1 | SUBROUTINE RRTM_TAUMOL1 (KIDIA,KFDIA,KLEV,P_TAU,PAVEL,& |
---|
2 | & P_TAUAERL,P_FAC00,P_FAC01,P_FAC10,P_FAC11,P_FORFAC,P_FORFRAC,K_INDFOR,K_JP,K_JT,K_JT1,& |
---|
3 | & P_COLH2O,K_LAYTROP,P_SELFFAC,P_SELFFRAC,K_INDSELF,PFRAC,P_MINORFRAC,K_INDMINOR,PSCALEMINORN2,PCOLBRD) |
---|
4 | |
---|
5 | !****************************************************************************** |
---|
6 | ! * |
---|
7 | ! Optical depths developed for the * |
---|
8 | ! * |
---|
9 | ! RAPID RADIATIVE TRANSFER MODEL (RRTM) * |
---|
10 | ! * |
---|
11 | ! ATMOSPHERIC AND ENVIRONMENTAL RESEARCH, INC. * |
---|
12 | ! 840 MEMORIAL DRIVE * |
---|
13 | ! CAMBRIDGE, MA 02139 * |
---|
14 | ! * |
---|
15 | ! ELI J. MLAWER * |
---|
16 | ! STEVEN J. TAUBMAN * |
---|
17 | ! SHEPARD A. CLOUGH * |
---|
18 | ! * |
---|
19 | ! email: mlawer@aer.com * |
---|
20 | ! * |
---|
21 | ! The authors wish to acknowledge the contributions of the * |
---|
22 | ! following people: Patrick D. Brown, Michael J. Iacono, * |
---|
23 | ! Ronald E. Farren, Luke Chen, Robert Bergstrom. * |
---|
24 | ! * |
---|
25 | !****************************************************************************** |
---|
26 | ! TAUMOL * |
---|
27 | ! * |
---|
28 | ! This file contains the subroutines TAUGBn (where n goes from * |
---|
29 | ! 1 to 16). TAUGBn calculates the optical depths and Planck fractions * |
---|
30 | ! per g-value and layer for band n. * |
---|
31 | ! * |
---|
32 | ! Output: optical depths (unitless) * |
---|
33 | ! fractions needed to compute Planck functions at every layer * |
---|
34 | ! and g-value * |
---|
35 | ! * |
---|
36 | ! COMMON /TAUGCOM/ TAUG(MXLAY,MG) * |
---|
37 | ! COMMON /PLANKG/ FRACS(MXLAY,MG) * |
---|
38 | ! * |
---|
39 | ! Input * |
---|
40 | ! * |
---|
41 | ! COMMON /FEATURES/ NG(NBANDS),NSPA(NBANDS),NSPB(NBANDS) * |
---|
42 | ! COMMON /PRECISE/ ONEMINUS * |
---|
43 | ! COMMON /PROFILE/ NLAYERS,PAVEL(MXLAY),TAVEL(MXLAY), * |
---|
44 | ! & PZ(0:MXLAY),TZ(0:MXLAY),TBOUND * |
---|
45 | ! COMMON /PROFDATA/ LAYTROP,LAYSWTCH,LAYLOW, * |
---|
46 | ! & COLH2O(MXLAY),COLCO2(MXLAY), * |
---|
47 | ! & COLO3(MXLAY),COLN2O(MXLAY),COLCH4(MXLAY), * |
---|
48 | ! & COLO2(MXLAY),CO2MULT(MXLAY) * |
---|
49 | ! COMMON /INTFAC/ FAC00(MXLAY),FAC01(MXLAY), * |
---|
50 | ! & FAC10(MXLAY),FAC11(MXLAY) * |
---|
51 | ! COMMON /INTIND/ JP(MXLAY),JT(KIDIA:KFDIA,MXLAY),JT1(KIDIA:KFDIA,MXLAY) * |
---|
52 | ! COMMON /SELF/ SELFFAC(MXLAY), SELFFRAC(MXLAY), INDSELF(KIDIA:KFDIA,MXLAY) * |
---|
53 | ! * |
---|
54 | ! Description: * |
---|
55 | ! NG(IBAND) - number of g-values in band IBAND * |
---|
56 | ! NSPA(IBAND) - for the lower atmosphere, the number of reference * |
---|
57 | ! atmospheres that are stored for band IBAND per * |
---|
58 | ! pressure level and temperature. Each of these * |
---|
59 | ! atmospheres has different relative amounts of the * |
---|
