1 | MODULE calcratqs_multi_mod |
---|
2 | |
---|
3 | !============================================= |
---|
4 | ! module containing subroutines that take |
---|
5 | ! into account the effect of convection, orography, |
---|
6 | ! surface heterogeneities and subgrid-scale |
---|
7 | ! turbulence on ratqs, i.e. on the width of the |
---|
8 | ! total water subgrid distribution. |
---|
9 | !============================================= |
---|
10 | |
---|
11 | IMPLICIT NONE |
---|
12 | |
---|
13 | ! Include |
---|
14 | !============================================= |
---|
15 | INCLUDE "YOETHF.h" |
---|
16 | INCLUDE "YOMCST.h" |
---|
17 | |
---|
18 | |
---|
19 | CONTAINS |
---|
20 | |
---|
21 | |
---|
22 | !======================================================================== |
---|
23 | SUBROUTINE calcratqs_inter(klon,klev,iflag_ratqs,pdtphys, & |
---|
24 | ratqsbas, wake_deltaq, wake_s, q_seri,qtc_cv, sigt_cv, & |
---|
25 | ratqs_inter) |
---|
26 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
27 | implicit none |
---|
28 | |
---|
29 | !======================================================================== |
---|
30 | ! L. d'Alençon, 25/02/2021 |
---|
31 | ! Cette subroutine calcule une valeur de ratqsbas interactive dépendant de la présence de poches froides dans l'environnement. |
---|
32 | ! Elle est appelée par la subroutine calcratqs lorsque iflag_ratqs = 10. |
---|
33 | !======================================================================== |
---|
34 | |
---|
35 | ! Declarations |
---|
36 | |
---|
37 | |
---|
38 | LOGICAL, SAVE :: first = .TRUE. |
---|
39 | !$OMP THREADPRIVATE(first) |
---|
40 | ! Input |
---|
41 | integer,intent(in) :: klon,klev,iflag_ratqs |
---|
42 | real,intent(in) :: pdtphys,ratqsbas |
---|
43 | real, dimension(klon,klev),intent(in) :: wake_deltaq, q_seri,qtc_cv, sigt_cv |
---|
44 | real, dimension(klon),intent(in) :: wake_s |
---|
45 | |
---|
46 | ! Output |
---|
47 | real, dimension(klon,klev),intent(inout) :: ratqs_inter |
---|
48 | |
---|
49 | ! local |
---|
50 | integer i,k |
---|
51 | real, dimension(klon,klev) :: wake_dq |
---|
52 | REAL, SAVE :: a_ratqs_cv |
---|
53 | !$OMP THREADPRIVATE(a_ratqs_cv) |
---|
54 | REAL, SAVE :: tau_ratqs_wake |
---|
55 | !$OMP THREADPRIVATE(tau_ratqs_wake) |
---|
56 | REAL, SAVE :: a_ratqs_wake |
---|
57 | !$OMP THREADPRIVATE(a_ratqs_wake) |
---|
58 | real, dimension(klon) :: max_wake_dq, max_dqconv,max_sigt |
---|
59 | !------------------------------------------------------------------------- |
---|
60 | ! Caclul de ratqs_inter |
---|
61 | !------------------------------------------------------------------------- |
---|
62 | |
---|
63 | ! |
---|
64 | if (first) then |
---|
65 | tau_ratqs_wake = 3600. ! temps de relaxation de la variabilité |
---|
66 | a_ratqs_wake = 3. ! paramètre pilotant l'importance du terme dépendant des poches froides |
---|
67 | a_ratqs_cv = 0.5 |
---|
68 | CALL getin_p('tau_ratqs_wake', tau_ratqs_wake) |
---|
69 | CALL getin_p('a_ratqs_wake', a_ratqs_wake) |
---|
70 | CALL getin_p('a_ratqs_cv', a_ratqs_cv) |
---|
71 | first=.false. |
---|
72 | endif |
---|
73 | max_wake_dq(:) = 0. |
---|
