[1992] | 1 | |
---|
[1403] | 2 | ! $Id: cv3p1_closure.F90 3605 2019-11-21 15:43:45Z lmdz-user $ |
---|
[879] | 3 | |
---|
[1992] | 4 | SUBROUTINE cv3p1_closure(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, & |
---|
[2201] | 5 | tvp, buoy, supmax, ok_inhib, ale, alp, omega,sig, w0, ptop2, cape, cin, m, & |
---|
[1992] | 6 | iflag, coef, plim1, plim2, asupmax, supmax0, asupmaxmin, cbmf, plfc, & |
---|
| 7 | wbeff) |
---|
[879] | 8 | |
---|
| 9 | |
---|
[1992] | 10 | ! ************************************************************** |
---|
| 11 | ! * |
---|
| 12 | ! CV3P1_CLOSURE * |
---|
| 13 | ! Ale & Alp Closure of Convect3 * |
---|
| 14 | ! * |
---|
| 15 | ! written by : Kerry Emanuel * |
---|
| 16 | ! vectorization: S. Bony * |
---|
| 17 | ! modified by : Jean-Yves Grandpeix, 18/06/2003, 19.32.10 * |
---|
| 18 | ! Julie Frohwirth, 14/10/2005 17.44.22 * |
---|
| 19 | ! ************************************************************** |
---|
[879] | 20 | |
---|
[2311] | 21 | USE print_control_mod, ONLY: prt_level, lunout |
---|
[1992] | 22 | IMPLICIT NONE |
---|
[879] | 23 | |
---|
[1992] | 24 | include "cvthermo.h" |
---|
| 25 | include "cv3param.h" |
---|
| 26 | include "YOMCST2.h" |
---|
| 27 | include "YOMCST.h" |
---|
| 28 | include "conema3.h" |
---|
[1403] | 29 | |
---|
[1992] | 30 | ! input: |
---|
[2253] | 31 | INTEGER, INTENT (IN) :: ncum, nd, nloc |
---|
| 32 | INTEGER, DIMENSION (nloc), INTENT (IN) :: icb, inb |
---|
| 33 | REAL, DIMENSION (nloc), INTENT (IN) :: pbase, plcl |
---|
| 34 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: p |
---|
| 35 | REAL, DIMENSION (nloc, nd+1), INTENT (IN) :: ph |
---|
| 36 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: tv, tvp, buoy |
---|
| 37 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: supmax |
---|
| 38 | LOGICAL, INTENT (IN) :: ok_inhib ! enable convection inhibition by dryness |
---|
| 39 | REAL, DIMENSION (nloc), INTENT (IN) :: ale, alp |
---|
| 40 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: omega |
---|
[879] | 41 | |
---|
[1992] | 42 | ! input/output: |
---|
[2253] | 43 | REAL, DIMENSION (nloc, nd), INTENT (INOUT) :: sig, w0 |
---|
| 44 | REAL, DIMENSION (nloc), INTENT (INOUT) :: ptop2 |
---|
[879] | 45 | |
---|
[1992] | 46 | ! output: |
---|
[2253] | 47 | REAL, DIMENSION (nloc), INTENT (OUT) :: cape, cin |
---|
| 48 | REAL, DIMENSION (nloc, nd), INTENT (OUT) :: m |
---|
| 49 | REAL, DIMENSION (nloc), INTENT (OUT) :: plim1, plim2 |
---|
| 50 | REAL, DIMENSION (nloc, nd), INTENT (OUT) :: asupmax |
---|
| 51 | REAL, DIMENSION (nloc), INTENT (OUT) :: supmax0 |
---|
| 52 | REAL, DIMENSION (nloc), INTENT (OUT) :: asupmaxmin |
---|
| 53 | REAL, DIMENSION (nloc), INTENT (OUT) :: cbmf, plfc |
---|
| 54 | REAL, DIMENSION (nloc), INTENT (OUT) :: wbeff |
---|
| 55 | INTEGER, DIMENSION (nloc), INTENT (OUT) :: iflag |
---|
[879] | 56 | |
---|
[1992] | 57 | ! local variables: |
---|
[2224] | 58 | INTEGER il, i, j, k, icbmax, i0(nloc), klfc(nloc) |
---|
[1992] | 59 | REAL deltap, fac, w, amu |
---|
[2420] | 60 | REAL rhodp, dz |
---|
[1992] | 61 | REAL pbmxup |
---|
| 62 | REAL dtmin(nloc, nd), sigold(nloc, nd) |
---|
| 63 | REAL coefmix(nloc, nd) |
---|
| 64 | REAL pzero(nloc), ptop2old(nloc) |
---|
| 65 | REAL cina(nloc), cinb(nloc) |
---|
| 66 | INTEGER ibeg(nloc) |
---|
| 67 | INTEGER nsupmax(nloc) |
---|
| 68 | REAL supcrit, temp(nloc, nd) |
---|
| 69 | REAL p1(nloc), pmin(nloc) |
---|
| 70 | REAL asupmax0(nloc) |
---|
| 71 | LOGICAL ok(nloc) |
---|
| 72 | REAL siglim(nloc, nd), wlim(nloc, nd), mlim(nloc, nd) |
---|
| 73 | REAL wb2(nloc) |
---|
| 74 | REAL cbmflim(nloc), cbmf1(nloc), cbmfmax(nloc) |
---|
| 75 | REAL cbmflast(nloc) |
---|
| 76 | REAL coef(nloc) |
---|
| 77 | REAL xp(nloc), xq(nloc), xr(nloc), discr(nloc), b3(nloc), b4(nloc) |
---|
| 78 | REAL theta(nloc), bb(nloc) |
---|
| 79 | REAL term1, term2, term3 |
---|
| 80 | REAL alp2(nloc) ! Alp with offset |
---|
[2420] | 81 | !CR: variables for new erosion of adiabiatic ascent |
