1 | MODULE lmdz_wake |
---|
2 | |
---|
3 | ! $Id: lmdz_wake.F90 4727 2023-10-19 14:02:57Z abarral $ |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | SUBROUTINE wake(klon,klev,znatsurf, p, ph, pi, dtime, & |
---|
8 | tenv0, qe0, omgb, & |
---|
9 | dtdwn, dqdwn, amdwn, amup, dta, dqa, wgen, & |
---|
10 | sigd_con, Cin, & |
---|
11 | deltatw, deltaqw, sigmaw, awdens, wdens, & ! state variables |
---|
12 | dth, hw, wape, fip, gfl, & |
---|
13 | dtls, dqls, ktopw, omgbdth, dp_omgb, tu, qu, & |
---|
14 | dtke, dqke, omg, dp_deltomg, wkspread, cstar, & |
---|
15 | d_deltat_gw, & ! tendencies |
---|
16 | d_deltatw2, d_deltaqw2, d_sigmaw2, d_awdens2, d_wdens2) ! tendencies |
---|
17 | |
---|
18 | |
---|
19 | ! ************************************************************** |
---|
20 | ! * |
---|
21 | ! WAKE * |
---|
22 | ! retour a un Pupper fixe * |
---|
23 | ! * |
---|
24 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
25 | ! modified by : ROEHRIG Romain 01/29/2007 * |
---|
26 | ! ************************************************************** |
---|
27 | |
---|
28 | |
---|
29 | USE lmdz_wake_ini , ONLY : wake_ini |
---|
30 | USE lmdz_wake_ini , ONLY : prt_level,epsim1,RG,RD |
---|
31 | USE lmdz_wake_ini , ONLY : stark, wdens_ref, coefgw, alpk, wk_pupper |
---|
32 | USE lmdz_wake_ini , ONLY : crep_upper, crep_sol, tau_cv, rzero, aa0, flag_wk_check_trgl |
---|
33 | USE lmdz_wake_ini , ONLY : ok_bug_gfl |
---|
34 | USE lmdz_wake_ini , ONLY : iflag_wk_act, iflag_wk_check_trgl, iflag_wk_pop_dyn, wdensmin |
---|
35 | USE lmdz_wake_ini , ONLY : sigmad, hwmin, wapecut, cstart, sigmaw_max, dens_rate, epsilon_loc |
---|
36 | USE lmdz_wake_ini , ONLY : iflag_wk_profile |
---|
37 | |
---|
38 | |
---|
39 | IMPLICIT NONE |
---|
40 | ! ============================================================================ |
---|
41 | |
---|
42 | |
---|
43 | ! But : Decrire le comportement des poches froides apparaissant dans les |
---|
44 | ! grands systemes convectifs, et fournir l'energie disponible pour |
---|
45 | ! le declenchement de nouvelles colonnes convectives. |
---|
46 | |
---|
47 | ! State variables : |
---|
48 | ! deltatw : temperature difference between wake and off-wake regions |
---|
49 | ! deltaqw : specific humidity difference between wake and off-wake regions |
---|
50 | ! sigmaw : fractional area covered by wakes. |
---|
51 | ! wdens : number of wakes per unit area |
---|
52 | |
---|
53 | ! Variable de sortie : |
---|
54 | |
---|
55 | ! wape : WAke Potential Energy |
---|
56 | ! fip : Front Incident Power (W/m2) - ALP |
---|
57 | ! gfl : Gust Front Length per unit area (m-1) |
---|
58 | ! dtls : large scale temperature tendency due to wake |
---|
59 | ! dqls : large scale humidity tendency due to wake |
---|
60 | ! hw : wake top hight (given by hw*deltatw(1)/2=wape) |
---|
61 | ! dp_omgb : vertical gradient of large scale omega |
---|
62 | ! awdens : densite de poches actives |
---|
63 | ! wdens : densite de poches |
---|
64 | ! omgbdth: flux of Delta_Theta transported by LS omega |
---|
65 | ! dtKE : differential heating (wake - unpertubed) |
---|
66 | ! dqKE : differential moistening (wake - unpertubed) |
---|
67 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
68 | ! dp_deltomg : vertical gradient of omg (s-1) |
---|
69 | ! wkspread : spreading term in d_t_wake and d_q_wake |
---|
70 | ! deltatw : updated temperature difference (T_w-T_u). |
---|
71 | ! deltaqw : updated humidity difference (q_w-q_u). |
---|
72 | ! sigmaw : updated wake fractional area. |
---|
73 | ! d_deltat_gw : delta T tendency due to GW |
---|
74 | |
---|
75 | ! Variables d'entree : |
---|
76 | |
---|
77 | ! aire : aire de la maille |
---|
78 | ! tenv0 : temperature dans l'environnement (K) |
---|
79 | ! qe0 : humidite dans l'environnement (kg/kg) |
---|
80 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
81 | ! dtdwn: source de chaleur due aux descentes (K/s) |
---|
82 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
83 | ! dta : source de chaleur due courants satures et detrain (K/s) |