74 | max_dqconv (:) = 0 |
---|
75 | max_sigt(:) = 0. |
---|
76 | if (iflag_ratqs.eq.10) then |
---|
77 | do k=1,klev |
---|
78 | do i=1,klon |
---|
79 | max_wake_dq(i) = max(abs(wake_deltaq(i,k)),max_wake_dq(i)) |
---|
80 | max_sigt(i) = max(abs(sigt_cv(i,k)),max_sigt(i)) |
---|
81 | max_dqconv(i) = max(abs(q_seri(i,k) - qtc_cv(i,k)),max_dqconv(i)) |
---|
82 | enddo |
---|
83 | enddo |
---|
84 | |
---|
85 | do k=1,klev |
---|
86 | do i=1,klon |
---|
87 | ratqs_inter(i,k)= ratqs_inter(i,k)*exp(-pdtphys/tau_ratqs_wake) + & |
---|
88 | a_ratqs_wake*(max_wake_dq(i)*(wake_s(i)**0.5/(1.-wake_s(i))))*(1.-exp(-pdtphys/tau_ratqs_wake))/q_seri(i,1) |
---|
89 | if (ratqs_inter(i,k)<ratqsbas) then |
---|
90 | ratqs_inter(i,k) = ratqsbas |
---|
91 | endif |
---|
92 | enddo |
---|
93 | enddo |
---|
94 | endif |
---|
95 | |
---|
96 | if (iflag_ratqs.eq.11) then |
---|
97 | do k=1,klev |
---|
98 | do i=1,klon |
---|
99 | max_wake_dq(i) = max(abs(wake_deltaq(i,k)),max_wake_dq(i)) |
---|
100 | max_sigt(i) = max(abs(sigt_cv(i,k)),max_sigt(i)) |
---|
101 | max_dqconv(i) = max(abs(q_seri(i,k) - qtc_cv(i,k)),max_dqconv(i)) |
---|
102 | enddo |
---|
103 | enddo |
---|
104 | |
---|
105 | do k=1,klev |
---|
106 | do i=1,klon |
---|
107 | ratqs_inter(i,k)= ratqs_inter(i,k)*exp(-pdtphys/tau_ratqs_wake) + & |
---|
108 | a_ratqs_wake*(max_wake_dq(i)*(wake_s(i)**0.5/(1.-wake_s(i))))*(1.-exp(-pdtphys/tau_ratqs_wake))/q_seri(i,1) + & |
---|
109 | a_ratqs_cv*max_dqconv(i)*max_sigt(i)*(1.-exp(-pdtphys/tau_ratqs_wake))/q_seri(i,1) |
---|
110 | ! if (ratqs_inter(i,k)>0) then |
---|
111 | ! ratqs_inter(i,k) = abs(q_seri(i,k) - qtc_cv(i,k)) |
---|
112 | ! endif |
---|
113 | enddo |
---|
114 | enddo |
---|
115 | endif |
---|
116 | return |
---|
117 | end |
---|
118 | |
---|
119 | |
---|
120 | !------------------------------------------------------------------ |
---|
121 | SUBROUTINE calcratqs_oro(klon,klev,qsat,temp,pplay,paprs,ratqs_oro) |
---|
122 | |
---|
123 | ! Etienne Vignon, November 2021: effect of subgrid orography on ratqs |
---|
124 | |
---|
125 | USE phys_state_var_mod, ONLY: zstd |
---|
126 | USE phys_state_var_mod, ONLY: pctsrf |
---|
127 | USE indice_sol_mod, only: nbsrf, is_lic, is_ter |
---|
128 | |
---|
129 | IMPLICIT NONE |
---|
130 | |
---|
131 | ! Declarations |
---|
132 | !-------------- |
---|
133 | |
---|
134 | ! INPUTS |
---|
135 | |
---|
136 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
137 | INTEGER, INTENT(IN) :: klev ! number of vertical layers |
---|
138 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qsat ! saturation specific humidity [kg/kg] |
---|
139 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! air temperature [K] |
---|
140 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! air pressure, layer's center [Pa] |
---|
141 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! air pressure, lower inteface [Pa] |
---|
142 | |
---|
143 | ! OUTPUTS |
---|
144 | |
---|
145 | REAL, DIMENSION(klon,klev), INTENT(out) :: ratqs_oro ! ratqs profile due to subgrid orography |
---|
146 | |
---|
147 | |
---|
148 | ! LOCAL |
---|
149 | |
---|
150 | INTEGER :: i,k |
---|