---|
| 82 | REAL mad(nloc, nd), me(nloc, nd), betalim(nloc, nd), beta_coef(nloc, nd) |
---|
| 83 | REAL med(nloc, nd), md(nloc,nd) |
---|
[2458] | 84 | !jyg< |
---|
| 85 | ! coef_peel is now in the common cv3_param |
---|
| 86 | !! REAL coef_peel |
---|
| 87 | !! PARAMETER (coef_peel=0.25) |
---|
| 88 | !>jyg |
---|
[879] | 89 | |
---|
[1992] | 90 | REAL sigmax |
---|
| 91 | PARAMETER (sigmax=0.1) |
---|
[879] | 92 | |
---|
[1992] | 93 | CHARACTER (LEN=20) :: modname = 'cv3p1_closure' |
---|
| 94 | CHARACTER (LEN=80) :: abort_message |
---|
[879] | 95 | |
---|
[1992] | 96 | ! print *,' -> cv3p1_closure, Ale ',ale(1) |
---|
[879] | 97 | |
---|
| 98 | |
---|
[1992] | 99 | ! ------------------------------------------------------- |
---|
| 100 | ! -- Initialization |
---|
| 101 | ! ------------------------------------------------------- |
---|
[879] | 102 | |
---|
| 103 | |
---|
[1992] | 104 | DO il = 1, ncum |
---|
| 105 | alp2(il) = max(alp(il), 1.E-5) |
---|
| 106 | ! IM |
---|
| 107 | alp2(il) = max(alp(il), 1.E-12) |
---|
| 108 | END DO |
---|
[879] | 109 | |
---|
[1992] | 110 | pbmxup = 50. ! PBMXUP+PBCRIT = cloud depth above which mixed updraughts |
---|
| 111 | ! exist (if any) |
---|
[879] | 112 | |
---|
[1992] | 113 | IF (prt_level>=20) PRINT *, 'cv3p1_param nloc ncum nd icb inb nl', nloc, & |
---|
| 114 | ncum, nd, icb(nloc), inb(nloc), nl |
---|
[2502] | 115 | DO k = 1, nd !jyg: initialization up to nd |
---|
[1992] | 116 | DO il = 1, ncum |
---|
| 117 | m(il, k) = 0.0 |
---|
| 118 | END DO |
---|
| 119 | END DO |
---|
[879] | 120 | |
---|
[2420] | 121 | !CR: initializations for erosion of adiabatic ascent |
---|
[2502] | 122 | DO k = 1,nd !jyg: initialization up to nd |
---|
[2420] | 123 | DO il = 1, ncum |
---|
| 124 | mad(il,k)=0. |
---|
| 125 | me(il,k)=0. |
---|
| 126 | betalim(il,k)=1. |
---|
| 127 | wlim(il,k)=0. |
---|
| 128 | ENDDO |
---|
| 129 | ENDDO |
---|
| 130 | |
---|
[1992] | 131 | ! ------------------------------------------------------- |
---|
| 132 | ! -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
| 133 | ! ------------------------------------------------------- |
---|
[879] | 134 | |
---|
[1992] | 135 | ! update sig and w0 above LNB: |
---|
[879] | 136 | |
---|
[1992] | 137 | DO k = 1, nl - 1 |
---|
| 138 | DO il = 1, ncum |
---|
| 139 | IF ((inb(il)<(nl-1)) .AND. (k>=(inb(il)+1))) THEN |
---|
| 140 | sig(il, k) = beta*sig(il, k) + 2.*alpha*buoy(il, inb(il))*abs(buoy(il & |
---|
| 141 | ,inb(il))) |
---|
| 142 | sig(il, k) = amax1(sig(il,k), 0.0) |
---|
| 143 | w0(il, k) = beta*w0(il, k) |
---|
| 144 | END IF |
---|
| 145 | END DO |
---|
| 146 | END DO |
---|
[879] | 147 | |
---|
[1992] | 148 | ! if(prt.level.GE.20) print*,'cv3p1_param apres 100' |
---|
| 149 | ! compute icbmax: |
---|
[879] | 150 | |
---|
[1992] | 151 | icbmax = 2 |
---|
| 152 | DO il = 1, ncum |
---|
| 153 | icbmax = max(icbmax, icb(il)) |
---|
| 154 | END DO |
---|
| 155 | ! if(prt.level.GE.20) print*,'cv3p1_param apres 200' |
---|
[879] | 156 | |
---|
[1992] | 157 | ! update sig and w0 below cloud base: |
---|
[973] | 158 | |
---|
[1992] | 159 | DO k = 1, icbmax |
---|
| 160 | DO il = 1, ncum |
---|
| 161 | IF (k<=icb(il)) THEN |
---|
| 162 | sig(il, k) = beta*sig(il, k) - 2.*alpha*buoy(il, icb(il))*buoy(il, & |
---|
| 163 | icb(il)) |
---|
| 164 | sig(il, k) = amax1(sig(il,k), 0.0) |
---|
| 165 | w0(il, k) = beta*w0(il, k) |
---|
| 166 | END IF |
---|
| 167 | END DO |
---|
| 168 | END DO |
---|
| 169 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 300' |
---|
| 170 | ! ------------------------------------------------------------- |
---|
| 171 | ! -- Reset fractional areas of updrafts and w0 at initial time |
---|
| 172 | ! -- and after 10 time steps of no convection |
---|
| 173 | ! ------------------------------------------------------------- |
---|
[879] | 174 | |
---|
[1992] | 175 | DO k = 1, nl - 1 |
---|
| 176 | DO il = 1, ncum |
---|
| 177 | IF (sig(il,nd)<1.5 .OR. sig(il,nd)>12.0) THEN |
