1 | ! radiation_config.F90 - Derived type to configure the radiation scheme |
---|
2 | ! |
---|
3 | ! (C) Copyright 2014- ECMWF. |
---|
4 | ! |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | ! |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | ! |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! |
---|
15 | ! Modifications |
---|
16 | ! 2017-07-22 R. Hogan Added Yi et al. ice optics model |
---|
17 | ! 2017-10-23 R. Hogan Renamed single-character variables |
---|
18 | ! 2018-03-15 R. Hogan Added logicals controlling surface spectral treatment |
---|
19 | ! 2018-08-29 R. Hogan Added monochromatic single-scattering albedo / asymmetry factor |
---|
20 | ! 2018-09-03 R. Hogan Added min_cloud_effective_size |
---|
21 | ! 2018-09-04 R. Hogan Added encroachment_scaling |
---|
22 | ! 2018-09-13 R. Hogan Added IEncroachmentFractal |
---|
23 | ! 2019-01-02 R. Hogan Added Cloudless solvers |
---|
24 | ! 2019-01-14 R. Hogan Added out_of_bounds_[1,2,3]d for checker routines |
---|
25 | ! 2019-01-18 R. Hogan Added albedo weighting |
---|
26 | ! 2019-02-03 R. Hogan Added ability to fix out-of-physical-bounds inputs |
---|
27 | ! 2019-02-10 R. Hogan Renamed "encroachment" to "entrapment" |
---|
28 | ! |
---|
29 | ! Note: The aim is for ecRad in the IFS to be as similar as possible |
---|
30 | ! to the offline version, so if you make any changes to this or any |
---|
31 | ! files in this directory, please inform Robin Hogan. |
---|
32 | ! |
---|
33 | |
---|
34 | module radiation_config |
---|
35 | |
---|
36 | use parkind1, only : jprb |
---|
37 | |
---|
38 | use radiation_cloud_optics_data, only : cloud_optics_type |
---|
39 | use radiation_aerosol_optics_data, only : aerosol_optics_type |
---|
40 | use radiation_pdf_sampler, only : pdf_sampler_type |
---|
41 | use radiation_cloud_cover, only : OverlapName, & |
---|
42 | & IOverlapMaximumRandom, IOverlapExponentialRandom, IOverlapExponential |
---|
43 | |
---|
44 | implicit none |
---|
45 | public |
---|
46 | |
---|
47 | ! Configuration codes: use C-style enumerators to avoid having to |
---|
48 | ! remember the numbers |
---|
49 | |
---|
50 | ! Solvers: can be specified for longwave and shortwave |
---|
51 | ! independently, except for "Homogeneous", which must be the same |
---|
52 | ! for both |
---|
53 | enum, bind(c) |
---|
54 | enumerator ISolverCloudless, ISolverHomogeneous, ISolverMcICA, & |
---|
55 | & ISolverSpartacus, ISolverTripleclouds |
---|
56 | end enum |
---|
57 | character(len=*), parameter :: SolverName(0:4) = (/ 'Cloudless ', & |
---|
58 | & 'Homogeneous ', & |
---|
59 | & 'McICA ', & |
---|
60 | & 'SPARTACUS ', & |
---|
61 | & 'Tripleclouds' /) |
---|
62 | |
---|
63 | ! SPARTACUS shortwave solver can treat the reflection of radiation |
---|
64 | ! back up into different regions in various ways |
---|
65 | enum, bind(c) |
---|
66 | enumerator & |
---|
67 | & IEntrapmentZero, & ! No entrapment, as Tripleclouds |
---|
68 | & IEntrapmentEdgeOnly, & ! Only radiation passed through cloud edge is horizontally homogenized |
---|
69 | & IEntrapmentExplicit, & ! Estimate horiz migration dist, account for fractal clouds |
---|
70 | & IEntrapmentExplicitNonFractal, & ! As above but ignore fractal nature of clouds |
---|
71 | & IEntrapmentMaximum ! Complete horizontal homogenization within regions (old SPARTACUS assumption) |
---|
72 | |
---|
73 | end enum |
---|
74 | |
---|
75 | ! Names available in the radiation namelist for variable |
---|
76 | ! sw_entrapment_name |
---|
77 | character(len=*), parameter :: EntrapmentName(0:4) = [ 'Zero ', & |
---|
78 | & 'Edge-only ', & |
---|
79 | & 'Explicit ', & |
---|
80 | & 'Non-fractal', & |
---|
81 | & 'Maximum ' ] |
---|
82 | ! For backwards compatibility, the radiation namelist also supports |
---|
83 | ! the equivalent variable sw_encroachment_name with the following |
---|
84 | ! names |
---|
85 | character(len=*), parameter :: EncroachmentName(0:4) = [ 'Zero ', & |
---|
86 | & 'Minimum ', & |
---|
87 | & 'Fractal ', & |
---|
88 | & 'Computed', & |
---|
89 | & 'Maximum ' ] |
---|
90 | |
---|
91 | ! Two-stream models |
---|
92 | ! This is not configurable at run-time |
---|
93 | |
---|
94 | ! Gas models |
---|
95 | enum, bind(c) |
---|
96 | enumerator IGasModelMonochromatic, IGasModelIFSRRTMG |
---|
97 | end enum |
---|
98 | character(len=*), parameter :: GasModelName(0:1) = (/ 'Monochromatic', & |
---|
99 | & 'RRTMG-IFS ' /) |
---|
100 | |
---|
101 | ! Hydrometeor scattering models |
---|
102 | enum, bind(c) |
---|
103 | enumerator ILiquidModelMonochromatic, & |
---|
104 | & ILiquidModelSOCRATES, ILiquidModelSlingo |
---|
105 | end enum |
---|
106 | character(len=*), parameter :: LiquidModelName(0:2) = (/ 'Monochromatic', & |
---|
107 | & 'SOCRATES ', & |
---|
108 | & 'Slingo ' /) |
---|
109 | |
---|
110 | enum, bind(c) |
---|
111 | enumerator IIceModelMonochromatic, IIceModelFu, & |
---|
112 | & IIceModelBaran, IIceModelBaran2016, IIceModelBaran2017, & |
---|
113 | & IIceModelYi |
---|
114 | end enum |
---|
115 | character(len=*), parameter :: IceModelName(0:5) = (/ 'Monochromatic', & |
---|
116 | & 'Fu-IFS ', & |
---|
117 | & 'Baran ', & |
---|
118 | & 'Baran2016 ', & |
---|
119 | & 'Baran2017 ', & |
---|
120 | & 'Yi ' /) |
---|
121 | |
---|
122 | ! Cloud PDF distribution shapes |
---|
123 | enum, bind(c) |
---|
124 | enumerator IPdfShapeLognormal, IPdfShapeGamma |
---|
125 | end enum |
---|
126 | character(len=*), parameter :: PdfShapeName(0:1) = (/ 'Lognormal', & |
---|
127 | & 'Gamma ' /) |
---|
128 | |
---|
129 | ! Maximum number of different aerosol types that can be provided |
---|
130 | integer, parameter :: NMaxAerosolTypes = 256 |
---|
131 | |
---|
132 | ! Maximum number of shortwave albedo and longwave emissivity |
---|
133 | ! intervals |
---|
134 | integer, parameter :: NMaxAlbedoIntervals = 256 |
---|
135 | |
---|
136 | ! Length of string buffer for printing config information |
---|
137 | integer, parameter :: NPrintStringLen = 60 |
---|
138 | |
---|
139 | !--------------------------------------------------------------------- |
---|
140 | ! Derived type containing all the configuration information needed |
---|
141 | ! to run the radiation scheme. The intention is that this is fixed |
---|
142 | ! for a given model run. The parameters are to list first those |
---|
143 | ! quantities that can be set directly by the user, for example using a |
---|
144 | ! namelist, and second those quantities that are computed afterwards |
---|
145 | ! from the user-supplied numbers, especially the details of the gas |
---|
146 | ! optics model. |
---|
147 | type config_type |
---|
148 | ! USER-CONFIGURABLE PARAMETERS |
---|
149 | |
---|
150 | ! Override default solar spectrum |
---|
151 | logical :: use_spectral_solar_scaling = .false. |
---|
152 | |
---|
153 | ! Directory in which gas, cloud and aerosol data files are to be |
---|
154 | ! found |
---|
155 | character(len=511) :: directory_name = '.' |
---|
156 | |
---|
157 | ! Cloud is deemed to be present in a layer if cloud fraction |
---|
158 | ! exceeds this value |
---|
159 | real(jprb) :: cloud_fraction_threshold = 1.0e-6_jprb |
---|
160 | ! ...and total cloud water mixing ratio exceeds this value |
---|
161 | real(jprb) :: cloud_mixing_ratio_threshold = 1.0e-9_jprb |
---|
162 | |
---|
163 | ! Overlap scheme |
---|
164 | integer :: i_overlap_scheme = IOverlapExponentialRandom |
---|
165 | |
---|
166 | ! Use the Shonk et al. (2010) "beta" overlap parameter, rather |
---|
167 | ! than the "alpha" overlap parameter of Hogan and Illingworth |
---|
168 | ! (2000)? |
---|
169 | logical :: use_beta_overlap = .false. |
---|
170 | |
---|
171 | ! Shape of sub-grid cloud water PDF |
---|
172 | integer :: i_cloud_pdf_shape = IPdfShapeGamma |
---|
173 | |
---|
174 | ! The ratio of the overlap decorrelation length for cloud |
---|
175 | ! inhomogeneities to the overlap decorrelation length for cloud |
---|
176 | ! boundaries. Observations suggest this has a value of 0.5 |
---|
177 | ! (e.g. from the decorrelation lengths of Hogan and Illingworth |
---|
178 | ! 2003 and Hogan and Illingworth 2000). |
---|
179 | real(jprb) :: cloud_inhom_decorr_scaling = 0.5_jprb |
---|
180 | |
---|
181 | ! Factor controlling how much of the cloud edge length interfaces |
---|
182 | ! directly between the clear-sky region (region a) and the |
---|
183 | ! optically thick cloudy region (region c). If Lxy is the length |
---|
184 | ! of the interfaces between regions x and y, and Lab and Lbc have |
---|
185 | ! been computed already, then |
---|
186 | ! Lac=clear_to_thick_fraction*min(Lab,Lbc). |
---|
187 | real(jprb) :: clear_to_thick_fraction = 0.0_jprb |
---|
188 | |
---|
189 | ! Factor allowing lateral transport when the sun is close to |
---|
190 | ! overhead; consider atand(overhead_sun_factor) to be the number |
---|
191 | ! of degrees that the sun angle is perturbed from zenith for the |
---|
192 | ! purposes of computing lateral transport. A value of up to 0.1 |
---|
193 | ! seems to be necessary to account for the fact that some forward |
---|
194 | ! scattered radiation is treated as unscattered by delta-Eddington |
---|
195 | ! scaling; therefore it ought to have the chance to escape. |
---|
196 | real(jprb) :: overhead_sun_factor = 0.0_jprb |
---|
197 | |
---|
198 | ! Minimum gas optical depth in a single layer at any wavelength, |
---|
199 | ! for stability |
---|
200 | real(jprb) :: min_gas_od_lw = 1.0e-15_jprb |
---|
201 | real(jprb) :: min_gas_od_sw = 0.0_jprb |
---|
202 | |
---|
203 | ! Maximum gas optical depth in a layer before that g-point will |
---|
204 | ! not be considered for 3D treatment: a limit is required to avoid |
---|
205 | ! expensive computation of matrix exponentials on matrices with |
---|
206 | ! large elements |
---|
207 | real(jprb) :: max_gas_od_3d = 8.0_jprb |
---|
208 | |
---|
209 | ! Maximum total optical depth of a cloudy region for stability: |
---|
210 | ! optical depth will be capped at this value in the SPARTACUS |
---|
211 | ! solvers |
---|
212 | real(jprb) :: max_cloud_od = 16.0_jprb |
---|
213 | |
---|
214 | ! How much longwave scattering is included? |
---|
215 | logical :: do_lw_cloud_scattering = .true. |
---|
216 | logical :: do_lw_aerosol_scattering = .true. |
---|
217 | |
---|
218 | ! Number of regions used to describe clouds and clear skies. A |
---|
219 | ! value of 2 means one clear and one cloudy region, so clouds are |
---|
220 | ! horizontally homogeneous, while a value of 3 means two cloudy |
---|
221 | ! regions with different optical depth, thereby representing |
---|
222 | ! inhomogeneity via the Shonk & Hogan (2008) "Tripleclouds" |
---|
223 | ! method. |
---|
224 | integer :: nregions = 3 |
---|
225 | |
---|
226 | ! Code specifying the solver to be used: use the enumerations |
---|
227 | ! defined above |
---|
228 | integer :: i_solver_sw = ISolverMcICA |
---|
229 | integer :: i_solver_lw = ISolverMcICA |
---|
230 | |
---|
231 | ! Do shortwave delta-Eddington scaling on the cloud-aerosol-gas |
---|
232 | ! mixture (as in the original IFS scheme), rather than the more |
---|
233 | ! correct approach of separately scaling the cloud and aerosol |
---|
234 | ! scattering properties before merging with gases. Note that |
---|
235 | ! .true. is not compatible with the SPARTACUS solver. |
---|
236 | logical :: do_sw_delta_scaling_with_gases = .false. |
---|
237 | |
---|
238 | ! Codes describing the gas and cloud scattering models to use, the |
---|
239 | ! latter of which is currently not used |
---|
240 | integer :: i_gas_model = IGasModelIFSRRTMG |
---|
241 | ! integer :: i_cloud_model |
---|
242 | |
---|
243 | ! Optics if i_gas_model==IGasModelMonochromatic. |
---|
244 | ! The wavelength to use for the Planck function in metres. If this |
---|
245 | ! is positive then the output longwave fluxes will be in units of |
---|
246 | ! W m-2 um-1. If this is zero or negative (the default) then |
---|
247 | ! sigma*T^4 will be used and the output longwave fluxes will be in |
---|
248 | ! W m-2. |
---|
249 | real(jprb) :: mono_lw_wavelength = -1.0_jprb |
---|
250 | ! Total zenith optical depth of the atmosphere in the longwave and |
---|
251 | ! shortwave, distributed vertically according to the pressure. |
---|
252 | ! Default is zero. |
---|
253 | real(jprb) :: mono_lw_total_od = 0.0_jprb |
---|
254 | real(jprb) :: mono_sw_total_od = 0.0_jprb |
---|