60 | ! key species for the band (i.e. different binary * |
---|
61 | ! species parameters). * |
---|
62 | ! NSPB(IBAND) - same for upper atmosphere * |
---|
63 | ! ONEMINUS - since problems are caused in some cases by interpolation * |
---|
64 | ! parameters equal to or greater than 1, for these cases * |
---|
65 | ! these parameters are set to this value, slightly < 1. * |
---|
66 | ! PAVEL - layer pressures (mb) * |
---|
67 | ! TAVEL - layer temperatures (degrees K) * |
---|
68 | ! PZ - level pressures (mb) * |
---|
69 | ! TZ - level temperatures (degrees K) * |
---|
70 | ! LAYTROP - layer at which switch is made from one combination of * |
---|
71 | ! key species to another * |
---|
72 | ! COLH2O, COLCO2, COLO3, COLN2O, COLCH4 - column amounts of water * |
---|
73 | ! vapor,carbon dioxide, ozone, nitrous ozide, methane, * |
---|
74 | ! respectively (molecules/cm**2) * |
---|
75 | ! CO2MULT - for bands in which carbon dioxide is implemented as a * |
---|
76 | ! trace species, this is the factor used to multiply the * |
---|
77 | ! band's average CO2 absorption coefficient to get the added * |
---|
78 | ! contribution to the optical depth relative to 355 ppm. * |
---|
79 | ! FACij(JLAY) - for layer JLAY, these are factors that are needed to * |
---|
80 | ! compute the interpolation factors that multiply the * |
---|
81 | ! appropriate reference k-values. A value of 0 (1) for * |
---|
82 | ! i,j indicates that the corresponding factor multiplies * |
---|
83 | ! reference k-value for the lower (higher) of the two * |
---|
84 | ! appropriate temperatures, and altitudes, respectively. * |
---|
85 | ! JP - the index of the lower (in altitude) of the two appropriate * |
---|
86 | ! reference pressure levels needed for interpolation * |
---|
87 | ! JT, JT1 - the indices of the lower of the two appropriate reference * |
---|
88 | ! temperatures needed for interpolation (for pressure * |
---|
89 | ! levels JP and JP+1, respectively) * |
---|
90 | ! SELFFAC - scale factor needed to water vapor self-continuum, equals * |
---|
91 | ! (water vapor density)/(atmospheric density at 296K and * |
---|
92 | ! 1013 mb) * |
---|
93 | ! SELFFRAC - factor needed for temperature interpolation of reference * |
---|
94 | ! water vapor self-continuum data * |
---|
95 | ! INDSELF - index of the lower of the two appropriate reference * |
---|
96 | ! temperatures needed for the self-continuum interpolation * |
---|
97 | ! * |
---|
98 | ! Data input * |
---|
99 | ! COMMON /Kn/ KA(NSPA(n),5,13,MG), KB(NSPB(n),5,13:59,MG), SELFREF(10,MG) * |
---|
100 | ! (note: n is the band number) * |
---|
101 | ! * |
---|
102 | ! Description: * |
---|
103 | ! KA - k-values for low reference atmospheres (no water vapor * |
---|
104 | ! self-continuum) (units: cm**2/molecule) * |
---|
105 | ! KB - k-values for high reference atmospheres (all sources) * |