---|
| 178 | sig(il, k) = 0.0 |
---|
| 179 | w0(il, k) = 0.0 |
---|
| 180 | END IF |
---|
| 181 | END DO |
---|
| 182 | END DO |
---|
| 183 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 400' |
---|
[879] | 184 | |
---|
[1992] | 185 | ! ------------------------------------------------------------- |
---|
| 186 | ! jyg1 |
---|
| 187 | ! -- Calculate adiabatic ascent top pressure (ptop) |
---|
| 188 | ! ------------------------------------------------------------- |
---|
[879] | 189 | |
---|
| 190 | |
---|
[1992] | 191 | ! c 1. Start at first level where precipitations form |
---|
| 192 | DO il = 1, ncum |
---|
| 193 | pzero(il) = plcl(il) - pbcrit |
---|
| 194 | END DO |
---|
[879] | 195 | |
---|
[1992] | 196 | ! c 2. Add offset |
---|
| 197 | DO il = 1, ncum |
---|
| 198 | pzero(il) = pzero(il) - pbmxup |
---|
| 199 | END DO |
---|
| 200 | DO il = 1, ncum |
---|
| 201 | ptop2old(il) = ptop2(il) |
---|
| 202 | END DO |
---|
[879] | 203 | |
---|
[1992] | 204 | DO il = 1, ncum |
---|
| 205 | ! CR:c est quoi ce 300?? |
---|
| 206 | p1(il) = pzero(il) - 300. |
---|
| 207 | END DO |
---|
[879] | 208 | |
---|
[1992] | 209 | ! compute asupmax=abs(supmax) up to lnm+1 |
---|
[879] | 210 | |
---|
[1992] | 211 | DO il = 1, ncum |
---|
| 212 | ok(il) = .TRUE. |
---|
| 213 | nsupmax(il) = inb(il) |
---|
| 214 | END DO |
---|
[879] | 215 | |
---|
[1992] | 216 | DO i = 1, nl |
---|
| 217 | DO il = 1, ncum |
---|
| 218 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 219 | IF (p(il,i)<=pzero(il) .AND. supmax(il,i)<0 .AND. ok(il)) THEN |
---|
| 220 | nsupmax(il) = i |
---|
| 221 | ok(il) = .FALSE. |
---|
| 222 | END IF ! end IF (P(i) ... ) |
---|
| 223 | END IF ! end IF (icb+1 le i le inb) |
---|
| 224 | END DO |
---|
| 225 | END DO |
---|
[879] | 226 | |
---|
[1992] | 227 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 2.' |
---|
| 228 | DO i = 1, nl |
---|
| 229 | DO il = 1, ncum |
---|
| 230 | asupmax(il, i) = abs(supmax(il,i)) |
---|
| 231 | END DO |
---|
| 232 | END DO |
---|
[879] | 233 | |
---|
| 234 | |
---|
[1992] | 235 | DO il = 1, ncum |
---|
| 236 | asupmaxmin(il) = 10. |
---|
| 237 | pmin(il) = 100. |
---|
| 238 | ! IM ?? |
---|
| 239 | asupmax0(il) = 0. |
---|
| 240 | END DO |
---|
[879] | 241 | |
---|
[1992] | 242 | ! c 3. Compute in which level is Pzero |
---|
[879] | 243 | |
---|
[1992] | 244 | ! IM bug i0 = 18 |
---|
| 245 | DO il = 1, ncum |
---|
| 246 | i0(il) = nl |
---|
| 247 | END DO |
---|
[879] | 248 | |
---|
[1992] | 249 | DO i = 1, nl |
---|
| 250 | DO il = 1, ncum |
---|
| 251 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 252 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
| 253 | IF (pzero(il)>p(il,i) .AND. pzero(il)<p(il,i-1)) THEN |
---|
| 254 | i0(il) = i |
---|
| 255 | END IF |
---|
| 256 | END IF |
---|
| 257 | END IF |
---|
| 258 | END DO |
---|
| 259 | END DO |
---|
| 260 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 3.' |
---|
[879] | 261 | |
---|
[1992] | 262 | ! c 4. Compute asupmax at Pzero |
---|
[879] | 263 | |
---|
[1992] | 264 | DO i = 1, nl |
---|
| 265 | DO il = 1, ncum |
---|
| 266 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 267 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
| 268 | asupmax0(il) = ((pzero(il)-p(il,i0(il)-1))*asupmax(il,i0(il))-( & |
---|
| 269 | pzero(il)-p(il,i0(il)))*asupmax(il,i0(il)-1))/(p(il,i0(il))-p(il, & |
---|
| 270 | i0(il)-1)) |
---|
| 271 | END IF |
---|
| 272 | END IF |
---|
| 273 | END DO |
---|
| 274 | END DO |
---|
[879] | 275 | |
---|
| 276 | |
---|
[1992] | 277 | DO i = 1, nl |
---|
| 278 | DO il = 1, ncum |
---|
| 279 | IF (p(il,i)==pzero(il)) THEN |
---|
| 280 | asupmax(i, il) = asupmax0(il) |
---|
| 281 | END IF |
---|
| 282 | END DO |
---|
| 283 | END DO |
---|
| 284 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 4.' |
---|
[879] | 285 | |
---|
[1992] | 286 | ! c 5. Compute asupmaxmin, minimum of asupmax |
---|
[879] | 287 | |
---|
[1992] | 288 | DO i = 1, nl |
---|
