1 | ! $Id: nuage.F90 4727 2023-10-19 14:02:57Z aborella $ |
---|
2 | |
---|
3 | SUBROUTINE nuage(paprs, pplay, t, pqlwp,picefra, pclc, pcltau, pclemi, pch, pcl, pcm, & |
---|
4 | pct, pctlwp, ok_aie, mass_solu_aero, mass_solu_aero_pi, bl95_b0, bl95_b1, distcltop, & |
---|
5 | temp_cltop, cldtaupi, re, fl) |
---|
6 | USE dimphy |
---|
7 | USE lmdz_lscp_tools, only: icefrac_lscp |
---|
8 | USE icefrac_lsc_mod ! computes ice fraction (JBM 3/14) |
---|
9 | USE lmdz_lscp_ini, only : iflag_t_glace |
---|
10 | USE phys_local_var_mod, ONLY: ptconv |
---|
11 | IMPLICIT NONE |
---|
12 | ! ====================================================================== |
---|
13 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
14 | ! Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
15 | ! ====================================================================== |
---|
16 | ! Arguments: |
---|
17 | ! t-------input-R-temperature |
---|
18 | ! pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
---|
19 | ! picefra--inout-R-fraction de glace dans les nuages (-) |
---|
20 | ! pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
21 | ! ok_aie--input-L-apply aerosol indirect effect or not |
---|
22 | ! mass_solu_aero-----input-R-total mass concentration for all soluble |
---|
23 | ! aerosols[ug/m^3] |
---|
24 | ! mass_solu_aero_pi--input-R-dito, pre-industrial value |
---|
25 | ! bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) |
---|
26 | ! bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) |
---|
27 | |
---|
28 | ! cldtaupi-output-R-pre-industrial value of cloud optical thickness, |
---|
29 | ! needed for the diagnostics of the aerosol indirect |
---|
30 | ! radiative forcing (see radlwsw) |
---|
31 | ! re------output-R-Cloud droplet effective radius multiplied by fl [um] |
---|
32 | ! fl------output-R-Denominator to re, introduced to avoid problems in |
---|
33 | ! the averaging of the output. fl is the fraction of liquid |
---|
34 | ! water clouds within a grid cell |
---|
35 | |
---|
36 | ! pcltau--output-R-epaisseur optique des nuages |
---|
37 | ! pclemi--output-R-emissivite des nuages (0 a 1) |
---|
38 | ! ====================================================================== |
---|
39 | |
---|
40 | include "YOMCST.h" |
---|
41 | include "nuage.h" ! JBM 3/14 |
---|
42 | include "clesphys.h" |
---|
43 | |
---|
44 | REAL paprs(klon, klev+1), pplay(klon, klev) |
---|
45 | REAL t(klon, klev) |
---|
46 | |
---|
47 | REAL pclc(klon, klev) |
---|
48 | REAL pqlwp(klon, klev), picefra(klon,klev) |
---|
49 | REAL pcltau(klon, klev), pclemi(klon, klev) |
---|
50 | |
---|
51 | REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
---|
52 | REAL distcltop(klon,klev) |
---|
53 | REAL temp_cltop(klon,klev) |
---|
54 | LOGICAL lo |
---|
55 | |
---|
56 | REAL cetahb, cetamb |
---|
57 | PARAMETER (cetahb=0.45, cetamb=0.80) |
---|
58 | |
---|
59 | INTEGER i, k |
---|
60 | REAL zflwp, zradef, zfice(klon), zmsac |
