1 | ! radiation_matrix.F90 - SPARTACUS matrix operations |
---|
2 | ! |
---|
3 | ! (C) Copyright 2014- ECMWF. |
---|
4 | ! |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | ! |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | ! |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! |
---|
15 | ! Modifications |
---|
16 | ! 2018-10-15 R. Hogan Added fast_expm_exchange_[23] |
---|
17 | ! |
---|
18 | ! This module provides the neccessary mathematical functions for the |
---|
19 | ! SPARTACUS radiation scheme: matrix multiplication, matrix solvers |
---|
20 | ! and matrix exponentiation, but (a) multiple matrices are operated on |
---|
21 | ! at once with array access indended to facilitate vectorization, and |
---|
22 | ! (b) optimization for 2x2 and 3x3 matrices. There is probably |
---|
23 | ! considerable scope for further optimization. Note that this module |
---|
24 | ! is not used by the McICA solver. |
---|
25 | |
---|
26 | module radiation_matrix |
---|
27 | |
---|
28 | use parkind1, only : jprb |
---|
29 | |
---|
30 | implicit none |
---|
31 | public |
---|
32 | |
---|
33 | ! Codes to describe sparseness pattern, where the SHORTWAVE |
---|
34 | ! pattern is of the form: |
---|
35 | ! (x x x) |
---|
36 | ! (x x x) |
---|
37 | ! (0 0 x) |
---|
38 | ! where each element may itself be a square matrix. |
---|
39 | integer, parameter :: IMatrixPatternDense = 0 |
---|
40 | integer, parameter :: IMatrixPatternShortwave = 1 |
---|
41 | |
---|
42 | public :: mat_x_vec, singlemat_x_vec, mat_x_mat, & |
---|
43 | & singlemat_x_mat, mat_x_singlemat, & |
---|
44 | & identity_minus_mat_x_mat, solve_vec, solve_mat, expm, & |
---|
45 | & fast_expm_exchange_2, fast_expm_exchange_3 |
---|
46 | |
---|
47 | private :: solve_vec_2, solve_vec_3, solve_mat_2, & |
---|
48 | & solve_mat_3, lu_factorization, lu_substitution, solve_mat_n, & |
---|
49 | & diag_mat_right_divide_3 |
---|
50 | |
---|
51 | interface fast_expm_exchange |
---|
52 | module procedure fast_expm_exchange_2, fast_expm_exchange_3 |
---|
53 | end interface fast_expm_exchange |
---|
54 | |
---|
55 | contains |
---|
56 | |
---|
57 | ! --- MATRIX-VECTOR MULTIPLICATION --- |
---|
58 | |
---|
59 | !--------------------------------------------------------------------- |
---|
60 | ! Treat A as n m-by-m square matrices (with the n dimension varying |
---|
61 | ! fastest) and b as n m-element vectors, and perform matrix-vector |
---|
62 | ! multiplications on first iend pairs |
---|
63 | function mat_x_vec(n,iend,m,A,b,do_top_left_only_in) |
---|
64 | |
---|
65 | use yomhook, only : lhook, dr_hook |
---|
66 | |
---|
67 | integer, intent(in) :: n, m, iend |
---|
68 | real(jprb), intent(in), dimension(:,:,:) :: A |
---|
69 | real(jprb), intent(in), dimension(:,:) :: b |
---|
70 | logical, intent(in), optional :: do_top_left_only_in |
---|
71 | real(jprb), dimension(iend,m):: mat_x_vec |
---|
72 | |
---|
73 | integer :: j1, j2 |
---|
74 | logical :: do_top_left_only |
---|
75 | |
---|
76 | real(jprb) :: hook_handle |
---|
77 | |
---|
78 | if (lhook) call dr_hook('radiation_matrix:mat_x_vec',0,hook_handle) |
---|
79 | |
---|
80 | if (present(do_top_left_only_in)) then |
---|
81 | do_top_left_only = do_top_left_only_in |
---|
82 | else |
---|
83 | do_top_left_only = .false. |
---|
84 | end if |
---|
85 | |
---|
86 | ! Array-wise assignment |
---|
87 | mat_x_vec = 0.0_jprb |
---|
88 | |
---|
89 | if (do_top_left_only) then |
---|
90 | mat_x_vec(1:iend,1) = A(1:iend,1,1)*b(1:iend,1) |
---|
91 | else |
---|
92 | do j1 = 1,m |
---|
93 | do j2 = 1,m |
---|
94 | mat_x_vec(1:iend,j1) = mat_x_vec(1:iend,j1) & |
---|
95 | & + A(1:iend,j1,j2)*b(1:iend,j2) |
---|
96 | end do |
---|
97 | end do |
---|
98 | end if |
---|
99 | |
---|
100 | if (lhook) call dr_hook('radiation_matrix:mat_x_vec',1,hook_handle) |
---|
101 | |
---|
102 | end function mat_x_vec |
---|
103 | |
---|
104 | |
---|
105 | !--------------------------------------------------------------------- |
---|
106 | ! Treat A as an m-by-m square matrix and b as n m-element vectors |
---|
107 | ! (with the n dimension varying fastest), and perform matrix-vector |
---|
108 | ! multiplications on first iend pairs |
---|
109 | function singlemat_x_vec(n,iend,m,A,b) |
---|
110 | |
---|
111 | use yomhook, only : lhook, dr_hook |
---|
112 | |
---|
113 | integer, intent(in) :: n, m, iend |
---|
114 | real(jprb), intent(in), dimension(m,m) :: A |
---|
115 | real(jprb), intent(in), dimension(:,:) :: b |
---|
116 | real(jprb), dimension(iend,m) :: singlemat_x_vec |
---|
117 | |
---|
118 | integer :: j1, j2 |
---|
119 | real(jprb) :: hook_handle |
---|
120 | |
---|
121 | if (lhook) call dr_hook('radiation_matrix:single_mat_x_vec',0,hook_handle) |
---|
122 | |
---|
123 | ! Array-wise assignment |
---|
124 | singlemat_x_vec = 0.0_jprb |
---|
125 | |
---|
126 | do j1 = 1,m |
---|
127 | do j2 = 1,m |
---|
128 | singlemat_x_vec(1:iend,j1) = singlemat_x_vec(1:iend,j1) & |
---|
129 | & + A(j1,j2)*b(1:iend,j2) |
---|
130 | end do |
---|
131 | end do |
---|
132 | |
---|