| 289 | DO il = 1, ncum |
---|
| 290 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 291 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
| 292 | IF (asupmax(il,i)<asupmaxmin(il)) THEN |
---|
| 293 | asupmaxmin(il) = asupmax(il, i) |
---|
| 294 | pmin(il) = p(il, i) |
---|
| 295 | END IF |
---|
| 296 | END IF |
---|
| 297 | END IF |
---|
| 298 | END DO |
---|
| 299 | END DO |
---|
[879] | 300 | |
---|
[1992] | 301 | DO il = 1, ncum |
---|
| 302 | ! IM |
---|
| 303 | IF (prt_level>=20) THEN |
---|
| 304 | PRINT *, 'cv3p1_closure il asupmax0 asupmaxmin', il, asupmax0(il), & |
---|
| 305 | asupmaxmin(il), pzero(il), pmin(il) |
---|
| 306 | END IF |
---|
| 307 | IF (asupmax0(il)<asupmaxmin(il)) THEN |
---|
| 308 | asupmaxmin(il) = asupmax0(il) |
---|
| 309 | pmin(il) = pzero(il) |
---|
| 310 | END IF |
---|
| 311 | END DO |
---|
| 312 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 5.' |
---|
[879] | 313 | |
---|
| 314 | |
---|
[1992] | 315 | ! Compute Supmax at Pzero |
---|
[879] | 316 | |
---|
[1992] | 317 | DO i = 1, nl |
---|
| 318 | DO il = 1, ncum |
---|
| 319 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 320 | IF (p(il,i)<=pzero(il)) THEN |
---|
| 321 | supmax0(il) = ((p(il,i)-pzero(il))*asupmax(il,i-1)-(p(il, & |
---|
| 322 | i-1)-pzero(il))*asupmax(il,i))/(p(il,i)-p(il,i-1)) |
---|
| 323 | GO TO 425 |
---|
| 324 | END IF ! end IF (P(i) ... ) |
---|
| 325 | END IF ! end IF (icb+1 le i le inb) |
---|
| 326 | END DO |
---|
| 327 | END DO |
---|
[879] | 328 | |
---|
[1992] | 329 | 425 CONTINUE |
---|
| 330 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 425.' |
---|
[879] | 331 | |
---|
[1992] | 332 | ! c 6. Calculate ptop2 |
---|
[879] | 333 | |
---|
[1992] | 334 | DO il = 1, ncum |
---|
| 335 | IF (asupmaxmin(il)<supcrit1) THEN |
---|
| 336 | ptop2(il) = pmin(il) |
---|
| 337 | END IF |
---|
[973] | 338 | |
---|
[1992] | 339 | IF (asupmaxmin(il)>supcrit1 .AND. asupmaxmin(il)<supcrit2) THEN |
---|
| 340 | ptop2(il) = ptop2old(il) |
---|
| 341 | END IF |
---|
[879] | 342 | |
---|
[1992] | 343 | IF (asupmaxmin(il)>supcrit2) THEN |
---|
| 344 | ptop2(il) = ph(il, inb(il)) |
---|
| 345 | END IF |
---|
| 346 | END DO |
---|
[973] | 347 | |
---|
[1992] | 348 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 6.' |
---|
[1574] | 349 | |
---|
[1992] | 350 | ! c 7. Compute multiplying factor for adiabatic updraught mass flux |
---|
| 351 | |
---|
| 352 | |
---|
| 353 | IF (ok_inhib) THEN |
---|
| 354 | |
---|
| 355 | DO i = 1, nl |
---|
[1574] | 356 | DO il = 1, ncum |
---|
[1992] | 357 | IF (i<=nl) THEN |
---|
| 358 | coefmix(il, i) = (min(ptop2(il),ph(il,i))-ph(il,i))/(ph(il,i+1)-ph( & |
---|
| 359 | il,i)) |
---|
| 360 | coefmix(il, i) = min(coefmix(il,i), 1.) |
---|
| 361 | END IF |
---|
[1574] | 362 | END DO |
---|
[1992] | 363 | END DO |
---|
[1574] | 364 | |
---|
| 365 | |
---|
[1992] | 366 | ELSE ! when inhibition is not taken into account, coefmix=1 |
---|
[879] | 367 | |
---|
| 368 | |
---|
[1992] | 369 | |
---|
| 370 | DO i = 1, nl |
---|
| 371 | DO il = 1, ncum |
---|
| 372 | IF (i<=nl) THEN |
---|
| 373 | coefmix(il, i) = 1. |
---|
| 374 | END IF |
---|
| 375 | END DO |
---|
| 376 | END DO |
---|
| 377 | |
---|
| 378 | END IF ! ok_inhib |
---|
| 379 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 7.' |
---|
| 380 | ! ------------------------------------------------------------------- |
---|
| 381 | ! ------------------------------------------------------------------- |
---|
| 382 | |
---|
| 383 | |
---|
| 384 | ! jyg2 |
---|
| 385 | |
---|
| 386 | ! ========================================================================== |
---|
| 387 | |
---|
| 388 | |
---|
| 389 | ! ------------------------------------------------------------- |
---|
| 390 | ! -- Calculate convective inhibition (CIN) |
---|
| 391 | ! ------------------------------------------------------------- |
---|
| 392 | |
---|
| 393 | ! do i=1,nloc |
---|
| 394 | ! print*,'avant cine p',pbase(i),plcl(i) |