---|
61 | |
---|
62 | REAL radius, rad_chaud |
---|
63 | ! JBM (3/14) parameters already defined in nuage.h: |
---|
64 | ! REAL rad_froid, rad_chau1, rad_chau2 |
---|
65 | ! PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
---|
66 | ! cc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
---|
67 | ! sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
---|
68 | REAL coef, coef_froi, coef_chau |
---|
69 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
70 | REAL seuil_neb |
---|
71 | PARAMETER (seuil_neb=0.001) |
---|
72 | ! JBM (3/14) nexpo is replaced by exposant_glace |
---|
73 | ! REAL nexpo ! exponentiel pour glace/eau |
---|
74 | ! PARAMETER (nexpo=6.) |
---|
75 | REAL, PARAMETER :: t_glace_min_old = 258. |
---|
76 | INTEGER, PARAMETER :: exposant_glace_old = 6 |
---|
77 | |
---|
78 | |
---|
79 | ! jq for the aerosol indirect effect |
---|
80 | ! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
81 | ! jq |
---|
82 | LOGICAL ok_aie ! Apply AIE or not? |
---|
83 | |
---|
84 | REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols[ug m-3] |
---|
85 | REAL mass_solu_aero_pi(klon, klev) ! - " - pre-industrial value |
---|
86 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
87 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
---|
88 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
89 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
90 | |
---|
91 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds |
---|
92 | ! within the grid cell) |
---|
93 | |
---|
94 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
---|
95 | |
---|
96 | REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag |
---|
97 | REAl dzfice(klon) |
---|
98 | ! jq-end |
---|
99 | |
---|
100 | ! cc PARAMETER (nexpo=1) |
---|
101 | |
---|
102 | ! Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
103 | |
---|
104 | DO k = 1, klev |
---|
105 | IF (iflag_t_glace.EQ.0) THEN |
---|
106 | DO i = 1, klon |
---|
107 | zfice(i) = 1.0 - (t(i,k)-t_glace_min_old)/(273.13-t_glace_min_old) |
---|
108 | zfice(i) = min(max(zfice(i),0.0), 1.0) |
---|
109 | zfice(i) = zfice(i)**exposant_glace_old |
---|
110 | ENDDO |
---|
111 | ELSE ! of IF (iflag_t_glace.EQ.0) |
---|
112 | ! JBM: icefrac_lsc is now a function contained in icefrac_lsc_mod |
---|
113 | ! zfice(i) = icefrac_lsc(t(i,k), t_glace_min, & |
---|
114 | ! t_glace_max, exposant_glace) |
---|
115 | IF (ok_new_lscp) THEN |
---|
116 | CALL icefrac_lscp(klon,t(:,k),iflag_ice_thermo,distcltop(:,k),temp_cltop(:,k),zfice(:),dzfice(:)) |
---|
117 | ELSE |
---|
118 | CALL icefrac_lsc(klon,t(:,k),pplay(:,k)/paprs(:,1),zfice(:)) |
---|
119 | |
---|
120 | ENDIF |
---|
121 | |
---|
122 | IF (ok_new_lscp .AND. ok_icefra_lscp) THEN |
---|
123 | ! EV: take the ice fraction directly from the lscp code |
---|
124 | ! consistent only for non convective grid points |
---|
125 | ! critical for mixed phase clouds |
---|
126 | DO i=1,klon |
---|
