[1689] | 1 | SUBROUTINE calcratqs(klon,klev,prt_level,lunout, & |
---|
[2236] | 2 | iflag_ratqs,iflag_con,iflag_cld_th,pdtphys, & |
---|
[2534] | 3 | ratqsbas,ratqshaut,ratqsp0,ratqsdp, & |
---|
[4013] | 4 | tau_ratqs,fact_cldcon,wake_s, wake_deltaq, & |
---|
| 5 | ptconv,ptconvth,clwcon0th, rnebcon0th, & |
---|
| 6 | paprs,pplay,t_seri,q_seri, & |
---|
| 7 | qtc_cv, sigt_cv, zqsat, & |
---|
| 8 | tke,tke_dissip,lmix,wprime, & |
---|
| 9 | t2m,q2m,fm_therm, & |
---|
| 10 | ratqs,ratqsc,ratqs_inter) |
---|
[1689] | 11 | |
---|
[4013] | 12 | |
---|
| 13 | USE indice_sol_mod |
---|
| 14 | USE phys_state_var_mod, ONLY: pctsrf |
---|
| 15 | USE calcratqs_multi_mod, ONLY: calcratqs_inter, calcratqs_oro, calcratqs_hetero, calcratqs_tke |
---|
| 16 | |
---|
[1689] | 17 | implicit none |
---|
| 18 | |
---|
| 19 | !======================================================================== |
---|
| 20 | ! Computation of ratqs, the width of the subrid scale water distribution |
---|
| 21 | ! (normalized by the mean value) |
---|
| 22 | ! Various options controled by flags iflag_con and iflag_ratqs |
---|
| 23 | ! F Hourdin 2012/12/06 |
---|
| 24 | !======================================================================== |
---|
| 25 | |
---|
| 26 | ! Declarations |
---|
| 27 | |
---|
| 28 | ! Input |
---|
| 29 | integer,intent(in) :: klon,klev,prt_level,lunout |
---|
[2236] | 30 | integer,intent(in) :: iflag_con,iflag_cld_th,iflag_ratqs |
---|
[1689] | 31 | real,intent(in) :: pdtphys,ratqsbas,ratqshaut,fact_cldcon,tau_ratqs |
---|
[2534] | 32 | real,intent(in) :: ratqsp0, ratqsdp |
---|
[4013] | 33 | real, dimension(klon,klev+1),intent(in) :: paprs,tke,tke_dissip,lmix,wprime |
---|
| 34 | real, dimension(klon,klev),intent(in) :: pplay,t_seri,q_seri,zqsat,fm_therm, qtc_cv, sigt_cv |
---|
[1689] | 35 | logical, dimension(klon,klev),intent(in) :: ptconv |
---|
| 36 | real, dimension(klon,klev),intent(in) :: rnebcon0th,clwcon0th |
---|
[4013] | 37 | real, dimension(klon,klev),intent(in) :: wake_deltaq,wake_s |
---|
| 38 | real, dimension(klon,nbsrf),intent(in) :: t2m,q2m |
---|
| 39 | ! Output |
---|
| 40 | real, dimension(klon,klev),intent(inout) :: ratqs,ratqsc,ratqs_inter |
---|
[1689] | 41 | |
---|
| 42 | logical, dimension(klon,klev),intent(inout) :: ptconvth |
---|
| 43 | |
---|
| 44 | ! local |
---|
| 45 | integer i,k |
---|
| 46 | real, dimension(klon,klev) :: ratqss |
---|
| 47 | real facteur,zfratqs1,zfratqs2 |
---|
[4013] | 48 | real, dimension(klon,klev) :: ratqs_hetero,ratqs_oro,ratqs_tke |
---|
[1689] | 49 | |
---|
[4013] | 50 | |
---|
[1689] | 51 | !------------------------------------------------------------------------- |
---|
| 52 | ! Caclul des ratqs |
---|
| 53 | !------------------------------------------------------------------------- |
---|
| 54 | |
---|
