprb),             dimension(iend,m):: mat_x_vec
72
73    integer :: j1, j2
74    logical :: do_top_left_only
75
76    real(jprb) :: hook_handle
77
78    if (lhook) call dr_hook('radiation_matrix:mat_x_vec',0,hook_handle)
79
80    if (present(do_top_left_only_in)) then
81      do_top_left_only = do_top_left_only_in
82    else
83      do_top_left_only = .false.
84    end if
85
86    ! Array-wise assignment
87    mat_x_vec = 0.0_jprb
88
89    if (do_top_left_only) then
90      mat_x_vec(1:iend,1) = A(1:iend,1,1)*b(1:iend,1)
91    else
92      do j1 = 1,m
93        do j2 = 1,m
94          mat_x_vec(1:iend,j1) = mat_x_vec(1:iend,j1) &
95               &               + A(1:iend,j1,j2)*b(1:iend,j2)
96        end do
97      end do
98    end if
99
100    if (lhook) call dr_hook('radiation_matrix:mat_x_vec',1,hook_handle)
101
102  end function mat_x_vec
103
104
105  !---------------------------------------------------------------------
106  ! Treat A as an m-by-m square matrix and b as n m-element vectors
107  ! (with the n dimension varying fastest), and perform matrix-vector
108  ! multiplications on first iend pairs
109  function singlemat_x_vec(n,iend,m,A,b)
110
111    use yomhook, only : lhook, dr_hook
112
113    integer,    intent(in)                    :: n, m, iend
114    real(jprb), intent(in), dimension(m,m)    :: A
115    real(jprb), intent(in), dimension(:,:)    :: b
116    real(jprb),             dimension(iend,m) :: singlemat_x_vec
117
118    integer    :: j1, j2
119    real(jprb) :: hook_handle
120
121    if (lhook) call dr_hook('radiation_matrix:single_mat_x_vec',0,hook_handle)
122
123    ! Array-wise assignment
124    singlemat_x_vec = 0.0_jprb
125
126    do j1 = 1,m
127      do j2 = 1,m
128        singlemat_x_vec(1:iend,j1) = singlemat_x_vec(1:iend,j1) &
129             &                    + A(j1,j2)*b(1:iend,j2)
130      end do
131    end do
132
133    if (lhook) call dr_hook('radiation_matrix:single_mat_x_vec',1,hook_handle)
134
135  end function singlemat_x_vec
136
137
138  ! --- SQUARE MATRIX-MATRIX MULTIPLICATION ---
139
140  !---------------------------------------------------------------------
141  ! Treat A and B each as n m-by-m square matrices (with the n
142  ! dimension varying fastest) and perform matrix multiplications on
143  ! all n matrix pairs
144  function mat_x_mat(n,iend,m,A,B,i_matrix_pattern)
145
146    use yomhook, only : lhook, dr_hook
147
148    integer,    intent(in)                      :: n, m, iend
149    integer,    intent(in), optional            :: i_matrix_pattern
150    real(jprb), intent(in), dimension(:,:,:)    :: A, B
151
152    real(jprb),             dimension(iend,m,m) :: mat_x_mat
153    integer    :: j1, j2, j3
154    integer    :: mblock, m2block
155    integer    :: i_actual_matrix_pattern
156    real(jprb) :: hook_handle
157
158    if (lhook) call dr_hook('radiation_matrix:mat_x_mat',0,hook_handle)
159
160    if (present(i_matrix_pattern)) then
161      i_actual_matrix_pattern = i_matrix_pattern
162    else
163      i_actual_matrix_pattern = IMatrixPatternDense
164    end if
165
166    ! Array-wise assignment
167    mat_x_mat = 0.0_jprb
168
169    if (i_actual_matrix_pattern == IMatrixPatternShortwave) then
170      ! Matrix has a sparsity pattern
171      !     (C D E)
172      ! A = (F G H)
173      !     (0 0 I)
174      mblock = m/3
175      m2block = 2*mblock
176      ! Do the top-left (C, D, F, G)
177      do j2 = 1,m2block
178        do j1 = 1,m2block
179          do j3 = 1,m2block
180            mat_x_mat(1:iend,j1,j2) = mat_x_mat(1:iend,j1,j2) &
181                 &                  + A(1:iend,j1,j3)*B(1:iend,j3,j2)
182          end do
183        end do
184      end do
185      do j2 = m2block+1,m
186        ! Do the top-right (E & H)
187        do j1 = 1,m2block
188          do j3 = 1,m
189            mat_x_mat(1:iend,j1,j2) = mat_x_mat(1:iend,j1,j2) &
190                 &                  + A(1:iend,j1,j3)*B(1:iend,j3,j2)
191          end do
192        end do
193        ! Do the bottom-right (I)
194        do j1 = m2block+1,m
195          do j3 = m2block+1,m
196            mat_x_mat(1:iend,j1,j2) = mat_x_mat(1:iend,j1,j2) &
197                 &                  + A(1:iend,j1,j3)*B(1:iend,j3,j2)
198          end do
199        end do
200      end do
201    else
202      ! Ordinary dense matrix