133 | if (lhook) call dr_hook('radiation_matrix:single_mat_x_vec',1,hook_handle) |
---|
134 | |
---|
135 | end function singlemat_x_vec |
---|
136 | |
---|
137 | |
---|
138 | ! --- SQUARE MATRIX-MATRIX MULTIPLICATION --- |
---|
139 | |
---|
140 | !--------------------------------------------------------------------- |
---|
141 | ! Treat A and B each as n m-by-m square matrices (with the n |
---|
142 | ! dimension varying fastest) and perform matrix multiplications on |
---|
143 | ! all n matrix pairs |
---|
144 | function mat_x_mat(n,iend,m,A,B,i_matrix_pattern) |
---|
145 | |
---|
146 | use yomhook, only : lhook, dr_hook |
---|
147 | |
---|
148 | integer, intent(in) :: n, m, iend |
---|
149 | integer, intent(in), optional :: i_matrix_pattern |
---|
150 | real(jprb), intent(in), dimension(:,:,:) :: A, B |
---|
151 | |
---|
152 | real(jprb), dimension(iend,m,m) :: mat_x_mat |
---|
153 | integer :: j1, j2, j3 |
---|
154 | integer :: mblock, m2block |
---|
155 | integer :: i_actual_matrix_pattern |
---|
156 | real(jprb) :: hook_handle |
---|
157 | |
---|
158 | if (lhook) call dr_hook('radiation_matrix:mat_x_mat',0,hook_handle) |
---|
159 | |
---|
160 | if (present(i_matrix_pattern)) then |
---|
161 | i_actual_matrix_pattern = i_matrix_pattern |
---|
162 | else |
---|
163 | i_actual_matrix_pattern = IMatrixPatternDense |
---|
164 | end if |
---|
165 | |
---|
166 | ! Array-wise assignment |
---|
167 | mat_x_mat = 0.0_jprb |
---|
168 | |
---|
169 | if (i_actual_matrix_pattern == IMatrixPatternShortwave) then |
---|
170 | ! Matrix has a sparsity pattern |
---|
171 | ! (C D E) |
---|
172 | ! A = (F G H) |
---|
173 | ! (0 0 I) |
---|
174 | mblock = m/3 |
---|
175 | m2block = 2*mblock |
---|
176 | ! Do the top-left (C, D, F, G) |
---|
177 | do j2 = 1,m2block |
---|
178 | do j1 = 1,m2block |
---|
179 | do j3 = 1,m2block |
---|
180 | mat_x_mat(1:iend,j1,j2) = mat_x_mat(1:iend,j1,j2) & |
---|
181 | & + A(1:iend,j1,j3)*B(1:iend,j3,j2) |
---|
182 | end do |
---|
183 | end do |
---|
184 | end do |
---|
185 | do j2 = m2block+1,m |
---|
186 | ! Do the top-right (E & H) |
---|
187 | do j1 = 1,m2block |
---|
188 | do j3 = 1,m |
---|
189 | mat_x_mat(1:iend,j1,j2) = mat_x_mat(1:iend,j1,j2) & |
---|
190 | & + A(1:iend,j1,j3)*B(1:iend,j3,j2) |
---|
191 | end do |
---|
192 | end do |
---|
193 | ! Do the bottom-right (I) |
---|
194 | do j1 = m2block+1,m |
---|
195 | do j3 = m2block+1,m |
---|
196 | mat_x_mat(1:iend,j1,j2) = mat_x_mat(1:iend,j1,j2) & |
---|
197 | & + A(1:iend,j1,j3)*B(1:iend,j3,j2) |
---|
198 | end do |
---|
199 | end do |
---|
200 | end do |
---|
201 | else |
---|
202 | ! Ordinary dense matrix |
---|
203 | do j2 = 1,m |
---|
204 | do j1 = 1,m |
---|
205 | do j3 = 1,m |
---|
206 | mat_x_mat(1:iend,j1,j2) = mat_x_mat(1:iend,j1,j2) & |
---|
207 | & + A(1:iend,j1,j3)*B(1:iend,j3,j2) |
---|
208 | end do |
---|
209 | end do |
---|
210 | end do |
---|
211 | end if |
---|
212 | |
---|
213 | if (lhook) call dr_hook('radiation_matrix:mat_x_mat',1,hook_handle) |
---|
214 | |
---|
215 | end function mat_x_mat |
---|
216 | |
---|
217 | |
---|
218 | !--------------------------------------------------------------------- |
---|
219 | ! Treat A as an m-by-m matrix and B as n m-by-m square matrices |
---|
220 | ! (with the n dimension varying fastest) and perform matrix |
---|
221 | ! multiplications on the first iend matrix pairs |
---|
222 | function singlemat_x_mat(n,iend,m,A,B) |
---|
223 | |
---|
224 | use yomhook, only : lhook, dr_hook |
---|
225 | |
---|
226 | integer, intent(in) :: n, m, iend |
---|
227 | real(jprb), intent(in), dimension(m,m) :: A |
---|
228 | real(jprb), intent(in), dimension(:,:,:) :: B |
---|
229 | real(jprb), dimension(iend,m,m) :: singlemat_x_mat |
---|
230 | |
---|
231 | integer :: j1, j2, j3 |
---|
232 | real(jprb) :: hook_handle |
---|
233 | |
---|
234 | if (lhook) call dr_hook('radiation_matrix:singlemat_x_mat',0,hook_handle) |
---|
235 | |
---|
236 | ! Array-wise assignment |
---|
237 | singlemat_x_mat = 0.0_jprb |
---|
238 | |
---|
239 | do j2 = 1,m |
---|
240 | do j1 = 1,m |
---|
241 | do j3 = 1,m |
---|
242 | singlemat_x_mat(1:iend,j1,j2) = singlemat_x_mat(1:iend,j1,j2) & |
---|
243 | & + A(j1,j3)*B(1:iend,j3,j2) |
---|
244 | end do |
---|
245 | end do |
---|
246 | end do |
---|
247 | |
---|
248 | if (lhook) call dr_hook('radiation_matrix:singlemat_x_mat',1,hook_handle) |
---|
249 | |
---|
250 | end function singlemat_x_mat |
---|
251 | |
---|
252 | |
---|
253 | !--------------------------------------------------------------------- |
---|
254 | ! Treat B as an m-by-m matrix and A as n m-by-m square matrices |
---|
255 | ! (with the n dimension varying fastest) and perform matrix |
---|
256 | ! multiplications on the first iend matrix pairs |
---|
257 | function mat_x_singlemat(n,iend,m,A,B) |
---|
258 | |
---|
259 | use yomhook, only : lhook, dr_hook |
---|
260 | |
---|
261 | integer, intent(in) :: n, m, iend |
---|
262 | real(jprb), intent(in), dimension(:,:,:) :: A |
---|
263 | real(jprb), intent(in), dimension(m,m) :: B |
---|
264 | |