---|
106 | ! (units: cm**2/molecule) * |
---|
107 | ! SELFREF - k-values for water vapor self-continuum for reference * |
---|
108 | ! atmospheres (used below LAYTROP) * |
---|
109 | ! (units: cm**2/molecule) * |
---|
110 | ! * |
---|
111 | ! DIMENSION ABSA(65*NSPA(n),MG), ABSB(235*NSPB(n),MG) * |
---|
112 | ! EQUIVALENCE (KA,ABSA),(KB,ABSB) * |
---|
113 | ! * |
---|
114 | !****************************************************************************** |
---|
115 | |
---|
116 | ! BAND 1: 10-250 cm-1 (low - H2O; high - H2O) |
---|
117 | |
---|
118 | ! AUTHOR. |
---|
119 | ! ------- |
---|
120 | ! JJMorcrette, ECMWF, from |
---|
121 | ! Eli J. Mlawer, Atmospheric & Environmental Research. |
---|
122 | ! (Revised by Michael J. Iacono, Atmospheric & Environmental Research.) |
---|
123 | |
---|
124 | ! MODIFICATIONS. |
---|
125 | ! -------------- |
---|
126 | ! D Salmond 2000-05-15 speed-up |
---|
127 | ! JJMorcrette 2000-05-17 speed-up |
---|
128 | ! M.Hamrud 01-Oct-2003 CY28 Cleaning |
---|
129 | ! NEC 25-Oct-2007 Optimisations |
---|
130 | ! JJMorcrette 20110613 flexible number of g-points |
---|
131 | ! ABozzo 200130517 updated to rrtmg_lw_v4.85: |
---|
132 | !********* |
---|
133 | ! band 1: 10-350 cm-1 (low key - h2o; low minor - n2) |
---|
134 | ! (high key - h2o; high minor - n2) |
---|
135 | ! |
---|
136 | ! note: previous versions of rrtm band 1: |
---|
137 | ! 10-250 cm-1 (low - h2o; high - h2o) |
---|
138 | ! --------------------------------------------------------------------------- |
---|
139 | |
---|
140 | USE PARKIND1 ,ONLY : JPIM ,JPRB |
---|
141 | USE YOMHOOK ,ONLY : LHOOK, DR_HOOK |
---|
142 | |
---|
143 | USE PARRRTM , ONLY : JPBAND |
---|
144 | USE YOERRTM , ONLY : JPGPT ,NG1 |
---|
145 | USE YOERRTWN , ONLY : NSPA ,NSPB |
---|
146 | USE YOERRTA1 , ONLY : ABSA ,ABSB ,FRACREFA, FRACREFB,& |
---|
147 | & FORREF ,SELFREF, KA_MN2, KB_MN2 |
---|
148 | |
---|
149 | IMPLICIT NONE |
---|
150 | |
---|
151 | INTEGER(KIND=JPIM),INTENT(IN) :: KIDIA |
---|
152 | INTEGER(KIND=JPIM),INTENT(IN) :: KFDIA |
---|
153 | INTEGER(KIND=JPIM),INTENT(IN) :: KLEV |
---|
154 | REAL(KIND=JPRB) ,INTENT(IN) :: PAVEL(KIDIA:KFDIA,KLEV) ! Layer pressures (hPa) |
---|
155 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAU(KIDIA:KFDIA,JPGPT,KLEV) |
---|
156 | REAL(KIND=JPRB) ,INTENT(IN) :: P_TAUAERL(KIDIA:KFDIA,KLEV,JPBAND) |
---|
157 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC00(KIDIA:KFDIA,KLEV) |
---|
158 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC01(KIDIA:KFDIA,KLEV) |
---|
159 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC10(KIDIA:KFDIA,KLEV) |
---|
160 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC11(KIDIA:KFDIA,KLEV) |
---|
161 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FORFAC(KIDIA:KFDIA,KLEV) |
---|
162 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FORFRAC(KIDIA:KFDIA,KLEV) |