203      do j2 = 1,m
204        do j1 = 1,m
205          do j3 = 1,m
206            mat_x_mat(1:iend,j1,j2) = mat_x_mat(1:iend,j1,j2) &
207                 &                  + A(1:iend,j1,j3)*B(1:iend,j3,j2)
208          end do
209        end do
210      end do
211    end if
212
213    if (lhook) call dr_hook('radiation_matrix:mat_x_mat',1,hook_handle)
214
215  end function mat_x_mat
216
217
218  !---------------------------------------------------------------------
219  ! Treat A as an m-by-m matrix and B as n m-by-m square matrices
220  ! (with the n dimension varying fastest) and perform matrix
221  ! multiplications on the first iend matrix pairs
222  function singlemat_x_mat(n,iend,m,A,B)
223
224    use yomhook, only : lhook, dr_hook
225
226    integer,    intent(in)                      :: n, m, iend
227    real(jprb), intent(in), dimension(m,m)      :: A
228    real(jprb), intent(in), dimension(:,:,:)    :: B
229    real(jprb),             dimension(iend,m,m) :: singlemat_x_mat
230
231    integer    :: j1, j2, j3
232    real(jprb) :: hook_handle
233
234    if (lhook) call dr_hook('radiation_matrix:singlemat_x_mat',0,hook_handle)
235
236    ! Array-wise assignment
237    singlemat_x_mat = 0.0_jprb
238
239    do j2 = 1,m
240      do j1 = 1,m
241        do j3 = 1,m
242          singlemat_x_mat(1:iend,j1,j2) = singlemat_x_mat(1:iend,j1,j2) &
243               &                        + A(j1,j3)*B(1:iend,j3,j2)
244        end do
245      end do
246    end do
247
248    if (lhook) call dr_hook('radiation_matrix:singlemat_x_mat',1,hook_handle)
249
250  end function singlemat_x_mat
251
252
253  !---------------------------------------------------------------------
254  ! Treat B as an m-by-m matrix and A as n m-by-m square matrices
255  ! (with the n dimension varying fastest) and perform matrix
256  ! multiplications on the first iend matrix pairs
257  function mat_x_singlemat(n,iend,m,A,B)
258
259    use yomhook, only : lhook, dr_hook
260
261    integer,    intent(in)                      :: n, m, iend
262    real(jprb), intent(in), dimension(:,:,:)    :: A
263    real(jprb), intent(in), dimension(m,m)      :: B
264
265    real(jprb),             dimension(iend,m,m) :: mat_x_singlemat
266    integer    :: j1, j2, j3
267    real(jprb) :: hook_handle
268
269    if (lhook) call dr_hook('radiation_matrix:mat_x_singlemat',0,hook_handle)
270
271    ! Array-wise assignment
272    mat_x_singlemat = 0.0_jprb
273
274    do j2 = 1,m
275      do j1 = 1,m
276        do j3 = 1,m
277          mat_x_singlemat(1:iend,j1,j2) = mat_x_singlemat(1:iend,j1,j2) &
278               &                        + A(1:iend,j1,j3)*B(j3,j2)
279        end do
280      end do
281    end do
282
283    if (lhook) call dr_hook('radiation_matrix:mat_x_singlemat',1,hook_handle)
284
285  end function mat_x_singlemat
286
287
288  !---------------------------------------------------------------------
289  ! Compute I-A*B where I is the identity matrix and A & B are n
290  ! m-by-m square matrices
291  function identity_minus_mat_x_mat(n,iend,m,A,B,i_matrix_pattern)
292
293    use yomhook, only : lhook, dr_hook
294
295    integer,    intent(in)                   :: n, m, iend
296    integer,    intent(in), optional         :: i_matrix_pattern
297    real(jprb), intent(in), dimension(:,:,:) :: A, B
298    real(jprb),             dimension(iend,m,m) :: identity_minus_mat_x_mat
299
300    integer    :: j
301    real(jprb) :: hook_handle
302
303    if (lhook) call dr_hook('radiation_matrix:identity_mat_x_mat',0,hook_handle)
304
305    if (present(i_matrix_pattern)) then
306      identity_minus_mat_x_mat = mat_x_mat(n,iend,m,A,B,i_matrix_pattern)
307    else
308      identity_minus_mat_x_mat = mat_x_mat(n,iend,m,A,B)
309    end if
310
311    identity_minus_mat_x_mat = - identity_minus_mat_x_mat
312    do j = 1,m
313      identity_minus_mat_x_mat(1:iend,j,j) &
314           &     = 1.0_jprb + identity_minus_mat_x_mat(1:iend,j,j)
315    end do
316
317    if (lhook) call dr_hook('radiation_matrix:identity_mat_x_mat',1,hook_handle)
318
319  end function identity_minus_mat_x_mat
320
321
322  ! --- REPEATEDLY SQUARE A MATRIX ---
323
324  !---------------------------------------------------------------------
325  ! Square m-by-m matrix "A" nrepeat times. A will be corrupted by
326  ! this function.