---|
265 | real(jprb), dimension(iend,m,m) :: mat_x_singlemat |
---|
266 | integer :: j1, j2, j3 |
---|
267 | real(jprb) :: hook_handle |
---|
268 | |
---|
269 | if (lhook) call dr_hook('radiation_matrix:mat_x_singlemat',0,hook_handle) |
---|
270 | |
---|
271 | ! Array-wise assignment |
---|
272 | mat_x_singlemat = 0.0_jprb |
---|
273 | |
---|
274 | do j2 = 1,m |
---|
275 | do j1 = 1,m |
---|
276 | do j3 = 1,m |
---|
277 | mat_x_singlemat(1:iend,j1,j2) = mat_x_singlemat(1:iend,j1,j2) & |
---|
278 | & + A(1:iend,j1,j3)*B(j3,j2) |
---|
279 | end do |
---|
280 | end do |
---|
281 | end do |
---|
282 | |
---|
283 | if (lhook) call dr_hook('radiation_matrix:mat_x_singlemat',1,hook_handle) |
---|
284 | |
---|
285 | end function mat_x_singlemat |
---|
286 | |
---|
287 | |
---|
288 | !--------------------------------------------------------------------- |
---|
289 | ! Compute I-A*B where I is the identity matrix and A & B are n |
---|
290 | ! m-by-m square matrices |
---|
291 | function identity_minus_mat_x_mat(n,iend,m,A,B,i_matrix_pattern) |
---|
292 | |
---|
293 | use yomhook, only : lhook, dr_hook |
---|
294 | |
---|
295 | integer, intent(in) :: n, m, iend |
---|
296 | integer, intent(in), optional :: i_matrix_pattern |
---|
297 | real(jprb), intent(in), dimension(:,:,:) :: A, B |
---|
298 | real(jprb), dimension(iend,m,m) :: identity_minus_mat_x_mat |
---|
299 | |
---|
300 | integer :: j |
---|
301 | real(jprb) :: hook_handle |
---|
302 | |
---|
303 | if (lhook) call dr_hook('radiation_matrix:identity_mat_x_mat',0,hook_handle) |
---|
304 | |
---|
305 | if (present(i_matrix_pattern)) then |
---|
306 | identity_minus_mat_x_mat = mat_x_mat(n,iend,m,A,B,i_matrix_pattern) |
---|
307 | else |
---|
308 | identity_minus_mat_x_mat = mat_x_mat(n,iend,m,A,B) |
---|
309 | end if |
---|
310 | |
---|
311 | identity_minus_mat_x_mat = - identity_minus_mat_x_mat |
---|
312 | do j = 1,m |
---|
313 | identity_minus_mat_x_mat(1:iend,j,j) & |
---|
314 | & = 1.0_jprb + identity_minus_mat_x_mat(1:iend,j,j) |
---|
315 | end do |
---|
316 | |
---|
317 | if (lhook) call dr_hook('radiation_matrix:identity_mat_x_mat',1,hook_handle) |
---|
318 | |
---|
319 | end function identity_minus_mat_x_mat |
---|
320 | |
---|
321 | |
---|
322 | ! --- REPEATEDLY SQUARE A MATRIX --- |
---|
323 | |
---|
324 | !--------------------------------------------------------------------- |
---|
325 | ! Square m-by-m matrix "A" nrepeat times. A will be corrupted by |
---|
326 | ! this function. |
---|
327 | function repeated_square(m,A,nrepeat,i_matrix_pattern) |
---|
328 | integer, intent(in) :: m, nrepeat |
---|
329 | real(jprb), intent(inout) :: A(m,m) |
---|
330 | integer, intent(in), optional :: i_matrix_pattern |
---|
331 | real(jprb) :: repeated_square(m,m) |
---|
332 | |
---|
333 | integer :: j1, j2, j3, j4 |
---|
334 | integer :: mblock, m2block |
---|
335 | integer :: i_actual_matrix_pattern |
---|
336 | |
---|
337 | if (present(i_matrix_pattern)) then |
---|
338 | i_actual_matrix_pattern = i_matrix_pattern |
---|
339 | else |
---|
340 | i_actual_matrix_pattern = IMatrixPatternDense |
---|
341 | end if |
---|
342 | |
---|
343 | if (i_actual_matrix_pattern == IMatrixPatternShortwave) then |
---|
344 | ! Matrix has a sparsity pattern |
---|
345 | ! (C D E) |
---|
346 | ! A = (F G H) |
---|
347 | ! (0 0 I) |
---|
348 | mblock = m/3 |
---|
349 | m2block = 2*mblock |
---|
350 | do j4 = 1,nrepeat |
---|
351 | repeated_square = 0.0_jprb |
---|
352 | ! Do the top-left (C, D, F & G) |
---|
353 | do j2 = 1,m2block |
---|
354 | do j1 = 1,m2block |
---|
355 | do j3 = 1,m2block |
---|
356 | repeated_square(j1,j2) = repeated_square(j1,j2) & |
---|
357 | & + A(j1,j3)*A(j3,j2) |
---|
358 | end do |
---|
359 | end do |
---|
360 | end do |
---|
361 | do j2 = m2block+1, m |
---|
362 | ! Do the top-right (E & H) |
---|
363 | do j1 = 1,m2block |
---|
364 | do j3 = 1,m |
---|
365 | repeated_square(j1,j2) = repeated_square(j1,j2) & |
---|
366 | & + A(j1,j3)*A(j3,j2) |
---|
367 | end do |
---|
368 | end do |
---|
369 | ! Do the bottom-right (I) |
---|
370 | do j1 = m2block+1, m |
---|
371 | do j3 = m2block+1,m |
---|
372 | repeated_square(j1,j2) = repeated_square(j1,j2) & |
---|
373 | & + A(j1,j3)*A(j3,j2) |
---|
374 | end do |
---|
375 | end do |
---|
376 | end do |
---|
377 | if (j4 < nrepeat) then |
---|
378 | A = repeated_square |
---|
379 | end if |
---|
380 | end do |
---|
381 | else |
---|
382 | ! Ordinary dense matrix |
---|
383 | do j4 = 1,nrepeat |
---|
384 | repeated_square = 0.0_jprb |
---|
385 | do j2 = 1,m |
---|
386 | do j1 = 1,m |
---|
387 | do j3 = 1,m |
---|
388 | repeated_square(j1,j2) = repeated_square(j1,j2) & |
---|
389 | & + A(j1,j3)*A(j3,j2) |
---|
390 | end do |
---|
391 | end do |
---|
392 | end do |
---|
393 | if (j4 < nrepeat) then |
---|
394 | A = repeated_square |
---|
395 | end if |
---|
396 | end do |
---|
397 | end if |
---|
398 | |
---|
399 | end function repeated_square |
---|
400 | |
---|
401 | |
---|
402 | ! --- SOLVE LINEAR EQUATIONS --- |
---|
403 | |
---|