---|
84 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
85 | ! wgen : number of wakes generated per unit area and per sec (/m^2/s) |
---|
86 | ! amdwn: flux de masse total des descentes, par unite de |
---|
87 | ! surface de la maille (kg/m2/s) |
---|
88 | ! amup : flux de masse total des ascendances, par unite de |
---|
89 | ! surface de la maille (kg/m2/s) |
---|
90 | ! sigd_con: |
---|
91 | ! Cin : convective inhibition |
---|
92 | ! p : pressions aux milieux des couches (Pa) |
---|
93 | ! ph : pressions aux interfaces (Pa) |
---|
94 | ! pi : (p/p_0)**kapa (adim) |
---|
95 | ! dtime: increment temporel (s) |
---|
96 | |
---|
97 | ! Variables internes : |
---|
98 | |
---|
99 | ! rhow : masse volumique de la poche froide |
---|
100 | ! rho : environment density at P levels |
---|
101 | ! rhoh : environment density at Ph levels |
---|
102 | ! tenv : environment temperature | may change within |
---|
103 | ! qe : environment humidity | sub-time-stepping |
---|
104 | ! the : environment potential temperature |
---|
105 | ! thu : potential temperature in undisturbed area |
---|
106 | ! tu : temperature in undisturbed area |
---|
107 | ! qu : humidity in undisturbed area |
---|
108 | ! dp_omgb: vertical gradient og LS omega |
---|
109 | ! omgbw : wake average vertical omega |
---|
110 | ! dp_omgbw: vertical gradient of omgbw |
---|
111 | ! omgbdq : flux of Delta_q transported by LS omega |
---|
112 | ! dth : potential temperature diff. wake-undist. |
---|
113 | ! th1 : first pot. temp. for vertical advection (=thu) |
---|
114 | ! th2 : second pot. temp. for vertical advection (=thw) |
---|
115 | ! q1 : first humidity for vertical advection |
---|
116 | ! q2 : second humidity for vertical advection |
---|
117 | ! d_deltatw : terme de redistribution pour deltatw |
---|
118 | ! d_deltaqw : terme de redistribution pour deltaqw |
---|
119 | ! deltatw0 : deltatw initial |
---|
120 | ! deltaqw0 : deltaqw initial |
---|
121 | ! hw0 : wake top hight (defined as the altitude at which deltatw=0) |
---|
122 | ! amflux : horizontal mass flux through wake boundary |
---|
123 | ! wdens_ref: initial number of wakes per unit area (3D) or per |
---|
124 | ! unit length (2D), at the beginning of each time step |
---|
125 | ! Tgw : 1 sur la periode de onde de gravite |
---|
126 | ! Cgw : vitesse de propagation de onde de gravite |
---|
127 | ! LL : distance entre 2 poches |
---|
128 | |
---|
129 | ! ------------------------------------------------------------------------- |
---|
130 | ! Declaration de variables |
---|
131 | ! ------------------------------------------------------------------------- |
---|
132 | |
---|
133 | |
---|
134 | ! Arguments en entree |
---|
135 | ! -------------------- |
---|
136 | |
---|
137 | INTEGER, INTENT(IN) :: klon,klev |
---|
138 | INTEGER, DIMENSION (klon), INTENT(IN) :: znatsurf |
---|
139 | REAL, DIMENSION (klon, klev), INTENT(IN) :: p, pi |
---|
140 | REAL, DIMENSION (klon, klev+1), INTENT(IN) :: ph |
---|
141 | REAL, DIMENSION (klon, klev), INTENT(IN) :: omgb |
---|
142 | REAL, INTENT(IN) :: dtime |
---|
143 | REAL, DIMENSION (klon, klev), INTENT(IN) :: tenv0, qe0 |
---|
144 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dtdwn, dqdwn |
---|
145 | REAL, DIMENSION (klon, klev), INTENT(IN) :: amdwn, amup |
---|
146 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dta, dqa |
---|
147 | REAL, DIMENSION (klon), INTENT(IN) :: wgen |
---|
148 | REAL, DIMENSION (klon), INTENT(IN) :: sigd_con |
---|
149 | REAL, DIMENSION (klon), INTENT(IN) :: Cin |
---|
150 | |
---|
151 | ! |
---|
152 | ! Input/Output |
---|
153 | ! State variables |
---|
154 | REAL, DIMENSION (klon, klev), INTENT(INOUT) :: deltatw, deltaqw |
---|
155 | REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw |
---|
156 | REAL, DIMENSION (klon), INTENT(INOUT) :: awdens |
---|
157 | REAL, DIMENSION (klon), INTENT(INOUT) :: wdens |
---|
158 | |
---|
159 | ! Sorties |
---|
160 | ! -------- |
---|
161 | |
---|
162 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dth |