327  function repeated_square(m,A,nrepeat,i_matrix_pattern)
328    integer,    intent(in)           :: m, nrepeat
329    real(jprb), intent(inout)        :: A(m,m)
330    integer,    intent(in), optional :: i_matrix_pattern
331    real(jprb)                       :: repeated_square(m,m)
332
333    integer :: j1, j2, j3, j4
334    integer :: mblock, m2block
335    integer :: i_actual_matrix_pattern
336
337    if (present(i_matrix_pattern)) then
338      i_actual_matrix_pattern = i_matrix_pattern
339    else
340      i_actual_matrix_pattern = IMatrixPatternDense
341    end if
342
343    if (i_actual_matrix_pattern == IMatrixPatternShortwave) then
344      ! Matrix has a sparsity pattern
345      !     (C D E)
346      ! A = (F G H)
347      !     (0 0 I)
348      mblock = m/3
349      m2block = 2*mblock
350      do j4 = 1,nrepeat
351        repeated_square = 0.0_jprb
352        ! Do the top-left (C, D, F & G)
353        do j2 = 1,m2block
354          do j1 = 1,m2block
355            do j3 = 1,m2block
356              repeated_square(j1,j2) = repeated_square(j1,j2) &
357                   &                 + A(j1,j3)*A(j3,j2)
358            end do
359          end do
360        end do
361        do j2 = m2block+1, m
362          ! Do the top-right (E & H)
363          do j1 = 1,m2block
364            do j3 = 1,m
365              repeated_square(j1,j2) = repeated_square(j1,j2) &
366                   &                 + A(j1,j3)*A(j3,j2)
367            end do
368          end do
369          ! Do the bottom-right (I)
370          do j1 = m2block+1, m
371            do j3 = m2block+1,m
372              repeated_square(j1,j2) = repeated_square(j1,j2) &
373                   &                 + A(j1,j3)*A(j3,j2)
374            end do
375          end do
376        end do
377        if (j4 < nrepeat) then
378          A = repeated_square
379        end if
380      end do
381    else
382      ! Ordinary dense matrix
383      do j4 = 1,nrepeat
384        repeated_square = 0.0_jprb
385        do j2 = 1,m
386          do j1 = 1,m
387            do j3 = 1,m
388              repeated_square(j1,j2) = repeated_square(j1,j2) &
389                   &                 + A(j1,j3)*A(j3,j2)
390            end do
391          end do
392        end do
393        if (j4 < nrepeat) then
394          A = repeated_square
395        end if
396      end do
397    end if
398
399  end function repeated_square
400
401
402  ! --- SOLVE LINEAR EQUATIONS ---
403
404  !---------------------------------------------------------------------
405  ! Solve Ax=b to obtain x.  Version optimized for 2x2 matrices using
406  ! Cramer's method: "A" contains n 2x2 matrices and "b" contains n
407  ! 2-element vectors; returns A^-1 b.
408  pure subroutine solve_vec_2(n,iend,A,b,x)
409
410    integer,    intent(in)  :: n, iend
411    real(jprb), intent(in)  :: A(:,:,:)
412    real(jprb), intent(in)  :: b(:,:)
413    real(jprb), intent(out) :: x(:,:)
414
415    real(jprb) :: inv_det(iend)
416
417    inv_det = 1.0_jprb / (  A(1:iend,1,1)*A(1:iend,2,2) &
418         &                - A(1:iend,1,2)*A(1:iend,2,1))
419
420    x(1:iend,1) = inv_det*(A(1:iend,2,2)*b(1:iend,1)-A(1:iend,1,2)*b(1:iend,2))
421    x(1:iend,2) = inv_det*(A(1:iend,1,1)*b(1:iend,2)-A(1:iend,2,1)*b(1:iend,1))
422
423  end subroutine solve_vec_2
424
425
426  !---------------------------------------------------------------------
427  ! Solve AX=B to obtain X, i.e. the matrix right-hand-side version of
428  ! solve_vec_2, with A, X and B all containing n 2x2 matrices;
429  ! returns A^-1 B using Cramer's method.
430  pure subroutine solve_mat_2(n,iend,A,B,X)
431    integer,    intent(in)  :: n, iend
432    real(jprb), intent(in)  :: A(:,:,:)
433    real(jprb), intent(in)  :: B(:,:,:)
434    real(jprb), intent(out) :: X(:,:,:)
435
436    real(jprb) :: inv_det(iend)
437
438    inv_det = 1.0_jprb / (  A(1:iend,1,1)*A(1:iend,2,2) &
439         &                - A(1:iend,1,2)*A(1:iend,2,1))
440
441    X(1:iend,1,1) = inv_det*( A(1:iend,2,2)*B(1:iend,1,1) &
442         &                   -A(1:iend,1,2)*B(1:iend,2,1))
443    X(1:iend,2,1) = inv_det*( A(1:iend,1,1)*B(1:iend,2,1) &
444         &                   -A(1:iend,2,1)*B(1:iend,1,1))
445    X(1:iend,1,2) = inv_det*( A(1:iend,2,2)*B(1:iend,1,2) &
446         &                   -A(1:iend,1,2)*B(1:iend,2,2))
447    X(1:iend,2,2) = inv_det*( A(1:iend,1,1)*B(1:iend,2,2) &
448         &                   -A(1:iend,2,1)*B(1:iend,1,2))
449
450  end subroutine solve_mat_2
451
452
453  !---------------------------------------------------------------------
454  ! Solve Ax=b optimized for 3x3 matrices, using LU
455  ! factorization and substitution without pivoting.