127 | IF (.NOT. ptconv(i,k)) THEN |
---|
128 | zfice(i)=picefra(i,k) |
---|
129 | ENDIF |
---|
130 | ENDDO |
---|
131 | ENDIF |
---|
132 | |
---|
133 | |
---|
134 | ENDIF |
---|
135 | |
---|
136 | DO i = 1, klon |
---|
137 | rad_chaud = rad_chau1 |
---|
138 | IF (k<=3) rad_chaud = rad_chau2 |
---|
139 | |
---|
140 | pclc(i, k) = max(pclc(i,k), seuil_neb) |
---|
141 | zflwp = 1000.*pqlwp(i, k)/rg/pclc(i, k)*(paprs(i,k)-paprs(i,k+1)) |
---|
142 | |
---|
143 | IF (ok_aie) THEN |
---|
144 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
145 | ! |
---|
146 | cdnc(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero(i,k), & |
---|
147 | 1.E-4))/log(10.))*1.E6 !-m-3 |
---|
148 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
149 | ! to be within [20, 1000 cm^3] |
---|
150 | ! |
---|
151 | cdnc(i, k) = min(1000.E6, max(20.E6,cdnc(i,k))) |
---|
152 | cdnc_pi(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero_pi(i,k), & |
---|
153 | 1.E-4))/log(10.))*1.E6 !-m-3 |
---|
154 | cdnc_pi(i, k) = min(1000.E6, max(20.E6,cdnc_pi(i,k))) |
---|
155 | ! |
---|
156 | ! |
---|
157 | ! air density: pplay(i,k) / (RD * zT(i,k)) |
---|
158 | ! factor 1.1: derive effective radius from volume-mean radius |
---|
159 | ! factor 1000 is the water density |
---|
160 | ! _chaud means that this is the CDR for liquid water clouds |
---|
161 | ! |
---|
162 | rad_chaud = 1.1*((pqlwp(i,k)*pplay(i,k)/(rd*t(i,k)))/(4./3.*rpi*1000. & |
---|
163 | *cdnc(i,k)))**(1./3.) |
---|
164 | ! |
---|
165 | ! Convert to um. CDR shall be at least 3 um. |
---|
166 | ! |
---|
167 | rad_chaud = max(rad_chaud*1.E6, 3.) |
---|
168 | |
---|
169 | ! For output diagnostics |
---|
170 | ! |
---|
171 | ! Cloud droplet effective radius [um] |
---|
172 | ! |
---|
173 | ! we multiply here with f * xl (fraction of liquid water |
---|
174 | ! clouds in the grid cell) to avoid problems in the |
---|
175 | ! averaging of the output. |
---|
176 | ! In the output of IOIPSL, derive the real cloud droplet |
---|
177 | ! effective radius as re/fl |
---|
178 | ! |
---|
179 | fl(i, k) = pclc(i, k)*(1.-zfice(i)) |
---|
180 | re(i, k) = rad_chaud*fl(i, k) |
---|
181 | |
---|
182 | ! Pre-industrial cloud opt thickness |
---|
183 | ! |
---|
184 | ! "radius" is calculated as rad_chaud above (plus the |
---|
185 | ! ice cloud contribution) but using cdnc_pi instead of |
---|
186 | ! cdnc. |
---|
187 | radius = max(1.1E6*((pqlwp(i,k)*pplay(i,k)/(rd*t(i,k)))/(4./3.*rpi* & |
---|
188 | 1000.*cdnc_pi(i,k)))**(1./3.), 3.)*(1.-zfice(i)) + rad_froid*zfice(i) |
---|
189 | cldtaupi(i, k) = 3.0/2.0*zflwp/radius |
---|
190 | END IF ! ok_aie |
---|
191 | |
---|
192 | radius = rad_chaud*(1.-zfice(i)) + rad_froid*zfice(i) |
---|
193 | coef = coef_chau*(1.-zfice(i)) + coef_froi*zfice(i) |
---|
194 | pcltau(i, k) = 3.0/2.0*zflwp/radius |
---|
195 | pclemi(i, k) = 1.0 - exp(-coef*zflwp) |
---|
196 | lo = (pclc(i,k)<=seuil_neb) |
---|
197 | IF (lo) pclc(i, k) = 0.0 |