255 | ! Single-scattering albedo and asymmetry factor: values typical |
---|
256 | ! for liquid clouds with effective radius of 10 microns, at (SW) |
---|
257 | ! 0.55 micron wavelength and (LW) 10.7 microns wavelength |
---|
258 | real(jprb) :: mono_sw_single_scattering_albedo = 0.999999_jprb |
---|
259 | real(jprb) :: mono_sw_asymmetry_factor = 0.86_jprb |
---|
260 | real(jprb) :: mono_lw_single_scattering_albedo = 0.538_jprb |
---|
261 | real(jprb) :: mono_lw_asymmetry_factor = 0.925_jprb |
---|
262 | |
---|
263 | ! Codes describing particle scattering models |
---|
264 | integer :: i_liq_model = ILiquidModelSOCRATES |
---|
265 | integer :: i_ice_model = IIceModelBaran |
---|
266 | |
---|
267 | ! The mapping from albedo/emissivity intervals to SW/LW bands can |
---|
268 | ! either be done by finding the interval containing the central |
---|
269 | ! wavenumber of the band (nearest neighbour), or by a weighting |
---|
270 | ! according to the spectral overlap of each interval with each |
---|
271 | ! band |
---|
272 | logical :: do_nearest_spectral_sw_albedo = .true. |
---|
273 | logical :: do_nearest_spectral_lw_emiss = .true. |
---|
274 | |
---|
275 | ! User-defined monotonically increasing wavelength bounds (m) |
---|
276 | ! between input surface albedo/emissivity intervals. Implicitly |
---|
277 | ! the first interval starts at zero and the last ends at infinity. |
---|
278 | real(jprb) :: sw_albedo_wavelength_bound(NMaxAlbedoIntervals-1) = -1.0_jprb |
---|
279 | real(jprb) :: lw_emiss_wavelength_bound( NMaxAlbedoIntervals-1) = -1.0_jprb |
---|
280 | |
---|
281 | ! The index to the surface albedo/emissivity intervals for each of |
---|
282 | ! the wavelength bounds specified in sw_albedo_wavelength_bound |
---|
283 | ! and lw_emiss_wavelength_bound |
---|
284 | integer :: i_sw_albedo_index(NMaxAlbedoIntervals) = 0 |
---|
285 | integer :: i_lw_emiss_index (NMaxAlbedoIntervals) = 0 |
---|
286 | |
---|
287 | ! Do we compute longwave and/or shortwave radiation? |
---|
288 | logical :: do_lw = .true. |
---|
289 | logical :: do_sw = .true. |
---|
290 | |
---|
291 | ! Do we compute clear-sky fluxes and/or solar direct fluxes? |
---|
292 | logical :: do_clear = .true. |
---|
293 | logical :: do_sw_direct = .true. |
---|
294 | |
---|
295 | ! Do we include 3D effects? |
---|
296 | logical :: do_3d_effects = .true. |
---|
297 | |
---|
298 | ! To what extent do we include "entrapment" effects in the |
---|
299 | ! SPARTACUS solver? This essentially means that in a situation |
---|
300 | ! like this |
---|
301 | ! |
---|
302 | ! 000111 |
---|
303 | ! 222222 |
---|
304 | ! |
---|
305 | ! Radiation downwelling from region 1 may be reflected back into |
---|
306 | ! region 0 due to some degree of homogenization of the radiation |
---|
307 | ! in region 2. Hogan and Shonk (2013) referred to this as |
---|
308 | ! "anomalous horizontal transport" for a 1D model, although for 3D |
---|
309 | ! calculations it is desirable to include at least some of it. The |
---|
310 | ! options are described by the IEntrapment* parameters above. |
---|
311 | integer :: i_3d_sw_entrapment = IEntrapmentExplicit |
---|
312 | |
---|
313 | ! In the longwave, the equivalent process it either "on" (like |
---|
314 | ! maximum entrapment) or "off" (like zero entrapment): |
---|
315 | logical :: do_3d_lw_multilayer_effects = .false. |
---|
316 | |
---|
317 | ! Do we account for the effective emissivity of the side of |
---|
318 | ! clouds? |
---|
319 | logical :: do_lw_side_emissivity = .true. |
---|
320 | |
---|
321 | ! The 3D transfer rate "X" is such that if transport out of a |
---|
322 | ! region was the only process occurring then by the base of a |
---|
323 | ! layer only exp(-X) of the original flux would remain in that |
---|
324 | ! region. The transfer rate computed geometrically can be very |
---|
325 | ! high for the clear-sky regions in layers with high cloud |
---|
326 | ! fraction. For stability reasons it is necessary to provide a |
---|
327 | ! maximum possible 3D transfer rate. |
---|
328 | real(jprb) :: max_3d_transfer_rate = 10.0_jprb |
---|
329 | |
---|
330 | ! It has also sometimes been found necessary to set a minimum |
---|
331 | ! cloud effective size for stability (metres) |
---|
332 | real(jprb) :: min_cloud_effective_size = 100.0_jprb |
---|
333 | |
---|
334 | ! Given a horizontal migration distance, there is still |
---|
335 | ! uncertainty about how much entrapment occurs associated with how |
---|
336 | ! one assumes cloud boundaries line up in adjacent layers. This |
---|
337 | ! factor can be varied between 0.0 (the boundaries line up to the |
---|
338 | ! greatest extent possible given the overlap parameter) and 1.0 |
---|
339 | ! (the boundaries line up to the minimum extent possible). In the |
---|
340 | ! Hogan et al. entrapment paper it is referred to as the overhang |
---|
341 | ! factor zeta, and a value of 0 matches the Monte Carlo |
---|
342 | ! calculations best. |
---|
343 | real(jprb) :: overhang_factor = 0.0_jprb |
---|
344 | |
---|
345 | ! By default, the Meador & Weaver (1980) expressions are used |
---|
346 | ! instead of the matrix exponential whenever 3D effects can be |
---|
347 | ! neglected (e.g. cloud-free layers or clouds with infinitely |
---|
348 | ! large effective cloud size), but setting the following to true |
---|
349 | ! uses the matrix exponential everywhere, enabling the two |
---|
350 | ! methods to be compared. Note that Meador & Weaver will still be |
---|
351 | ! used for very optically thick g points where the matrix |
---|
352 | ! exponential can produce incorrect results. |
---|
353 | logical :: use_expm_everywhere = .false. |
---|
354 | |
---|
355 | ! Aerosol descriptors: aerosol_type_mapping must be of length |
---|
356 | ! n_aerosol_types, and contains 0 if that type is to be ignored, |
---|
357 | ! positive numbers to map on to the indices of hydrophobic |
---|
358 | ! aerosols in the aerosol optics configuration file, and negative |
---|
359 | ! numbers to map on to (the negative of) the indices of |
---|
360 | ! hydrophilic aerosols in the configuration file. |
---|
361 | logical :: use_aerosols = .false. |
---|
362 | integer :: n_aerosol_types = 0 |
---|
363 | integer :: i_aerosol_type_map(NMaxAerosolTypes) |
---|
364 | |
---|
365 | ! Save the gas and cloud optical properties for each g point in |
---|
366 | ! "radiative_properties.nc"? |
---|
367 | logical :: do_save_radiative_properties = .false. |
---|
368 | |
---|
369 | ! Save the flux profiles in each band? |
---|
370 | logical :: do_save_spectral_flux = .false. |
---|
371 | |
---|
372 | ! Save the surface downwelling shortwave fluxes in each band? |
---|
373 | logical :: do_surface_sw_spectral_flux = .true. |
---|
374 | |
---|
375 | ! Compute the longwave derivatives needed to apply the approximate |
---|
376 | ! radiation updates of Hogan and Bozzo (2015) |
---|
377 | logical :: do_lw_derivatives = .false. |
---|
378 | |
---|
379 | ! Save the flux profiles in each g-point (overrides |
---|
380 | ! do_save_spectral_flux if TRUE)? |
---|
381 | logical :: do_save_gpoint_flux = .false. |
---|
382 | |
---|
383 | ! In the IFS environment, setting up RRTM has already been done |
---|
384 | ! so not needed to do it again |
---|
385 | logical :: do_setup_ifsrrtm = .true. |
---|
386 | |
---|
387 | ! In the IFS environment the old scheme has a bug in the Fu |
---|
388 | ! longwave ice optics whereby the single scattering albedo is one |
---|
389 | ! minus what it should be. Unfortunately fixing it makes |
---|
390 | ! forecasts worse. Setting the following to true reproduces the |
---|
391 | ! bug. |
---|
392 | logical :: do_fu_lw_ice_optics_bug = .false. |
---|
393 | |
---|
394 | ! Control verbosity: 0=none (no output to standard output; write |
---|
395 | ! to standard error only if an error occurs), 1=warning, 2=info, |
---|
396 | ! 3=progress, 4=detailed, 5=debug. Separate settings for the |
---|
397 | ! setup of the scheme and the execution of it. |
---|
398 | integer :: iverbosesetup = 2 |
---|
399 | integer :: iverbose = 1 |
---|
400 | |
---|
401 | ! Are we doing radiative transfer in complex surface canopies |
---|
402 | ! (streets/vegetation), in which case tailored downward fluxes are |
---|
403 | ! needed at the top of the canopy? |
---|
404 | logical :: do_canopy_fluxes_sw = .false. |
---|
405 | logical :: do_canopy_fluxes_lw = .false. |
---|
406 | ! If so, do we use the full spectrum as in the atmosphere, or just |
---|
407 | ! the reduced spectrum in which the shortwave albedo and longwave |
---|
408 | ! emissivity are provided? |
---|
409 | logical :: use_canopy_full_spectrum_sw = .false. |
---|
410 | logical :: use_canopy_full_spectrum_lw = .false. |
---|
411 | ! Do we treat gas radiative transfer in streets/vegetation? |
---|
412 | logical :: do_canopy_gases_sw = .false. |
---|
413 | logical :: do_canopy_gases_lw = .false. |
---|
414 | |
---|
415 | ! Optics file names for overriding the ones generated from the |
---|
416 | ! other options. If these remain empty then the generated names |
---|
417 | ! will be used (see the "consolidate_config" routine below). If |
---|
418 | ! the user assigns one of these and it starts with a '/' character |
---|
419 | ! then that will be used instead. If the user assigns one and it |
---|
420 | ! doesn't start with a '/' character then it will be prepended by |
---|
421 | ! the contents of directory_name. |
---|
422 | character(len=511) :: ice_optics_override_file_name = '' |
---|
423 | character(len=511) :: liq_optics_override_file_name = '' |
---|
424 | character(len=511) :: aerosol_optics_override_file_name = '' |
---|
425 | |
---|
426 | ! Optionally override the look-up table file for the cloud-water |
---|
427 | ! PDF used by the McICA solver |
---|
428 | character(len=511) :: cloud_pdf_override_file_name = '' |
---|
429 | |
---|
430 | ! Has "consolidate" been called? |
---|
431 | logical :: is_consolidated = .false. |
---|
432 | |
---|
433 | ! COMPUTED PARAMETERS |
---|
434 | ! Users of this library should not edit these parameters directly; |
---|
435 | ! they are set by the "consolidate" routine |
---|
436 | |
---|
437 | ! Wavenumber range for each band, in cm-1, which will be allocated |
---|
438 | ! to be of length n_bands_sw or n_bands_lw |
---|
439 | real(jprb), allocatable, dimension(:) :: wavenumber1_sw |
---|
440 | real(jprb), allocatable, dimension(:) :: wavenumber2_sw |
---|
441 | real(jprb), allocatable, dimension(:) :: wavenumber1_lw |
---|
442 | real(jprb), allocatable, dimension(:) :: wavenumber2_lw |
---|
443 | |
---|
444 | ! If the nearest surface albedo/emissivity interval is to be used |
---|
445 | ! for each SW/LW band then the following arrays will be allocated |
---|
446 | ! to the length of the number of bands and contain the index to |
---|
447 | ! the relevant interval |
---|
448 | integer, allocatable, dimension(:) :: i_albedo_from_band_sw |
---|
449 | integer, allocatable, dimension(:) :: i_emiss_from_band_lw |
---|
450 | |
---|
451 | ! ...alternatively, this matrix dimensioned |
---|
452 | ! (n_albedo_intervals,n_bands_sw) providing the weights needed for |
---|
453 | ! computing the albedo in each ecRad band from the albedo in each |
---|
454 | ! native albedo band - see radiation_single_level.F90 |
---|
455 | real(jprb), allocatable, dimension(:,:) :: sw_albedo_weights |
---|
456 | ! ...and similarly in the longwave, dimensioned |
---|
457 | ! (n_emiss_intervals,n_bands_lw) |
---|
458 | real(jprb), allocatable, dimension(:,:) :: lw_emiss_weights |
---|
459 | |
---|
460 | ! Arrays of length the number of g-points that convert from |
---|
461 | ! g-point to the band index |
---|
462 | integer, allocatable, dimension(:) :: i_band_from_g_lw |
---|
463 | integer, allocatable, dimension(:) :: i_band_from_g_sw |
---|
464 | |
---|
465 | ! We allow for the possibility for g-points to be ordered in terms |
---|
466 | ! of likely absorption (weakest to strongest) across the shortwave |
---|
467 | ! or longwave spectrum, in order that in SPARTACUS we select only |
---|
468 | ! the first n g-points that will not have too large an absorption, |
---|
469 | ! and therefore matrix exponentials that are both finite and not |
---|
470 | ! too expensive to compute. The following two arrays map the |
---|
471 | ! reordered g-points to the original ones. |
---|
472 | integer, allocatable, dimension(:) :: i_g_from_reordered_g_lw |
---|