---|
163 | INTEGER(KIND=JPIM),INTENT(IN) :: K_JP(KIDIA:KFDIA,KLEV) |
---|
164 | INTEGER(KIND=JPIM),INTENT(IN) :: K_JT(KIDIA:KFDIA,KLEV) |
---|
165 | INTEGER(KIND=JPIM),INTENT(IN) :: K_JT1(KIDIA:KFDIA,KLEV) |
---|
166 | REAL(KIND=JPRB) ,INTENT(IN) :: P_COLH2O(KIDIA:KFDIA,KLEV) |
---|
167 | INTEGER(KIND=JPIM),INTENT(IN) :: K_LAYTROP(KIDIA:KFDIA) |
---|
168 | REAL(KIND=JPRB) ,INTENT(IN) :: P_SELFFAC(KIDIA:KFDIA,KLEV) |
---|
169 | REAL(KIND=JPRB) ,INTENT(IN) :: P_SELFFRAC(KIDIA:KFDIA,KLEV) |
---|
170 | REAL(KIND=JPRB) ,INTENT(IN) :: P_MINORFRAC(KIDIA:KFDIA,KLEV) |
---|
171 | INTEGER(KIND=JPIM),INTENT(IN) :: K_INDSELF(KIDIA:KFDIA,KLEV) |
---|
172 | REAL(KIND=JPRB) ,INTENT(OUT) :: PFRAC(KIDIA:KFDIA,JPGPT,KLEV) |
---|
173 | |
---|
174 | INTEGER(KIND=JPIM),INTENT(IN) :: K_INDFOR(KIDIA:KFDIA,KLEV) |
---|
175 | INTEGER(KIND=JPIM),INTENT(IN) :: K_INDMINOR(KIDIA:KFDIA,KLEV) |
---|
176 | REAL(KIND=JPRB) ,INTENT(IN) :: PSCALEMINORN2(KIDIA:KFDIA,KLEV) |
---|
177 | REAL(KIND=JPRB) ,INTENT(IN) :: PCOLBRD(KIDIA:KFDIA,KLEV) |
---|
178 | ! --------------------------------------------------------------------------- |
---|
179 | |
---|
180 | INTEGER(KIND=JPIM) :: IND0(KLEV),IND1(KLEV),INDS(KLEV) |
---|
181 | INTEGER(KIND=JPIM) :: INDF(KLEV),INDM(KLEV) |
---|
182 | |
---|
183 | INTEGER(KIND=JPIM) :: IG, JLAY |
---|
184 | INTEGER(KIND=JPIM) :: JLON |
---|
185 | REAL(KIND=JPRB) :: ZTAUFOR,ZTAUSELF,ZTAUN2,ZCORRADJ,ZPP,ZSCALEN2 |
---|
186 | REAL(KIND=JPRB) :: ZHOOK_HANDLE |
---|
187 | |
---|
188 | ! Minor gas mapping levels: |
---|
189 | ! lower - n2, p = 142.5490 mbar, t = 215.70 k |
---|
190 | ! upper - n2, p = 142.5490 mbar, t = 215.70 k |
---|
191 | |
---|
192 | ! Compute the optical depth by interpolating in ln(pressure) and |
---|
193 | ! temperature. Below LAYTROP, the water vapor self-continuum and |
---|
194 | ! foreign continuum is interpolated (in temperature) separately. |
---|
195 | |
---|
196 | ASSOCIATE(NFLEVG=>KLEV) |
---|
197 | IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL1',0,ZHOOK_HANDLE) |
---|
198 | |
---|
199 | DO JLAY = 1, KLEV |
---|
200 | DO JLON = KIDIA, KFDIA |
---|
201 | IF (JLAY <= K_LAYTROP(JLON)) THEN |
---|
202 | IND0(JLAY) = ((K_JP(JLON,JLAY)-1)*5+(K_JT(JLON,JLAY)-1))*NSPA(1) + 1 |
---|
203 | IND1(JLAY) = (K_JP(JLON,JLAY)*5+(K_JT1(JLON,JLAY)-1))*NSPA(1) + 1 |
---|
204 | INDS(JLAY) = K_INDSELF(JLON,JLAY) |
---|
205 | INDF(JLAY) = K_INDFOR(JLON,JLAY) |
---|
206 | INDM(JLAY) = K_INDMINOR(JLON,JLAY) |
---|
207 | ZPP = PAVEL(JLON,JLAY) !hPa(mb) |
---|
208 | ZCORRADJ = 1. |
---|
209 | IF (ZPP < 250._JPRB) THEN |
---|
210 | ZCORRADJ = 1._JPRB - 0.15_JPRB * (250._JPRB-ZPP) / 154.4_JPRB |
---|
211 | ENDIF |
---|
212 | |
---|
213 | ZSCALEN2 = PCOLBRD(JLON,JLAY) * PSCALEMINORN2(JLON,JLAY) |
---|
214 | |
---|
215 | !CDIR UNROLL=NG1 |
---|
216 | DO IG = 1, NG1 |