456  pure subroutine solve_vec_3(n,iend,A,b,x)
457    integer,    intent(in)  :: n, iend
458    real(jprb), intent(in)  :: A(:,:,:)
459    real(jprb), intent(in)  :: b(:,:)
460    real(jprb), intent(out) :: x(:,:)
461
462    real(jprb), dimension(iend) :: L21, L31, L32
463    real(jprb), dimension(iend) :: U22, U23, U33
464    real(jprb), dimension(iend) :: y2, y3
465
466    ! Some compilers unfortunately don't support assocate
467    !    associate (U11 => A(:,1,1), U12 => A(:,1,2), U13 => A(1,3), &
468    !         y1 => b(:,1), x1 => solve_vec3(:,1), &
469    !         x2 => solve_vec3(:,2), x3 => solve_vec3(:,3))
470
471    ! LU decomposition:
472    !     ( 1        )   (U11 U12 U13)
473    ! A = (L21  1    ) * (    U22 U23)
474    !     (L31 L32  1)   (        U33)
475    L21 = A(1:iend,2,1) / A(1:iend,1,1)
476    L31 = A(1:iend,3,1) / A(1:iend,1,1)
477    U22 = A(1:iend,2,2) - L21*A(1:iend,1,2)
478    U23 = A(1:iend,2,3) - L21*A(1:iend,1,3)
479    L32 =(A(1:iend,3,2) - L31*A(1:iend,1,2)) / U22
480    U33 = A(1:iend,3,3) - L31*A(1:iend,1,3) - L32*U23
481
482    ! Solve Ly = b by forward substitution
483    y2 = b(1:iend,2) - L21*b(1:iend,1)
484    y3 = b(1:iend,3) - L31*b(1:iend,1) - L32*y2
485
486    ! Solve Ux = y by back substitution
487    x(1:iend,3) = y3/U33
488    x(1:iend,2) = (y2 - U23*x(1:iend,3)) / U22
489    x(1:iend,1) = (b(1:iend,1) - A(1:iend,1,2)*x(1:iend,2) &
490         &         - A(1:iend,1,3)*x(1:iend,3)) / A(1:iend,1,1)
491    !    end associate
492
493  end subroutine solve_vec_3
494
495
496  !---------------------------------------------------------------------
497  ! Solve AX=B optimized for 3x3 matrices, using LU factorization and
498  ! substitution with no pivoting.
499  pure subroutine solve_mat_3(n,iend,A,B,X)
500    integer,    intent(in)  :: n, iend
501    real(jprb), intent(in)  :: A(:,:,:)
502    real(jprb), intent(in)  :: B(:,:,:)
503    real(jprb), intent(out) :: X(:,:,:)
504
505    real(jprb), dimension(iend) :: L21, L31, L32
506    real(jprb), dimension(iend) :: U22, U23, U33
507    real(jprb), dimension(iend) :: y2, y3
508
509    integer :: j
510
511    !    associate (U11 => A(:,1,1), U12 => A(:,1,2), U13 => A(1,3))
512    ! LU decomposition:
513    !     ( 1        )   (U11 U12 U13)
514    ! A = (L21  1    ) * (    U22 U23)
515    !     (L31 L32  1)   (        U33)
516    L21 = A(1:iend,2,1) / A(1:iend,1,1)
517    L31 = A(1:iend,3,1) / A(1:iend,1,1)
518    U22 = A(1:iend,2,2) - L21*A(1:iend,1,2)
519    U23 = A(1:iend,2,3) - L21*A(1:iend,1,3)
520    L32 =(A(1:iend,3,2) - L31*A(1:iend,1,2)) / U22
521    U33 = A(1:iend,3,3) - L31*A(1:iend,1,3) - L32*U23
522
523    do j = 1,3
524      ! Solve Ly = B(:,:,j) by forward substitution
525      ! y1 = B(:,1,j)
526      y2 = B(1:iend,2,j) - L21*B(1:iend,1,j)
527      y3 = B(1:iend,3,j) - L31*B(1:iend,1,j) - L32*y2
528      ! Solve UX(:,:,j) = y by back substitution
529      X(1:iend,3,j) = y3 / U33
530      X(1:iend,2,j) = (y2 - U23*X(1:iend,3,j)) / U22
531      X(1:iend,1,j) = (B(1:iend,1,j) - A(1:iend,1,2)*X(1:iend,2,j) &
532           &          - A(1:iend,1,3)*X(1:iend,3,j)) / A(1:iend,1,1)
533    end do
534
535  end subroutine solve_mat_3
536
537
538  !---------------------------------------------------------------------
539  ! Return X = B A^-1 = (A^-T B)^T optimized for 3x3 matrices, where B
540  ! is a diagonal matrix, using LU factorization and substitution with
541  ! no pivoting.