---|
| 395 | ! enddo |
---|
| 396 | ! do j=1,nd |
---|
| 397 | ! do i=1,nloc |
---|
| 398 | ! print*,'avant cine t',tv(i),tvp(i) |
---|
| 399 | ! enddo |
---|
| 400 | ! enddo |
---|
| 401 | CALL cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, cina, & |
---|
| 402 | cinb, plfc) |
---|
| 403 | |
---|
| 404 | DO il = 1, ncum |
---|
| 405 | cin(il) = cina(il) + cinb(il) |
---|
| 406 | END DO |
---|
| 407 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cv3_cine' |
---|
| 408 | ! ------------------------------------------------------------- |
---|
| 409 | ! --Update buoyancies to account for Ale |
---|
| 410 | ! ------------------------------------------------------------- |
---|
| 411 | |
---|
| 412 | CALL cv3_buoy(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, ale, cin, tv, & |
---|
| 413 | tvp, buoy) |
---|
| 414 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cv3_buoy' |
---|
| 415 | |
---|
| 416 | ! ------------------------------------------------------------- |
---|
| 417 | ! -- Calculate convective available potential energy (cape), |
---|
| 418 | ! -- vertical velocity (w), fractional area covered by |
---|
| 419 | ! -- undilute updraft (sig), and updraft mass flux (m) |
---|
| 420 | ! ------------------------------------------------------------- |
---|
| 421 | |
---|
| 422 | DO il = 1, ncum |
---|
| 423 | cape(il) = 0.0 |
---|
| 424 | END DO |
---|
| 425 | |
---|
| 426 | ! compute dtmin (minimum buoyancy between ICB and given level k): |
---|
| 427 | |
---|
| 428 | DO k = 1, nl |
---|
| 429 | DO il = 1, ncum |
---|
| 430 | dtmin(il, k) = 100.0 |
---|
| 431 | END DO |
---|
| 432 | END DO |
---|
| 433 | |
---|
| 434 | DO k = 1, nl |
---|
| 435 | DO j = minorig, nl |
---|
| 436 | DO il = 1, ncum |
---|
| 437 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (j>=icb(il)) .AND. (j<= & |
---|
| 438 | (k-1))) THEN |
---|
| 439 | dtmin(il, k) = amin1(dtmin(il,k), buoy(il,j)) |
---|
| 440 | END IF |
---|
| 441 | END DO |
---|
| 442 | END DO |
---|
| 443 | END DO |
---|
| 444 | |
---|
| 445 | ! the interval on which cape is computed starts at pbase : |
---|
| 446 | |
---|
| 447 | DO k = 1, nl |
---|
| 448 | DO il = 1, ncum |
---|
| 449 | |
---|
| 450 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
---|
[2420] | 451 | IF (iflag_mix_adiab.eq.1) THEN |
---|
| 452 | !CR:computation of cape from LCL: keep flag or to modify in all cases? |
---|
| 453 | deltap = min(plcl(il), ph(il,k-1)) - min(plcl(il), ph(il,k)) |
---|
| 454 | ELSE |
---|
[1992] | 455 | deltap = min(pbase(il), ph(il,k-1)) - min(pbase(il), ph(il,k)) |
---|
[2420] | 456 | ENDIF |
---|
[1992] | 457 | cape(il) = cape(il) + rrd*buoy(il, k-1)*deltap/p(il, k-1) |
---|
| 458 | cape(il) = amax1(0.0, cape(il)) |
---|
| 459 | sigold(il, k) = sig(il, k) |
---|
| 460 | |
---|
| 461 | |
---|
| 462 | ! jyg Coefficient coefmix limits convection to levels where a |
---|
| 463 | ! sufficient |
---|
| 464 | ! fraction of mixed draughts are ascending. |
---|
| 465 | siglim(il, k) = coefmix(il, k)*alpha1*dtmin(il, k)*abs(dtmin(il,k)) |
---|
| 466 | siglim(il, k) = amax1(siglim(il,k), 0.0) |
---|
| 467 | siglim(il, k) = amin1(siglim(il,k), 0.01) |
---|
| 468 | ! c fac=AMIN1(((dtcrit-dtmin(il,k))/dtcrit),1.0) |
---|
| 469 | fac = 1. |
---|
| 470 | wlim(il, k) = fac*sqrt(cape(il)) |
---|
| 471 | amu = siglim(il, k)*wlim(il, k) |
---|
| 472 | rhodp = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
---|
| 473 | mlim(il, k) = amu*rhodp |
---|
| 474 | ! print*, 'siglim ', k,siglim(1,k) |
---|
| 475 | END IF |
---|
| 476 | |
---|
| 477 | END DO |
---|
| 478 | END DO |
---|
| 479 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 600' |
---|
| 480 | |
---|
| 481 | DO il = 1, ncum |
---|
| 482 | ! IM beg |
---|
| 483 | IF (prt_level>=20) THEN |
---|
| 484 | PRINT *, 'cv3p1_closure il icb mlim ph ph+1 ph+2', il, icb(il), & |
---|
| 485 | mlim(il, icb(il)+1), ph(il, icb(il)), ph(il, icb(il)+1), & |
---|
| 486 | ph(il, icb(il)+2) |
---|
| 487 | END IF |