| 55 | ! print*,'calcul des ratqs' |
---|
| 56 | ! ratqs convectifs a l'ancienne en fonction de q(z=0)-q / q |
---|
| 57 | ! ---------------- |
---|
| 58 | ! on ecrase le tableau ratqsc calcule par clouds_gno |
---|
[2236] | 59 | if (iflag_cld_th.eq.1) then |
---|
[1689] | 60 | do k=1,klev |
---|
| 61 | do i=1,klon |
---|
| 62 | if(ptconv(i,k)) then |
---|
| 63 | ratqsc(i,k)=ratqsbas & |
---|
| 64 | +fact_cldcon*(q_seri(i,1)-q_seri(i,k))/q_seri(i,k) |
---|
| 65 | else |
---|
| 66 | ratqsc(i,k)=0. |
---|
| 67 | endif |
---|
| 68 | enddo |
---|
| 69 | enddo |
---|
| 70 | |
---|
| 71 | !----------------------------------------------------------------------- |
---|
| 72 | ! par nversion de la fonction log normale |
---|
| 73 | !----------------------------------------------------------------------- |
---|
[2236] | 74 | else if (iflag_cld_th.eq.4) then |
---|
[1689] | 75 | ptconvth(:,:)=.false. |
---|
| 76 | ratqsc(:,:)=0. |
---|
| 77 | if(prt_level.ge.9) print*,'avant clouds_gno thermique' |
---|
| 78 | call clouds_gno & |
---|
| 79 | (klon,klev,q_seri,zqsat,clwcon0th,ptconvth,ratqsc,rnebcon0th) |
---|
| 80 | if(prt_level.ge.9) print*,' CLOUDS_GNO OK' |
---|
| 81 | |
---|
| 82 | endif |
---|
| 83 | |
---|
| 84 | ! ratqs stables |
---|
| 85 | ! ------------- |
---|
| 86 | |
---|
| 87 | if (iflag_ratqs.eq.0) then |
---|
| 88 | |
---|
| 89 | ! Le cas iflag_ratqs=0 correspond a la version IPCC 2005 du modele. |
---|
| 90 | do k=1,klev |
---|
| 91 | do i=1, klon |
---|
| 92 | ratqss(i,k)=ratqsbas+(ratqshaut-ratqsbas)* & |
---|
| 93 | min((paprs(i,1)-pplay(i,k))/(paprs(i,1)-30000.),1.) |
---|
| 94 | enddo |
---|
| 95 | enddo |
---|
| 96 | |
---|
| 97 | ! Pour iflag_ratqs=1 ou 2, le ratqs est constant au dessus de |
---|
| 98 | ! 300 hPa (ratqshaut), varie lineariement en fonction de la pression |
---|
| 99 | ! entre 600 et 300 hPa et est soit constant (ratqsbas) pour iflag_ratqs=1 |
---|
| 100 | ! soit lineaire (entre 0 a la surface et ratqsbas) pour iflag_ratqs=2 |
---|
| 101 | ! Il s'agit de differents tests dans la phase de reglage du modele |
---|
| 102 | ! avec thermiques. |
---|
| 103 | |
---|
| 104 | else if (iflag_ratqs.eq.1) then |
---|
| 105 | |
---|
| 106 | do k=1,klev |
---|
| 107 | do i=1, klon |
---|
| 108 | if (pplay(i,k).ge.60000.) then |
---|
| 109 | ratqss(i,k)=ratqsbas |
---|
| 110 | else if ((pplay(i,k).ge.30000.).and.(pplay(i,k).lt.60000.)) then |
---|
| 111 | ratqss(i,k)=ratqsbas+(ratqshaut-ratqsbas)*(60000.-pplay(i,k))/(60000.-30000.) |
---|
| 112 | else |
---|
| 113 | ratqss(i,k)=ratqshaut |
---|
| 114 | endif |
---|
| 115 | enddo |
---|
| 116 | enddo |
---|
| 117 | |
---|
| 118 | else if (iflag_ratqs.eq.2) then |
---|
| 119 | |
---|
| 120 | do k=1,klev |
---|
| 121 | do i=1, klon |
---|
| 122 | if (pplay(i,k).ge.60000.) then |
---|