---|
163 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: tu, qu |
---|
164 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtls, dqls |
---|
165 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtke, dqke |
---|
166 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: wkspread ! unused (jyg) |
---|
167 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: omgbdth, omg |
---|
168 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dp_omgb, dp_deltomg |
---|
169 | REAL, DIMENSION (klon), INTENT(OUT) :: hw, wape, fip, gfl, cstar |
---|
170 | INTEGER, DIMENSION (klon), INTENT(OUT) :: ktopw |
---|
171 | ! Tendencies of state variables (2 is appended to the names of fields which are the cumul of fields |
---|
172 | ! computed at each sub-timestep; e.g. d_wdens2 is the cumul of d_wdens) |
---|
173 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltat_gw |
---|
174 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltatw2, d_deltaqw2 |
---|
175 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw2, d_awdens2, d_wdens2 |
---|
176 | |
---|
177 | ! Variables internes |
---|
178 | ! ------------------- |
---|
179 | |
---|
180 | ! Variables a fixer |
---|
181 | |
---|
182 | REAL :: delta_t_min |
---|
183 | INTEGER :: nsub |
---|
184 | REAL :: dtimesub |
---|
185 | REAL :: wdens0 |
---|
186 | ! IM 080208 |
---|
187 | LOGICAL, DIMENSION (klon) :: gwake |
---|
188 | |
---|
189 | ! Variables de sauvegarde |
---|
190 | REAL, DIMENSION (klon, klev) :: deltatw0 |
---|
191 | REAL, DIMENSION (klon, klev) :: deltaqw0 |
---|
192 | REAL, DIMENSION (klon, klev) :: tenv, qe |
---|
193 | !! REAL, DIMENSION (klon) :: sigmaw1 |
---|
194 | |
---|
195 | ! Variables liees a la dynamique de population 1 |
---|
196 | REAL, DIMENSION(klon) :: act |
---|
197 | REAL, DIMENSION(klon) :: rad_wk, tau_wk_inv |
---|
198 | REAL, DIMENSION(klon) :: f_shear |
---|
199 | REAL, DIMENSION(klon) :: drdt |
---|
200 | |
---|
201 | ! Variables liees a la dynamique de population 2 |
---|
202 | REAL, DIMENSION(klon) :: cont_fact |
---|
203 | |
---|
204 | !! REAL, DIMENSION(klon) :: d_sig_gen, d_sig_death, d_sig_col |
---|
205 | REAL, DIMENSION(klon) :: wape1_act, wape2_act |
---|
206 | LOGICAL, DIMENSION (klon) :: kill_wake |
---|
207 | REAL :: drdt_pos |
---|
208 | REAL :: tau_wk_inv_min |
---|
209 | ! Some components of the tendencies of state variables |
---|
210 | REAL, DIMENSION (klon) :: d_sig_gen2, d_sig_death2, d_sig_col2, d_sig_spread2, d_sig_bnd2 |
---|
211 | REAL, DIMENSION (klon) :: d_dens_gen2, d_dens_death2, d_dens_col2, d_dens_bnd2 |
---|
212 | REAL, DIMENSION (klon) :: d_adens_death2, d_adens_icol2, d_adens_acol2, d_adens_bnd2 |
---|
213 | |
---|
214 | ! Variables pour les GW |
---|
215 | REAL, DIMENSION (klon) :: ll |
---|
216 | REAL, DIMENSION (klon, klev) :: n2 |
---|
217 | REAL, DIMENSION (klon, klev) :: cgw |
---|
218 | REAL, DIMENSION (klon, klev) :: tgw |
---|
219 | |
---|
220 | ! Variables liees au calcul de hw |
---|
221 | REAL, DIMENSION (klon) :: ptop_provis, ptop, ptop_new |
---|
222 | REAL, DIMENSION (klon) :: sum_dth |
---|
223 | REAL, DIMENSION (klon) :: dthmin |
---|
224 | REAL, DIMENSION (klon) :: z, dz, hw0 |
---|
225 | INTEGER, DIMENSION (klon) :: ktop, kupper |
---|
226 | |
---|
227 | ! Variables liees au test de la forme triangulaire du profil de Delta_theta |
---|
228 | REAL, DIMENSION (klon) :: sum_half_dth |
---|
229 | REAL, DIMENSION (klon) :: dz_half |
---|
230 | |
---|
231 | ! Sub-timestep tendencies and related variables |
---|
232 | REAL, DIMENSION (klon, klev) :: d_deltatw, d_deltaqw |
---|
233 | REAL, DIMENSION (klon, klev) :: d_tenv, d_qe |
---|
234 | REAL, DIMENSION (klon) :: d_awdens, d_wdens, d_sigmaw |
---|
235 | REAL, DIMENSION (klon) :: d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd |
---|
236 | REAL, DIMENSION (klon) :: d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd |
---|
237 | REAL, DIMENSION (klon) :: d_adens_death, d_adens_icol, d_adens_acol, d_adens_bnd |
---|
238 | REAL, DIMENSION (klon) :: alpha, alpha_tot |