404 | !--------------------------------------------------------------------- |
---|
405 | ! Solve Ax=b to obtain x. Version optimized for 2x2 matrices using |
---|
406 | ! Cramer's method: "A" contains n 2x2 matrices and "b" contains n |
---|
407 | ! 2-element vectors; returns A^-1 b. |
---|
408 | pure subroutine solve_vec_2(n,iend,A,b,x) |
---|
409 | |
---|
410 | integer, intent(in) :: n, iend |
---|
411 | real(jprb), intent(in) :: A(:,:,:) |
---|
412 | real(jprb), intent(in) :: b(:,:) |
---|
413 | real(jprb), intent(out) :: x(:,:) |
---|
414 | |
---|
415 | real(jprb) :: inv_det(iend) |
---|
416 | |
---|
417 | inv_det = 1.0_jprb / ( A(1:iend,1,1)*A(1:iend,2,2) & |
---|
418 | & - A(1:iend,1,2)*A(1:iend,2,1)) |
---|
419 | |
---|
420 | x(1:iend,1) = inv_det*(A(1:iend,2,2)*b(1:iend,1)-A(1:iend,1,2)*b(1:iend,2)) |
---|
421 | x(1:iend,2) = inv_det*(A(1:iend,1,1)*b(1:iend,2)-A(1:iend,2,1)*b(1:iend,1)) |
---|
422 | |
---|
423 | end subroutine solve_vec_2 |
---|
424 | |
---|
425 | |
---|
426 | !--------------------------------------------------------------------- |
---|
427 | ! Solve AX=B to obtain X, i.e. the matrix right-hand-side version of |
---|
428 | ! solve_vec_2, with A, X and B all containing n 2x2 matrices; |
---|
429 | ! returns A^-1 B using Cramer's method. |
---|
430 | pure subroutine solve_mat_2(n,iend,A,B,X) |
---|
431 | integer, intent(in) :: n, iend |
---|
432 | real(jprb), intent(in) :: A(:,:,:) |
---|
433 | real(jprb), intent(in) :: B(:,:,:) |
---|
434 | real(jprb), intent(out) :: X(:,:,:) |
---|
435 | |
---|
436 | real(jprb) :: inv_det(iend) |
---|
437 | |
---|
438 | inv_det = 1.0_jprb / ( A(1:iend,1,1)*A(1:iend,2,2) & |
---|
439 | & - A(1:iend,1,2)*A(1:iend,2,1)) |
---|
440 | |
---|
441 | X(1:iend,1,1) = inv_det*( A(1:iend,2,2)*B(1:iend,1,1) & |
---|
442 | & -A(1:iend,1,2)*B(1:iend,2,1)) |
---|
443 | X(1:iend,2,1) = inv_det*( A(1:iend,1,1)*B(1:iend,2,1) & |
---|
444 | & -A(1:iend,2,1)*B(1:iend,1,1)) |
---|
445 | X(1:iend,1,2) = inv_det*( A(1:iend,2,2)*B(1:iend,1,2) & |
---|
446 | & -A(1:iend,1,2)*B(1:iend,2,2)) |
---|
447 | X(1:iend,2,2) = inv_det*( A(1:iend,1,1)*B(1:iend,2,2) & |
---|
448 | & -A(1:iend,2,1)*B(1:iend,1,2)) |
---|
449 | |
---|
450 | end subroutine solve_mat_2 |
---|
451 | |
---|
452 | |
---|
453 | !--------------------------------------------------------------------- |
---|
454 | ! Solve Ax=b optimized for 3x3 matrices, using LU |
---|
455 | ! factorization and substitution without pivoting. |
---|
456 | pure subroutine solve_vec_3(n,iend,A,b,x) |
---|
457 | integer, intent(in) :: n, iend |
---|
458 | real(jprb), intent(in) :: A(:,:,:) |
---|
459 | real(jprb), intent(in) :: b(:,:) |
---|
460 | real(jprb), intent(out) :: x(:,:) |
---|
461 | |
---|
462 | real(jprb), dimension(iend) :: L21, L31, L32 |
---|
463 | real(jprb), dimension(iend) :: U22, U23, U33 |
---|
464 | real(jprb), dimension(iend) :: y2, y3 |
---|
465 | |
---|
466 | ! Some compilers unfortunately don't support assocate |
---|
467 | ! associate (U11 => A(:,1,1), U12 => A(:,1,2), U13 => A(1,3), & |
---|
468 | ! y1 => b(:,1), x1 => solve_vec3(:,1), & |
---|
469 | ! x2 => solve_vec3(:,2), x3 => solve_vec3(:,3)) |
---|
470 | |
---|
471 | ! LU decomposition: |
---|
472 | ! ( 1 ) (U11 U12 U13) |
---|
473 | ! A = (L21 1 ) * ( U22 U23) |
---|
474 | ! (L31 L32 1) ( U33) |
---|
475 | L21 = A(1:iend,2,1) / A(1:iend,1,1) |
---|
476 | L31 = A(1:iend,3,1) / A(1:iend,1,1) |
---|
477 | U22 = A(1:iend,2,2) - L21*A(1:iend,1,2) |
---|
478 | U23 = A(1:iend,2,3) - L21*A(1:iend,1,3) |
---|
479 | L32 =(A(1:iend,3,2) - L31*A(1:iend,1,2)) / U22 |
---|
480 | U33 = A(1:iend,3,3) - L31*A(1:iend,1,3) - L32*U23 |
---|
481 | |
---|
482 | ! Solve Ly = b by forward substitution |
---|
483 | y2 = b(1:iend,2) - L21*b(1:iend,1) |
---|
484 | y3 = b(1:iend,3) - L31*b(1:iend,1) - L32*y2 |
---|
485 | |
---|
486 | ! Solve Ux = y by back substitution |
---|
487 | x(1:iend,3) = y3/U33 |
---|
488 | x(1:iend,2) = (y2 - U23*x(1:iend,3)) / U22 |
---|
489 | x(1:iend,1) = (b(1:iend,1) - A(1:iend,1,2)*x(1:iend,2) & |
---|
490 | & - A(1:iend,1,3)*x(1:iend,3)) / A(1:iend,1,1) |
---|
491 | ! end associate |
---|
492 | |
---|
493 | end subroutine solve_vec_3 |
---|
494 | |
---|
495 | |
---|
496 | !--------------------------------------------------------------------- |
---|
497 | ! Solve AX=B optimized for 3x3 matrices, using LU factorization and |
---|
498 | ! substitution with no pivoting. |
---|
499 | pure subroutine solve_mat_3(n,iend,A,B,X) |
---|
500 | integer, intent(in) :: n, iend |
---|
501 | real(jprb), intent(in) :: A(:,:,:) |
---|
502 | real(jprb), intent(in) :: B(:,:,:) |
---|
503 | real(jprb), intent(out) :: X(:,:,:) |
---|
504 | |
---|
505 | real(jprb), dimension(iend) :: L21, L31, L32 |
---|
506 | real(jprb), dimension(iend) :: U22, U23, U33 |
---|
507 | real(jprb), dimension(iend) :: y2, y3 |
---|
508 | |
---|
509 | integer :: j |
---|
510 | |
---|
511 | ! associate (U11 => A(:,1,1), U12 => A(:,1,2), U13 => A(1,3)) |
---|
512 | ! LU decomposition: |
---|
513 | ! ( 1 ) (U11 U12 U13) |
---|
514 | ! A = (L21 1 ) * ( U22 U23) |