| 123 | ratqss(i,k)=ratqsbas*(paprs(i,1)-pplay(i,k))/(paprs(i,1)-60000.) |
---|
| 124 | else if ((pplay(i,k).ge.30000.).and.(pplay(i,k).lt.60000.)) then |
---|
| 125 | ratqss(i,k)=ratqsbas+(ratqshaut-ratqsbas)*(60000.-pplay(i,k))/(60000.-30000.) |
---|
| 126 | else |
---|
| 127 | ratqss(i,k)=ratqshaut |
---|
| 128 | endif |
---|
| 129 | enddo |
---|
| 130 | enddo |
---|
| 131 | |
---|
| 132 | else if (iflag_ratqs==3) then |
---|
| 133 | do k=1,klev |
---|
| 134 | ratqss(:,k)=ratqsbas+(ratqshaut-ratqsbas) & |
---|
| 135 | *min( ((paprs(:,1)-pplay(:,k))/70000.)**2 , 1. ) |
---|
| 136 | enddo |
---|
| 137 | |
---|
[4013] | 138 | else if (iflag_ratqs==4) then |
---|
[1689] | 139 | do k=1,klev |
---|
| 140 | ratqss(:,k)=ratqsbas+0.5*(ratqshaut-ratqsbas) & |
---|
[2534] | 141 | ! *( tanh( (50000.-pplay(:,k))/20000.) + 1.) |
---|
| 142 | *( tanh( (ratqsp0-pplay(:,k))/ratqsdp) + 1.) |
---|
[1689] | 143 | enddo |
---|
| 144 | |
---|
[4013] | 145 | else if (iflag_ratqs .GT. 9) then |
---|
| 146 | |
---|
| 147 | ! interactive ratqs calculations that depend on cold pools, orography, surface heterogeneity and small-scale turbulence |
---|
| 148 | ! This should help getting a more realistic ratqs in the low and mid troposphere |
---|
| 149 | ! We however need a "background" ratqs to account for subgrid distribution of qt (or qt/qs) |
---|
| 150 | ! in the high troposphere |
---|
| 151 | |
---|
| 152 | ! background ratqs and initialisations |
---|
| 153 | do k=1,klev |
---|
| 154 | do i=1,klon |
---|
| 155 | ratqss(i,k)=ratqsbas+0.5*(ratqshaut-ratqsbas) & |
---|
| 156 | *( tanh( (ratqsp0-pplay(i,k))/ratqsdp) + 1.) |
---|
| 157 | ratqss(i,k)=max(ratqss(i,k),0.0) |
---|
| 158 | |
---|
| 159 | ratqs_hetero(i,k)=0. |
---|
| 160 | ratqs_oro(i,k)=0. |
---|
| 161 | ratqs_tke(i,k)=0. |
---|
| 162 | ratqs_inter(i,k)=0 |
---|
| 163 | enddo |
---|
| 164 | enddo |
---|
| 165 | |
---|
| 166 | if (iflag_ratqs .EQ. 10) then |
---|
| 167 | ! interactive ratqs in presence of cold pools |
---|
| 168 | call calcratqs_inter(klon,klev,iflag_ratqs,pdtphys,ratqsbas,wake_deltaq,wake_s,q_seri,qtc_cv, sigt_cv,ratqs_inter) |
---|
| 169 | do k=1,klev |
---|
| 170 | do i=1,klon |
---|
| 171 | ratqs_inter(i,k)=ratqs_inter(i,k)-0.5*ratqs_inter(i,k)*(tanh((ratqsp0-pplay(i,k))/ratqsdp)+1.) |
---|
| 172 | enddo |
---|
| 173 | enddo |
---|
| 174 | ratqss=ratqss+ratqs_inter |
---|
| 175 | else if (iflag_ratqs .EQ. 11) then |
---|
| 176 | ! interactive ratqs with several sources |
---|
| 177 | call calcratqs_inter(klon,klev,iflag_ratqs,pdtphys,ratqsbas,wake_deltaq,wake_s,q_seri,qtc_cv, sigt_cv,ratqs_inter) |
---|
| 178 | ratqss=ratqss+ratqs_inter |
---|
| 179 | else if (iflag_ratqs .EQ. 12) then |
---|
| 180 | ! contribution of surface heterogeneities to ratqs |
---|
| 181 | call calcratqs_hetero(klon,klev,t2m,q2m,t_seri,q_seri,pplay,paprs,ratqs_hetero) |