---|
239 | REAL, DIMENSION (klon) :: q0_min, q1_min |
---|
240 | LOGICAL, DIMENSION (klon) :: wk_adv, ok_qx_qw |
---|
241 | |
---|
242 | ! Autres variables internes |
---|
243 | INTEGER ::isubstep, k, i, igout |
---|
244 | |
---|
245 | REAL :: sigmaw_targ |
---|
246 | REAL :: wdens_targ |
---|
247 | REAL :: d_sigmaw_targ |
---|
248 | REAL :: d_wdens_targ |
---|
249 | |
---|
250 | REAL, DIMENSION (klon) :: sum_thu, sum_tu, sum_qu, sum_thvu |
---|
251 | REAL, DIMENSION (klon) :: sum_dq, sum_rho |
---|
252 | REAL, DIMENSION (klon) :: sum_dtdwn, sum_dqdwn |
---|
253 | REAL, DIMENSION (klon) :: av_thu, av_tu, av_qu, av_thvu |
---|
254 | REAL, DIMENSION (klon) :: av_dth, av_dq, av_rho |
---|
255 | REAL, DIMENSION (klon) :: av_dtdwn, av_dqdwn |
---|
256 | |
---|
257 | REAL, DIMENSION (klon, klev) :: rho, rhow |
---|
258 | REAL, DIMENSION (klon, klev+1) :: rhoh |
---|
259 | REAL, DIMENSION (klon, klev) :: rhow_moyen |
---|
260 | REAL, DIMENSION (klon, klev) :: zh |
---|
261 | REAL, DIMENSION (klon, klev+1) :: zhh |
---|
262 | REAL, DIMENSION (klon, klev) :: epaisseur1, epaisseur2 |
---|
263 | |
---|
264 | REAL, DIMENSION (klon, klev) :: the, thu |
---|
265 | |
---|
266 | REAL, DIMENSION (klon, klev) :: omgbw |
---|
267 | REAL, DIMENSION (klon) :: pupper |
---|
268 | REAL, DIMENSION (klon) :: omgtop |
---|
269 | REAL, DIMENSION (klon, klev) :: dp_omgbw |
---|
270 | REAL, DIMENSION (klon) :: ztop, dztop |
---|
271 | REAL, DIMENSION (klon, klev) :: alpha_up |
---|
272 | |
---|
273 | REAL, DIMENSION (klon) :: rre1, rre2 |
---|
274 | REAL :: rrd1, rrd2 |
---|
275 | REAL, DIMENSION (klon, klev) :: th1, th2, q1, q2 |
---|
276 | REAL, DIMENSION (klon, klev) :: d_th1, d_th2, d_dth |
---|
277 | REAL, DIMENSION (klon, klev) :: d_q1, d_q2, d_dq |
---|
278 | REAL, DIMENSION (klon, klev) :: omgbdq |
---|
279 | |
---|
280 | REAL, DIMENSION (klon) :: ff, gg |
---|
281 | REAL, DIMENSION (klon) :: wape2, cstar2, heff |
---|
282 | |
---|
283 | REAL, DIMENSION (klon, klev) :: crep |
---|
284 | |
---|
285 | REAL, DIMENSION (klon, klev) :: ppi |
---|
286 | |
---|
287 | ! cc nrlmd |
---|
288 | REAL, DIMENSION (klon) :: death_rate |
---|
289 | !! REAL, DIMENSION (klon) :: nat_rate |
---|
290 | REAL, DIMENSION (klon, klev) :: entr |
---|
291 | REAL, DIMENSION (klon, klev) :: detr |
---|
292 | |
---|
293 | REAL, DIMENSION(klon) :: sigmaw_in ! pour les prints |
---|
294 | REAL, DIMENSION(klon) :: awdens_in, wdens_in ! pour les prints |
---|
295 | |
---|
296 | ! ------------------------------------------------------------------------- |
---|
297 | ! Initialisations |
---|
298 | ! ------------------------------------------------------------------------- |
---|
299 | ! ALON = 3.e5 |
---|
300 | ! alon = 1.E6 |
---|
301 | |
---|
302 | ! Provisionnal; to be suppressed when f_shear is parameterized |
---|
303 | f_shear(:) = 1. ! 0. for strong shear, 1. for weak shear |
---|
304 | |
---|
305 | |
---|
306 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
307 | |
---|
308 | ! coefgw : Coefficient pour les ondes de gravite |
---|
309 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
310 | ! wdens : Densite surfacique de poche froide |
---|
311 | ! ------------------------------------------------------------------------- |
---|
312 | |
---|
313 | ! cc nrlmd coefgw=10 |
---|
314 | ! coefgw=1 |
---|
315 | ! wdens0 = 1.0/(alon**2) |
---|
316 | ! cc nrlmd wdens = 1.0/(alon**2) |
---|
317 | ! cc nrlmd stark = 0.50 |
---|
318 | ! CRtest |
---|
319 | ! cc nrlmd alpk=0.1 |
---|
320 | ! alpk = 1.0 |
---|
321 | ! alpk = 0.5 |
---|
322 | ! alpk = 0.05 |
---|
323 | !print *,'XXXX dtime input ', dtime |
---|
324 | igout = klon/2+1/klon |
---|
325 | |
---|
326 | IF (iflag_wk_pop_dyn == 0) THEN |
---|
327 | ! Initialisation de toutes des densites a wdens_ref. |
---|
328 | ! Les densites peuvent evoluer si les poches debordent |
---|
329 | ! (voir au tout debut de la boucle sur les substeps) |
---|
330 | !jyg< |
---|
331 | !! wdens(:) = wdens_ref |
---|
332 | DO i = 1,klon |
---|
333 | wdens(i) = wdens_ref(znatsurf(i)+1) |