473 | integer, allocatable, dimension(:) :: i_g_from_reordered_g_sw |
---|
474 | |
---|
475 | ! The following map the reordered g-points to the bands |
---|
476 | integer, allocatable, dimension(:) :: i_band_from_reordered_g_lw |
---|
477 | integer, allocatable, dimension(:) :: i_band_from_reordered_g_sw |
---|
478 | |
---|
479 | ! The following map the reordered g-points to the spectral |
---|
480 | ! information being saved: if do_save_gpoint_flux==TRUE then this |
---|
481 | ! will map on to the original g points, but if only |
---|
482 | ! do_save_spectral_flux==TRUE then this will map on to the bands |
---|
483 | integer, pointer, dimension(:) :: i_spec_from_reordered_g_lw |
---|
484 | integer, pointer, dimension(:) :: i_spec_from_reordered_g_sw |
---|
485 | |
---|
486 | ! Number of spectral intervals used for the canopy radiative |
---|
487 | ! transfer calculation; they are either equal to |
---|
488 | ! n_albedo_intervals/n_emiss_intervals or n_g_sw/n_g_lw |
---|
489 | integer :: n_canopy_bands_sw = 1 |
---|
490 | integer :: n_canopy_bands_lw = 1 |
---|
491 | |
---|
492 | ! Data structure containing cloud scattering data |
---|
493 | type(cloud_optics_type) :: cloud_optics |
---|
494 | |
---|
495 | ! Data structure containing aerosol scattering data |
---|
496 | type(aerosol_optics_type) :: aerosol_optics |
---|
497 | |
---|
498 | ! Object for sampling from a gamma or lognormal distribution |
---|
499 | type(pdf_sampler_type) :: pdf_sampler |
---|
500 | |
---|
501 | ! Optics file names |
---|
502 | character(len=511) :: ice_optics_file_name, & |
---|
503 | & liq_optics_file_name, & |
---|
504 | & aerosol_optics_file_name |
---|
505 | |
---|
506 | ! McICA PDF look-up table file name |
---|
507 | character(len=511) :: cloud_pdf_file_name |
---|
508 | |
---|
509 | ! Number of gpoints and bands in the shortwave and longwave - set |
---|
510 | ! to zero as will be set properly later |
---|
511 | integer :: n_g_sw = 0, n_g_lw = 0 |
---|
512 | integer :: n_bands_sw = 0, n_bands_lw = 0 |
---|
513 | |
---|
514 | ! Number of spectral points to save (equal either to the number of |
---|
515 | ! g points or the number of bands |
---|
516 | integer :: n_spec_sw = 0, n_spec_lw = 0 |
---|
517 | |
---|
518 | ! Dimensions to store variables that are only needed if longwave |
---|
519 | ! scattering is included. "n_g_lw_if_scattering" is equal to |
---|
520 | ! "n_g_lw" if aerosols are allowed to scatter in the longwave, |
---|
521 | ! and zero otherwise. "n_bands_lw_if_scattering" is equal to |
---|
522 | ! "n_bands_lw" if clouds are allowed to scatter in the longwave, |
---|
523 | ! and zero otherwise. |
---|
524 | integer :: n_g_lw_if_scattering = 0, n_bands_lw_if_scattering = 0 |
---|
525 | |
---|
526 | ! Treat clouds as horizontally homogeneous within the gribox |
---|
527 | logical :: is_homogeneous = .false. |
---|
528 | |
---|
529 | ! If the solvers are both "Cloudless" then we don't need to do any |
---|
530 | ! cloud processing |
---|
531 | logical :: do_clouds = .true. |
---|
532 | |
---|
533 | contains |
---|
534 | procedure :: read => read_config_from_namelist |
---|
535 | procedure :: consolidate => consolidate_config |
---|
536 | procedure :: set => set_config |
---|
537 | procedure :: print => print_config |
---|
538 | procedure :: get_sw_weights |
---|
539 | procedure :: define_sw_albedo_intervals |
---|
540 | procedure :: define_lw_emiss_intervals |
---|
541 | procedure :: consolidate_intervals |
---|
542 | |
---|
543 | end type config_type |
---|
544 | |
---|
545 | ! procedure, private :: print_logical, print_real, print_int |
---|
546 | |
---|
547 | contains |
---|
548 | |
---|
549 | |
---|
550 | !--------------------------------------------------------------------- |
---|
551 | ! This subroutine reads configuration data from a namelist file, and |
---|
552 | ! anything that is not in the namelists will be set to default |
---|
553 | ! values. If optional output argument "is_success" is present, then |
---|
554 | ! on error (e.g. missing file) it will be set to .false.; if this |
---|
555 | ! argument is missing then on error the program will be aborted. You |
---|
556 | ! may either specify the file_name or the unit of an open file to |
---|
557 | ! read, but not both. |
---|
558 | subroutine read_config_from_namelist(this, file_name, unit, is_success) |
---|
559 | |
---|
560 | use yomhook, only : lhook, dr_hook |
---|
561 | use radiation_io, only : nulout, nulerr, nulrad, radiation_abort |
---|
562 | |
---|
563 | class(config_type), intent(inout) :: this |
---|
564 | character(*), intent(in), optional :: file_name |
---|
565 | integer, intent(in), optional :: unit |
---|
566 | logical, intent(out), optional :: is_success |
---|
567 | |
---|
568 | integer :: iosopen, iosread ! Status after calling open and read |
---|
569 | |
---|
570 | ! The following variables are read from the namelists and map |
---|
571 | ! directly onto members of the config_type derived type |
---|
572 | |
---|
573 | ! To be read from the radiation_config namelist |
---|
574 | logical :: do_sw, do_lw, do_clear, do_sw_direct |
---|
575 | logical :: do_3d_effects, use_expm_everywhere, use_aerosols |
---|
576 | logical :: do_lw_side_emissivity |
---|
577 | logical :: do_3d_lw_multilayer_effects, do_fu_lw_ice_optics_bug |
---|
578 | logical :: do_lw_aerosol_scattering, do_lw_cloud_scattering |
---|
579 | logical :: do_save_radiative_properties, do_save_spectral_flux |
---|
580 | logical :: do_save_gpoint_flux, do_surface_sw_spectral_flux |
---|
581 | logical :: use_beta_overlap, do_lw_derivatives |
---|
582 | logical :: do_sw_delta_scaling_with_gases |
---|
583 | logical :: do_canopy_fluxes_sw, do_canopy_fluxes_lw |
---|
584 | logical :: use_canopy_full_spectrum_sw, use_canopy_full_spectrum_lw |
---|
585 | logical :: do_canopy_gases_sw, do_canopy_gases_lw |
---|
586 | integer :: n_regions, iverbose, iverbosesetup, n_aerosol_types |
---|
587 | real(jprb):: mono_lw_wavelength, mono_lw_total_od, mono_sw_total_od |
---|
588 | real(jprb):: mono_lw_single_scattering_albedo, mono_sw_single_scattering_albedo |
---|
589 | real(jprb):: mono_lw_asymmetry_factor, mono_sw_asymmetry_factor |
---|
590 | real(jprb):: cloud_inhom_decorr_scaling, cloud_fraction_threshold |
---|
591 | real(jprb):: clear_to_thick_fraction, max_gas_od_3d, max_cloud_od |
---|
592 | real(jprb):: cloud_mixing_ratio_threshold, overhead_sun_factor |
---|
593 | real(jprb):: max_3d_transfer_rate, min_cloud_effective_size |
---|
594 | real(jprb):: overhang_factor, encroachment_scaling |
---|
595 | character(511) :: directory_name, aerosol_optics_override_file_name |
---|
596 | character(511) :: liq_optics_override_file_name, ice_optics_override_file_name |
---|
597 | character(511) :: cloud_pdf_override_file_name |
---|
598 | character(63) :: liquid_model_name, ice_model_name, gas_model_name |
---|
599 | character(63) :: sw_solver_name, lw_solver_name, overlap_scheme_name |
---|
600 | character(63) :: sw_entrapment_name, sw_encroachment_name, cloud_pdf_shape_name |
---|
601 | integer :: i_aerosol_type_map(NMaxAerosolTypes) ! More than 256 is an error |
---|
602 | |
---|
603 | logical :: do_nearest_spectral_sw_albedo = .true. |
---|
604 | logical :: do_nearest_spectral_lw_emiss = .true. |
---|
605 | real(jprb) :: sw_albedo_wavelength_bound(NMaxAlbedoIntervals-1) |
---|
606 | real(jprb) :: lw_emiss_wavelength_bound( NMaxAlbedoIntervals-1) |
---|
607 | integer :: i_sw_albedo_index(NMaxAlbedoIntervals) |
---|
608 | integer :: i_lw_emiss_index (NMaxAlbedoIntervals) |
---|
609 | |
---|
610 | integer :: iunit ! Unit number of namelist file |
---|
611 | |
---|
612 | namelist /radiation/ do_sw, do_lw, do_sw_direct, & |
---|
613 | & do_3d_effects, do_lw_side_emissivity, do_clear, & |
---|
614 | & do_save_radiative_properties, sw_entrapment_name, sw_encroachment_name, & |
---|
615 | & do_3d_lw_multilayer_effects, do_fu_lw_ice_optics_bug, & |
---|
616 | & do_save_spectral_flux, do_save_gpoint_flux, & |
---|
617 | & do_surface_sw_spectral_flux, do_lw_derivatives, & |
---|
618 | & do_lw_aerosol_scattering, do_lw_cloud_scattering, & |
---|
619 | & n_regions, directory_name, gas_model_name, & |
---|
620 | & ice_optics_override_file_name, liq_optics_override_file_name, & |
---|
621 | & aerosol_optics_override_file_name, cloud_pdf_override_file_name, & |
---|
622 | & liquid_model_name, ice_model_name, max_3d_transfer_rate, & |
---|
623 | & min_cloud_effective_size, overhang_factor, encroachment_scaling, & |
---|
624 | & use_canopy_full_spectrum_sw, use_canopy_full_spectrum_lw, & |
---|
625 | & do_canopy_fluxes_sw, do_canopy_fluxes_lw, & |
---|
626 | & do_canopy_gases_sw, do_canopy_gases_lw, & |
---|
627 | & do_sw_delta_scaling_with_gases, overlap_scheme_name, & |
---|
628 | & sw_solver_name, lw_solver_name, use_beta_overlap, & |
---|
629 | & use_expm_everywhere, iverbose, iverbosesetup, & |
---|
630 | & cloud_inhom_decorr_scaling, cloud_fraction_threshold, & |
---|
631 | & clear_to_thick_fraction, max_gas_od_3d, max_cloud_od, & |
---|
632 | & cloud_mixing_ratio_threshold, overhead_sun_factor, & |
---|
633 | & n_aerosol_types, i_aerosol_type_map, use_aerosols, & |
---|
634 | & mono_lw_wavelength, mono_lw_total_od, mono_sw_total_od, & |
---|
635 | & mono_lw_single_scattering_albedo, mono_sw_single_scattering_albedo, & |
---|
636 | & mono_lw_asymmetry_factor, mono_sw_asymmetry_factor, & |
---|
637 | & cloud_pdf_shape_name, & |
---|
638 | & do_nearest_spectral_sw_albedo, do_nearest_spectral_lw_emiss, & |
---|
639 | & sw_albedo_wavelength_bound, lw_emiss_wavelength_bound, & |
---|
640 | & i_sw_albedo_index, i_lw_emiss_index |
---|
641 | |
---|
642 | real(jprb) :: hook_handle |
---|
643 | |
---|
644 | if (lhook) call dr_hook('radiation_config:read',0,hook_handle) |
---|
645 | |
---|
646 | ! Copy default values from the original structure |
---|
647 | do_sw = this%do_sw |
---|
648 | do_lw = this%do_lw |
---|
649 | do_sw_direct = this%do_sw_direct |
---|
650 | do_3d_effects = this%do_3d_effects |
---|
651 | do_3d_lw_multilayer_effects = this%do_3d_lw_multilayer_effects |
---|
652 | do_lw_side_emissivity = this%do_lw_side_emissivity |
---|
653 | do_clear = this%do_clear |
---|
654 | do_lw_aerosol_scattering = this%do_lw_aerosol_scattering |
---|
655 | do_lw_cloud_scattering = this%do_lw_cloud_scattering |
---|
656 | do_sw_delta_scaling_with_gases = this%do_sw_delta_scaling_with_gases |
---|
657 | do_fu_lw_ice_optics_bug = this%do_fu_lw_ice_optics_bug |
---|
658 | do_canopy_fluxes_sw = this%do_canopy_fluxes_sw |
---|
659 | do_canopy_fluxes_lw = this%do_canopy_fluxes_lw |
---|
660 | use_canopy_full_spectrum_sw = this%use_canopy_full_spectrum_sw |
---|
661 | use_canopy_full_spectrum_lw = this%use_canopy_full_spectrum_lw |
---|
662 | do_canopy_gases_sw = this%do_canopy_gases_sw |
---|
663 | do_canopy_gases_lw = this%do_canopy_gases_lw |
---|
664 | n_regions = this%nregions |
---|
665 | directory_name = this%directory_name |
---|
666 | cloud_pdf_override_file_name = this%cloud_pdf_override_file_name |
---|
667 | liq_optics_override_file_name = this%liq_optics_override_file_name |
---|
668 | ice_optics_override_file_name = this%ice_optics_override_file_name |
---|
669 | aerosol_optics_override_file_name = this%aerosol_optics_override_file_name |
---|
670 | use_expm_everywhere = this%use_expm_everywhere |
---|
671 | use_aerosols = this%use_aerosols |
---|
672 | do_save_radiative_properties = this%do_save_radiative_properties |
---|
673 | do_save_spectral_flux = this%do_save_spectral_flux |
---|
674 | do_save_gpoint_flux = this%do_save_gpoint_flux |
---|
675 | do_lw_derivatives = this%do_lw_derivatives |
---|
676 | do_surface_sw_spectral_flux = this%do_surface_sw_spectral_flux |
---|
677 | iverbose = this%iverbose |
---|
678 | iverbosesetup = this%iverbosesetup |
---|
679 | cloud_fraction_threshold = this%cloud_fraction_threshold |
---|
680 | cloud_mixing_ratio_threshold = this%cloud_mixing_ratio_threshold |
---|
681 | use_beta_overlap = this%use_beta_overlap |
---|
682 | cloud_inhom_decorr_scaling = this%cloud_inhom_decorr_scaling |
---|
683 | clear_to_thick_fraction = this%clear_to_thick_fraction |
---|
684 | overhead_sun_factor = this%overhead_sun_factor |
---|
685 | max_gas_od_3d = this%max_gas_od_3d |
---|
686 | max_cloud_od = this%max_cloud_od |
---|
687 | max_3d_transfer_rate = this%max_3d_transfer_rate |
---|
688 | min_cloud_effective_size = this%min_cloud_effective_size |