542  pure subroutine diag_mat_right_divide_3(n,iend,A,B,X)
543    integer,    intent(in)  :: n, iend
544    real(jprb), intent(in)  :: A(iend,3,3)
545    real(jprb), intent(in)  :: B(iend,3)
546    real(jprb), intent(out) :: X(n,3,3)
547
548    real(jprb), dimension(iend) :: L21, L31, L32
549    real(jprb), dimension(iend) :: U22, U23, U33
550    real(jprb), dimension(iend) :: y2, y3
551
552    integer :: j
553
554    !    associate (U11 => A(:,1,1), U12 => A(:,1,2), U13 => A(1,3))
555    ! LU decomposition of the *transpose* of A:
556    !       ( 1        )   (U11 U12 U13)
557    ! A^T = (L21  1    ) * (    U22 U23)
558    !       (L31 L32  1)   (        U33)
559    L21 = A(1:iend,1,2) / A(1:iend,1,1)
560    L31 = A(1:iend,1,3) / A(1:iend,1,1)
561    U22 = A(1:iend,2,2) - L21*A(1:iend,2,1)
562    U23 = A(1:iend,3,2) - L21*A(1:iend,3,1)
563    L32 =(A(1:iend,2,3) - L31*A(1:iend,2,1)) / U22
564    U33 = A(1:iend,3,3) - L31*A(1:iend,3,1) - L32*U23
565
566    ! Solve X(1,:) = A^-T ( B(1) )
567    !                     (  0   )
568    !                     (  0   )
569    ! Solve Ly = B(:,:,j) by forward substitution
570    ! y1 = B(:,1)
571    y2 = - L21*B(1:iend,1)
572    y3 = - L31*B(1:iend,1) - L32*y2
573    ! Solve UX(:,:,j) = y by back substitution
574    X(1:iend,1,3) = y3 / U33
575    X(1:iend,1,2) = (y2 - U23*X(1:iend,1,3)) / U22
576    X(1:iend,1,1) = (B(1:iend,1) - A(1:iend,2,1)*X(1:iend,1,2) &
577         &          - A(1:iend,3,1)*X(1:iend,1,3)) / A(1:iend,1,1)
578
579    ! Solve X(2,:) = A^-T (  0   )
580    !                     ( B(2) )
581    !                     (  0   )
582    ! Solve Ly = B(:,:,j) by forward substitution
583    ! y1 = 0
584    ! y2 = B(1:iend,2)
585    y3 = - L32*B(1:iend,2)
586    ! Solve UX(:,:,j) = y by back substitution
587    X(1:iend,2,3) = y3 / U33
588    X(1:iend,2,2) = (B(1:iend,2) - U23*X(1:iend,2,3)) / U22
589    X(1:iend,2,1) = (-A(1:iend,2,1)*X(1:iend,2,2) &
590         &           -A(1:iend,3,1)*X(1:iend,2,3)) / A(1:iend,1,1)
591
592    ! Solve X(3,:) = A^-T (  0   )
593    !                     (  0   )
594    !                     ( B(3) )
595    ! Solve Ly = B(:,:,j) by forward substitution
596    ! y1 = 0
597    ! y2 = 0
598    ! y3 = B(1:iend,3)
599    ! Solve UX(:,:,j) = y by back substitution
600    X(1:iend,3,3) = B(1:iend,3) / U33
601    X(1:iend,3,2) = -U23*X(1:iend,3,3) / U22
602    X(1:iend,3,1) = (-A(1:iend,2,1)*X(1:iend,3,2) &
603         &          - A(1:iend,3,1)*X(1:iend,3,3)) / A(1:iend,1,1)
604
605  end subroutine diag_mat_right_divide_3
606
607
608  !---------------------------------------------------------------------
609  ! Treat A as n m-by-m matrices and return the LU factorization of A
610  ! compressed into a single matrice (with L below the diagonal and U
611  ! on and above the diagonal; the diagonal elements of L are 1). No
612  ! pivoting is performed.
613  pure subroutine lu_factorization(n, iend, m, A, LU)
614    integer,    intent(in)  :: n, m, iend
615    real(jprb), intent(in)  :: A(:,:,:)
616    real(jprb), intent(out) :: LU(iend,m,m)
617
618    real(jprb) :: s(iend)
619    integer    :: j1, j2, j3
620
621    ! This routine is adapted from an in-place one, so we first copy
622    ! the input into the output.
623    LU(1:iend,1:m,1:m) = A(1:iend,1:m,1:m)
624
625    do j2 = 1, m
626      do j1 = 1, j2-1
627        s = LU(1:iend,j1,j2)
628        do j3 = 1, j1-1
629          s = s - LU(1:iend,j1,j3) * LU(1:iend,j3,j2)
630        end do
631        LU(1:iend,j1,j2) = s
632      end do
633      do j1 = j2, m
634        s = LU(1:iend,j1,j2)
635        do j3 = 1, j2-1
636          s = s - LU(1:iend,j1,j3) * LU(1:iend,j3,j2)
637        end do
638        LU(1:iend,j1,j2) = s
639      end do
640      if (j2 /= m) then
641        s = 1.0_jprb / LU(1:iend,j2,j2)
642        do j1 = j2+1, m
643          LU(1:iend,j1,j2) = LU(1:iend,j1,j2) * s
644        end do
645      end if
646    end do
647
648  end subroutine lu_factorization
649
650
651  !---------------------------------------------------------------------
652  ! Treat LU as an LU-factorization of an original matrix A, and
653  ! return x where Ax=b. LU consists of n m-by-m matrices and b as n
654  ! m-element vectors.