151 | REAL, DIMENSION(klon) :: orogradT,xsi0 |
---|
152 | REAL, DIMENSION (klon,klev) :: zlay |
---|
153 | REAL :: Lvs, temp0 |
---|
154 | |
---|
155 | |
---|
156 | ! Calculation of the near-surface temperature gradient along the topography |
---|
157 | !-------------------------------------------------------------------------- |
---|
158 | |
---|
159 | ! at the moment, we fix it at a constant value (moist adiab. lapse rate) |
---|
160 | |
---|
161 | orogradT(:)=-6.5/1000. ! K/m |
---|
162 | |
---|
163 | ! Calculation of near-surface surface ratqs |
---|
164 | !------------------------------------------- |
---|
165 | |
---|
166 | DO i=1,klon |
---|
167 | temp0=temp(i,1) |
---|
168 | IF (temp0 .LT. RTT) THEN |
---|
169 | Lvs=RLSTT |
---|
170 | ELSE |
---|
171 | Lvs=RLVTT |
---|
172 | ENDIF |
---|
173 | xsi0(i)=zstd(i)*ABS(orogradT(i))*Lvs/temp0/temp0/RV |
---|
174 | ratqs_oro(i,1)=xsi0(i) |
---|
175 | END DO |
---|
176 | |
---|
177 | ! Vertical profile of ratqs assuming an exponential decrease with height |
---|
178 | !------------------------------------------------------------------------ |
---|
179 | |
---|
180 | ! calculation of geop. height AGL |
---|
181 | zlay(:,1)= RD*temp(:,1)/(0.5*(paprs(:,1)+pplay(:,1))) & |
---|
182 | *(paprs(:,1)-pplay(:,1))/RG |
---|
183 | |
---|
184 | DO k=2,klev |
---|
185 | DO i = 1, klon |
---|
186 | zlay(i,k)= zlay(i,k-1)+RD*0.5*(temp(i,k-1)+temp(i,k)) & |
---|
187 | /paprs(i,k)*(pplay(i,k-1)-pplay(i,k))/RG |
---|
188 | |
---|
189 | ratqs_oro(i,k)=MAX(0.0,pctsrf(i,is_ter)*xsi0(i)*exp(-zlay(i,k)/MAX(zstd(i),1.))) |
---|
190 | END DO |
---|
191 | END DO |
---|
192 | |
---|
193 | |
---|
194 | |
---|
195 | |
---|
196 | END SUBROUTINE calcratqs_oro |
---|
197 | |
---|
198 | !============================================= |
---|
199 | |
---|
200 | SUBROUTINE calcratqs_hetero(klon,klev,t2m,q2m,temp,q,pplay,paprs,ratqs_hetero) |
---|
201 | |
---|
202 | ! Etienne Vignon, November 2021 |
---|
203 | ! Effect of subgrid surface heterogeneities on ratqs |
---|
204 | |
---|
205 | USE phys_local_var_mod, ONLY: s_pblh |
---|
206 | USE phys_state_var_mod, ONLY: pctsrf |
---|
207 | USE indice_sol_mod |
---|
208 | USE lscp_tools_mod, ONLY: CALC_QSAT_ECMWF |
---|
209 | |
---|
210 | IMPLICIT NONE |
---|
211 | |
---|
212 | include "YOMCST.h" |
---|
213 | |
---|
214 | ! INPUTS |
---|
215 | |
---|
216 | |
---|
217 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
218 | INTEGER, INTENT(IN) :: klev ! number of vertical layers |
---|
219 | REAL, DIMENSION(klon,nbsrf), INTENT(IN) :: t2m ! 2m temperature for each tile [K] |
---|
220 | REAL, DIMENSION(klon,nbsrf), INTENT(IN) :: q2m ! 2m specific humidity for each tile [kg/kg] |
---|
221 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! air temperature [K] |
---|
222 | REAL, DIMENSION(klon,klev), INTENT(IN) :: q ! specific humidity [kg/kg] |
---|
223 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! air pressure, layer's center [Pa] |
---|
224 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! air pressure, lower inteface [Pa] |
---|
225 | |
---|
226 | ! OUTPUTS |
---|
227 | |
---|