---|
515 | ! (L31 L32 1) ( U33) |
---|
516 | L21 = A(1:iend,2,1) / A(1:iend,1,1) |
---|
517 | L31 = A(1:iend,3,1) / A(1:iend,1,1) |
---|
518 | U22 = A(1:iend,2,2) - L21*A(1:iend,1,2) |
---|
519 | U23 = A(1:iend,2,3) - L21*A(1:iend,1,3) |
---|
520 | L32 =(A(1:iend,3,2) - L31*A(1:iend,1,2)) / U22 |
---|
521 | U33 = A(1:iend,3,3) - L31*A(1:iend,1,3) - L32*U23 |
---|
522 | |
---|
523 | do j = 1,3 |
---|
524 | ! Solve Ly = B(:,:,j) by forward substitution |
---|
525 | ! y1 = B(:,1,j) |
---|
526 | y2 = B(1:iend,2,j) - L21*B(1:iend,1,j) |
---|
527 | y3 = B(1:iend,3,j) - L31*B(1:iend,1,j) - L32*y2 |
---|
528 | ! Solve UX(:,:,j) = y by back substitution |
---|
529 | X(1:iend,3,j) = y3 / U33 |
---|
530 | X(1:iend,2,j) = (y2 - U23*X(1:iend,3,j)) / U22 |
---|
531 | X(1:iend,1,j) = (B(1:iend,1,j) - A(1:iend,1,2)*X(1:iend,2,j) & |
---|
532 | & - A(1:iend,1,3)*X(1:iend,3,j)) / A(1:iend,1,1) |
---|
533 | end do |
---|
534 | |
---|
535 | end subroutine solve_mat_3 |
---|
536 | |
---|
537 | |
---|
538 | !--------------------------------------------------------------------- |
---|
539 | ! Return X = B A^-1 = (A^-T B)^T optimized for 3x3 matrices, where B |
---|
540 | ! is a diagonal matrix, using LU factorization and substitution with |
---|
541 | ! no pivoting. |
---|
542 | pure subroutine diag_mat_right_divide_3(n,iend,A,B,X) |
---|
543 | integer, intent(in) :: n, iend |
---|
544 | real(jprb), intent(in) :: A(iend,3,3) |
---|
545 | real(jprb), intent(in) :: B(iend,3) |
---|
546 | real(jprb), intent(out) :: X(n,3,3) |
---|
547 | |
---|
548 | real(jprb), dimension(iend) :: L21, L31, L32 |
---|
549 | real(jprb), dimension(iend) :: U22, U23, U33 |
---|
550 | real(jprb), dimension(iend) :: y2, y3 |
---|
551 | |
---|
552 | integer :: j |
---|
553 | |
---|
554 | ! associate (U11 => A(:,1,1), U12 => A(:,1,2), U13 => A(1,3)) |
---|
555 | ! LU decomposition of the *transpose* of A: |
---|
556 | ! ( 1 ) (U11 U12 U13) |
---|
557 | ! A^T = (L21 1 ) * ( U22 U23) |
---|
558 | ! (L31 L32 1) ( U33) |
---|
559 | L21 = A(1:iend,1,2) / A(1:iend,1,1) |
---|
560 | L31 = A(1:iend,1,3) / A(1:iend,1,1) |
---|
561 | U22 = A(1:iend,2,2) - L21*A(1:iend,2,1) |
---|
562 | U23 = A(1:iend,3,2) - L21*A(1:iend,3,1) |
---|
563 | L32 =(A(1:iend,2,3) - L31*A(1:iend,2,1)) / U22 |
---|
564 | U33 = A(1:iend,3,3) - L31*A(1:iend,3,1) - L32*U23 |
---|
565 | |
---|
566 | ! Solve X(1,:) = A^-T ( B(1) ) |
---|
567 | ! ( 0 ) |
---|
568 | ! ( 0 ) |
---|
569 | ! Solve Ly = B(:,:,j) by forward substitution |
---|
570 | ! y1 = B(:,1) |
---|
571 | y2 = - L21*B(1:iend,1) |
---|
572 | y3 = - L31*B(1:iend,1) - L32*y2 |
---|
573 | ! Solve UX(:,:,j) = y by back substitution |
---|
574 | X(1:iend,1,3) = y3 / U33 |
---|
575 | X(1:iend,1,2) = (y2 - U23*X(1:iend,1,3)) / U22 |
---|
576 | X(1:iend,1,1) = (B(1:iend,1) - A(1:iend,2,1)*X(1:iend,1,2) & |
---|
577 | & - A(1:iend,3,1)*X(1:iend,1,3)) / A(1:iend,1,1) |
---|
578 | |
---|
579 | ! Solve X(2,:) = A^-T ( 0 ) |
---|
580 | ! ( B(2) ) |
---|
581 | ! ( 0 ) |
---|
582 | ! Solve Ly = B(:,:,j) by forward substitution |
---|
583 | ! y1 = 0 |
---|
584 | ! y2 = B(1:iend,2) |
---|
585 | y3 = - L32*B(1:iend,2) |
---|
586 | ! Solve UX(:,:,j) = y by back substitution |
---|
587 | X(1:iend,2,3) = y3 / U33 |
---|
588 | X(1:iend,2,2) = (B(1:iend,2) - U23*X(1:iend,2,3)) / U22 |
---|
589 | X(1:iend,2,1) = (-A(1:iend,2,1)*X(1:iend,2,2) & |
---|
590 | & -A(1:iend,3,1)*X(1:iend,2,3)) / A(1:iend,1,1) |
---|
591 | |
---|
592 | ! Solve X(3,:) = A^-T ( 0 ) |
---|
593 | ! ( 0 ) |
---|
594 | ! ( B(3) ) |
---|
595 | ! Solve Ly = B(:,:,j) by forward substitution |
---|
596 | ! y1 = 0 |
---|
597 | ! y2 = 0 |
---|
598 | ! y3 = B(1:iend,3) |
---|
599 | ! Solve UX(:,:,j) = y by back substitution |
---|
600 | X(1:iend,3,3) = B(1:iend,3) / U33 |
---|
601 | X(1:iend,3,2) = -U23*X(1:iend,3,3) / U22 |
---|
602 | X(1:iend,3,1) = (-A(1:iend,2,1)*X(1:iend,3,2) & |
---|
603 | & - A(1:iend,3,1)*X(1:iend,3,3)) / A(1:iend,1,1) |
---|
604 | |
---|
605 | end subroutine diag_mat_right_divide_3 |
---|
606 | |
---|
607 | |
---|
608 | !--------------------------------------------------------------------- |
---|
609 | ! Treat A as n m-by-m matrices and return the LU factorization of A |
---|
610 | ! compressed into a single matrice (with L below the diagonal and U |
---|
611 | ! on and above the diagonal; the diagonal elements of L are 1). No |
---|
612 | ! pivoting is performed. |
---|
613 | pure subroutine lu_factorization(n, iend, m, A, LU) |
---|
614 | integer, intent(in) :: n, m, iend |
---|
615 | real(jprb), intent(in) :: A(:,:,:) |
---|
616 | real(jprb), intent(out) :: LU(iend,m,m) |
---|
617 | |
---|
618 | real(jprb) :: s(iend) |
---|
619 | integer :: j1, j2, j3 |
---|
620 | |
---|
621 | ! This routine is adapted from an in-place one, so we first copy |
---|
622 | ! the input into the output. |
---|
623 | LU(1:iend,1:m,1:m) = A(1:iend,1:m,1:m) |
---|
624 | |
---|
625 | do j2 = 1, m |
---|
626 | do j1 = 1, j2-1 |
---|
627 | s = LU(1:iend,j1,j2) |
---|
628 | do j3 = 1, j1-1 |
---|