---|
689 | overhang_factor = this%overhang_factor |
---|
690 | encroachment_scaling = -1.0_jprb |
---|
691 | gas_model_name = '' !DefaultGasModelName |
---|
692 | liquid_model_name = '' !DefaultLiquidModelName |
---|
693 | ice_model_name = '' !DefaultIceModelName |
---|
694 | sw_solver_name = '' !DefaultSwSolverName |
---|
695 | lw_solver_name = '' !DefaultLwSolverName |
---|
696 | sw_entrapment_name = '' |
---|
697 | sw_encroachment_name = '' |
---|
698 | overlap_scheme_name = '' |
---|
699 | cloud_pdf_shape_name = '' |
---|
700 | n_aerosol_types = this%n_aerosol_types |
---|
701 | mono_lw_wavelength = this%mono_lw_wavelength |
---|
702 | mono_lw_total_od = this%mono_lw_total_od |
---|
703 | mono_sw_total_od = this%mono_sw_total_od |
---|
704 | mono_lw_single_scattering_albedo = this%mono_lw_single_scattering_albedo |
---|
705 | mono_sw_single_scattering_albedo = this%mono_sw_single_scattering_albedo |
---|
706 | mono_lw_asymmetry_factor = this%mono_lw_asymmetry_factor |
---|
707 | mono_sw_asymmetry_factor = this%mono_sw_asymmetry_factor |
---|
708 | i_aerosol_type_map = this%i_aerosol_type_map |
---|
709 | do_nearest_spectral_sw_albedo = this%do_nearest_spectral_sw_albedo |
---|
710 | do_nearest_spectral_lw_emiss = this%do_nearest_spectral_lw_emiss |
---|
711 | sw_albedo_wavelength_bound = this%sw_albedo_wavelength_bound |
---|
712 | lw_emiss_wavelength_bound = this%lw_emiss_wavelength_bound |
---|
713 | i_sw_albedo_index = this%i_sw_albedo_index |
---|
714 | i_lw_emiss_index = this%i_lw_emiss_index |
---|
715 | |
---|
716 | if (present(file_name) .and. present(unit)) then |
---|
717 | write(nulerr,'(a)') '*** Error: cannot specify both file_name and unit in call to config_type%read' |
---|
718 | call radiation_abort('Radiation configuration error') |
---|
719 | else if (.not. present(file_name) .and. .not. present(unit)) then |
---|
720 | write(nulerr,'(a)') '*** Error: neither file_name nor unit specified in call to config_type%read' |
---|
721 | call radiation_abort('Radiation configuration error') |
---|
722 | end if |
---|
723 | |
---|
724 | if (present(file_name)) then |
---|
725 | ! Open the namelist file |
---|
726 | iunit = nulrad |
---|
727 | open(unit=iunit, iostat=iosopen, file=trim(file_name)) |
---|
728 | else |
---|
729 | ! Assume that iunit represents and open file |
---|
730 | iosopen = 0 |
---|
731 | iunit = unit |
---|
732 | end if |
---|
733 | |
---|
734 | if (iosopen /= 0) then |
---|
735 | ! An error occurred opening the file |
---|
736 | if (present(is_success)) then |
---|
737 | is_success = .false. |
---|
738 | ! We now continue the subroutine so that the default values |
---|
739 | ! are placed in the config structure |
---|
740 | else |
---|
741 | write(nulerr,'(a,a,a)') '*** Error: namelist file "', & |
---|
742 | & trim(file_name), '" not found' |
---|
743 | call radiation_abort('Radiation configuration error') |
---|
744 | end if |
---|
745 | else |
---|
746 | read(unit=iunit, iostat=iosread, nml=radiation) |
---|
747 | if (iosread /= 0) then |
---|
748 | ! An error occurred reading the file |
---|
749 | if (present(is_success)) then |
---|
750 | is_success = .false. |
---|
751 | ! We now continue the subroutine so that the default values |
---|
752 | ! are placed in the config structure |
---|
753 | else if (present(file_name)) then |
---|
754 | write(nulerr,'(a,a,a)') '*** Error reading namelist "radiation" from file "', & |
---|
755 | & trim(file_name), '"' |
---|
756 | close(unit=iunit) |
---|
757 | call radiation_abort('Radiation configuration error') |
---|
758 | else |
---|
759 | write(nulerr,'(a,i0)') '*** Error reading namelist "radiation" from unit ', & |
---|
760 | & iunit |
---|
761 | call radiation_abort('Radiation configuration error') |
---|
762 | end if |
---|
763 | end if |
---|
764 | |
---|
765 | if (present(file_name)) then |
---|
766 | close(unit=iunit) |
---|
767 | end if |
---|
768 | end if |
---|
769 | |
---|
770 | ! Copy namelist data into configuration object |
---|
771 | |
---|
772 | ! Start with verbosity levels, which should be within limits |
---|
773 | if (iverbose < 0) then |
---|
774 | iverbose = 0 |
---|
775 | end if |
---|
776 | this%iverbose = iverbose |
---|
777 | |
---|
778 | if (iverbosesetup < 0) then |
---|
779 | iverbosesetup = 0 |
---|
780 | end if |
---|
781 | this%iverbosesetup = iverbosesetup |
---|
782 | |
---|
783 | this%do_lw = do_lw |
---|
784 | this%do_sw = do_sw |
---|
785 | this%do_clear = do_clear |
---|
786 | this%do_sw_direct = do_sw_direct |
---|
787 | this%do_3d_effects = do_3d_effects |
---|
788 | this%do_3d_lw_multilayer_effects = do_3d_lw_multilayer_effects |
---|
789 | this%do_lw_side_emissivity = do_lw_side_emissivity |
---|
790 | this%use_expm_everywhere = use_expm_everywhere |
---|
791 | this%use_aerosols = use_aerosols |
---|
792 | this%do_lw_cloud_scattering = do_lw_cloud_scattering |
---|
793 | this%do_lw_aerosol_scattering = do_lw_aerosol_scattering |
---|
794 | this%nregions = n_regions |
---|
795 | this%do_surface_sw_spectral_flux = do_surface_sw_spectral_flux |
---|
796 | this%do_sw_delta_scaling_with_gases = do_sw_delta_scaling_with_gases |
---|
797 | this%do_fu_lw_ice_optics_bug = do_fu_lw_ice_optics_bug |
---|
798 | this%do_canopy_fluxes_sw = do_canopy_fluxes_sw |
---|
799 | this%do_canopy_fluxes_lw = do_canopy_fluxes_lw |
---|
800 | this%use_canopy_full_spectrum_sw = use_canopy_full_spectrum_sw |
---|
801 | this%use_canopy_full_spectrum_lw = use_canopy_full_spectrum_lw |
---|
802 | this%do_canopy_gases_sw = do_canopy_gases_sw |
---|
803 | this%do_canopy_gases_lw = do_canopy_gases_lw |
---|
804 | this%mono_lw_wavelength = mono_lw_wavelength |
---|
805 | this%mono_lw_total_od = mono_lw_total_od |
---|
806 | this%mono_sw_total_od = mono_sw_total_od |
---|
807 | this%mono_lw_single_scattering_albedo = mono_lw_single_scattering_albedo |
---|
808 | this%mono_sw_single_scattering_albedo = mono_sw_single_scattering_albedo |
---|
809 | this%mono_lw_asymmetry_factor = mono_lw_asymmetry_factor |
---|
810 | this%mono_sw_asymmetry_factor = mono_sw_asymmetry_factor |
---|
811 | this%use_beta_overlap = use_beta_overlap |
---|
812 | this%cloud_inhom_decorr_scaling = cloud_inhom_decorr_scaling |
---|
813 | this%clear_to_thick_fraction = clear_to_thick_fraction |
---|
814 | this%overhead_sun_factor = overhead_sun_factor |
---|
815 | this%max_gas_od_3d = max_gas_od_3d |
---|
816 | this%max_cloud_od = max_cloud_od |
---|
817 | this%max_3d_transfer_rate = max_3d_transfer_rate |
---|
818 | this%min_cloud_effective_size = max(1.0e-6_jprb, min_cloud_effective_size) |
---|
819 | if (encroachment_scaling >= 0.0_jprb) then |
---|
820 | this%overhang_factor = encroachment_scaling |
---|
821 | if (iverbose >= 1) then |
---|
822 | write(nulout, '(a)') 'Warning: radiation namelist parameter "encroachment_scaling" is deprecated: use "overhang_factor"' |
---|
823 | end if |
---|
824 | else |
---|
825 | this%overhang_factor = overhang_factor |
---|
826 | end if |
---|
827 | this%directory_name = directory_name |
---|
828 | this%cloud_pdf_override_file_name = cloud_pdf_override_file_name |
---|
829 | this%liq_optics_override_file_name = liq_optics_override_file_name |
---|
830 | this%ice_optics_override_file_name = ice_optics_override_file_name |
---|
831 | this%aerosol_optics_override_file_name = aerosol_optics_override_file_name |
---|
832 | this%cloud_fraction_threshold = cloud_fraction_threshold |
---|
833 | this%cloud_mixing_ratio_threshold = cloud_mixing_ratio_threshold |
---|
834 | this%n_aerosol_types = n_aerosol_types |
---|
835 | this%do_save_radiative_properties = do_save_radiative_properties |
---|
836 | this%do_lw_derivatives = do_lw_derivatives |
---|
837 | this%do_save_spectral_flux = do_save_spectral_flux |
---|
838 | this%do_save_gpoint_flux = do_save_gpoint_flux |
---|
839 | this%do_nearest_spectral_sw_albedo = do_nearest_spectral_sw_albedo |
---|
840 | this%do_nearest_spectral_lw_emiss = do_nearest_spectral_lw_emiss |
---|
841 | this%sw_albedo_wavelength_bound = sw_albedo_wavelength_bound |
---|
842 | this%lw_emiss_wavelength_bound = lw_emiss_wavelength_bound |
---|
843 | this%i_sw_albedo_index = i_sw_albedo_index |
---|
844 | this%i_lw_emiss_index = i_lw_emiss_index |
---|
845 | |
---|
846 | if (do_save_gpoint_flux) then |
---|
847 | ! Saving the fluxes every g-point overrides saving as averaged |
---|
848 | ! in a band, but this%do_save_spectral_flux needs to be TRUE as |
---|
849 | ! it is tested inside the solver routines to decide whether to |
---|
850 | ! save anything |
---|
851 | this%do_save_spectral_flux = .true. |
---|
852 | end if |
---|
853 | |
---|
854 | ! Determine liquid optics model |
---|
855 | call get_enum_code(liquid_model_name, LiquidModelName, & |
---|
856 | & 'liquid_model_name', this%i_liq_model) |
---|
857 | |
---|
858 | ! Determine ice optics model |
---|
859 | call get_enum_code(ice_model_name, IceModelName, & |
---|
860 | & 'ice_model_name', this%i_ice_model) |
---|
861 | |
---|
862 | ! Determine gas optics model |
---|
863 | call get_enum_code(gas_model_name, GasModelName, & |
---|
864 | & 'gas_model_name', this%i_gas_model) |
---|
865 | |
---|
866 | ! Determine solvers |
---|
867 | call get_enum_code(sw_solver_name, SolverName, & |
---|
868 | & 'sw_solver_name', this%i_solver_sw) |
---|
869 | call get_enum_code(lw_solver_name, SolverName, & |
---|
870 | & 'lw_solver_name', this%i_solver_lw) |
---|
871 | |
---|
872 | if (len_trim(sw_encroachment_name) > 1) then |
---|
873 | call get_enum_code(sw_encroachment_name, EncroachmentName, & |
---|
874 | & 'sw_encroachment_name', this%i_3d_sw_entrapment) |
---|
875 | write(nulout, '(a)') 'Warning: radiation namelist string "sw_encroachment_name" is deprecated: use "sw_entrapment_name"' |
---|
876 | else |
---|
877 | call get_enum_code(sw_entrapment_name, EntrapmentName, & |
---|
878 | & 'sw_entrapment_name', this%i_3d_sw_entrapment) |
---|
879 | end if |
---|
880 | |
---|
881 | ! Determine overlap scheme |
---|
882 | call get_enum_code(overlap_scheme_name, OverlapName, & |
---|
883 | & 'overlap_scheme_name', this%i_overlap_scheme) |
---|
884 | |
---|
885 | ! Determine cloud PDF shape |
---|
886 | call get_enum_code(cloud_pdf_shape_name, PdfShapeName, & |
---|
887 | & 'cloud_pdf_shape_name', this%i_cloud_pdf_shape) |
---|
888 | |
---|
889 | this%i_aerosol_type_map = 0 |
---|
890 | if (this%use_aerosols) then |
---|
891 | this%i_aerosol_type_map(1:n_aerosol_types) & |
---|
892 | & = i_aerosol_type_map(1:n_aerosol_types) |
---|
893 | end if |
---|
894 | |
---|
895 | ! Will clouds be used at all? |
---|
896 | if ((this%do_sw .and. this%i_solver_sw /= ISolverCloudless) & |
---|
897 | & .or. (this%do_lw .and. this%i_solver_lw /= ISolverCloudless)) then |
---|
898 | this%do_clouds = .true. |
---|
899 | else |
---|
900 | this%do_clouds = .false. |
---|
901 | end if |
---|
902 | |
---|
903 | ! Normal subroutine exit |
---|
904 | if (present(is_success)) then |
---|
905 | is_success = .true. |
---|
906 | end if |
---|
907 | |
---|
908 | if (lhook) call dr_hook('radiation_config:read',1,hook_handle) |
---|
909 | |
---|
910 | end subroutine read_config_from_namelist |
---|
911 | |
---|
912 | |
---|
913 | !--------------------------------------------------------------------- |
---|
914 | ! This routine is called by radiation_interface:setup_radiation and |
---|
915 | ! it converts the user specified options into some more specific |
---|
916 | ! data such as data file names |
---|
917 | subroutine consolidate_config(this) |
---|
918 | |
---|
919 | use yomhook, only : lhook, dr_hook |
---|
920 | use radiation_io, only : nulout, nulerr, radiation_abort |
---|
921 | |
---|
922 | class(config_type), intent(inout) :: this |
---|
923 | |
---|
924 | real(jprb) :: hook_handle |
---|
925 | |
---|
926 | if (lhook) call dr_hook('radiation_config:consolidate',0,hook_handle) |
---|
927 | |
---|
928 | ! Check consistency of models |
---|
929 | if (this%do_canopy_fluxes_sw .and. .not. this%do_surface_sw_spectral_flux) then |
---|
930 | if (this%iverbosesetup >= 1) then |
---|
931 | write(nulout,'(a)') 'Warning: turning on do_surface_sw_spectral_flux as required by do_canopy_fluxes_sw' |
---|
932 | end if |
---|
933 | this%do_surface_sw_spectral_flux = .true. |
---|
934 | end if |
---|
935 | |
---|
936 | ! Will clouds be used at all? |
---|
937 | if ((this%do_sw .and. this%i_solver_sw /= ISolverCloudless) & |
---|