---|
334 | ENDDO |
---|
335 | !>jyg |
---|
336 | ENDIF ! (iflag_wk_pop_dyn == 0) |
---|
337 | |
---|
338 | ! print*,'stark',stark |
---|
339 | ! print*,'alpk',alpk |
---|
340 | ! print*,'wdens',wdens |
---|
341 | ! print*,'coefgw',coefgw |
---|
342 | ! cc |
---|
343 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
344 | ! ------------------------------------------------------------------------- |
---|
345 | |
---|
346 | delta_t_min = 0.2 |
---|
347 | |
---|
348 | ! 1. - Save initial values, initialize tendencies, initialize output fields |
---|
349 | ! ------------------------------------------------------------------------ |
---|
350 | |
---|
351 | !jyg< |
---|
352 | !! DO k = 1, klev |
---|
353 | !! DO i = 1, klon |
---|
354 | !! ppi(i, k) = pi(i, k) |
---|
355 | !! deltatw0(i, k) = deltatw(i, k) |
---|
356 | !! deltaqw0(i, k) = deltaqw(i, k) |
---|
357 | !! tenv(i, k) = tenv0(i, k) |
---|
358 | !! qe(i, k) = qe0(i, k) |
---|
359 | !! dtls(i, k) = 0. |
---|
360 | !! dqls(i, k) = 0. |
---|
361 | !! d_deltat_gw(i, k) = 0. |
---|
362 | !! d_tenv(i, k) = 0. |
---|
363 | !! d_qe(i, k) = 0. |
---|
364 | !! d_deltatw(i, k) = 0. |
---|
365 | !! d_deltaqw(i, k) = 0. |
---|
366 | !! ! IM 060508 beg |
---|
367 | !! d_deltatw2(i, k) = 0. |
---|
368 | !! d_deltaqw2(i, k) = 0. |
---|
369 | !! ! IM 060508 end |
---|
370 | !! END DO |
---|
371 | !! END DO |
---|
372 | ppi(:,:) = pi(:,:) |
---|
373 | deltatw0(:,:) = deltatw(:,:) |
---|
374 | deltaqw0(:,:) = deltaqw(:,:) |
---|
375 | tenv(:,:) = tenv0(:,:) |
---|
376 | qe(:,:) = qe0(:,:) |
---|
377 | dtls(:,:) = 0. |
---|
378 | dqls(:,:) = 0. |
---|
379 | d_deltat_gw(:,:) = 0. |
---|
380 | d_tenv(:,:) = 0. |
---|
381 | d_qe(:,:) = 0. |
---|
382 | d_deltatw(:,:) = 0. |
---|
383 | d_deltaqw(:,:) = 0. |
---|
384 | d_deltatw2(:,:) = 0. |
---|
385 | d_deltaqw2(:,:) = 0. |
---|
386 | |
---|
387 | IF (iflag_wk_act == 0) THEN |
---|
388 | act(:) = 0. |
---|
389 | ELSEIF (iflag_wk_act == 1) THEN |
---|
390 | act(:) = 1. |
---|
391 | ENDIF |
---|
392 | |
---|
393 | !! DO i = 1, klon |
---|
394 | !! sigmaw_in(i) = sigmaw(i) |
---|
395 | !! END DO |
---|
396 | sigmaw_in(:) = sigmaw(:) |
---|
397 | !>jyg |
---|
398 | ! |
---|
399 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
400 | awdens_in(:) = awdens(:) |
---|
401 | wdens_in(:) = wdens(:) |
---|
402 | !! wdens(:) = wdens(:) + wgen(:)*dtime |
---|
403 | !! d_wdens2(:) = wgen(:)*dtime |
---|
404 | !! ELSE |
---|
405 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
406 | |
---|
407 | |
---|
408 | ! sigmaw1=sigmaw |
---|
409 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
410 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
411 | ! ENDIF |
---|
412 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
413 | DO i = 1, klon |
---|
414 | d_dens_gen2(i) = 0. |
---|
415 | d_dens_death2(i) = 0. |
---|
416 | d_dens_col2(i) = 0. |
---|
417 | d_awdens2(i) = 0. |
---|
418 | ! |
---|
419 | wdens_targ = max(wdens(i),wdensmin) |
---|
420 | d_dens_bnd2(i) = wdens_targ - wdens(i) |
---|
421 | d_wdens2(i) = wdens_targ - wdens(i) |
---|
422 | wdens(i) = wdens_targ |
---|
423 | END DO |
---|
424 | IF (iflag_wk_pop_dyn == 2) THEN |
---|
425 | DO i = 1, klon |
---|
426 | d_adens_death2(i) = 0. |
---|
427 | d_adens_icol2(i) = 0. |
---|
428 | d_adens_acol2(i) = 0. |
---|
429 | ! |
---|
430 | wdens_targ = min(max(awdens(i),0.),wdens(i)) |
---|
431 | d_adens_bnd2(i) = wdens_targ - awdens(i) |
---|
432 | d_awdens2(i) = wdens_targ - awdens(i) |
---|
433 | awdens(i) = wdens_targ |
---|
434 | END DO |
---|
435 | ENDIF ! (iflag_wk_pop_dyn == 2) |
---|
436 | ELSE |
---|
437 | DO i = 1, klon |
---|
438 | d_awdens2(i) = 0. |
---|
439 | d_wdens2(i) = 0. |
---|
440 | END DO |
---|
441 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
442 | ! |
---|
443 | DO i = 1, klon |
---|
444 | ! c sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) |
---|
445 | !jyg< |
---|
446 | !! sigmaw(i) = amax1(sigmaw(i), sigmad) |
---|
447 | !! sigmaw(i) = amin1(sigmaw(i), 0.99) |
---|