629 | s = s - LU(1:iend,j1,j3) * LU(1:iend,j3,j2) |
---|
630 | end do |
---|
631 | LU(1:iend,j1,j2) = s |
---|
632 | end do |
---|
633 | do j1 = j2, m |
---|
634 | s = LU(1:iend,j1,j2) |
---|
635 | do j3 = 1, j2-1 |
---|
636 | s = s - LU(1:iend,j1,j3) * LU(1:iend,j3,j2) |
---|
637 | end do |
---|
638 | LU(1:iend,j1,j2) = s |
---|
639 | end do |
---|
640 | if (j2 /= m) then |
---|
641 | s = 1.0_jprb / LU(1:iend,j2,j2) |
---|
642 | do j1 = j2+1, m |
---|
643 | LU(1:iend,j1,j2) = LU(1:iend,j1,j2) * s |
---|
644 | end do |
---|
645 | end if |
---|
646 | end do |
---|
647 | |
---|
648 | end subroutine lu_factorization |
---|
649 | |
---|
650 | |
---|
651 | !--------------------------------------------------------------------- |
---|
652 | ! Treat LU as an LU-factorization of an original matrix A, and |
---|
653 | ! return x where Ax=b. LU consists of n m-by-m matrices and b as n |
---|
654 | ! m-element vectors. |
---|
655 | pure subroutine lu_substitution(n,iend,m,LU,b,x) |
---|
656 | ! CHECK: dimensions should be ":"? |
---|
657 | integer, intent(in) :: n, m, iend |
---|
658 | real(jprb), intent(in) :: LU(iend,m,m) |
---|
659 | real(jprb), intent(in) :: b(:,:) |
---|
660 | real(jprb), intent(out):: x(iend,m) |
---|
661 | |
---|
662 | integer :: j1, j2 |
---|
663 | |
---|
664 | x(1:iend,1:m) = b(1:iend,1:m) |
---|
665 | |
---|
666 | ! First solve Ly=b |
---|
667 | do j2 = 2, m |
---|
668 | do j1 = 1, j2-1 |
---|
669 | x(1:iend,j2) = x(1:iend,j2) - x(1:iend,j1)*LU(1:iend,j2,j1) |
---|
670 | end do |
---|
671 | end do |
---|
672 | ! Now solve Ux=y |
---|
673 | do j2 = m, 1, -1 |
---|
674 | do j1 = j2+1, m |
---|
675 | x(1:iend,j2) = x(1:iend,j2) - x(1:iend,j1)*LU(1:iend,j2,j1) |
---|
676 | end do |
---|
677 | x(1:iend,j2) = x(1:iend,j2) / LU(1:iend,j2,j2) |
---|
678 | end do |
---|
679 | |
---|
680 | end subroutine lu_substitution |
---|
681 | |
---|
682 | |
---|
683 | !--------------------------------------------------------------------- |
---|
684 | ! Return matrix X where AX=B. LU, A, X, B all consist of n m-by-m |
---|
685 | ! matrices. |
---|
686 | pure subroutine solve_mat_n(n,iend,m,A,B,X) |
---|
687 | integer, intent(in) :: n, m, iend |
---|
688 | real(jprb), intent(in) :: A(:,:,:) |
---|
689 | real(jprb), intent(in) :: B(:,:,:) |
---|
690 | real(jprb), intent(out):: X(iend,m,m) |
---|
691 | |
---|
692 | real(jprb) :: LU(iend,m,m) |
---|
693 | |
---|
694 | integer :: j |
---|
695 | |
---|
696 | call lu_factorization(n,iend,m,A,LU) |
---|
697 | |
---|
698 | do j = 1, m |
---|
699 | call lu_substitution(n,iend,m,LU,B(1:,1:m,j),X(1:iend,1:m,j)) |
---|
700 | ! call lu_substitution(n,iend,m,LU,B(1:n,1:m,j),X(1:iend,1:m,j)) |
---|
701 | end do |
---|
702 | |
---|
703 | end subroutine solve_mat_n |
---|
704 | |
---|
705 | |
---|
706 | !--------------------------------------------------------------------- |
---|
707 | ! Solve Ax=b, where A consists of n m-by-m matrices and x and b |
---|
708 | ! consist of n m-element vectors. For m=2 or m=3, this function |
---|
709 | ! calls optimized versions, otherwise it uses general LU |
---|
710 | ! decomposition without pivoting. |
---|
711 | function solve_vec(n,iend,m,A,b) |
---|
712 | |
---|
713 | use yomhook, only : lhook, dr_hook |
---|
714 | |
---|
715 | integer, intent(in) :: n, m, iend |
---|
716 | real(jprb), intent(in) :: A(:,:,:) |
---|
717 | real(jprb), intent(in) :: b(:,:) |
---|
718 | |
---|
719 | real(jprb) :: solve_vec(iend,m) |
---|
720 | real(jprb) :: LU(iend,m,m) |
---|
721 | real(jprb) :: hook_handle |
---|
722 | |
---|
723 | if (lhook) call dr_hook('radiation_matrix:solve_vec',0,hook_handle) |
---|
724 | |
---|
725 | if (m == 2) then |
---|
726 | call solve_vec_2(n,iend,A,b,solve_vec) |
---|
727 | elseif (m == 3) then |
---|
728 | call solve_vec_3(n,iend,A,b,solve_vec) |
---|
729 | else |
---|
730 | call lu_factorization(n,iend,m,A,LU) |
---|
731 | call lu_substitution(n,iend,m,LU,b,solve_vec) |
---|
732 | end if |
---|
733 | |
---|
734 | if (lhook) call dr_hook('radiation_matrix:solve_vec',1,hook_handle) |
---|
735 | |
---|
736 | end function solve_vec |
---|
737 | |
---|
738 | |
---|
739 | !--------------------------------------------------------------------- |
---|
740 | ! Solve AX=B, where A, X and B consist of n m-by-m matrices. For m=2 |
---|
741 | ! or m=3, this function calls optimized versions, otherwise it uses |
---|
742 | ! general LU decomposition without pivoting. |
---|
743 | function solve_mat(n,iend,m,A,B) |
---|
744 | |
---|
745 | use yomhook, only : lhook, dr_hook |
---|
746 | |
---|
747 | integer, intent(in) :: n, m, iend |
---|
748 | real(jprb), intent(in) :: A(:,:,:) |
---|
749 | real(jprb), intent(in) :: B(:,:,:) |
---|
750 | |
---|
751 | real(jprb) :: solve_mat(iend,m,m) |
---|
752 | real(jprb) :: hook_handle |
---|
753 | |
---|
754 | if (lhook) call dr_hook('radiation_matrix:solve_mat',0,hook_handle) |
---|
755 | |
---|
756 | if (m == 2) then |
---|
757 | call solve_mat_2(n,iend,A,B,solve_mat) |
---|
758 | elseif (m == 3) then |
---|
759 | call solve_mat_3(n,iend,A,B,solve_mat) |