938 | & .or. (this%do_lw .and. this%i_solver_lw /= ISolverCloudless)) then |
---|
939 | this%do_clouds = .true. |
---|
940 | else |
---|
941 | this%do_clouds = .false. |
---|
942 | end if |
---|
943 | |
---|
944 | ! SPARTACUS only works with Exp-Ran overlap scheme |
---|
945 | if (( this%i_solver_sw == ISolverSPARTACUS & |
---|
946 | & .or. this%i_solver_lw == ISolverSPARTACUS & |
---|
947 | & .or. this%i_solver_sw == ISolverTripleclouds & |
---|
948 | & .or. this%i_solver_lw == ISolverTripleclouds) & |
---|
949 | & .and. this%i_overlap_scheme /= IOverlapExponentialRandom) then |
---|
950 | write(nulerr,'(a)') '*** Error: SPARTACUS/Tripleclouds solvers can only do Exponential-Random overlap' |
---|
951 | call radiation_abort('Radiation configuration error') |
---|
952 | |
---|
953 | end if |
---|
954 | |
---|
955 | ! Set aerosol optics file name |
---|
956 | if (len_trim(this%aerosol_optics_override_file_name) > 0) then |
---|
957 | if (this%aerosol_optics_override_file_name(1:1) == '/') then |
---|
958 | this%aerosol_optics_file_name = trim(this%aerosol_optics_override_file_name) |
---|
959 | else |
---|
960 | this%aerosol_optics_file_name = trim(this%directory_name) & |
---|
961 | & // '/' // trim(this%aerosol_optics_override_file_name) |
---|
962 | end if |
---|
963 | else |
---|
964 | ! In the IFS, the aerosol optics file should be specified in |
---|
965 | ! ifs/module/radiation_setup.F90, not here |
---|
966 | this%aerosol_optics_file_name & |
---|
967 | & = trim(this%directory_name) // "/aerosol_ifs_rrtm_45R2.nc" |
---|
968 | end if |
---|
969 | |
---|
970 | ! Set liquid optics file name |
---|
971 | if (len_trim(this%liq_optics_override_file_name) > 0) then |
---|
972 | if (this%liq_optics_override_file_name(1:1) == '/') then |
---|
973 | this%liq_optics_file_name = trim(this%liq_optics_override_file_name) |
---|
974 | else |
---|
975 | this%liq_optics_file_name = trim(this%directory_name) & |
---|
976 | & // '/' // trim(this%liq_optics_override_file_name) |
---|
977 | end if |
---|
978 | else if (this%i_liq_model == ILiquidModelSOCRATES) then |
---|
979 | this%liq_optics_file_name & |
---|
980 | & = trim(this%directory_name) // "/socrates_droplet_scattering_rrtm.nc" |
---|
981 | else if (this%i_liq_model == ILiquidModelSlingo) then |
---|
982 | this%liq_optics_file_name & |
---|
983 | & = trim(this%directory_name) // "/slingo_droplet_scattering_rrtm.nc" |
---|
984 | end if |
---|
985 | |
---|
986 | ! Set ice optics file name |
---|
987 | if (len_trim(this%ice_optics_override_file_name) > 0) then |
---|
988 | if (this%ice_optics_override_file_name(1:1) == '/') then |
---|
989 | this%ice_optics_file_name = trim(this%ice_optics_override_file_name) |
---|
990 | else |
---|
991 | this%ice_optics_file_name = trim(this%directory_name) & |
---|
992 | & // '/' // trim(this%ice_optics_override_file_name) |
---|
993 | end if |
---|
994 | else if (this%i_ice_model == IIceModelFu) then |
---|
995 | this%ice_optics_file_name & |
---|
996 | & = trim(this%directory_name) // "/fu_ice_scattering_rrtm.nc" |
---|
997 | else if (this%i_ice_model == IIceModelBaran) then |
---|
998 | this%ice_optics_file_name & |
---|
999 | & = trim(this%directory_name) // "/baran_ice_scattering_rrtm.nc" |
---|
1000 | else if (this%i_ice_model == IIceModelBaran2016) then |
---|
1001 | this%ice_optics_file_name & |
---|
1002 | & = trim(this%directory_name) // "/baran2016_ice_scattering_rrtm.nc" |
---|
1003 | else if (this%i_ice_model == IIceModelBaran2017) then |
---|
1004 | this%ice_optics_file_name & |
---|
1005 | & = trim(this%directory_name) // "/baran2017_ice_scattering_rrtm.nc" |
---|
1006 | else if (this%i_ice_model == IIceModelYi) then |
---|
1007 | this%ice_optics_file_name & |
---|
1008 | & = trim(this%directory_name) // "/yi_ice_scattering_rrtm.nc" |
---|
1009 | end if |
---|
1010 | |
---|
1011 | ! Set cloud-water PDF look-up table file name |
---|
1012 | if (len_trim(this%cloud_pdf_override_file_name) > 0) then |
---|
1013 | if (this%cloud_pdf_override_file_name(1:1) == '/') then |
---|
1014 | this%cloud_pdf_file_name = trim(this%cloud_pdf_override_file_name) |
---|
1015 | else |
---|
1016 | this%cloud_pdf_file_name = trim(this%directory_name) & |
---|
1017 | & // '/' // trim(this%cloud_pdf_override_file_name) |
---|
1018 | end if |
---|
1019 | elseif (this%i_cloud_pdf_shape == IPdfShapeLognormal) then |
---|
1020 | this%cloud_pdf_file_name = trim(this%directory_name) // "/mcica_lognormal.nc" |
---|
1021 | else |
---|
1022 | this%cloud_pdf_file_name = trim(this%directory_name) // "/mcica_gamma.nc" |
---|
1023 | end if |
---|
1024 | |
---|
1025 | ! Aerosol data |
---|
1026 | if (this%n_aerosol_types < 0 & |
---|
1027 | & .or. this%n_aerosol_types > NMaxAerosolTypes) then |
---|
1028 | write(nulerr,'(a,i0)') '*** Error: number of aerosol types must be between 0 and ', & |
---|
1029 | & NMaxAerosolTypes |
---|
1030 | call radiation_abort('Radiation configuration error') |
---|
1031 | end if |
---|
1032 | |
---|
1033 | if (this%use_aerosols .and. this%n_aerosol_types == 0) then |
---|
1034 | if (this%iverbosesetup >= 2) then |
---|
1035 | write(nulout, '(a)') 'Aerosols on but n_aerosol_types=0: optical properties to be computed outside ecRad' |
---|
1036 | end if |
---|
1037 | end if |
---|
1038 | |
---|
1039 | ! In the monochromatic case we need to override the liquid, ice |
---|
1040 | ! and aerosol models to ensure compatibility |
---|
1041 | if (this%i_gas_model == IGasModelMonochromatic) then |
---|
1042 | this%i_liq_model = ILiquidModelMonochromatic |
---|
1043 | this%i_ice_model = IIceModelMonochromatic |
---|
1044 | this%use_aerosols = .false. |
---|
1045 | end if |
---|
1046 | |
---|
1047 | ! McICA solver currently can't store full profiles of spectral fluxes |
---|
1048 | if (this%i_solver_sw == ISolverMcICA) then |
---|
1049 | this%do_save_spectral_flux = .false. |
---|
1050 | end if |
---|
1051 | |
---|
1052 | if (this%i_solver_sw == ISolverSPARTACUS .and. this%do_sw_delta_scaling_with_gases) then |
---|
1053 | write(nulerr,'(a)') '*** Error: SW delta-Eddington scaling with gases not possible with SPARTACUS solver' |
---|
1054 | call radiation_abort('Radiation configuration error') |
---|
1055 | end if |
---|
1056 | |
---|
1057 | if ((this%do_lw .and. this%do_sw) .and. & |
---|
1058 | & ( ( this%i_solver_sw == ISolverHomogeneous & |
---|
1059 | & .and. this%i_solver_lw /= ISolverHomogeneous) & |
---|
1060 | & .or. ( this%i_solver_sw /= ISolverHomogeneous & |
---|
1061 | & .and. this%i_solver_lw == ISolverHomogeneous) & |
---|
1062 | & ) ) then |
---|
1063 | write(nulerr,'(a)') '*** Error: if one solver is "Homogeneous" then the other must be' |
---|
1064 | call radiation_abort('Radiation configuration error') |
---|
1065 | end if |
---|
1066 | |
---|
1067 | ! Set is_homogeneous if the active solvers are homogeneous, since |
---|
1068 | ! this affects how "in-cloud" water contents are computed |
---|
1069 | if ( (this%do_sw .and. this%i_solver_sw == ISolverHomogeneous) & |
---|
1070 | & .or. (this%do_lw .and. this%i_solver_lw == ISolverHomogeneous)) then |
---|
1071 | this%is_homogeneous = .true. |
---|
1072 | end if |
---|
1073 | |
---|
1074 | this%is_consolidated = .true. |
---|
1075 | |
---|
1076 | if (lhook) call dr_hook('radiation_config:consolidate',1,hook_handle) |
---|
1077 | |
---|
1078 | end subroutine consolidate_config |
---|
1079 | |
---|
1080 | |
---|
1081 | !--------------------------------------------------------------------- |
---|
1082 | ! This subroutine sets members of the configuration object via |
---|
1083 | ! optional arguments, and any member not specified is left |
---|
1084 | ! untouched. Therefore, this should be called after taking data from |
---|
1085 | ! the namelist. |
---|
1086 | subroutine set_config(config, directory_name, & |
---|
1087 | & do_lw, do_sw, & |
---|
1088 | & do_lw_aerosol_scattering, do_lw_cloud_scattering, & |
---|
1089 | & do_sw_direct) |
---|
1090 | |
---|
1091 | class(config_type), intent(inout):: config |
---|
1092 | character(len=*), intent(in), optional :: directory_name |
---|
1093 | logical, intent(in), optional :: do_lw, do_sw |
---|
1094 | logical, intent(in), optional :: do_lw_aerosol_scattering |
---|
1095 | logical, intent(in), optional :: do_lw_cloud_scattering |
---|
1096 | logical, intent(in), optional :: do_sw_direct |
---|
1097 | |
---|
1098 | if (present(do_lw)) then |
---|
1099 | config%do_lw = do_lw |
---|
1100 | end if |
---|
1101 | |
---|
1102 | if(present(do_sw)) then |
---|
1103 | config%do_sw = do_sw |
---|
1104 | end if |
---|
1105 | |
---|
1106 | if (present(do_sw_direct)) then |
---|
1107 | config%do_sw_direct = do_sw_direct |
---|
1108 | end if |
---|
1109 | |
---|
1110 | if (present(directory_name)) then |
---|
1111 | config%directory_name = trim(directory_name) |
---|
1112 | end if |
---|
1113 | |
---|
1114 | if (present(do_lw_aerosol_scattering)) then |
---|
1115 | config%do_lw_aerosol_scattering = .true. |
---|
1116 | end if |
---|
1117 | |
---|
1118 | if (present(do_lw_cloud_scattering)) then |
---|
1119 | config%do_lw_cloud_scattering = .true. |
---|
1120 | end if |
---|
1121 | |
---|
1122 | end subroutine set_config |
---|
1123 | |
---|
1124 | |
---|
1125 | !--------------------------------------------------------------------- |
---|
1126 | ! Print configuration information to standard output |
---|
1127 | subroutine print_config(this, iverbose) |
---|
1128 | |
---|
1129 | use radiation_io, only : nulout |
---|
1130 | |
---|
1131 | class(config_type), intent(in) :: this |
---|
1132 | |
---|
1133 | integer, optional, intent(in) :: iverbose |
---|
1134 | integer :: i_local_verbose |
---|
1135 | |
---|
1136 | if (present(iverbose)) then |
---|
1137 | i_local_verbose = iverbose |
---|
1138 | else |
---|
1139 | i_local_verbose = this%iverbose |
---|
1140 | end if |
---|
1141 | |
---|
1142 | if (i_local_verbose >= 2) then |
---|
1143 | !--------------------------------------------------------------------- |
---|
1144 | write(nulout, '(a)') 'General settings:' |
---|
1145 | write(nulout, '(a,a,a)') ' Data files expected in "', & |
---|
1146 | & trim(this%directory_name), '"' |
---|
1147 | call print_logical(' Clear-sky calculations are', 'do_clear', this%do_clear) |
---|
1148 | call print_logical(' Saving intermediate radiative properties', & |
---|
1149 | & 'do_save_radiative_properties', this%do_save_radiative_properties) |
---|
1150 | call print_logical(' Saving spectral flux profiles', & |
---|
1151 | & 'do_save_spectral_flux', this%do_save_spectral_flux) |
---|
1152 | call print_enum(' Gas model is', GasModelName, 'i_gas_model', & |
---|
1153 | & this%i_gas_model) |
---|
1154 | call print_logical(' Aerosols are', 'use_aerosols', this%use_aerosols) |
---|
1155 | call print_logical(' Clouds are', 'do_clouds', this%do_clouds) |
---|
1156 | |
---|
1157 | !--------------------------------------------------------------------- |
---|
1158 | write(nulout, '(a)') 'Surface settings:' |
---|
1159 | if (this%do_sw) then |
---|
1160 | call print_logical(' Saving surface shortwave spectral fluxes', & |
---|
1161 | & 'do_surface_sw_spectral_flux', this%do_surface_sw_spectral_flux) |
---|
1162 | call print_logical(' Saving surface shortwave fluxes in abledo bands', & |
---|
1163 | & 'do_canopy_fluxes_sw', this%do_canopy_fluxes_sw) |
---|
1164 | end if |
---|
1165 | if (this%do_lw) then |
---|
1166 | call print_logical(' Saving surface longwave fluxes in emissivity bands', & |
---|
1167 | & 'do_canopy_fluxes_lw', this%do_canopy_fluxes_lw) |
---|
1168 | call print_logical(' Longwave derivative calculation is', & |
---|
1169 | & 'do_lw_derivatives',this%do_lw_derivatives) |
---|
1170 | end if |
---|
1171 | if (this%do_sw) then |
---|
1172 | call print_logical(' Nearest-neighbour spectral albedo mapping', & |
---|
1173 | & 'do_nearest_spectral_sw_albedo', this%do_nearest_spectral_sw_albedo) |
---|
1174 | end if |
---|
1175 | if (this%do_lw) then |
---|
1176 | call print_logical(' Nearest-neighbour spectral emissivity mapping', & |
---|
1177 | & 'do_nearest_spectral_lw_emiss', this%do_nearest_spectral_lw_emiss) |
---|
1178 | end if |
---|
1179 | !--------------------------------------------------------------------- |
---|
1180 | if (this%do_clouds) then |
---|
1181 | write(nulout, '(a)') 'Cloud settings:' |
---|
1182 | call print_real(' Cloud fraction threshold', & |
---|
1183 | & 'cloud_fraction_threshold', this%cloud_fraction_threshold) |