---|
| 488 | |
---|
| 489 | IF (icb(il)+1<=inb(il)) THEN |
---|
| 490 | ! IM end |
---|
| 491 | mlim(il, icb(il)) = 0.5*mlim(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb( & |
---|
| 492 | il)+1))/(ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
| 493 | ! IM beg |
---|
| 494 | END IF !(icb(il.le.inb(il))) then |
---|
| 495 | ! IM end |
---|
| 496 | END DO |
---|
| 497 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 700' |
---|
| 498 | |
---|
| 499 | ! jyg1 |
---|
| 500 | ! ------------------------------------------------------------------------ |
---|
| 501 | ! c Correct mass fluxes so that power used to overcome CIN does not |
---|
| 502 | ! c exceed Power Available for Lifting (PAL). |
---|
| 503 | ! ------------------------------------------------------------------------ |
---|
| 504 | |
---|
| 505 | DO il = 1, ncum |
---|
| 506 | cbmflim(il) = 0. |
---|
| 507 | cbmf(il) = 0. |
---|
| 508 | END DO |
---|
| 509 | |
---|
| 510 | ! c 1. Compute cloud base mass flux of elementary system (Cbmf0=Cbmflim) |
---|
| 511 | |
---|
| 512 | DO k = 1, nl |
---|
| 513 | DO il = 1, ncum |
---|
| 514 | ! old IF (k .ge. icb(il) .and. k .le. inb(il)) THEN |
---|
| 515 | ! IM IF (k .ge. icb(il)+1 .and. k .le. inb(il)) THEN |
---|
| 516 | IF (k>=icb(il) .AND. k<=inb(il) & !cor jyg |
---|
| 517 | .AND. icb(il)+1<=inb(il)) THEN !cor jyg |
---|
| 518 | cbmflim(il) = cbmflim(il) + mlim(il, k) |
---|
| 519 | END IF |
---|
| 520 | END DO |
---|
| 521 | END DO |
---|
| 522 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cbmflim' |
---|
| 523 | |
---|
[2253] | 524 | ! 1.5 Compute cloud base mass flux given by Alp closure (Cbmf1), maximum |
---|
| 525 | ! allowed mass flux (Cbmfmax) and final target mass flux (Cbmf) |
---|
| 526 | ! Cbmf is set to zero if Cbmflim (the mass flux of elementary cloud) |
---|
| 527 | ! is exceedingly small. |
---|
[1992] | 528 | |
---|
| 529 | DO il = 1, ncum |
---|
| 530 | wb2(il) = sqrt(2.*max(ale(il)+cin(il),0.)) |
---|
| 531 | END DO |
---|
| 532 | |
---|
| 533 | DO il = 1, ncum |
---|
| 534 | IF (plfc(il)<100.) THEN |
---|
| 535 | ! This is an irealistic value for plfc => no calculation of wbeff |
---|
| 536 | wbeff(il) = 100.1 |
---|
| 537 | ELSE |
---|
| 538 | ! Calculate wbeff |
---|
[3605] | 539 | IF (NINT(flag_wb)==0) THEN |
---|
[1992] | 540 | wbeff(il) = wbmax |
---|
[3605] | 541 | ELSE IF (NINT(flag_wb)==1) THEN |
---|
[1992] | 542 | wbeff(il) = wbmax/(1.+500./(ph(il,1)-plfc(il))) |
---|
[3605] | 543 | ELSE IF (NINT(flag_wb)==2) THEN |
---|
[1992] | 544 | wbeff(il) = wbmax*(0.01*(ph(il,1)-plfc(il)))**2 |
---|
[2826] | 545 | ELSE ! Option provisoire ou le iflag_wb/10 est considere comme une vitesse |
---|
| 546 | wbeff(il) = flag_wb*0.01+wbmax/(1.+500./(ph(il,1)-plfc(il))) |
---|
[1992] | 547 | END IF |
---|
| 548 | END IF |
---|
| 549 | END DO |
---|
| 550 | |
---|
[2201] | 551 | !CR:Compute k at plfc |
---|
[2224] | 552 | DO il=1,ncum |
---|
| 553 | klfc(il)=nl |
---|
| 554 | ENDDO |
---|
[2201] | 555 | DO k=1,nl |
---|
| 556 | DO il=1,ncum |
---|
| 557 | if ((plfc(il).lt.ph(il,k)).and.(plfc(il).ge.ph(il,k+1))) then |
---|
[2224] | 558 | klfc(il)=k |
---|
[2201] | 559 | endif |
---|
| 560 | ENDDO |
---|
| 561 | ENDDO |
---|
| 562 | !RC |
---|
[1992] | 563 | |
---|
| 564 | DO il = 1, ncum |
---|
| 565 | ! jyg Modification du coef de wb*wb pour conformite avec papier Wake |
---|
| 566 | ! c cbmf1(il) = alp2(il)/(0.5*wb*wb-Cin(il)) |
---|
| 567 | cbmf1(il) = alp2(il)/(2.*wbeff(il)*wbeff(il)-cin(il)) |
---|
[2201] | 568 | !CR: Add large-scale component to the mass-flux |
---|
| 569 | !encore connu sous le nom "Experience du tube de dentifrice" |
---|
[2224] | 570 | if ((coef_clos_ls.gt.0.).and.(plfc(il).gt.0.)) then |
---|
| 571 | cbmf1(il) = cbmf1(il) - coef_clos_ls*min(0.,1./RG*omega(il,klfc(il))) |
---|
[2201] | 572 | endif |
---|
| 573 | !RC |
---|
[1992] | 574 | IF (cbmf1(il)==0 .AND. alp2(il)/=0.) THEN |
---|
| 575 | WRITE (lunout, *) 'cv3p1_closure cbmf1=0 and alp NE 0 il alp2 alp cin ' & |