---|
760 | else |
---|
761 | call solve_mat_n(n,iend,m,A,B,solve_mat) |
---|
762 | end if |
---|
763 | |
---|
764 | if (lhook) call dr_hook('radiation_matrix:solve_mat',1,hook_handle) |
---|
765 | |
---|
766 | end function solve_mat |
---|
767 | |
---|
768 | |
---|
769 | ! --- MATRIX EXPONENTIATION --- |
---|
770 | |
---|
771 | !--------------------------------------------------------------------- |
---|
772 | ! Perform matrix exponential of n m-by-m matrices stored in A (where |
---|
773 | ! index n varies fastest) using the Higham scaling and squaring |
---|
774 | ! method. The result is placed in A. This routine is intended for |
---|
775 | ! speed so is accurate only to single precision. For simplicity and |
---|
776 | ! to aid vectorization, the Pade approximant of order 7 is used for |
---|
777 | ! all input matrices, perhaps leading to a few too many |
---|
778 | ! multiplications for matrices with a small norm. |
---|
779 | subroutine expm(n,iend,m,A,i_matrix_pattern) |
---|
780 | |
---|
781 | use yomhook, only : lhook, dr_hook |
---|
782 | |
---|
783 | integer, intent(in) :: n, m, iend |
---|
784 | real(jprb), intent(inout) :: A(n,m,m) |
---|
785 | integer, intent(in) :: i_matrix_pattern |
---|
786 | |
---|
787 | real(jprb), parameter :: theta(3) = (/4.258730016922831e-01_jprb, & |
---|
788 | & 1.880152677804762e+00_jprb, & |
---|
789 | & 3.925724783138660e+00_jprb/) |
---|
790 | real(jprb), parameter :: c(8) = (/17297280.0_jprb, 8648640.0_jprb, & |
---|
791 | & 1995840.0_jprb, 277200.0_jprb, 25200.0_jprb, & |
---|
792 | & 1512.0_jprb, 56.0_jprb, 1.0_jprb/) |
---|
793 | |
---|
794 | real(jprb), dimension(iend,m,m) :: A2, A4, A6 |
---|
795 | real(jprb), dimension(iend,m,m) :: U, V |
---|
796 | |
---|
797 | real(jprb) :: normA(iend), sum_column(iend) |
---|
798 | |
---|
799 | integer :: j1, j2, j3 |
---|
800 | real(jprb) :: frac(iend) |
---|
801 | integer :: expo(iend) |
---|
802 | real(jprb) :: scaling(iend) |
---|
803 | |
---|
804 | real(jprb) :: hook_handle |
---|
805 | |
---|
806 | if (lhook) call dr_hook('radiation_matrix:expm',0,hook_handle) |
---|
807 | |
---|
808 | normA = 0.0_jprb |
---|
809 | |
---|
810 | ! Compute the 1-norms of A |
---|
811 | do j3 = 1,m |
---|
812 | sum_column(:) = 0.0_jprb |
---|
813 | do j2 = 1,m |
---|
814 | do j1 = 1,iend |
---|
815 | sum_column(j1) = sum_column(j1) + abs(A(j1,j2,j3)) |
---|
816 | end do |
---|
817 | end do |
---|
818 | do j1 = 1,iend |
---|
819 | if (sum_column(j1) > normA(j1)) then |
---|
820 | normA(j1) = sum_column(j1) |
---|
821 | end if |
---|
822 | end do |
---|
823 | end do |
---|
824 | |
---|
825 | frac = fraction(normA/theta(3)) |
---|
826 | expo = exponent(normA/theta(3)) |
---|
827 | where (frac == 0.5_jprb) |
---|
828 | expo = expo - 1 |
---|
829 | end where |
---|
830 | |
---|
831 | where (expo < 0) |
---|
832 | expo = 0 |
---|
833 | end where |
---|
834 | |
---|
835 | ! Scale the input matrices by a power of 2 |
---|
836 | scaling = 2.0_jprb**(-expo) |
---|
837 | do j3 = 1,m |
---|
838 | do j2 = 1,m |
---|
839 | A(1:iend,j2,j3) = A(1:iend,j2,j3) * scaling |
---|
840 | end do |
---|
841 | end do |
---|
842 | ! Pade approximant of degree 7 |
---|
843 | A2 = mat_x_mat(n,iend,m,A, A, i_matrix_pattern) |
---|
844 | A4 = mat_x_mat(n,iend,m,A2,A2,i_matrix_pattern) |
---|
845 | A6 = mat_x_mat(n,iend,m,A2,A4,i_matrix_pattern) |
---|
846 | |
---|
847 | V = c(8)*A6 + c(6)*A4 + c(4)*A2 |
---|
848 | do j3 = 1,m |
---|
849 | V(:,j3,j3) = V(:,j3,j3) + c(2) |
---|
850 | end do |
---|
851 | U = mat_x_mat(n,iend,m,A,V,i_matrix_pattern) |
---|
852 | V = c(7)*A6 + c(5)*A4 + c(3)*A2 |
---|
853 | ! Add a multiple of the identity matrix |
---|
854 | do j3 = 1,m |
---|
855 | V(:,j3,j3) = V(:,j3,j3) + c(1) |
---|
856 | end do |
---|
857 | |
---|
858 | V = V-U |
---|
859 | U = 2.0_jprb*U |
---|
860 | A(1:iend,1:m,1:m) = solve_mat(n,iend,m,V,U) |
---|
861 | |
---|
862 | ! Add the identity matrix |
---|
863 | do j3 = 1,m |
---|
864 | A(1:iend,j3,j3) = A(1:iend,j3,j3) + 1.0_jprb |
---|
865 | end do |
---|
866 | |
---|
867 | ! Loop through the matrices |
---|
868 | do j1 = 1,iend |
---|
869 | if (expo(j1) > 0) then |
---|
870 | ! Square matrix j1 expo(j1) times |
---|
871 | A(j1,:,:) = repeated_square(m,A(j1,:,:),expo(j1),i_matrix_pattern) |
---|
872 | end if |
---|
873 | end do |
---|
874 | |
---|
875 | if (lhook) call dr_hook('radiation_matrix:expm',1,hook_handle) |
---|
876 | |
---|
877 | end subroutine expm |
---|
878 | |
---|
879 | |
---|
880 | !--------------------------------------------------------------------- |
---|
881 | ! Return the matrix exponential of n 2x2 matrices representing |
---|
882 | ! conservative exchange between SPARTACUS regions, where the |
---|
883 | ! matrices have the structure |
---|
884 | ! (-a b) |
---|
885 | ! ( a -b) |
---|
886 | ! and a and b are assumed to be positive or zero. The solution uses |
---|
887 | ! Putzer's algorithm - see the appendix of Hogan et al. (GMD 2018) |
---|
888 | subroutine fast_expm_exchange_2(n,iend,a,b,R) |
---|
889 | |
---|