448 | d_sig_gen2(i) = 0. |
---|
449 | d_sig_death2(i) = 0. |
---|
450 | d_sig_col2(i) = 0. |
---|
451 | d_sig_spread2(i)= 0. |
---|
452 | sigmaw_targ = min(max(sigmaw(i), sigmad),0.99) |
---|
453 | d_sig_bnd2(i) = sigmaw_targ - sigmaw(i) |
---|
454 | d_sigmaw2(i) = sigmaw_targ - sigmaw(i) |
---|
455 | ! print *,'XXXX1 d_sigmaw2(i), sigmaw(i) ', d_sigmaw2(i), sigmaw(i) |
---|
456 | sigmaw(i) = sigmaw_targ |
---|
457 | !>jyg |
---|
458 | END DO |
---|
459 | |
---|
460 | wape(:) = 0. |
---|
461 | wape2(:) = 0. |
---|
462 | d_sigmaw(:) = 0. |
---|
463 | ktopw(:) = 0 |
---|
464 | ! |
---|
465 | !<jyg |
---|
466 | dth(:,:) = 0. |
---|
467 | tu(:,:) = 0. |
---|
468 | qu(:,:) = 0. |
---|
469 | dtke(:,:) = 0. |
---|
470 | dqke(:,:) = 0. |
---|
471 | wkspread(:,:) = 0. |
---|
472 | omgbdth(:,:) = 0. |
---|
473 | omg(:,:) = 0. |
---|
474 | dp_omgb(:,:) = 0. |
---|
475 | dp_deltomg(:,:) = 0. |
---|
476 | hw(:) = 0. |
---|
477 | wape(:) = 0. |
---|
478 | fip(:) = 0. |
---|
479 | gfl(:) = 0. |
---|
480 | cstar(:) = 0. |
---|
481 | ktopw(:) = 0 |
---|
482 | ! |
---|
483 | ! Vertical advection local variables |
---|
484 | omgbw(:,:) = 0. |
---|
485 | omgtop(:) = 0 |
---|
486 | dp_omgbw(:,:) = 0. |
---|
487 | omgbdq(:,:) = 0. |
---|
488 | |
---|
489 | !>jyg |
---|
490 | ! |
---|
491 | IF (prt_level>=10) THEN |
---|
492 | PRINT *, 'wake-1, sigmaw(igout) ', sigmaw(igout) |
---|
493 | PRINT *, 'wake-1, deltatw(igout,k) ', (k,deltatw(igout,k), k=1,klev) |
---|
494 | PRINT *, 'wake-1, deltaqw(igout,k) ', (k,deltaqw(igout,k), k=1,klev) |
---|
495 | PRINT *, 'wake-1, dowwdraughts, amdwn(igout,k) ', (k,amdwn(igout,k), k=1,klev) |
---|
496 | PRINT *, 'wake-1, dowwdraughts, dtdwn(igout,k) ', (k,dtdwn(igout,k), k=1,klev) |
---|
497 | PRINT *, 'wake-1, dowwdraughts, dqdwn(igout,k) ', (k,dqdwn(igout,k), k=1,klev) |
---|
498 | PRINT *, 'wake-1, updraughts, amup(igout,k) ', (k,amup(igout,k), k=1,klev) |
---|
499 | PRINT *, 'wake-1, updraughts, dta(igout,k) ', (k,dta(igout,k), k=1,klev) |
---|
500 | PRINT *, 'wake-1, updraughts, dqa(igout,k) ', (k,dqa(igout,k), k=1,klev) |
---|
501 | ENDIF |
---|
502 | |
---|
503 | ! 2. - Prognostic part |
---|
504 | ! -------------------- |
---|
505 | |
---|
506 | |
---|
507 | ! 2.1 - Undisturbed area and Wake integrals |
---|
508 | ! --------------------------------------------------------- |
---|
509 | |
---|
510 | DO i = 1, klon |
---|
511 | z(i) = 0. |
---|
512 | ktop(i) = 0 |
---|
513 | kupper(i) = 0 |
---|
514 | sum_thu(i) = 0. |
---|
515 | sum_tu(i) = 0. |
---|
516 | sum_qu(i) = 0. |
---|
517 | sum_thvu(i) = 0. |
---|
518 | sum_dth(i) = 0. |
---|
519 | sum_dq(i) = 0. |
---|
520 | sum_rho(i) = 0. |
---|
521 | sum_dtdwn(i) = 0. |
---|
522 | sum_dqdwn(i) = 0. |
---|
523 | |
---|
524 | av_thu(i) = 0. |
---|
525 | av_tu(i) = 0. |
---|
526 | av_qu(i) = 0. |
---|
527 | av_thvu(i) = 0. |
---|
528 | av_dth(i) = 0. |
---|
529 | av_dq(i) = 0. |
---|
530 | av_rho(i) = 0. |
---|
531 | av_dtdwn(i) = 0. |
---|
532 | av_dqdwn(i) = 0. |
---|
533 | END DO |
---|
534 | |
---|
535 | ! Distance between wakes |
---|
536 | DO i = 1, klon |
---|
537 | ll(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) |
---|
538 | END DO |
---|
539 | ! Potential temperatures and humidity |
---|
540 | ! ---------------------------------------------------------- |
---|
541 | DO k = 1, klev |
---|
542 | DO i = 1, klon |
---|
543 | ! write(*,*)'wake 1',i,k,RD,tenv(i,k) |
---|
544 | rho(i, k) = p(i, k)/(RD*tenv(i,k)) |
---|
545 | ! write(*,*)'wake 2',rho(i,k) |
---|
546 | IF (k==1) THEN |
---|
547 | ! write(*,*)'wake 3',i,k,rd,tenv(i,k) |
---|
548 | rhoh(i, k) = ph(i, k)/(RD*tenv(i,k)) |
---|
549 | ! write(*,*)'wake 4',i,k,rd,tenv(i,k) |
---|
550 | zhh(i, k) = 0 |
---|
551 | ELSE |
---|
552 | ! write(*,*)'wake 5',rd,(tenv(i,k)+tenv(i,k-1)) |
---|
553 | rhoh(i, k) = ph(i, k)*2./(RD*(tenv(i,k)+tenv(i,k-1))) |
---|
554 | ! write(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
555 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*RG) + zhh(i, k-1) |
---|
556 | END IF |
---|