---|
| 576 | , il, alp2(il), alp(il), cin(il) |
---|
| 577 | abort_message = '' |
---|
[2311] | 578 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 579 | END IF |
---|
| 580 | cbmfmax(il) = sigmax*wb2(il)*100.*p(il, icb(il))/(rrd*tv(il,icb(il))) |
---|
| 581 | END DO |
---|
| 582 | |
---|
| 583 | DO il = 1, ncum |
---|
| 584 | IF (cbmflim(il)>1.E-6) THEN |
---|
| 585 | ! ATTENTION TEST CR |
---|
| 586 | ! if (cbmfmax(il).lt.1.e-12) then |
---|
| 587 | cbmf(il) = min(cbmf1(il), cbmfmax(il)) |
---|
| 588 | ! else |
---|
| 589 | ! cbmf(il) = cbmf1(il) |
---|
| 590 | ! endif |
---|
| 591 | ! print*,'cbmf',cbmf1(il),cbmfmax(il) |
---|
| 592 | END IF |
---|
| 593 | END DO |
---|
| 594 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cbmflim_testCR' |
---|
| 595 | |
---|
| 596 | ! c 2. Compute coefficient and apply correction |
---|
| 597 | |
---|
| 598 | DO il = 1, ncum |
---|
| 599 | coef(il) = (cbmf(il)+1.E-10)/(cbmflim(il)+1.E-10) |
---|
| 600 | END DO |
---|
| 601 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres coef_plantePLUS' |
---|
| 602 | |
---|
| 603 | DO k = 1, nl |
---|
| 604 | DO il = 1, ncum |
---|
| 605 | IF (k>=icb(il)+1 .AND. k<=inb(il)) THEN |
---|
| 606 | amu = beta*sig(il, k)*w0(il, k) + (1.-beta)*coef(il)*siglim(il, k)* & |
---|
| 607 | wlim(il, k) |
---|
| 608 | w0(il, k) = wlim(il, k) |
---|
| 609 | w0(il, k) = max(w0(il,k), 1.E-10) |
---|
| 610 | sig(il, k) = amu/w0(il, k) |
---|
| 611 | sig(il, k) = min(sig(il,k), 1.) |
---|
| 612 | ! c amu = 0.5*(SIG(il,k)+sigold(il,k))*W0(il,k) |
---|
| 613 | m(il, k) = amu*0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
---|
| 614 | END IF |
---|
| 615 | END DO |
---|
| 616 | END DO |
---|
| 617 | ! jyg2 |
---|
| 618 | DO il = 1, ncum |
---|
| 619 | w0(il, icb(il)) = 0.5*w0(il, icb(il)+1) |
---|
| 620 | m(il, icb(il)) = 0.5*m(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
---|
| 621 | (ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
| 622 | sig(il, icb(il)) = sig(il, icb(il)+1) |
---|
| 623 | sig(il, icb(il)-1) = sig(il, icb(il)) |
---|
| 624 | END DO |
---|
| 625 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres w0_sig_M' |
---|
| 626 | |
---|
[2420] | 627 | !CR: new erosion of adiabatic ascent: modification of m |
---|
| 628 | !computation of the sum of ascending fluxes |
---|
| 629 | IF (iflag_mix_adiab.eq.1) THEN |
---|
| 630 | |
---|
| 631 | !Verification sum(me)=sum(m) |
---|
[2502] | 632 | DO k = 1,nd !jyg: initialization up to nd |
---|
[2420] | 633 | DO il = 1, ncum |
---|
| 634 | md(il,k)=0. |
---|
| 635 | med(il,k)=0. |
---|
| 636 | ENDDO |
---|
| 637 | ENDDO |
---|
| 638 | |
---|
| 639 | DO k = nl,1,-1 |
---|
| 640 | DO il = 1, ncum |
---|
| 641 | md(il,k)=md(il,k+1)+m(il,k+1) |
---|
| 642 | ENDDO |
---|
| 643 | ENDDO |
---|
| 644 | |
---|
| 645 | DO k = nl,1,-1 |
---|
| 646 | DO il = 1, ncum |
---|
| 647 | IF ((k>=(icb(il))) .AND. (k<=inb(il))) THEN |
---|
| 648 | mad(il,k)=mad(il,k+1)+m(il,k+1) |
---|
| 649 | ENDIF |
---|
| 650 | ! print*,"mad",il,k,mad(il,k) |
---|
| 651 | ENDDO |
---|
| 652 | ENDDO |
---|
| 653 | |
---|
| 654 | !CR: erosion of each adiabatic ascent during its ascent |
---|
| 655 | |
---|
| 656 | !Computation of erosion coefficient beta_coef |
---|
| 657 | DO k = 1, nl |
---|
| 658 | DO il = 1, ncum |
---|
| 659 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (mlim(il,k).gt.0.)) THEN |
---|
| 660 | ! print*,"beta_coef",il,k,icb(il),inb(il),buoy(il,k),tv(il,k),wlim(il,k),wlim(il,k+1) |
---|
| 661 | beta_coef(il,k)=RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2 |
---|
| 662 | ELSE |
---|
| 663 | beta_coef(il,k)=0. |
---|
| 664 | ENDIF |
---|
| 665 | ENDDO |
---|
| 666 | ENDDO |
---|
| 667 | |
---|
| 668 | ! print*,"apres beta_coef" |
---|
| 669 | |
---|
| 670 | DO k = 1, nl |
---|
| 671 | DO il = 1, ncum |
---|
| 672 | |
---|
| 673 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
---|
| 674 | |
---|
| 675 | ! print*,"dz",il,k,tv(il, k-1) |