228 | REAL, DIMENSION(klon,klev), INTENT(out) :: ratqs_hetero ! ratsq profile due to surface heterogeneities |
---|
229 | |
---|
230 | |
---|
231 | INTEGER :: i,k,nsrf |
---|
232 | REAL :: ratiom, qsat2m, dqsatdT |
---|
233 | REAL, DIMENSION(klon) :: xsi0 |
---|
234 | REAL, DIMENSION (klon,klev) :: zlay |
---|
235 | |
---|
236 | |
---|
237 | |
---|
238 | ! Calculation of near-surface surface ratqs |
---|
239 | !------------------------------------------- |
---|
240 | |
---|
241 | DO i=1,klon |
---|
242 | |
---|
243 | ratiom=0. |
---|
244 | xsi0(i)=0. |
---|
245 | |
---|
246 | DO nsrf=1,nbsrf |
---|
247 | CALL CALC_QSAT_ECMWF(t2m(i,nsrf),q2m(i,nsrf),paprs(i,1),RTT,0,.false.,qsat2m,dqsatdT) |
---|
248 | ratiom=ratiom+pctsrf(i,nsrf)*(q2m(i,nsrf)/qsat2m) |
---|
249 | xsi0(i)=xsi0(i)+pctsrf(i,nsrf)*((q2m(i,nsrf)/qsat2m-ratiom)**2) |
---|
250 | END DO |
---|
251 | |
---|
252 | xsi0(i)=sqrt(xsi0(i))/(ratiom+1E-6) |
---|
253 | END DO |
---|
254 | |
---|
255 | |
---|
256 | |
---|
257 | ! Vertical profile of ratqs assuming an exponential decrease with height |
---|
258 | !------------------------------------------------------------------------ |
---|
259 | |
---|
260 | ! calculation of geop. height AGL |
---|
261 | |
---|
262 | zlay(:,1)= RD*temp(:,1)/(0.5*(paprs(:,1)+pplay(:,1))) & |
---|
263 | *(paprs(:,1)-pplay(:,1))/RG |
---|
264 | ratqs_hetero(:,1)=xsi0(:) |
---|
265 | |
---|
266 | DO k=2,klev |
---|
267 | DO i = 1, klon |
---|
268 | zlay(i,k)= zlay(i,k-1)+RD*0.5*(temp(i,k-1)+temp(i,k)) & |
---|
269 | /paprs(i,k)*(pplay(i,k-1)-pplay(i,k))/RG |
---|
270 | |
---|
271 | ratqs_hetero(i,k)=MAX(xsi0(i)*exp(-zlay(i,k)/(s_pblh(i)+1.0)),0.0) |
---|
272 | END DO |
---|
273 | END DO |
---|
274 | |
---|
275 | END SUBROUTINE calcratqs_hetero |
---|
276 | |
---|
277 | !============================================= |
---|
278 | |
---|
279 | SUBROUTINE calcratqs_tke(klon,klev,pdtphys,temp,q,qsat,pplay,paprs,tke,tke_dissip,lmix,wprime,ratqs_tke) |
---|
280 | |
---|
281 | ! References: |
---|
282 | ! |
---|
283 | ! Etienne Vignon: effect of subgrid turbulence on ratqs |
---|
284 | ! |
---|
285 | ! Field, P.R., Hill, A., Furtado, K., Korolev, A., 2014b. Mixed-phase clouds in a turbulent environment. Part |
---|
286 | ! 2: analytic treatment. Q. J. R. Meteorol. Soc. 21, 2651–2663. https://doi.org/10.1002/qj.2175. |
---|
287 | ! |
---|
288 | ! Furtado, K., Field, P.R., Boutle, I.A., Morcrette, C.R., Wilkinson, J., 2016. A physically-based, subgrid |
---|
289 | ! parametrization for the production and maintenance of mixed-phase clouds in a general circulation |
---|
290 | ! model. J. Atmos. Sci. 73, 279–291. https://doi.org/10.1175/JAS-D-15-0021. |
---|
291 | |
---|
292 | USE phys_local_var_mod, ONLY: omega |
---|
293 | |
---|
294 | IMPLICIT NONE |
---|
295 | |
---|
296 | ! INPUTS |
---|
297 | |
---|
298 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
299 | INTEGER, INTENT(IN) :: klev ! number of vertical layers |
---|
300 | REAL, INTENT(IN) :: pdtphys ! physics time step [s] |
---|
301 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! air temperature [K] |
---|
302 | REAL, DIMENSION(klon,klev), INTENT(IN) :: q ! specific humidity [kg/kg] |
---|