655  pure subroutine lu_substitution(n,iend,m,LU,b,x)
656    ! CHECK: dimensions should be ":"?
657    integer,    intent(in) :: n, m, iend
658    real(jprb), intent(in) :: LU(iend,m,m)
659    real(jprb), intent(in) :: b(:,:)
660    real(jprb), intent(out):: x(iend,m)
661
662    integer :: j1, j2
663
664    x(1:iend,1:m) = b(1:iend,1:m)
665
666    ! First solve Ly=b
667    do j2 = 2, m
668      do j1 = 1, j2-1
669        x(1:iend,j2) = x(1:iend,j2) - x(1:iend,j1)*LU(1:iend,j2,j1)
670      end do
671    end do
672    ! Now solve Ux=y
673    do j2 = m, 1, -1
674      do j1 = j2+1, m
675        x(1:iend,j2) = x(1:iend,j2) - x(1:iend,j1)*LU(1:iend,j2,j1)
676      end do
677      x(1:iend,j2) = x(1:iend,j2) / LU(1:iend,j2,j2)
678    end do
679
680  end subroutine lu_substitution
681
682
683  !---------------------------------------------------------------------
684  ! Return matrix X where AX=B. LU, A, X, B all consist of n m-by-m
685  ! matrices.
686  pure subroutine solve_mat_n(n,iend,m,A,B,X)
687    integer,    intent(in) :: n, m, iend
688    real(jprb), intent(in) :: A(:,:,:)
689    real(jprb), intent(in) :: B(:,:,:)
690    real(jprb), intent(out):: X(iend,m,m)
691
692    real(jprb) :: LU(iend,m,m)
693
694    integer :: j
695
696    call lu_factorization(n,iend,m,A,LU)
697
698    do j = 1, m
699      call lu_substitution(n,iend,m,LU,B(1:,1:m,j),X(1:iend,1:m,j))
700!      call lu_substitution(n,iend,m,LU,B(1:n,1:m,j),X(1:iend,1:m,j))
701    end do
702
703  end subroutine solve_mat_n
704
705
706  !---------------------------------------------------------------------
707  ! Solve Ax=b, where A consists of n m-by-m matrices and x and b
708  ! consist of n m-element vectors. For m=2 or m=3, this function
709  ! calls optimized versions, otherwise it uses general LU
710  ! decomposition without pivoting.
711  function solve_vec(n,iend,m,A,b)
712
713    use yomhook, only : lhook, dr_hook
714
715    integer,    intent(in) :: n, m, iend
716    real(jprb), intent(in) :: A(:,:,:)
717    real(jprb), intent(in) :: b(:,:)
718
719    real(jprb)             :: solve_vec(iend,m)
720    real(jprb)             :: LU(iend,m,m)
721    real(jprb)             :: hook_handle
722
723    if (lhook) call dr_hook('radiation_matrix:solve_vec',0,hook_handle)
724
725    if (m == 2) then
726      call solve_vec_2(n,iend,A,b,solve_vec)
727    elseif (m == 3) then
728      call solve_vec_3(n,iend,A,b,solve_vec)
729    else
730      call lu_factorization(n,iend,m,A,LU)
731      call lu_substitution(n,iend,m,LU,b,solve_vec)
732    end if
733
734    if (lhook) call dr_hook('radiation_matrix:solve_vec',1,hook_handle)
735
736  end function solve_vec
737
738
739  !---------------------------------------------------------------------
740  ! Solve AX=B, where A, X and B consist of n m-by-m matrices. For m=2
741  ! or m=3, this function calls optimized versions, otherwise it uses
742  ! general LU decomposition without pivoting.
743  function solve_mat(n,iend,m,A,B)
744
745    use yomhook, only : lhook, dr_hook
746
747    integer,    intent(in)  :: n, m, iend
748    real(jprb), intent(in)  :: A(:,:,:)
749    real(jprb), intent(in)  :: B(:,:,:)
750
751    real(jprb)              :: solve_mat(iend,m,m)
752    real(jprb)              :: hook_handle
753
754    if (lhook) call dr_hook('radiation_matrix:solve_mat',0,hook_handle)
755
756    if (m == 2) then
757      call solve_mat_2(n,iend,A,B,solve_mat)
758    elseif (m == 3) then
759      call solve_mat_3(n,iend,A,B,solve_mat)
760    else
761      call solve_mat_n(n,iend,m,A,B,solve_mat)
762    end if
763
764    if (lhook) call dr_hook('radiation_matrix:solve_mat',1,hook_handle)
765
766  end function solve_mat
767
768
769  ! --- MATRIX EXPONENTIATION ---
770
771  !---------------------------------------------------------------------
772  ! Perform matrix exponential of n m-by-m matrices stored in A (where
773  ! index n varies fastest) using the Higham scaling and squaring
774  ! method. The result is placed in A. This routine is intended for
775  ! speed so is accurate only to single precision.  For simplicity and
776  ! to aid vectorization, the Pade approximant of order 7 is used for
777  ! all input matrices, perhaps leading to a few too many
778  ! multiplications for matrices with a small norm.