557 | ! write(*,*)'wake 7',ppi(i,k) |
---|
558 | the(i, k) = tenv(i, k)/ppi(i, k) |
---|
559 | thu(i, k) = (tenv(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
560 | tu(i, k) = tenv(i, k) - deltatw(i, k)*sigmaw(i) |
---|
561 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
562 | ! write(*,*)'wake 8',(RD*(tenv(i,k)+deltatw(i,k))) |
---|
563 | rhow(i, k) = p(i, k)/(RD*(tenv(i,k)+deltatw(i,k))) |
---|
564 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
565 | END DO |
---|
566 | END DO |
---|
567 | |
---|
568 | DO k = 1, klev - 1 |
---|
569 | DO i = 1, klon |
---|
570 | IF (k==1) THEN |
---|
571 | n2(i, k) = 0 |
---|
572 | ELSE |
---|
573 | n2(i, k) = amax1(0., -RG**2/the(i,k)*rho(i,k)*(the(i,k+1)-the(i,k-1))/ & |
---|
574 | (p(i,k+1)-p(i,k-1))) |
---|
575 | END IF |
---|
576 | zh(i, k) = (zhh(i,k)+zhh(i,k+1))/2 |
---|
577 | |
---|
578 | cgw(i, k) = sqrt(n2(i,k))*zh(i, k) |
---|
579 | tgw(i, k) = coefgw*cgw(i, k)/ll(i) |
---|
580 | END DO |
---|
581 | END DO |
---|
582 | |
---|
583 | DO i = 1, klon |
---|
584 | n2(i, klev) = 0 |
---|
585 | zh(i, klev) = 0 |
---|
586 | cgw(i, klev) = 0 |
---|
587 | tgw(i, klev) = 0 |
---|
588 | END DO |
---|
589 | |
---|
590 | ! Calcul de la masse volumique moyenne de la colonne (bdlmd) |
---|
591 | ! ----------------------------------------------------------------- |
---|
592 | |
---|
593 | DO k = 1, klev |
---|
594 | DO i = 1, klon |
---|
595 | epaisseur1(i, k) = 0. |
---|
596 | epaisseur2(i, k) = 0. |
---|
597 | END DO |
---|
598 | END DO |
---|
599 | |
---|
600 | DO i = 1, klon |
---|
601 | epaisseur1(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*RG) + 1. |
---|
602 | epaisseur2(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*RG) + 1. |
---|
603 | rhow_moyen(i, 1) = rhow(i, 1) |
---|
604 | END DO |
---|
605 | |
---|
606 | DO k = 2, klev |
---|
607 | DO i = 1, klon |
---|
608 | epaisseur1(i, k) = -(ph(i,k+1)-ph(i,k))/(rho(i,k)*RG) + 1. |
---|
609 | epaisseur2(i, k) = epaisseur2(i, k-1) + epaisseur1(i, k) |
---|
610 | rhow_moyen(i, k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+rhow(i,k)* & |
---|
611 | epaisseur1(i,k))/epaisseur2(i, k) |
---|
612 | END DO |
---|
613 | END DO |
---|
614 | |
---|
615 | |
---|
616 | ! Choose an integration bound well above wake top |
---|
617 | ! ----------------------------------------------------------------- |
---|
618 | |
---|
619 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
---|
620 | ! -------------------------------------------------------- |
---|
621 | |
---|
622 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
623 | |
---|
624 | DO i = 1, klon |
---|
625 | ptop_provis(i) = ph(i, 1) |
---|
626 | END DO |
---|
627 | DO k = 2, klev |
---|
628 | DO i = 1, klon |
---|
629 | |
---|
630 | ! IM v3JYG; ptop_provis(i).LT. ph(i,1) |
---|
631 | |
---|
632 | IF (dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min .AND. & |
---|
633 | ptop_provis(i)==ph(i,1)) THEN |
---|
634 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)- & |
---|
635 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
636 | END IF |
---|
637 | END DO |
---|
638 | END DO |
---|
639 | |
---|
640 | ! -2/ dth integral |
---|
641 | |
---|
642 | DO i = 1, klon |
---|
643 | sum_dth(i) = 0. |
---|
644 | dthmin(i) = -delta_t_min |
---|
645 | z(i) = 0. |
---|
646 | END DO |
---|
647 | |
---|
648 | DO k = 1, klev |
---|
649 | DO i = 1, klon |
---|
650 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*RG) |
---|
651 | IF (dz(i)>0) THEN |
---|
652 | z(i) = z(i) + dz(i) |
---|
653 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
654 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
655 | END IF |
---|
656 | END DO |
---|
657 | END DO |
---|
658 | |
---|
659 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
660 | |
---|
661 | DO i = 1, klon |
---|
662 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
663 | hw0(i) = amax1(hwmin, hw0(i)) |
---|
664 | END DO |
---|
665 | |
---|
666 | ! -4/ now, get Ptop |
---|
667 | |
---|
668 | DO i = 1, klon |
---|
669 | z(i) = 0. |
---|