---|
198 | IF (lo) pcltau(i, k) = 0.0 |
---|
199 | IF (lo) pclemi(i, k) = 0.0 |
---|
200 | |
---|
201 | IF (.NOT. ok_aie) cldtaupi(i, k) = pcltau(i, k) |
---|
202 | END DO |
---|
203 | END DO |
---|
204 | ! cc DO k = 1, klev |
---|
205 | ! cc DO i = 1, klon |
---|
206 | ! cc t(i,k) = t(i,k) |
---|
207 | ! cc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
---|
208 | ! cc lo = pclc(i,k) .GT. (2.*1.e-5) |
---|
209 | ! cc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
---|
210 | ! cc . /(rg*pclc(i,k)) |
---|
211 | ! cc zradef = 10.0 + (1.-sigs(k))*45.0 |
---|
212 | ! cc pcltau(i,k) = 1.5 * zflwp / zradef |
---|
213 | ! cc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
---|
214 | ! cc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
---|
215 | ! cc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
---|
216 | ! cc if (.NOT.lo) pclc(i,k) = 0.0 |
---|
217 | ! cc if (.NOT.lo) pcltau(i,k) = 0.0 |
---|
218 | ! cc if (.NOT.lo) pclemi(i,k) = 0.0 |
---|
219 | ! cc ENDDO |
---|
220 | ! cc ENDDO |
---|
221 | ! ccccc print*, 'pas de nuage dans le rayonnement' |
---|
222 | ! ccccc DO k = 1, klev |
---|
223 | ! ccccc DO i = 1, klon |
---|
224 | ! ccccc pclc(i,k) = 0.0 |
---|
225 | ! ccccc pcltau(i,k) = 0.0 |
---|
226 | ! ccccc pclemi(i,k) = 0.0 |
---|
227 | ! ccccc ENDDO |
---|
228 | ! ccccc ENDDO |
---|
229 | |
---|
230 | ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
231 | |
---|
232 | DO i = 1, klon |
---|
233 | pct(i) = 1.0 |
---|
234 | pch(i) = 1.0 |
---|
235 | pcm(i) = 1.0 |
---|
236 | pcl(i) = 1.0 |
---|
237 | pctlwp(i) = 0.0 |
---|
238 | END DO |
---|
239 | |
---|
240 | DO k = klev, 1, -1 |
---|
241 | DO i = 1, klon |
---|
242 | pctlwp(i) = pctlwp(i) + pqlwp(i, k)*(paprs(i,k)-paprs(i,k+1))/rg |
---|
243 | pct(i) = pct(i)*(1.0-pclc(i,k)) |
---|
244 | IF (pplay(i,k)<=cetahb*paprs(i,1)) pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
245 | IF (pplay(i,k)>cetahb*paprs(i,1) .AND. pplay(i,k)<=cetamb*paprs(i,1)) & |
---|
246 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
247 | IF (pplay(i,k)>cetamb*paprs(i,1)) pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
248 | END DO |
---|
249 | END DO |
---|
250 | |
---|
251 | DO i = 1, klon |
---|
252 | pct(i) = 1. - pct(i) |
---|
253 | pch(i) = 1. - pch(i) |
---|
254 | pcm(i) = 1. - pcm(i) |
---|
255 | pcl(i) = 1. - pcl(i) |
---|
256 | END DO |
---|
257 | |
---|
258 | RETURN |
---|
259 | END SUBROUTINE nuage |
---|
260 | SUBROUTINE diagcld1(paprs, pplay, rain, snow, kbot, ktop, diafra, dialiq) |
---|
261 | USE dimphy |
---|
262 | IMPLICIT NONE |
---|
263 | |
---|
264 | ! Laurent Li (LMD/CNRS), le 12 octobre 1998 |
---|
265 | ! (adaptation du code ECMWF) |
---|
266 | |
---|
267 | ! Dans certains cas, le schema pronostique des nuages n'est |
---|
268 | ! pas suffisament performant. On a donc besoin de diagnostiquer |
---|
269 | ! ces nuages. Je dois avouer que c'est une frustration. |
---|
270 | |
---|