303 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qsat ! saturation specific humidity [kg/kg] |
---|
304 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! air pressure, layer's center [Pa] |
---|
305 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! air pressure, lower inteface [Pa] |
---|
306 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke ! Turbulent Kinetic Energy [m2/s2] |
---|
307 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke_dissip ! Turbulent Kinetic Energy Dissipation rate [m2/s3] |
---|
308 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: lmix ! Turbulent mixing length |
---|
309 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: wprime ! Turbulent vertical velocity scale [m/s] |
---|
310 | |
---|
311 | ! OUTPUTS |
---|
312 | |
---|
313 | REAL, DIMENSION(klon,klev), INTENT(out) :: ratqs_tke ! ratsq profile due to subgrid TKE |
---|
314 | |
---|
315 | ! LOCAL |
---|
316 | INTEGER :: i, k |
---|
317 | REAL :: AA, DD, NW, AAprime, VARLOG,rho,Lvs,taue,lhomo,dissmin,maxvarlog |
---|
318 | REAL, DIMENSION(klon,klev) :: sigmaw,w |
---|
319 | REAL, PARAMETER :: C0=10.0 |
---|
320 | REAL, PARAMETER :: lmin=0.001 |
---|
321 | REAL, PARAMETER :: ratqsmin=1E-6 |
---|
322 | REAL, PARAMETER :: ratqsmax=0.5 |
---|
323 | |
---|
324 | |
---|
325 | ! Calculation of large scale and turbulent vertical velocities |
---|
326 | !--------------------------------------------------------------- |
---|
327 | |
---|
328 | DO k=1,klev |
---|
329 | DO i=1,klon |
---|
330 | rho=pplay(i,k)/temp(i,k)/RD |
---|
331 | w(i,k)=-rho*RG*omega(i,k) |
---|
332 | sigmaw(i,k)=0.5*(wprime(i,k+1)+wprime(i,k)) ! turbulent vertical velocity at the middle of model layers. |
---|
333 | END DO |
---|
334 | END DO |
---|
335 | |
---|
336 | ! Calculation of ratqs |
---|
337 | !--------------------------------------------------------------- |
---|
338 | ratqs_tke(:,1)=ratqsmin ! set to a very low value to avoid division by 0 in order parts |
---|
339 | ! of the code |
---|
340 | DO k=2,klev ! we start from second model level since TKE is not defined at k=1 |
---|
341 | DO i=1,klon |
---|
342 | |
---|
343 | IF (temp(i,k) .LT. RTT) THEN |
---|
344 | Lvs=RLSTT |
---|
345 | ELSE |
---|
346 | Lvs=RLVTT |
---|
347 | ENDIF |
---|
348 | dissmin=0.01*(0.5*(tke(i,k)+tke(i,k+1))/pdtphys) |
---|
349 | maxvarlog=LOG(1.0+ratqsmax**2)! to prevent ratqs from exceeding an arbitrary threshold value |
---|
350 | AA=RG*(Lvs/(RCPD*temp(i,k)*temp(i,k)*RV) - 1./(RD*temp(i,k))) |
---|
351 | lhomo=MAX(0.5*(lmix(i,k)+lmix(i,k+1)),lmin) |
---|
352 | taue=(lhomo*lhomo/MAX(0.5*(tke_dissip(i,k)+tke_dissip(i,k+1)),dissmin))**(1./3) ! Fields et al. 2014 |
---|
353 | DD=1.0/taue |
---|
354 | NW=(sigmaw(i,k)**2)*SQRT(2./(C0*MAX(0.5*(tke_dissip(i,k)+tke_dissip(i,k+1)),dissmin))) |
---|
355 | AAprime=AA*NW |
---|
356 | VARLOG=AAprime/2./DD |
---|
357 | VARLOG=MIN(VARLOG,maxvarlog) |
---|
358 | ratqs_tke(i,k)=SQRT(MAX(EXP(VARLOG)-1.0,ratqsmin)) |
---|
359 | END DO |
---|
360 | END DO |
---|
361 | END SUBROUTINE calcratqs_tke |
---|
362 | |
---|
363 | |
---|
364 | |
---|
365 | |
---|
366 | |
---|
367 | END MODULE calcratqs_multi_mod |
---|