779  subroutine expm(n,iend,m,A,i_matrix_pattern)
780
781    use yomhook, only : lhook, dr_hook
782
783    integer,    intent(in)      :: n, m, iend
784    real(jprb), intent(inout)   :: A(n,m,m)
785    integer,    intent(in)      :: i_matrix_pattern
786
787    real(jprb), parameter :: theta(3) = (/4.258730016922831e-01_jprb, &
788         &                                1.880152677804762e+00_jprb, &
789         &                                3.925724783138660e+00_jprb/)
790    real(jprb), parameter :: c(8) = (/17297280.0_jprb, 8648640.0_jprb, &
791         &                1995840.0_jprb, 277200.0_jprb, 25200.0_jprb, &
792         &                1512.0_jprb, 56.0_jprb, 1.0_jprb/)
793
794    real(jprb), dimension(iend,m,m) :: A2, A4, A6
795    real(jprb), dimension(iend,m,m) :: U, V
796
797    real(jprb) :: normA(iend), sum_column(iend)
798
799    integer    :: j1, j2, j3
800    real(jprb) :: frac(iend)
801    integer    :: expo(iend)
802    real(jprb) :: scaling(iend)
803
804    real(jprb) :: hook_handle
805
806    if (lhook) call dr_hook('radiation_matrix:expm',0,hook_handle)
807
808    normA = 0.0_jprb
809
810    ! Compute the 1-norms of A
811    do j3 = 1,m
812      sum_column(:) = 0.0_jprb
813      do j2 = 1,m
814        do j1 = 1,iend
815          sum_column(j1) = sum_column(j1) + abs(A(j1,j2,j3))
816        end do
817      end do
818      do j1 = 1,iend
819        if (sum_column(j1) > normA(j1)) then
820          normA(j1) = sum_column(j1)
821        end if
822      end do
823    end do
824
825    frac = fraction(normA/theta(3))
826    expo = exponent(normA/theta(3))
827    where (frac == 0.5_jprb)
828      expo = expo - 1
829    end where
830
831    where (expo < 0)
832      expo = 0
833    end where
834
835    ! Scale the input matrices by a power of 2
836    scaling = 2.0_jprb**(-expo)
837    do j3 = 1,m
838      do j2 = 1,m
839        A(1:iend,j2,j3) = A(1:iend,j2,j3) * scaling
840      end do
841    end do
842    ! Pade approximant of degree 7
843    A2 = mat_x_mat(n,iend,m,A, A, i_matrix_pattern)
844    A4 = mat_x_mat(n,iend,m,A2,A2,i_matrix_pattern)
845    A6 = mat_x_mat(n,iend,m,A2,A4,i_matrix_pattern)
846
847    V = c(8)*A6 + c(6)*A4 + c(4)*A2
848    do j3 = 1,m
849      V(:,j3,j3) = V(:,j3,j3) + c(2)
850    end do
851    U = mat_x_mat(n,iend,m,A,V,i_matrix_pattern)
852    V = c(7)*A6 + c(5)*A4 + c(3)*A2
853    ! Add a multiple of the identity matrix
854    do j3 = 1,m
855      V(:,j3,j3) = V(:,j3,j3) + c(1)
856    end do
857
858    V = V-U
859    U = 2.0_jprb*U
860    A(1:iend,1:m,1:m) = solve_mat(n,iend,m,V,U)
861
862    ! Add the identity matrix
863    do j3 = 1,m
864      A(1:iend,j3,j3) = A(1:iend,j3,j3) + 1.0_jprb
865    end do
866
867    ! Loop through the matrices
868    do j1 = 1,iend
869      if (expo(j1) > 0) then
870        ! Square matrix j1 expo(j1) times         
871        A(j1,:,:) = repeated_square(m,A(j1,:,:),expo(j1),i_matrix_pattern)
872      end if
873    end do
874
875    if (lhook) call dr_hook('radiation_matrix:expm',1,hook_handle)
876
877  end subroutine expm
878
879
880  !---------------------------------------------------------------------
881  ! Return the matrix exponential of n 2x2 matrices representing
882  ! conservative exchange between SPARTACUS regions, where the
883  ! matrices have the structure
884  !   (-a   b)
885  !   ( a  -b)
886  ! and a and b are assumed to be positive or zero.  The solution uses
887  ! Putzer's algorithm - see the appendix of Hogan et al. (GMD 2018)
888  subroutine fast_expm_exchange_2(n,iend,a,b,R)
889
890    use yomhook, only : lhook, dr_hook
891
892    integer,                      intent(in)  :: n, iend
893    real(jprb), dimension(n),     intent(in)  :: a, b
894    real(jprb), dimension(n,2,2), intent(out) :: R
895
896    real(jprb), dimension(iend) :: factor
897
898    real(jprb) :: hook_handle
899
900    if (lhook) call dr_hook('radiation_matrix:fast_expm_exchange_2',0,hook_handle)
901
902    ! Security to ensure that if a==b==0 then the identity matrix is returned
903    factor = (1.0_jprb - exp(-(a(1:iend)+b(1:iend))))/max(1.0e-12_jprb,a(1:iend)+b(1:iend))
904
905    R(1:iend,1,1) = 1.0_jprb - factor*a(1:iend)
906    R(1:iend,2,1) = factor*a(1:iend)
907    R(1:iend,1,2) = factor*b(1:iend)
908    R(1:iend,2,2) = 1.0_jprb - factor*b(1:iend)
909
910    if (lhook) call dr_hook('radiation_matrix:fast_expm_exchange_2',1,hook_handle)
911
912  end subroutine fast_expm_exchange_2
913
914
915  !---------------------------------------------------------------------
916  ! Return the matrix exponential of n 3x3 matrices representing
917  ! conservative exchange between SPARTACUS regions, where the
918  ! matrices have the structure
919  !   (-a   b   0)
920  !   ( a -b-c  d)
921  !   ( 0   c  -d)
922  ! and a-d are assumed to be positive or zero.  The solution uses the
923  ! diagonalization method and is a slight generalization of the
924  ! solution provided in the appendix of Hogan et al. (GMD 2018),
925  ! which assumed c==d.