---|
1184 | call print_real(' Cloud mixing-ratio threshold', & |
---|
1185 | & 'cloud_mixing_ratio_threshold', this%cloud_mixing_ratio_threshold) |
---|
1186 | call print_enum(' Liquid optics scheme is', LiquidModelName, & |
---|
1187 | & 'i_liq_model',this%i_liq_model) |
---|
1188 | call print_enum(' Ice optics scheme is', IceModelName, & |
---|
1189 | & 'i_ice_model',this%i_ice_model) |
---|
1190 | if (this%i_ice_model == IIceModelFu) then |
---|
1191 | call print_logical(' Longwave ice optics bug in Fu scheme is', & |
---|
1192 | & 'do_fu_lw_ice_optics_bug',this%do_fu_lw_ice_optics_bug) |
---|
1193 | end if |
---|
1194 | call print_enum(' Cloud overlap scheme is', OverlapName, & |
---|
1195 | & 'i_overlap_scheme',this%i_overlap_scheme) |
---|
1196 | call print_logical(' Use "beta" overlap parameter is', & |
---|
1197 | & 'use_beta_overlap', this%use_beta_overlap) |
---|
1198 | call print_enum(' Cloud PDF shape is', PdfShapeName, & |
---|
1199 | & 'i_cloud_pdf_shape',this%i_cloud_pdf_shape) |
---|
1200 | call print_real(' Cloud inhom decorrelation scaling', & |
---|
1201 | & 'cloud_inhom_decorr_scaling', this%cloud_inhom_decorr_scaling) |
---|
1202 | end if |
---|
1203 | |
---|
1204 | !--------------------------------------------------------------------- |
---|
1205 | write(nulout, '(a)') 'Solver settings:' |
---|
1206 | if (this%do_sw) then |
---|
1207 | call print_enum(' Shortwave solver is', SolverName, & |
---|
1208 | & 'i_solver_sw', this%i_solver_sw) |
---|
1209 | |
---|
1210 | if (this%i_gas_model == IGasModelMonochromatic) then |
---|
1211 | call print_real(' Shortwave atmospheric optical depth', & |
---|
1212 | & 'mono_sw_total_od', this%mono_sw_total_od) |
---|
1213 | call print_real(' Shortwave particulate single-scattering albedo', & |
---|
1214 | & 'mono_sw_single_scattering_albedo', & |
---|
1215 | & this%mono_sw_single_scattering_albedo) |
---|
1216 | call print_real(' Shortwave particulate asymmetry factor', & |
---|
1217 | & 'mono_sw_asymmetry_factor', & |
---|
1218 | & this%mono_sw_asymmetry_factor) |
---|
1219 | end if |
---|
1220 | call print_logical(' Shortwave delta scaling after merge with gases', & |
---|
1221 | & 'do_sw_delta_scaling_with_gases', & |
---|
1222 | & this%do_sw_delta_scaling_with_gases) |
---|
1223 | else |
---|
1224 | call print_logical(' Shortwave calculations are','do_sw',this%do_sw) |
---|
1225 | end if |
---|
1226 | |
---|
1227 | if (this%do_lw) then |
---|
1228 | call print_enum(' Longwave solver is', SolverName, 'i_solver_lw', & |
---|
1229 | & this%i_solver_lw) |
---|
1230 | |
---|
1231 | if (this%i_gas_model == IGasModelMonochromatic) then |
---|
1232 | if (this%mono_lw_wavelength > 0.0_jprb) then |
---|
1233 | call print_real(' Longwave effective wavelength (m)', & |
---|
1234 | & 'mono_lw_wavelength', this%mono_lw_wavelength) |
---|
1235 | else |
---|
1236 | write(nulout,'(a)') ' Longwave fluxes are broadband (mono_lw_wavelength<=0)' |
---|
1237 | end if |
---|
1238 | call print_real(' Longwave atmospheric optical depth', & |
---|
1239 | & 'mono_lw_total_od', this%mono_lw_total_od) |
---|
1240 | call print_real(' Longwave particulate single-scattering albedo', & |
---|
1241 | & 'mono_lw_single_scattering_albedo', & |
---|
1242 | & this%mono_lw_single_scattering_albedo) |
---|
1243 | call print_real(' Longwave particulate asymmetry factor', & |
---|
1244 | & 'mono_lw_asymmetry_factor', & |
---|
1245 | & this%mono_lw_asymmetry_factor) |
---|
1246 | end if |
---|
1247 | call print_logical(' Longwave cloud scattering is', & |
---|
1248 | & 'do_lw_cloud_scattering',this%do_lw_cloud_scattering) |
---|
1249 | call print_logical(' Longwave aerosol scattering is', & |
---|
1250 | & 'do_lw_aerosol_scattering',this%do_lw_aerosol_scattering) |
---|
1251 | else |
---|
1252 | call print_logical(' Longwave calculations are','do_lw', this%do_lw) |
---|
1253 | end if |
---|
1254 | |
---|
1255 | if (this%i_solver_sw == ISolverSpartacus & |
---|
1256 | & .or. this%i_solver_lw == ISolverSpartacus) then |
---|
1257 | write(nulout, '(a)') ' SPARTACUS options:' |
---|
1258 | call print_integer(' Number of regions', 'n_regions', this%nregions) |
---|
1259 | call print_real(' Max cloud optical depth per layer', & |
---|
1260 | & 'max_cloud_od', this%max_cloud_od) |
---|
1261 | call print_enum(' Shortwave entrapment is', EntrapmentName, & |
---|
1262 | & 'i_3d_sw_entrapment', this%i_3d_sw_entrapment) |
---|
1263 | call print_logical(' Multilayer longwave horizontal transport is', & |
---|
1264 | 'do_3d_lw_multilayer_effects', this%do_3d_lw_multilayer_effects) |
---|
1265 | call print_logical(' Use matrix exponential everywhere is', & |
---|
1266 | & 'use_expm_everywhere', this%use_expm_everywhere) |
---|
1267 | call print_logical(' 3D effects are', 'do_3d_effects', & |
---|
1268 | & this%do_3d_effects) |
---|
1269 | |
---|
1270 | if (this%do_3d_effects) then |
---|
1271 | call print_logical(' Longwave side emissivity parameterization is', & |
---|
1272 | & 'do_lw_side_emissivity', this%do_lw_side_emissivity) |
---|
1273 | call print_real(' Clear-to-thick edge fraction is', & |
---|
1274 | & 'clear_to_thick_fraction', this%clear_to_thick_fraction) |
---|
1275 | call print_real(' Overhead sun factor is', & |
---|
1276 | & 'overhead_sun_factor', this%overhead_sun_factor) |
---|
1277 | call print_real(' Max gas optical depth for 3D effects', & |
---|
1278 | & 'max_gas_od_3d', this%max_gas_od_3d) |
---|
1279 | call print_real(' Max 3D transfer rate', & |
---|
1280 | & 'max_3d_transfer_rate', this%max_3d_transfer_rate) |
---|
1281 | call print_real(' Min cloud effective size (m)', & |
---|
1282 | & 'min_cloud_effective_size', this%min_cloud_effective_size) |
---|
1283 | call print_real(' Overhang factor', & |
---|
1284 | & 'overhang_factor', this%overhang_factor) |
---|
1285 | end if |
---|
1286 | end if |
---|
1287 | |
---|
1288 | end if |
---|
1289 | |
---|
1290 | end subroutine print_config |
---|
1291 | |
---|
1292 | |
---|
1293 | |
---|
1294 | !--------------------------------------------------------------------- |
---|
1295 | ! In order to estimate UV and photosynthetically active radiation, |
---|
1296 | ! we need weighted sum of fluxes considering wavelength range |
---|
1297 | ! required. This routine returns information for how to correctly |
---|
1298 | ! weight output spectral fluxes for a range of input wavelengths. |
---|
1299 | ! Note that this is approximate; internally it may be assumed that |
---|
1300 | ! the energy is uniformly distributed in wavenumber space, for |
---|
1301 | ! example. If the character string "weighting_name" is present, and |
---|
1302 | ! iverbose>=2, then information on the weighting will be provided on |
---|
1303 | ! nulout. |
---|
1304 | subroutine get_sw_weights(this, wavelength1, wavelength2, & |
---|
1305 | & nweights, iband, weight, weighting_name) |
---|
1306 | |
---|
1307 | use parkind1, only : jprb |
---|
1308 | use radiation_io, only : nulout, nulerr, radiation_abort |
---|
1309 | |
---|
1310 | class(config_type), intent(in) :: this |
---|
1311 | ! Range of wavelengths to get weights for (m) |
---|
1312 | real(jprb), intent(in) :: wavelength1, wavelength2 |
---|
1313 | ! Output number of weights needed |
---|
1314 | integer, intent(out) :: nweights |
---|
1315 | ! Only write to the first nweights of these arrays: they contain |
---|
1316 | ! the indices to the non-zero bands, and the weight in each of |
---|
1317 | ! those bands |
---|
1318 | integer, intent(out) :: iband(:) |
---|
1319 | real(jprb), intent(out) :: weight(:) |
---|
1320 | character(len=*), optional, intent(in) :: weighting_name |
---|
1321 | |
---|
1322 | ! Internally we deal with wavenumber |
---|
1323 | real(jprb) :: wavenumber1, wavenumber2 ! cm-1 |
---|
1324 | |
---|
1325 | integer :: jband ! Loop index for spectral band |
---|
1326 | |
---|
1327 | if (this%n_bands_sw <= 0) then |
---|
1328 | write(nulerr,'(a)') '*** Error: get_sw_weights called before number of shortwave bands set' |
---|
1329 | call radiation_abort() |
---|
1330 | end if |
---|
1331 | |
---|
1332 | ! Convert wavelength range (m) to wavenumber (cm-1) |
---|
1333 | wavenumber1 = 0.01_jprb / wavelength2 |
---|
1334 | wavenumber2 = 0.01_jprb / wavelength1 |
---|
1335 | |
---|
1336 | nweights = 0 |
---|
1337 | |
---|
1338 | do jband = 1,this%n_bands_sw |
---|
1339 | if (wavenumber1 < this%wavenumber2_sw(jband) & |
---|
1340 | & .and. wavenumber2 > this%wavenumber1_sw(jband)) then |
---|
1341 | nweights = nweights+1 |
---|
1342 | iband(nweights) = jband |
---|
1343 | weight(nweights) = (min(wavenumber2,this%wavenumber2_sw(jband)) & |
---|
1344 | & - max(wavenumber1,this%wavenumber1_sw(jband))) & |
---|
1345 | & / (this%wavenumber2_sw(jband) - this%wavenumber1_sw(jband)) |
---|
1346 | end if |
---|
1347 | end do |
---|
1348 | |
---|
1349 | if (nweights == 0) then |
---|
1350 | write(nulerr,'(a,e8.4,a,e8.4,a)') '*** Error: wavelength range ', & |
---|
1351 | & wavelength1, ' to ', wavelength2, ' m is outside shortwave band' |
---|
1352 | call radiation_abort() |
---|
1353 | else if (this%iverbosesetup >= 2 .and. present(weighting_name)) then |
---|
1354 | write(nulout,'(a,a,a,f6.0,a,f6.0,a)') 'Spectral weights for ', & |
---|
1355 | & weighting_name, ' (', wavenumber1, ' to ', & |
---|
1356 | & wavenumber2, ' cm-1):' |
---|
1357 | do jband = 1, nweights |
---|
1358 | write(nulout, '(a,i0,a,f6.0,a,f6.0,a,f8.4)') ' Shortwave band ', & |
---|
1359 | & iband(jband), ' (', this%wavenumber1_sw(iband(jband)), ' to ', & |
---|
1360 | & this%wavenumber2_sw(iband(jband)), ' cm-1): ', weight(jband) |
---|
1361 | end do |
---|
1362 | end if |
---|
1363 | |
---|
1364 | end subroutine get_sw_weights |
---|
1365 | |
---|
1366 | |
---|
1367 | !--------------------------------------------------------------------- |
---|
1368 | ! The input shortwave surface albedo coming in is likely to be in |
---|
1369 | ! different spectral intervals to the gas model in the radiation |
---|
1370 | ! scheme. We assume that the input albedo is defined within |
---|
1371 | ! "ninterval" spectral intervals covering the wavelength range 0 to |
---|
1372 | ! infinity, but allow for the possibility that two intervals may be |
---|
1373 | ! indexed back to the same albedo band. |
---|
1374 | subroutine define_sw_albedo_intervals(this, ninterval, wavelength_bound, & |
---|
1375 | & i_intervals, do_nearest) |
---|
1376 | |
---|
1377 | use radiation_io, only : nulerr, radiation_abort |
---|
1378 | |
---|
1379 | class(config_type), intent(inout) :: this |
---|
1380 | ! Number of spectral intervals in which albedo is defined |
---|
1381 | integer, intent(in) :: ninterval |
---|
1382 | ! Monotonically increasing wavelength bounds between intervals, |
---|
1383 | ! not including the outer bounds (which are assumed to be zero and |
---|
1384 | ! infinity) |
---|
1385 | real(jprb), intent(in) :: wavelength_bound(ninterval-1) |
---|
1386 | ! The albedo indices corresponding to each interval |
---|
1387 | integer, intent(in) :: i_intervals(ninterval) |
---|
1388 | logical, optional, intent(in) :: do_nearest |
---|
1389 | |
---|
1390 | if (ninterval > NMaxAlbedoIntervals) then |
---|
1391 | write(nulerr,'(a,i0,a,i0)') '*** Error: ', ninterval, & |
---|
1392 | & ' albedo intervals exceeds maximum of ', NMaxAlbedoIntervals |
---|
1393 | call radiation_abort(); |
---|
1394 | end if |
---|
1395 | |
---|
1396 | if (present(do_nearest)) then |
---|
1397 | this%do_nearest_spectral_sw_albedo = do_nearest |
---|
1398 | else |
---|
1399 | this%do_nearest_spectral_sw_albedo = .false. |
---|
1400 | end if |
---|
1401 | this%sw_albedo_wavelength_bound(1:ninterval-1) = wavelength_bound(1:ninterval-1) |
---|
1402 | this%sw_albedo_wavelength_bound(ninterval:) = -1.0_jprb |
---|
1403 | this%i_sw_albedo_index(1:ninterval) = i_intervals(1:ninterval) |
---|
1404 | this%i_sw_albedo_index(ninterval+1:) = 0 |
---|
1405 | |
---|
1406 | if (this%is_consolidated) then |
---|
1407 | call this%consolidate_intervals(.true., & |
---|
1408 | & this%do_nearest_spectral_sw_albedo, & |
---|
1409 | & this%sw_albedo_wavelength_bound, this%i_sw_albedo_index, & |
---|
1410 | & this%wavenumber1_sw, this%wavenumber2_sw, & |
---|
1411 | & this%i_albedo_from_band_sw, this%sw_albedo_weights) |
---|
1412 | end if |
---|
1413 | |
---|
1414 | end subroutine define_sw_albedo_intervals |
---|
1415 | |
---|
1416 | |
---|