---|
217 | !-- DS_000515 |
---|
218 | ZTAUSELF = P_SELFFAC(JLON,JLAY) * (SELFREF(INDS(JLAY),IG) + & |
---|
219 | & P_SELFFRAC(JLON,JLAY) * & |
---|
220 | & (SELFREF(INDS(JLAY)+1,IG) - SELFREF(INDS(JLAY),IG))) |
---|
221 | |
---|
222 | ZTAUFOR = P_FORFAC(JLON,JLAY) * (FORREF(INDF(JLAY),IG) + & |
---|
223 | & P_FORFRAC(JLON,JLAY) * (FORREF(INDF(JLAY)+1,IG) - & |
---|
224 | & FORREF(INDF(JLAY),IG))) |
---|
225 | |
---|
226 | ZTAUN2 = ZSCALEN2*(KA_MN2(INDM(JLAY),IG) + & |
---|
227 | & P_MINORFRAC(JLON,JLAY) * & |
---|
228 | & (KA_MN2(INDM(JLAY)+1,IG) - KA_MN2(INDM(JLAY),IG))) |
---|
229 | |
---|
230 | P_TAU(JLON,IG,JLAY) = ZCORRADJ * (P_COLH2O(JLON,JLAY) * & |
---|
231 | & (P_FAC00(JLON,JLAY) * ABSA(IND0(JLAY),IG) + & |
---|
232 | & P_FAC10(JLON,JLAY) * ABSA(IND0(JLAY)+1,IG) + & |
---|
233 | & P_FAC01(JLON,JLAY) * ABSA(IND1(JLAY),IG) + & |
---|
234 | & P_FAC11(JLON,JLAY) * ABSA(IND1(JLAY)+1,IG)) & |
---|
235 | & + ZTAUSELF + ZTAUFOR & |
---|
236 | & + ZTAUN2) + P_TAUAERL(JLON,JLAY,1) |
---|
237 | |
---|
238 | PFRAC(JLON,IG,JLAY) = FRACREFA(IG) |
---|
239 | |
---|
240 | ENDDO |
---|
241 | ENDIF |
---|
242 | |
---|
243 | IF (JLAY > K_LAYTROP(JLON)) THEN |
---|
244 | IND0(JLAY) = ((K_JP(JLON,JLAY)-13)*5+(K_JT(JLON,JLAY)-1))*NSPB(1) + 1 |
---|
245 | IND1(JLAY) = ((K_JP(JLON,JLAY)-12)*5+(K_JT1(JLON,JLAY)-1))*NSPB(1) + 1 |
---|
246 | INDF(JLAY) = K_INDFOR(JLON,JLAY) |
---|
247 | INDM(JLAY) = K_INDMINOR(JLON,JLAY) |
---|
248 | ZPP = PAVEL(JLON,JLAY) !hPa(mb) |
---|
249 | ZCORRADJ = 1._JPRB - 0.15_JPRB * (ZPP / 95.6_JPRB) |
---|
250 | |
---|
251 | ZSCALEN2 = PCOLBRD(JLON,JLAY) * PSCALEMINORN2(JLON,JLAY) |
---|
252 | |
---|
253 | !-- JJM000517 |
---|
254 | !CDIR UNROLL=NG1 |
---|
255 | DO IG = 1, NG1 |
---|
256 | !-- JJM000517 |
---|
257 | ZTAUFOR = P_FORFAC(JLON,JLAY) * (FORREF(INDF(JLAY),IG) + & |
---|
258 | & P_FORFRAC(JLON,JLAY) * & |
---|
259 | & (FORREF(INDF(JLAY)+1,IG) - FORREF(INDF(JLAY),IG))) |
---|
260 | |
---|
261 | ZTAUN2 = ZSCALEN2*(KB_MN2(INDM(JLAY),IG) + & |
---|
262 | & P_MINORFRAC(JLON,JLAY) * & |
---|
263 | & (KB_MN2(INDM(JLAY)+1,IG) - KB_MN2(INDM(JLAY),IG))) |
---|
264 | |
---|
265 | P_TAU(JLON,IG,JLAY) = ZCORRADJ * (P_COLH2O(JLON,JLAY) * & |
---|
266 | & (P_FAC00(JLON,JLAY) * ABSB(IND0(JLAY),IG) + & |
---|
267 | & P_FAC10(JLON,JLAY) * ABSB(IND0(JLAY)+1,IG) + & |
---|
268 | & P_FAC01(JLON,JLAY) * ABSB(IND1(JLAY),IG) + & |
---|
269 | & P_FAC11(JLON,JLAY) * ABSB(IND1(JLAY)+1,IG)) & |
---|
270 | & + ZTAUFOR & |
---|
271 | & + ZTAUN2)+ P_TAUAERL(JLON,JLAY,1) |
---|
272 | PFRAC(JLON,IG,JLAY) = FRACREFB(IG) |
---|
273 | |
---|
274 | |
---|
275 | ENDDO |
---|
276 | ENDIF |
---|
277 | ENDDO |
---|
278 | ENDDO |
---|
279 | |
---|
280 | IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL1',1,ZHOOK_HANDLE) |
---|
281 | |
---|
282 | END ASSOCIATE |
---|
283 | END SUBROUTINE RRTM_TAUMOL1 |
---|