890 | use yomhook, only : lhook, dr_hook |
---|
891 | |
---|
892 | integer, intent(in) :: n, iend |
---|
893 | real(jprb), dimension(n), intent(in) :: a, b |
---|
894 | real(jprb), dimension(n,2,2), intent(out) :: R |
---|
895 | |
---|
896 | real(jprb), dimension(iend) :: factor |
---|
897 | |
---|
898 | real(jprb) :: hook_handle |
---|
899 | |
---|
900 | if (lhook) call dr_hook('radiation_matrix:fast_expm_exchange_2',0,hook_handle) |
---|
901 | |
---|
902 | ! Security to ensure that if a==b==0 then the identity matrix is returned |
---|
903 | factor = (1.0_jprb - exp(-(a(1:iend)+b(1:iend))))/max(1.0e-12_jprb,a(1:iend)+b(1:iend)) |
---|
904 | |
---|
905 | R(1:iend,1,1) = 1.0_jprb - factor*a(1:iend) |
---|
906 | R(1:iend,2,1) = factor*a(1:iend) |
---|
907 | R(1:iend,1,2) = factor*b(1:iend) |
---|
908 | R(1:iend,2,2) = 1.0_jprb - factor*b(1:iend) |
---|
909 | |
---|
910 | if (lhook) call dr_hook('radiation_matrix:fast_expm_exchange_2',1,hook_handle) |
---|
911 | |
---|
912 | end subroutine fast_expm_exchange_2 |
---|
913 | |
---|
914 | |
---|
915 | !--------------------------------------------------------------------- |
---|
916 | ! Return the matrix exponential of n 3x3 matrices representing |
---|
917 | ! conservative exchange between SPARTACUS regions, where the |
---|
918 | ! matrices have the structure |
---|
919 | ! (-a b 0) |
---|
920 | ! ( a -b-c d) |
---|
921 | ! ( 0 c -d) |
---|
922 | ! and a-d are assumed to be positive or zero. The solution uses the |
---|
923 | ! diagonalization method and is a slight generalization of the |
---|
924 | ! solution provided in the appendix of Hogan et al. (GMD 2018), |
---|
925 | ! which assumed c==d. |
---|
926 | subroutine fast_expm_exchange_3(n,iend,a,b,c,d,R) |
---|
927 | |
---|
928 | use yomhook, only : lhook, dr_hook |
---|
929 | |
---|
930 | real(jprb), parameter :: my_epsilon = 1.0e-12_jprb |
---|
931 | |
---|
932 | integer, intent(in) :: n, iend |
---|
933 | real(jprb), dimension(n), intent(in) :: a, b, c, d |
---|
934 | real(jprb), dimension(n,3,3), intent(out) :: R |
---|
935 | |
---|
936 | ! Eigenvectors |
---|
937 | real(jprb), dimension(iend,3,3) :: V |
---|
938 | |
---|
939 | ! Non-zero Eigenvalues |
---|
940 | real(jprb), dimension(iend) :: lambda1, lambda2 |
---|
941 | |
---|
942 | ! Diagonal matrix of the exponential of the eigenvalues |
---|
943 | real(jprb), dimension(iend,3) :: diag |
---|
944 | |
---|
945 | ! Result of diag right-divided by V |
---|
946 | real(jprb), dimension(iend,3,3) :: diag_rdivide_V |
---|
947 | |
---|
948 | ! Intermediate arrays |
---|
949 | real(jprb), dimension(iend) :: tmp1, tmp2 |
---|
950 | |
---|
951 | integer :: j1, j2 |
---|
952 | |
---|
953 | real(jprb) :: hook_handle |
---|
954 | |
---|
955 | if (lhook) call dr_hook('radiation_matrix:fast_expm_exchange_3',0,hook_handle) |
---|
956 | |
---|
957 | ! Eigenvalues |
---|
958 | tmp1 = 0.5_jprb * (a(1:iend)+b(1:iend)+c(1:iend)+d(1:iend)) |
---|
959 | tmp2 = sqrt(tmp1*tmp1 - (a(1:iend)*c(1:iend) + a(1:iend)*d(1:iend) + b(1:iend)*d(1:iend))) |
---|
960 | lambda1 = -tmp1 + tmp2 |
---|
961 | lambda2 = -tmp1 - tmp2 |
---|
962 | |
---|
963 | ! Eigenvectors, with securities such taht if a--d are all zero |
---|
964 | ! then V is non-singular and the identity matrix is returned in R; |
---|
965 | ! note that lambdaX is typically negative so we need a |
---|
966 | ! sign-preserving security |
---|
967 | V(1:iend,1,1) = max(my_epsilon, b(1:iend)) & |
---|
968 | & / sign(max(my_epsilon, abs(a(1:iend) + lambda1)), a(1:iend) + lambda1) |
---|
969 | V(1:iend,1,2) = b(1:iend) & |
---|
970 | & / sign(max(my_epsilon, abs(a(1:iend) + lambda2)), a(1:iend) + lambda2) |
---|
971 | V(1:iend,1,3) = b(1:iend) / max(my_epsilon, a(1:iend)) |
---|
972 | V(1:iend,2,:) = 1.0_jprb |
---|
973 | V(1:iend,3,1) = c(1:iend) & |
---|
974 | & / sign(max(my_epsilon, abs(d(1:iend) + lambda1)), d(1:iend) + lambda1) |
---|
975 | V(1:iend,3,2) = c(1:iend) & |
---|
976 | & / sign(max(my_epsilon, abs(d(1:iend) + lambda2)), d(1:iend) + lambda2) |
---|
977 | V(1:iend,3,3) = max(my_epsilon, c(1:iend)) / max(my_epsilon, d(1:iend)) |
---|
978 | |
---|
979 | diag(:,1) = exp(lambda1) |
---|
980 | diag(:,2) = exp(lambda2) |
---|
981 | diag(:,3) = 1.0_jprb |
---|
982 | |
---|
983 | ! Compute diag_rdivide_V = diag * V^-1 |
---|
984 | call diag_mat_right_divide_3(iend,iend,V,diag,diag_rdivide_V) |
---|
985 | |
---|
986 | ! Compute V * diag_rdivide_V |
---|
987 | do j1 = 1,3 |
---|
988 | do j2 = 1,3 |
---|
989 | R(1:iend,j2,j1) = V(1:iend,j2,1)*diag_rdivide_V(1:iend,1,j1) & |
---|
990 | & + V(1:iend,j2,2)*diag_rdivide_V(1:iend,2,j1) & |
---|
991 | & + V(1:iend,j2,3)*diag_rdivide_V(1:iend,3,j1) |
---|
992 | end do |
---|
993 | end do |
---|
994 | |
---|
995 | if (lhook) call dr_hook('radiation_matrix:fast_expm_exchange_3',1,hook_handle) |
---|
996 | |
---|
997 | end subroutine fast_expm_exchange_3 |
---|
998 | |
---|
999 | ! generic :: fast_expm_exchange => fast_expm_exchange_2, fast_expm_exchange_3 |
---|
1000 | |
---|
1001 | |
---|
1002 | end module radiation_matrix |
---|