271 | include "YOMCST.h" |
---|
272 | |
---|
273 | ! Arguments d'entree: |
---|
274 | REAL paprs(klon, klev+1) ! pression (Pa) a inter-couche |
---|
275 | REAL pplay(klon, klev) ! pression (Pa) au milieu de couche |
---|
276 | REAL t(klon, klev) ! temperature (K) |
---|
277 | REAL q(klon, klev) ! humidite specifique (Kg/Kg) |
---|
278 | REAL rain(klon) ! pluie convective (kg/m2/s) |
---|
279 | REAL snow(klon) ! neige convective (kg/m2/s) |
---|
280 | INTEGER ktop(klon) ! sommet de la convection |
---|
281 | INTEGER kbot(klon) ! bas de la convection |
---|
282 | |
---|
283 | ! Arguments de sortie: |
---|
284 | REAL diafra(klon, klev) ! fraction nuageuse diagnostiquee |
---|
285 | REAL dialiq(klon, klev) ! eau liquide nuageuse |
---|
286 | |
---|
287 | ! Constantes ajustables: |
---|
288 | REAL canva, canvb, canvh |
---|
289 | PARAMETER (canva=2.0, canvb=0.3, canvh=0.4) |
---|
290 | REAL cca, ccb, ccc |
---|
291 | PARAMETER (cca=0.125, ccb=1.5, ccc=0.8) |
---|
292 | REAL ccfct, ccscal |
---|
293 | PARAMETER (ccfct=0.400) |
---|
294 | PARAMETER (ccscal=1.0E+11) |
---|
295 | REAL cetahb, cetamb |
---|
296 | PARAMETER (cetahb=0.45, cetamb=0.80) |
---|
297 | REAL cclwmr |
---|
298 | PARAMETER (cclwmr=1.E-04) |
---|
299 | REAL zepscr |
---|
300 | PARAMETER (zepscr=1.0E-10) |
---|
301 | |
---|
302 | ! Variables locales: |
---|
303 | INTEGER i, k |
---|
304 | REAL zcc(klon) |
---|
305 | |
---|
306 | ! Initialisation: |
---|
307 | |
---|
308 | DO k = 1, klev |
---|
309 | DO i = 1, klon |
---|
310 | diafra(i, k) = 0.0 |
---|
311 | dialiq(i, k) = 0.0 |
---|
312 | END DO |
---|
313 | END DO |
---|
314 | |
---|
315 | DO i = 1, klon ! Calculer la fraction nuageuse |
---|
316 | zcc(i) = 0.0 |
---|
317 | IF ((rain(i)+snow(i))>0.) THEN |
---|
318 | zcc(i) = cca*log(max(zepscr,(rain(i)+snow(i))*ccscal)) - ccb |
---|
319 | zcc(i) = min(ccc, max(0.0,zcc(i))) |
---|
320 | END IF |
---|
321 | END DO |
---|
322 | |
---|
323 | DO i = 1, klon ! pour traiter les enclumes |
---|
324 | diafra(i, ktop(i)) = max(diafra(i,ktop(i)), zcc(i)*ccfct) |
---|
325 | IF ((zcc(i)>=canvh) .AND. (pplay(i,ktop(i))<=cetahb*paprs(i, & |
---|
326 | 1))) diafra(i, ktop(i)) = max(diafra(i,ktop(i)), max(zcc( & |
---|
327 | i)*ccfct,canva*(zcc(i)-canvb))) |
---|
328 | dialiq(i, ktop(i)) = cclwmr*diafra(i, ktop(i)) |
---|
329 | END DO |
---|
330 | |
---|
331 | DO k = 1, klev ! nuages convectifs (sauf enclumes) |
---|
332 | DO i = 1, klon |
---|
333 | IF (k<ktop(i) .AND. k>=kbot(i)) THEN |
---|
334 | diafra(i, k) = max(diafra(i,k), zcc(i)*ccfct) |
---|
335 | dialiq(i, k) = cclwmr*diafra(i, k) |
---|
336 | END IF |
---|
337 | END DO |
---|
338 | END DO |
---|
339 | |
---|
340 | RETURN |
---|
341 | END SUBROUTINE diagcld1 |
---|
342 | SUBROUTINE diagcld2(paprs, pplay, t, q, diafra, dialiq) |
---|
343 | USE dimphy |
---|
344 | IMPLICIT NONE |
---|
345 | |
---|
346 | include "YOMCST.h" |
---|
347 | |
---|
348 | ! Arguments d'entree: |
---|