---|
| 676 | dz = (ph(il,k-1)-ph(il,k))/(p(il, k-1)/(rrd*tv(il, k-1))*RG) |
---|
| 677 | betalim(il,k)=betalim(il,k-1)*exp(-1.*beta_coef(il,k-1)*dz) |
---|
| 678 | ! betalim(il,k)=betalim(il,k-1)*exp(-RG*coef_peel*buoy(il,k-1)/tv(il,k-1)/5.**2*dz) |
---|
| 679 | ! print*,"me",il,k,mlim(il,k),buoy(il,k),wlim(il,k),mad(il,k) |
---|
| 680 | dz = (ph(il,k)-ph(il,k+1))/(p(il, k)/(rrd*tv(il, k))*RG) |
---|
| 681 | ! me(il,k)=betalim(il,k)*(m(il,k)+RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz*mad(il,k)) |
---|
| 682 | me(il,k)=betalim(il,k)*(m(il,k)+beta_coef(il,k)*dz*mad(il,k)) |
---|
| 683 | ! print*,"B/w2",il,k,RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz |
---|
| 684 | |
---|
| 685 | END IF |
---|
| 686 | |
---|
| 687 | !Modification of m |
---|
| 688 | m(il,k)=me(il,k) |
---|
| 689 | END DO |
---|
| 690 | END DO |
---|
| 691 | |
---|
| 692 | ! DO il = 1, ncum |
---|
| 693 | ! dz = (ph(il,icb(il))-ph(il,icb(il)+1))/(p(il, icb(il))/(rrd*tv(il, icb(il)))*RG) |
---|
| 694 | ! m(il,icb(il))=m(il,icb(il))+RG*coef_peel*buoy(il,icb(il))/tv(il,icb(il)) & |
---|
| 695 | ! /((wlim(il,icb(il))+wlim(il,icb(il)+1))/2.)**2*dz*mad(il,icb(il)) |
---|
| 696 | ! print*,"wlim(icb)",icb(il),wlim(il,icb(il)),m(il,icb(il)) |
---|
| 697 | ! ENDDO |
---|
| 698 | |
---|
| 699 | !Verification sum(me)=sum(m) |
---|
| 700 | DO k = nl,1,-1 |
---|
| 701 | DO il = 1, ncum |
---|
| 702 | med(il,k)=med(il,k+1)+m(il,k+1) |
---|
| 703 | ! print*,"somme(me),somme(m)",il,k,icb(il),med(il,k),md(il,k),me(il,k),m(il,k),wlim(il,k) |
---|
| 704 | ENDDO |
---|
| 705 | ENDDO |
---|
| 706 | |
---|
| 707 | |
---|
| 708 | ENDIF !(iflag_mix_adiab) |
---|
| 709 | !RC |
---|
| 710 | |
---|
| 711 | |
---|
| 712 | |
---|
[1992] | 713 | ! c 3. Compute final cloud base mass flux and set iflag to 3 if |
---|
| 714 | ! c cloud base mass flux is exceedingly small and is decreasing (i.e. if |
---|
| 715 | ! c the final mass flux (cbmflast) is greater than the target mass flux |
---|
| 716 | ! c (cbmf)). |
---|
| 717 | |
---|
| 718 | DO il = 1, ncum |
---|
| 719 | cbmflast(il) = 0. |
---|
| 720 | END DO |
---|
| 721 | |
---|
| 722 | DO k = 1, nl |
---|
| 723 | DO il = 1, ncum |
---|
| 724 | IF (k>=icb(il) .AND. k<=inb(il)) THEN |
---|
| 725 | !IMpropo?? IF ((k.ge.(icb(il)+1)).and.(k.le.inb(il))) THEN |
---|
| 726 | cbmflast(il) = cbmflast(il) + m(il, k) |
---|
| 727 | END IF |
---|
| 728 | END DO |
---|
| 729 | END DO |
---|
| 730 | |
---|
| 731 | DO il = 1, ncum |
---|
| 732 | IF (cbmflast(il)<1.E-6 .AND. cbmflast(il)>=cbmf(il)) THEN |
---|
| 733 | iflag(il) = 3 |
---|
| 734 | END IF |
---|
| 735 | END DO |
---|
| 736 | |
---|
| 737 | DO k = 1, nl |
---|
| 738 | DO il = 1, ncum |
---|
| 739 | IF (iflag(il)>=3) THEN |
---|
| 740 | m(il, k) = 0. |
---|
| 741 | sig(il, k) = 0. |
---|
| 742 | w0(il, k) = 0. |
---|
| 743 | END IF |
---|
| 744 | END DO |
---|
| 745 | END DO |
---|
| 746 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres iflag' |
---|
| 747 | |
---|
| 748 | ! c 4. Introduce a correcting factor for coef, in order to obtain an |
---|
| 749 | ! effective |
---|
| 750 | ! c sigdz larger in the present case (using cv3p1_closure) than in the |
---|
| 751 | ! old |
---|
| 752 | ! c closure (using cv3_closure). |
---|
| 753 | IF (1==0) THEN |
---|
| 754 | DO il = 1, ncum |
---|
| 755 | ! c coef(il) = 2.*coef(il) |
---|
| 756 | coef(il) = 5.*coef(il) |
---|
| 757 | END DO |
---|
| 758 | ! version CVS du ..2008 |
---|
| 759 | ELSE |
---|
| 760 | IF (iflag_cvl_sigd==0) THEN |
---|
| 761 | ! test pour verifier qu on fait la meme chose qu avant: sid constant |
---|
| 762 | coef(1:ncum) = 1. |
---|
| 763 | ELSE |
---|
| 764 | coef(1:ncum) = min(2.*coef(1:ncum), 5.) |
---|
| 765 | coef(1:ncum) = max(2.*coef(1:ncum), 0.2) |
---|
| 766 | END IF |
---|
| 767 | END IF |
---|
| 768 | |
---|
| 769 | IF (prt_level>=20) PRINT *, 'cv3p1_param FIN' |
---|
| 770 | RETURN |
---|
| 771 | END SUBROUTINE cv3p1_closure |
---|
| 772 | |
---|
| 773 | |
---|