1417 | !--------------------------------------------------------------------- |
---|
1418 | ! As define_sw_albedo_intervals but for longwave emissivity |
---|
1419 | subroutine define_lw_emiss_intervals(this, ninterval, wavelength_bound, & |
---|
1420 | & i_intervals, do_nearest) |
---|
1421 | |
---|
1422 | use radiation_io, only : nulerr, radiation_abort |
---|
1423 | |
---|
1424 | class(config_type), intent(inout) :: this |
---|
1425 | ! Number of spectral intervals in which emissivity is defined |
---|
1426 | integer, intent(in) :: ninterval |
---|
1427 | ! Monotonically increasing wavelength bounds between intervals, |
---|
1428 | ! not including the outer bounds (which are assumed to be zero and |
---|
1429 | ! infinity) |
---|
1430 | real(jprb), intent(in) :: wavelength_bound(ninterval-1) |
---|
1431 | ! The emissivity indices corresponding to each interval |
---|
1432 | integer, intent(in) :: i_intervals(ninterval) |
---|
1433 | logical, optional, intent(in) :: do_nearest |
---|
1434 | |
---|
1435 | if (ninterval > NMaxAlbedoIntervals) then |
---|
1436 | write(nulerr,'(a,i0,a,i0)') '*** Error: ', ninterval, & |
---|
1437 | & ' emissivity intervals exceeds maximum of ', NMaxAlbedoIntervals |
---|
1438 | call radiation_abort(); |
---|
1439 | end if |
---|
1440 | |
---|
1441 | if (present(do_nearest)) then |
---|
1442 | this%do_nearest_spectral_lw_emiss = do_nearest |
---|
1443 | else |
---|
1444 | this%do_nearest_spectral_lw_emiss = .false. |
---|
1445 | end if |
---|
1446 | this%lw_emiss_wavelength_bound(1:ninterval-1) = wavelength_bound(1:ninterval-1) |
---|
1447 | this%lw_emiss_wavelength_bound(ninterval:) = -1.0_jprb |
---|
1448 | this%i_lw_emiss_index(1:ninterval) = i_intervals(1:ninterval) |
---|
1449 | this%i_lw_emiss_index(ninterval+1:) = 0 |
---|
1450 | |
---|
1451 | if (this%is_consolidated) then |
---|
1452 | call this%consolidate_intervals(.false., & |
---|
1453 | & this%do_nearest_spectral_lw_emiss, & |
---|
1454 | & this%lw_emiss_wavelength_bound, this%i_lw_emiss_index, & |
---|
1455 | & this%wavenumber1_lw, this%wavenumber2_lw, & |
---|
1456 | & this%i_emiss_from_band_lw, this%lw_emiss_weights) |
---|
1457 | end if |
---|
1458 | |
---|
1459 | end subroutine define_lw_emiss_intervals |
---|
1460 | |
---|
1461 | |
---|
1462 | !--------------------------------------------------------------------- |
---|
1463 | ! This routine consolidates either the input shortwave albedo |
---|
1464 | ! intervals with the shortwave bands, or the input longwave |
---|
1465 | ! emissivity intervals with the longwave bands, depending on the |
---|
1466 | ! arguments provided. |
---|
1467 | subroutine consolidate_intervals(this, is_sw, do_nearest, & |
---|
1468 | & wavelength_bound, i_intervals, wavenumber1, wavenumber2, & |
---|
1469 | & i_mapping, weights) |
---|
1470 | |
---|
1471 | use radiation_io, only : nulout, nulerr, radiation_abort |
---|
1472 | |
---|
1473 | class(config_type), intent(inout) :: this |
---|
1474 | ! Is this the shortwave? Otherwise longwave |
---|
1475 | logical, intent(in) :: is_sw |
---|
1476 | ! Do we find the nearest albedo interval to the centre of each |
---|
1477 | ! band, or properly weight the contributions? This can be modified |
---|
1478 | ! if there is only one albedo intervals. |
---|
1479 | logical, intent(inout) :: do_nearest |
---|
1480 | ! Monotonically increasing wavelength bounds between intervals, |
---|
1481 | ! not including the outer bounds (which are assumed to be zero and |
---|
1482 | ! infinity) |
---|
1483 | real(jprb), intent(in) :: wavelength_bound(NMaxAlbedoIntervals-1) |
---|
1484 | ! The albedo band indices corresponding to each interval |
---|
1485 | integer, intent(in) :: i_intervals(NMaxAlbedoIntervals) |
---|
1486 | ! Start and end wavenumber bounds for the ecRad bands (cm-1) |
---|
1487 | real(jprb), intent(in) :: wavenumber1(:), wavenumber2(:) |
---|
1488 | |
---|
1489 | ! if do_nearest is TRUE then the result is expressed in i_mapping, |
---|
1490 | ! which will be allocated to have the same length as wavenumber1, |
---|
1491 | ! and contain the index of the albedo interval corresponding to |
---|
1492 | ! that band |
---|
1493 | integer, allocatable, intent(inout) :: i_mapping(:) |
---|
1494 | ! ...otherwise the result is expressed in "weights", of |
---|
1495 | ! size(n_intervals, n_bands) containing how much of each interval |
---|
1496 | ! contributes to each band. |
---|
1497 | real(jprb), allocatable, intent(inout) :: weights(:,:) |
---|
1498 | |
---|
1499 | ! Number and loop index of ecRad bands |
---|
1500 | integer :: nband, jband |
---|
1501 | ! Number and index of albedo/emissivity intervals |
---|
1502 | integer :: ninterval, iinterval |
---|
1503 | ! Sometimes an albedo or emissivity value will be used in more |
---|
1504 | ! than one interval, so nvalue indicates how many values will |
---|
1505 | ! actually be provided |
---|
1506 | integer :: nvalue |
---|
1507 | ! Wavenumber bounds of the albedo/emissivity interval |
---|
1508 | real(jprb) :: wavenumber1_albedo, wavenumber2_albedo |
---|
1509 | ! Reciprocal of the wavenumber range of the ecRad band |
---|
1510 | real(jprb) :: recip_dwavenumber ! cm |
---|
1511 | ! Midpoint/bound of wavenumber band |
---|
1512 | real(jprb) :: wavenumber_mid, wavenumber_bound ! cm-1 |
---|
1513 | |
---|
1514 | nband = size(wavenumber1) |
---|
1515 | |
---|
1516 | ! Count the number of albedo/emissivity intervals |
---|
1517 | ninterval = 0 |
---|
1518 | do iinterval = 1,NMaxAlbedoIntervals |
---|
1519 | if (i_intervals(iinterval) > 0) then |
---|
1520 | ninterval = iinterval |
---|
1521 | else |
---|
1522 | exit |
---|
1523 | end if |
---|
1524 | end do |
---|
1525 | |
---|
1526 | if (ninterval < 2) then |
---|
1527 | ! Zero or one albedo/emissivity intervals found, so we index all |
---|
1528 | ! bands to one interval |
---|
1529 | if (allocated(i_mapping)) then |
---|
1530 | deallocate(i_mapping) |
---|
1531 | end if |
---|
1532 | allocate(i_mapping(nband)) |
---|
1533 | i_mapping(:) = 1 |
---|
1534 | do_nearest = .true. |
---|
1535 | ninterval = 1 |
---|
1536 | nvalue = 1 |
---|
1537 | else |
---|
1538 | ! Check wavelength is monotonically increasing |
---|
1539 | do jband = 2,ninterval-1 |
---|
1540 | if (wavelength_bound(jband) <= wavelength_bound(jband-1)) then |
---|
1541 | if (is_sw) then |
---|
1542 | write(nulerr, '(a,a)') '*** Error: wavelength bounds for shortwave albedo intervals ', & |
---|
1543 | & 'must be monotonically increasing' |
---|
1544 | else |
---|
1545 | write(nulerr, '(a,a)') '*** Error: wavelength bounds for longwave emissivity intervals ', & |
---|
1546 | & 'must be monotonically increasing' |
---|
1547 | end if |
---|
1548 | call radiation_abort() |
---|
1549 | end if |
---|
1550 | end do |
---|
1551 | |
---|
1552 | ! What is the maximum index, indicating the number of |
---|
1553 | ! albedo/emissivity values to expect? |
---|
1554 | nvalue = maxval(i_intervals(1:ninterval)) |
---|
1555 | |
---|
1556 | if (do_nearest) then |
---|
1557 | ! Simpler nearest-neighbour mapping from band to |
---|
1558 | ! albedo/emissivity interval |
---|
1559 | if (allocated(i_mapping)) then |
---|
1560 | deallocate(i_mapping) |
---|
1561 | end if |
---|
1562 | allocate(i_mapping(nband)) |
---|
1563 | |
---|
1564 | ! Loop over bands |
---|
1565 | do jband = 1,nband |
---|
1566 | ! Compute mid-point of band in wavenumber space (cm-1) |
---|
1567 | wavenumber_mid = 0.5_jprb * (wavenumber1(jband) & |
---|
1568 | & + wavenumber2(jband)) |
---|
1569 | iinterval = 1 |
---|
1570 | ! Convert wavelength (m) into wavenumber (cm-1) at the lower |
---|
1571 | ! bound of the albedo interval |
---|
1572 | wavenumber_bound = 0.01_jprb / wavelength_bound(iinterval) |
---|
1573 | ! Find the albedo interval that has the largest overlap with |
---|
1574 | ! the band; this approach assumes that the albedo intervals |
---|
1575 | ! are larger than the spectral bands |
---|
1576 | do while (wavenumber_bound >= wavenumber_mid & |
---|
1577 | & .and. iinterval < ninterval) |
---|
1578 | iinterval = iinterval + 1 |
---|
1579 | if (iinterval < ninterval) then |
---|
1580 | wavenumber_bound = 0.01_jprb / wavelength_bound(iinterval) |
---|
1581 | else |
---|
1582 | ! For the last interval there is no lower bound |
---|
1583 | wavenumber_bound = 0.0_jprb |
---|
1584 | end if |
---|
1585 | end do |
---|
1586 | ! Save the index of the band corresponding to the albedo |
---|
1587 | ! interval and move onto the next band |
---|
1588 | i_mapping(jband) = i_intervals(iinterval) |
---|
1589 | end do |
---|
1590 | else |
---|
1591 | ! More accurate weighting |
---|
1592 | if (allocated(weights)) then |
---|
1593 | deallocate(weights) |
---|
1594 | end if |
---|
1595 | allocate(weights(nvalue,nband)) |
---|
1596 | weights(:,:) = 0.0_jprb |
---|
1597 | |
---|
1598 | ! Loop over bands |
---|
1599 | do jband = 1,nband |
---|
1600 | recip_dwavenumber = 1.0_jprb / (wavenumber2(jband) & |
---|
1601 | & - wavenumber1(jband)) |
---|
1602 | ! Find the first overlapping albedo band |
---|
1603 | iinterval = 1 |
---|
1604 | ! Convert wavelength (m) into wavenumber (cm-1) at the lower |
---|
1605 | ! bound (in wavenumber space) of the albedo/emissivty interval |
---|
1606 | wavenumber1_albedo = 0.01_jprb / wavelength_bound(iinterval) |
---|
1607 | do while (wavenumber1_albedo >= wavenumber2(jband) & |
---|
1608 | & .and. iinterval < ninterval) |
---|
1609 | iinterval = iinterval + 1 |
---|
1610 | wavenumber1_albedo = 0.01_jprb / wavelength_bound(iinterval) |
---|
1611 | end do |
---|
1612 | |
---|
1613 | wavenumber2_albedo = wavenumber2(jband) |
---|
1614 | |
---|
1615 | ! Add all overlapping bands |
---|
1616 | do while (wavenumber2_albedo > wavenumber1(jband) & |
---|
1617 | & .and. iinterval <= ninterval) |
---|
1618 | weights(i_intervals(iinterval),jband) & |
---|
1619 | & = weights(i_intervals(iinterval),jband) & |
---|
1620 | & + recip_dwavenumber & |
---|
1621 | & * (min(wavenumber2_albedo,wavenumber2(jband)) & |
---|
1622 | & - max(wavenumber1_albedo,wavenumber1(jband))) |
---|
1623 | wavenumber2_albedo = wavenumber1_albedo |
---|
1624 | iinterval = iinterval + 1 |
---|
1625 | if (iinterval < ninterval) then |
---|
1626 | wavenumber1_albedo = 0.01_jprb / wavelength_bound(iinterval) |
---|
1627 | else |
---|
1628 | wavenumber1_albedo = 0.0_jprb |
---|
1629 | end if |
---|
1630 | end do |
---|
1631 | end do |
---|
1632 | end if |
---|
1633 | end if |
---|
1634 | |
---|
1635 | ! Define how many bands to use for reporting surface downwelling |
---|
1636 | ! fluxes for canopy radiation scheme |
---|
1637 | if (is_sw) then |
---|
1638 | if (this%use_canopy_full_spectrum_sw) then |
---|
1639 | this%n_canopy_bands_sw = this%n_g_sw |
---|
1640 | else |
---|
1641 | this%n_canopy_bands_sw = nvalue |
---|
1642 | end if |
---|
1643 | else |
---|
1644 | if (this%use_canopy_full_spectrum_lw) then |
---|
1645 | this%n_canopy_bands_lw = this%n_g_lw |
---|
1646 | else |
---|
1647 | this%n_canopy_bands_lw = nvalue |
---|
1648 | end if |
---|
1649 | end if |
---|
1650 | |
---|
1651 | if (this%iverbosesetup >= 2) then |
---|
1652 | if (.not. do_nearest) then |
---|
1653 | if (is_sw) then |
---|
1654 | write(nulout, '(a,i0,a,i0,a)') 'Weighting of ', nvalue, ' albedo values in ', & |
---|
1655 | & nband, ' shortwave bands (wavenumber ranges in cm-1):' |
---|
1656 | else |
---|
1657 | write(nulout, '(a,i0,a,i0,a)') 'Weighting of ', nvalue, ' emissivity values in ', & |
---|
1658 | & nband, ' longwave bands (wavenumber ranges in cm-1):' |
---|
1659 | end if |
---|
1660 | do jband = 1,nband |
---|
1661 | write(nulout,'(i6,a,i6,a)',advance='no') nint(wavenumber1(jband)), ' to', & |
---|
1662 | & nint(wavenumber2(jband)), ':' |
---|
1663 | do iinterval = 1,nvalue |
---|
1664 | write(nulout,'(f5.2)',advance='no') weights(iinterval,jband) |
---|
1665 | end do |
---|
1666 | write(nulout, '()') |
---|
1667 | end do |
---|
1668 | else if (ninterval <= 1) then |
---|
1669 | if (is_sw) then |
---|
1670 | write(nulout, '(a)') 'All shortwave bands will use the same albedo' |
---|
1671 | else |
---|
1672 | write(nulout, '(a)') 'All longwave bands will use the same emissivty' |
---|
1673 | end if |
---|
1674 | else |
---|
1675 | if (is_sw) then |
---|
1676 | write(nulout, '(a,i0,a)',advance='no') 'Mapping from ', nband, & |
---|
1677 | & ' shortwave bands to albedo intervals:' |
---|
1678 | else |
---|
1679 | write(nulout, '(a,i0,a)',advance='no') 'Mapping from ', nband, & |