926  subroutine fast_expm_exchange_3(n,iend,a,b,c,d,R)
927
928    use yomhook, only : lhook, dr_hook
929
930    real(jprb), parameter :: my_epsilon = 1.0e-12_jprb
931
932    integer,                      intent(in)  :: n, iend
933    real(jprb), dimension(n),     intent(in)  :: a, b, c, d
934    real(jprb), dimension(n,3,3), intent(out) :: R
935
936    ! Eigenvectors
937    real(jprb), dimension(iend,3,3) :: V
938
939    ! Non-zero Eigenvalues
940    real(jprb), dimension(iend) :: lambda1, lambda2
941
942    ! Diagonal matrix of the exponential of the eigenvalues
943    real(jprb), dimension(iend,3) :: diag
944
945    ! Result of diag right-divided by V
946    real(jprb), dimension(iend,3,3) :: diag_rdivide_V
947
948    ! Intermediate arrays
949    real(jprb), dimension(iend) :: tmp1, tmp2
950
951    integer :: j1, j2
952
953    real(jprb) :: hook_handle
954
955    if (lhook) call dr_hook('radiation_matrix:fast_expm_exchange_3',0,hook_handle)
956
957    ! Eigenvalues
958    tmp1 = 0.5_jprb * (a(1:iend)+b(1:iend)+c(1:iend)+d(1:iend))
959    tmp2 = sqrt(tmp1*tmp1 - (a(1:iend)*c(1:iend) + a(1:iend)*d(1:iend) + b(1:iend)*d(1:iend)))
960    lambda1 = -tmp1 + tmp2
961    lambda2 = -tmp1 - tmp2
962
963    ! Eigenvectors, with securities such taht if a--d are all zero
964    ! then V is non-singular and the identity matrix is returned in R;
965    ! note that lambdaX is typically negative so we need a
966    ! sign-preserving security
967    V(1:iend,1,1) = max(my_epsilon, b(1:iend)) &
968         &  / sign(max(my_epsilon, abs(a(1:iend) + lambda1)), a(1:iend) + lambda1)
969    V(1:iend,1,2) = b(1:iend) &
970         &  / sign(max(my_epsilon, abs(a(1:iend) + lambda2)), a(1:iend) + lambda2)
971    V(1:iend,1,3) = b(1:iend) / max(my_epsilon, a(1:iend))
972    V(1:iend,2,:) = 1.0_jprb
973    V(1:iend,3,1) = c(1:iend) &
974         &  / sign(max(my_epsilon, abs(d(1:iend) + lambda1)), d(1:iend) + lambda1)
975    V(1:iend,3,2) = c(1:iend) &
976         &  / sign(max(my_epsilon, abs(d(1:iend) + lambda2)), d(1:iend) + lambda2)
977    V(1:iend,3,3) = max(my_epsilon, c(1:iend)) / max(my_epsilon, d(1:iend))
978   
979    diag(:,1) = exp(lambda1)
980    diag(:,2) = exp(lambda2)
981    diag(:,3) = 1.0_jprb
982
983    ! Compute diag_rdivide_V = diag * V^-1
984    call diag_mat_right_divide_3(iend,iend,V,diag,diag_rdivide_V)
985
986    ! Compute V * diag_rdivide_V
987    do j1 = 1,3
988      do j2 = 1,3
989        R(1:iend,j2,j1) = V(1:iend,j2,1)*diag_rdivide_V(1:iend,1,j1) &
990             &          + V(1:iend,j2,2)*diag_rdivide_V(1:iend,2,j1) &
991             &          + V(1:iend,j2,3)*diag_rdivide_V(1:iend,3,j1)
992      end do
993    end do
994
995    if (lhook) call dr_hook('radiation_matrix:fast_expm_exchange_3',1,hook_handle)
996
997  end subroutine fast_expm_exchange_3
998
999!  generic :: fast_expm_exchange => fast_expm_exchange_2, fast_expm_exchange_3
1000
1001
1002end module radiation_matrix
Note: See TracBrowser for help on using the repository browser.