---|
| 182 | ratqss=ratqss+ratqs_hetero |
---|
| 183 | else if (iflag_ratqs .EQ. 13) then |
---|
| 184 | ! contribution of ubgrid orography to ratqs |
---|
| 185 | call calcratqs_oro(klon,klev,zqsat,t_seri,pplay,paprs,ratqs_oro) |
---|
| 186 | ratqss=ratqss+ratqs_oro |
---|
| 187 | else if (iflag_ratqs .EQ. 14) then |
---|
| 188 | ! effect of subgrid-scale TKE on ratqs (in development) |
---|
| 189 | call calcratqs_tke(klon,klev,pdtphys,t_seri,q_seri,zqsat,pplay,paprs,tke,tke_dissip,lmix,wprime,ratqs_tke) |
---|
| 190 | ratqss=ratqss+ratqs_tke |
---|
| 191 | endif |
---|
| 192 | |
---|
| 193 | |
---|
[1689] | 194 | endif |
---|
| 195 | |
---|
| 196 | |
---|
| 197 | ! ratqs final |
---|
| 198 | ! ----------- |
---|
| 199 | |
---|
[2236] | 200 | if (iflag_cld_th.eq.1 .or.iflag_cld_th.eq.2.or.iflag_cld_th.eq.4) then |
---|
[1689] | 201 | |
---|
| 202 | ! On ajoute une constante au ratqsc*2 pour tenir compte de |
---|
| 203 | ! fluctuations turbulentes de petite echelle |
---|
| 204 | |
---|
| 205 | do k=1,klev |
---|
| 206 | do i=1,klon |
---|
| 207 | if ((fm_therm(i,k).gt.1.e-10)) then |
---|
| 208 | ratqsc(i,k)=sqrt(ratqsc(i,k)**2+0.05**2) |
---|
| 209 | endif |
---|
| 210 | enddo |
---|
| 211 | enddo |
---|
| 212 | |
---|
| 213 | ! les ratqs sont une combinaison de ratqss et ratqsc |
---|
| 214 | if(prt_level.ge.9) write(lunout,*)'PHYLMD NOUVEAU TAU_RATQS ',tau_ratqs |
---|
| 215 | |
---|
| 216 | if (tau_ratqs>1.e-10) then |
---|
| 217 | facteur=exp(-pdtphys/tau_ratqs) |
---|
| 218 | else |
---|
| 219 | facteur=0. |
---|
| 220 | endif |
---|
| 221 | ratqs(:,:)=ratqsc(:,:)*(1.-facteur)+ratqs(:,:)*facteur |
---|
| 222 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 223 | ! FH 22/09/2009 |
---|
| 224 | ! La ligne ci-dessous faisait osciller le modele et donnait une solution |
---|
| 225 | ! assymptotique bidon et dépendant fortement du pas de temps. |
---|
| 226 | ! ratqs(:,:)=sqrt(ratqs(:,:)**2+ratqss(:,:)**2) |
---|
| 227 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 228 | ratqs(:,:)=max(ratqs(:,:),ratqss(:,:)) |
---|
[2236] | 229 | else if (iflag_cld_th<=6) then |
---|
[1689] | 230 | ! on ne prend que le ratqs stable pour fisrtilp |
---|
| 231 | ratqs(:,:)=ratqss(:,:) |
---|
| 232 | else |
---|
| 233 | zfratqs1=exp(-pdtphys/10800.) |
---|
| 234 | zfratqs2=exp(-pdtphys/10800.) |
---|
| 235 | do k=1,klev |
---|
| 236 | do i=1,klon |
---|
| 237 | if (ratqsc(i,k).gt.1.e-10) then |
---|
[2236] | 238 | ratqs(i,k)=ratqs(i,k)*zfratqs2+(iflag_cld_th/100.)*ratqsc(i,k)*(1.-zfratqs2) |
---|
[1689] | 239 | endif |
---|
| 240 | ratqs(i,k)=min(ratqs(i,k)*zfratqs1+ratqss(i,k)*(1.-zfratqs1),0.5) |
---|
| 241 | enddo |
---|
| 242 | enddo |
---|
| 243 | endif |
---|
| 244 | |
---|
| 245 | |
---|
| 246 | return |
---|
| 247 | end |
---|