---|
1680 | & ' longwave bands to emissivity intervals:' |
---|
1681 | end if |
---|
1682 | do jband = 1,nband |
---|
1683 | write(nulout,'(a,i0)',advance='no') ' ', i_mapping(jband) |
---|
1684 | end do |
---|
1685 | write(nulout, '()') |
---|
1686 | end if |
---|
1687 | end if |
---|
1688 | |
---|
1689 | end subroutine consolidate_intervals |
---|
1690 | |
---|
1691 | |
---|
1692 | !--------------------------------------------------------------------- |
---|
1693 | ! Return the 0-based index for str in enum_str, or abort if it is |
---|
1694 | ! not found |
---|
1695 | subroutine get_enum_code(str, enum_str, var_name, icode) |
---|
1696 | |
---|
1697 | use radiation_io, only : nulerr, radiation_abort |
---|
1698 | |
---|
1699 | character(len=*), intent(in) :: str |
---|
1700 | character(len=*), intent(in) :: enum_str(0:) |
---|
1701 | character(len=*), intent(in) :: var_name |
---|
1702 | integer, intent(out) :: icode |
---|
1703 | |
---|
1704 | integer :: jc |
---|
1705 | logical :: is_not_found |
---|
1706 | |
---|
1707 | ! If string is empty then we don't modify icode but assume it has |
---|
1708 | ! a sensible default value |
---|
1709 | if (len_trim(str) > 1) then |
---|
1710 | is_not_found = .true. |
---|
1711 | |
---|
1712 | do jc = 0,size(enum_str)-1 |
---|
1713 | if (trim(str) == trim(enum_str(jc))) then |
---|
1714 | icode = jc |
---|
1715 | is_not_found = .false. |
---|
1716 | exit |
---|
1717 | end if |
---|
1718 | end do |
---|
1719 | if (is_not_found) then |
---|
1720 | write(nulerr,'(a,a,a,a,a)',advance='no') '*** Error: ', trim(var_name), & |
---|
1721 | & ' must be one of: "', enum_str(0), '"' |
---|
1722 | do jc = 1,size(enum_str)-1 |
---|
1723 | write(nulerr,'(a,a,a)',advance='no') ', "', trim(enum_str(jc)), '"' |
---|
1724 | end do |
---|
1725 | write(nulerr,'(a)') '' |
---|
1726 | call radiation_abort('Radiation configuration error') |
---|
1727 | end if |
---|
1728 | end if |
---|
1729 | |
---|
1730 | end subroutine get_enum_code |
---|
1731 | |
---|
1732 | |
---|
1733 | !--------------------------------------------------------------------- |
---|
1734 | ! Print one line of information: logical |
---|
1735 | subroutine print_logical(message_str, name, val) |
---|
1736 | use radiation_io, only : nulout |
---|
1737 | character(len=*), intent(in) :: message_str |
---|
1738 | character(len=*), intent(in) :: name |
---|
1739 | logical, intent(in) :: val |
---|
1740 | character(4) :: on_or_off |
---|
1741 | character(NPrintStringLen) :: str |
---|
1742 | if (val) then |
---|
1743 | on_or_off = ' ON ' |
---|
1744 | else |
---|
1745 | on_or_off = ' OFF' |
---|
1746 | end if |
---|
1747 | write(str, '(a,a4)') message_str, on_or_off |
---|
1748 | write(nulout,'(a,a,a,a,l1,a)') str, ' (', name, '=', val,')' |
---|
1749 | end subroutine print_logical |
---|
1750 | |
---|
1751 | |
---|
1752 | !--------------------------------------------------------------------- |
---|
1753 | ! Print one line of information: integer |
---|
1754 | subroutine print_integer(message_str, name, val) |
---|
1755 | use radiation_io, only : nulout |
---|
1756 | character(len=*), intent(in) :: message_str |
---|
1757 | character(len=*), intent(in) :: name |
---|
1758 | integer, intent(in) :: val |
---|
1759 | character(NPrintStringLen) :: str |
---|
1760 | write(str, '(a,a,i0)') message_str, ' = ', val |
---|
1761 | write(nulout,'(a,a,a,a)') str, ' (', name, ')' |
---|
1762 | end subroutine print_integer |
---|
1763 | |
---|
1764 | |
---|
1765 | !--------------------------------------------------------------------- |
---|
1766 | ! Print one line of information: real |
---|
1767 | subroutine print_real(message_str, name, val) |
---|
1768 | use parkind1, only : jprb |
---|
1769 | use radiation_io, only : nulout |
---|
1770 | character(len=*), intent(in) :: message_str |
---|
1771 | character(len=*), intent(in) :: name |
---|
1772 | real(jprb), intent(in) :: val |
---|
1773 | character(NPrintStringLen) :: str |
---|
1774 | write(str, '(a,a,g8.3)') message_str, ' = ', val |
---|
1775 | write(nulout,'(a,a,a,a)') str, ' (', name, ')' |
---|
1776 | end subroutine print_real |
---|
1777 | |
---|
1778 | |
---|
1779 | !--------------------------------------------------------------------- |
---|
1780 | ! Print one line of information: enum |
---|
1781 | subroutine print_enum(message_str, enum_str, name, val) |
---|
1782 | use radiation_io, only : nulout |
---|
1783 | character(len=*), intent(in) :: message_str |
---|
1784 | character(len=*), intent(in) :: enum_str(0:) |
---|
1785 | character(len=*), intent(in) :: name |
---|
1786 | integer, intent(in) :: val |
---|
1787 | character(NPrintStringLen) :: str |
---|
1788 | write(str, '(a,a,a,a)') message_str, ' "', trim(enum_str(val)), '"' |
---|
1789 | write(nulout,'(a,a,a,a,i0,a)') str, ' (', name, '=', val,')' |
---|
1790 | end subroutine print_enum |
---|
1791 | |
---|
1792 | |
---|
1793 | !--------------------------------------------------------------------- |
---|
1794 | ! Return .true. if 1D allocatable array "var" is out of physical |
---|
1795 | ! range specified by boundmin and boundmax, and issue a warning. |
---|
1796 | ! "do_fix" determines whether erroneous values are fixed to lie |
---|
1797 | ! within the physical range. To check only a subset of the array, |
---|
1798 | ! specify i1 and i2 for the range. |
---|
1799 | function out_of_bounds_1d(var, var_name, boundmin, boundmax, do_fix, i1, i2) result (is_bad) |
---|
1800 | |
---|
1801 | use radiation_io, only : nulout |
---|
1802 | |
---|
1803 | real(jprb), allocatable, intent(inout) :: var(:) |
---|
1804 | character(len=*), intent(in) :: var_name |
---|
1805 | real(jprb), intent(in) :: boundmin, boundmax |
---|
1806 | logical, intent(in) :: do_fix |
---|
1807 | integer, optional, intent(in) :: i1, i2 |
---|
1808 | |
---|
1809 | logical :: is_bad |
---|
1810 | |
---|
1811 | real(jprb) :: varmin, varmax |
---|
1812 | |
---|
1813 | is_bad = .false. |
---|
1814 | |
---|
1815 | if (allocated(var)) then |
---|
1816 | |
---|
1817 | if (present(i1) .and. present(i2)) then |
---|
1818 | varmin = minval(var(i1:i2)) |
---|
1819 | varmax = maxval(var(i1:i2)) |
---|
1820 | else |
---|
1821 | varmin = minval(var) |
---|
1822 | varmax = maxval(var) |
---|
1823 | end if |
---|
1824 | |
---|
1825 | if (varmin < boundmin .or. varmax > boundmax) then |
---|
1826 | write(nulout,'(a,a,a,g12.4,a,g12.4,a,g12.4,a,g12.4)',advance='no') & |
---|
1827 | & '*** Warning: ', var_name, ' range', varmin, ' to', varmax, & |
---|
1828 | & ' is out of physical range', boundmin, 'to', boundmax |
---|
1829 | is_bad = .true. |
---|
1830 | if (do_fix) then |
---|
1831 | if (present(i1) .and. present(i2)) then |
---|
1832 | var(i1:i2) = max(boundmin, min(boundmax, var(i1:i2))) |
---|
1833 | else |
---|
1834 | var = max(boundmin, min(boundmax, var)) |
---|
1835 | end if |
---|
1836 | write(nulout,'(a)') ': corrected' |
---|
1837 | else |
---|
1838 | write(nulout,'(1x)') |
---|
1839 | end if |
---|
1840 | end if |
---|
1841 | |
---|
1842 | end if |
---|
1843 | |
---|
1844 | end function out_of_bounds_1d |
---|
1845 | |
---|
1846 | |
---|
1847 | !--------------------------------------------------------------------- |
---|
1848 | ! Return .true. if 2D allocatable array "var" is out of physical |
---|
1849 | ! range specified by boundmin and boundmax, and issue a warning. To |
---|
1850 | ! check only a subset of the array, specify i1 and i2 for the range |
---|
1851 | ! of the first dimension and j1 and j2 for the range of the second. |
---|
1852 | function out_of_bounds_2d(var, var_name, boundmin, boundmax, do_fix, & |
---|
1853 | & i1, i2, j1, j2) result (is_bad) |
---|
1854 | |
---|
1855 | use radiation_io, only : nulout |
---|
1856 | |
---|
1857 | real(jprb), allocatable, intent(inout) :: var(:,:) |
---|
1858 | character(len=*), intent(in) :: var_name |
---|
1859 | real(jprb), intent(in) :: boundmin, boundmax |
---|
1860 | logical, intent(in) :: do_fix |
---|
1861 | integer, optional, intent(in) :: i1, i2, j1, j2 |
---|
1862 | |
---|
1863 | ! Local copies of indices |
---|
1864 | integer :: ii1, ii2, jj1, jj2 |
---|
1865 | |
---|
1866 | logical :: is_bad |
---|
1867 | |
---|
1868 | real(jprb) :: varmin, varmax |
---|
1869 | |
---|
1870 | is_bad = .false. |
---|
1871 | |
---|
1872 | if (allocated(var)) then |
---|
1873 | |
---|
1874 | if (present(i1) .and. present(i2)) then |
---|
1875 | ii1 = i1 |
---|
1876 | ii2 = i2 |
---|
1877 | else |
---|
1878 | ii1 = lbound(var,1) |
---|
1879 | ii2 = ubound(var,1) |
---|
1880 | end if |
---|
1881 | if (present(j1) .and. present(j2)) then |
---|
1882 | jj1 = j1 |
---|
1883 | jj2 = j2 |
---|
1884 | else |
---|
1885 | jj1 = lbound(var,2) |
---|
1886 | jj2 = ubound(var,2) |
---|
1887 | end if |
---|
1888 | varmin = minval(var(ii1:ii2,jj1:jj2)) |
---|
1889 | varmax = maxval(var(ii1:ii2,jj1:jj2)) |
---|
1890 | |
---|
1891 | if (varmin < boundmin .or. varmax > boundmax) then |
---|
1892 | write(nulout,'(a,a,a,g12.4,a,g12.4,a,g12.4,a,g12.4)',advance='no') & |
---|
1893 | & '*** Warning: ', var_name, ' range', varmin, ' to', varmax,& |
---|
1894 | & ' is out of physical range', boundmin, 'to', boundmax |
---|
1895 | is_bad = .true. |
---|
1896 | if (do_fix) then |
---|
1897 | var(ii1:ii2,jj1:jj2) = max(boundmin, min(boundmax, var(ii1:ii2,jj1:jj2))) |
---|
1898 | write(nulout,'(a)') ': corrected' |
---|
1899 | else |
---|
1900 | write(nulout,'(1x)') |
---|
1901 | end if |
---|
1902 | end if |
---|
1903 | |
---|
1904 | end if |
---|
1905 | |
---|
1906 | end function out_of_bounds_2d |
---|
1907 | |
---|
1908 | |
---|
1909 | !--------------------------------------------------------------------- |
---|
1910 | ! Return .true. if 3D allocatable array "var" is out of physical |
---|
1911 | ! range specified by boundmin and boundmax, and issue a warning. To |
---|
1912 | ! check only a subset of the array, specify i1 and i2 for the range |
---|
1913 | ! of the first dimension, j1 and j2 for the second and k1 and k2 for |
---|
1914 | ! the third. |
---|
1915 | function out_of_bounds_3d(var, var_name, boundmin, boundmax, do_fix, & |
---|
1916 | & i1, i2, j1, j2, k1, k2) result (is_bad) |
---|
1917 | |
---|
1918 | use radiation_io, only : nulout |
---|
1919 | |
---|
1920 | real(jprb), allocatable, intent(inout) :: var(:,:,:) |
---|
1921 | character(len=*), intent(in) :: var_name |
---|
1922 | real(jprb), intent(in) :: boundmin, boundmax |
---|
1923 | logical, intent(in) :: do_fix |
---|
1924 | integer, optional, intent(in) :: i1, i2, j1, j2, k1, k2 |
---|
1925 | |
---|
1926 | ! Local copies of indices |
---|
1927 | integer :: ii1, ii2, jj1, jj2, kk1, kk2 |
---|
1928 | |
---|
1929 | logical :: is_bad |
---|
1930 | |
---|
1931 | real(jprb) :: varmin, varmax |
---|
1932 | |
---|
1933 | is_bad = .false. |
---|
1934 | |
---|
1935 | if (allocated(var)) then |
---|
1936 | |
---|
1937 | if (present(i1) .and. present(i2)) then |
---|
1938 | ii1 = i1 |
---|
1939 | ii2 = i2 |
---|
1940 | else |
---|
1941 | ii1 = lbound(var,1) |
---|
1942 | ii2 = ubound(var,1) |
---|
1943 | end if |
---|
1944 | if (present(j1) .and. present(j2)) then |
---|
1945 | jj1 = j1 |
---|
1946 | jj2 = j2 |
---|
1947 | else |
---|
1948 | jj1 = lbound(var,2) |
---|
1949 | jj2 = ubound(var,2) |
---|
1950 | end if |
---|
1951 | if (present(k1) .and. present(k2)) then |
---|
1952 | kk1 = k1 |
---|
1953 | kk2 = k2 |
---|
1954 | else |
---|
1955 | kk1 = lbound(var,3) |
---|
1956 | kk2 = ubound(var,3) |
---|
1957 | end if |
---|
1958 | varmin = minval(var(ii1:ii2,jj1:jj2,kk1:kk2)) |
---|
1959 | varmax = maxval(var(ii1:ii2,jj1:jj2,kk1:kk2)) |
---|
1960 | |
---|
1961 | if (varmin < boundmin .or. varmax > boundmax) then |
---|
1962 | write(nulout,'(a,a,a,g12.4,a,g12.4,a,g12.4,a,g12.4)',advance='no') & |
---|
1963 | & '*** Warning: ', var_name, ' range', varmin, ' to', varmax,& |
---|
1964 | & ' is out of physical range', boundmin, 'to', boundmax |
---|
1965 | is_bad = .true. |
---|
1966 | if (do_fix) then |
---|
1967 | var(ii1:ii2,jj1:jj2,kk1:kk2) = max(boundmin, min(boundmax, & |
---|
1968 | & var(ii1:ii2,jj1:jj2,kk1:kk2))) |
---|
1969 | write(nulout,'(a)') ': corrected' |
---|
1970 | else |
---|
1971 | write(nulout,'(1x)') |
---|
1972 | end if |
---|
1973 | end if |
---|
1974 | |
---|
1975 | end if |
---|
1976 | |
---|
1977 | end function out_of_bounds_3d |
---|
1978 | |
---|
1979 | |
---|
1980 | end module radiation_config |
---|