349 | REAL paprs(klon, klev+1) ! pression (Pa) a inter-couche |
---|
350 | REAL pplay(klon, klev) ! pression (Pa) au milieu de couche |
---|
351 | REAL t(klon, klev) ! temperature (K) |
---|
352 | REAL q(klon, klev) ! humidite specifique (Kg/Kg) |
---|
353 | |
---|
354 | ! Arguments de sortie: |
---|
355 | REAL diafra(klon, klev) ! fraction nuageuse diagnostiquee |
---|
356 | REAL dialiq(klon, klev) ! eau liquide nuageuse |
---|
357 | |
---|
358 | REAL cetamb |
---|
359 | PARAMETER (cetamb=0.80) |
---|
360 | REAL cloia, cloib, cloic, cloid |
---|
361 | PARAMETER (cloia=1.0E+02, cloib=-10.00, cloic=-0.6, cloid=5.0) |
---|
362 | ! cc PARAMETER (CLOIA=1.0E+02, CLOIB=-10.00, CLOIC=-0.9, CLOID=5.0) |
---|
363 | REAL rgammas |
---|
364 | PARAMETER (rgammas=0.05) |
---|
365 | REAL crhl |
---|
366 | PARAMETER (crhl=0.15) |
---|
367 | ! cc PARAMETER (CRHL=0.70) |
---|
368 | REAL t_coup |
---|
369 | PARAMETER (t_coup=234.0) |
---|
370 | |
---|
371 | ! Variables locales: |
---|
372 | INTEGER i, k, kb, invb(klon) |
---|
373 | REAL zqs, zrhb, zcll, zdthmin(klon), zdthdp |
---|
374 | REAL zdelta, zcor |
---|
375 | |
---|
376 | ! Fonctions thermodynamiques: |
---|
377 | include "YOETHF.h" |
---|
378 | include "FCTTRE.h" |
---|
379 | |
---|
380 | ! Initialisation: |
---|
381 | |
---|
382 | DO k = 1, klev |
---|
383 | DO i = 1, klon |
---|
384 | diafra(i, k) = 0.0 |
---|
385 | dialiq(i, k) = 0.0 |
---|
386 | END DO |
---|
387 | END DO |
---|
388 | |
---|
389 | DO i = 1, klon |
---|
390 | invb(i) = klev |
---|
391 | zdthmin(i) = 0.0 |
---|
392 | END DO |
---|
393 | |
---|
394 | DO k = 2, klev/2 - 1 |
---|
395 | DO i = 1, klon |
---|
396 | zdthdp = (t(i,k)-t(i,k+1))/(pplay(i,k)-pplay(i,k+1)) - & |
---|
397 | rd*0.5*(t(i,k)+t(i,k+1))/rcpd/paprs(i, k+1) |
---|
398 | zdthdp = zdthdp*cloia |
---|
399 | IF (pplay(i,k)>cetamb*paprs(i,1) .AND. zdthdp<zdthmin(i)) THEN |
---|
400 | zdthmin(i) = zdthdp |
---|
401 | invb(i) = k |
---|
402 | END IF |
---|
403 | END DO |
---|
404 | END DO |
---|
405 | |
---|
406 | DO i = 1, klon |
---|
407 | kb = invb(i) |
---|
408 | IF (thermcep) THEN |
---|
409 | zdelta = max(0., sign(1.,rtt-t(i,kb))) |
---|
410 | zqs = r2es*foeew(t(i,kb), zdelta)/pplay(i, kb) |
---|
411 | zqs = min(0.5, zqs) |
---|
412 | zcor = 1./(1.-retv*zqs) |
---|
413 | zqs = zqs*zcor |
---|
414 | ELSE |
---|
415 | IF (t(i,kb)<t_coup) THEN |
---|
416 | zqs = qsats(t(i,kb))/pplay(i, kb) |
---|
417 | ELSE |
---|
418 | zqs = qsatl(t(i,kb))/pplay(i, kb) |
---|
419 | END IF |
---|
420 | END IF |
---|
421 | zcll = cloib*zdthmin(i) + cloic |
---|
422 | zcll = min(1.0, max(0.0,zcll)) |
---|
423 | zrhb = q(i, kb)/zqs |
---|
424 | IF (zcll>0.0 .AND. zrhb<crhl) zcll = zcll*(1.-(crhl-zrhb)*cloid) |
---|
425 | zcll = min(1.0, max(0.0,zcll)) |
---|
426 | diafra(i, kb) = max(diafra(i,kb), zcll) |
---|
427 | dialiq(i, kb) = diafra(i, kb)*rgammas*zqs |
---|
428 | END DO |
---|
429 | |
---|
430 | RETURN |
---|
431 | END SUBROUTINE diagcld2 |
---|