670 | ptop(i) = ph(i, 1) |
---|
671 | END DO |
---|
672 | |
---|
673 | DO k = 1, klev |
---|
674 | DO i = 1, klon |
---|
675 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*RG), hw0(i)-z(i)) |
---|
676 | IF (dz(i)>0) THEN |
---|
677 | z(i) = z(i) + dz(i) |
---|
678 | ptop(i) = ph(i, k) - rho(i, k)*RG*dz(i) |
---|
679 | END IF |
---|
680 | END DO |
---|
681 | END DO |
---|
682 | |
---|
683 | IF (prt_level>=10) THEN |
---|
684 | PRINT *, 'wake-2, ptop_provis(igout), ptop(igout) ', ptop_provis(igout), ptop(igout) |
---|
685 | ENDIF |
---|
686 | |
---|
687 | |
---|
688 | ! -5/ Determination de ktop et kupper |
---|
689 | |
---|
690 | CALL pkupper (klon, klev, ptop, ph, pupper, kupper) |
---|
691 | |
---|
692 | DO k = klev, 1, -1 |
---|
693 | DO i = 1, klon |
---|
694 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
695 | END DO |
---|
696 | END DO |
---|
697 | !print*, 'ptop, pupper, ktop, kupper', ptop, pupper, ktop, kupper |
---|
698 | |
---|
699 | |
---|
700 | |
---|
701 | ! -6/ Correct ktop and ptop |
---|
702 | |
---|
703 | DO i = 1, klon |
---|
704 | ptop_new(i) = ptop(i) |
---|
705 | END DO |
---|
706 | DO k = klev, 2, -1 |
---|
707 | DO i = 1, klon |
---|
708 | IF (k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
709 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
710 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
711 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
712 | END IF |
---|
713 | END DO |
---|
714 | END DO |
---|
715 | |
---|
716 | DO i = 1, klon |
---|
717 | ptop(i) = ptop_new(i) |
---|
718 | END DO |
---|
719 | |
---|
720 | DO k = klev, 1, -1 |
---|
721 | DO i = 1, klon |
---|
722 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
723 | END DO |
---|
724 | END DO |
---|
725 | |
---|
726 | IF (prt_level>=10) THEN |
---|
727 | PRINT *, 'wake-3, ktop(igout), kupper(igout) ', ktop(igout), kupper(igout) |
---|
728 | ENDIF |
---|
729 | |
---|
730 | ! -5/ Set deltatw & deltaqw to 0 above kupper |
---|
731 | |
---|
732 | DO k = 1, klev |
---|
733 | DO i = 1, klon |
---|
734 | IF (k>=kupper(i)) THEN |
---|
735 | deltatw(i, k) = 0. |
---|
736 | deltaqw(i, k) = 0. |
---|
737 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
738 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
739 | END IF |
---|
740 | END DO |
---|
741 | END DO |
---|
742 | |
---|
743 | |
---|
744 | ! Vertical gradient of LS omega |
---|
745 | |
---|
746 | DO k = 1, klev |
---|
747 | DO i = 1, klon |
---|
748 | IF (k<=kupper(i)) THEN |
---|
749 | dp_omgb(i, k) = (omgb(i,k+1)-omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
750 | END IF |
---|
751 | END DO |
---|
752 | END DO |
---|
753 | |
---|
754 | ! Integrals (and wake top level number) |
---|
755 | ! -------------------------------------- |
---|
756 | |
---|
757 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
758 | |
---|
759 | DO i = 1, klon |
---|
760 | z(i) = 1. |
---|
761 | dz(i) = 1. |
---|
762 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
763 | sum_dth(i) = 0. |
---|
764 | END DO |
---|
765 | |
---|
766 | DO k = 1, klev |
---|
767 | DO i = 1, klon |
---|
768 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*RG) |
---|
769 | IF (dz(i)>0) THEN |
---|
770 | z(i) = z(i) + dz(i) |
---|
771 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
772 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
773 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
774 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
775 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
776 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
777 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
778 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
779 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
780 | END IF |
---|
781 | END DO |
---|
782 | END DO |
---|
783 | |
---|
784 | DO i = 1, klon |
---|
785 | hw0(i) = z(i) |
---|
786 | END DO |
---|
787 | |
---|
788 | |
---|
789 | ! 2.1 - WAPE and mean forcing computation |
---|
790 | ! --------------------------------------- |
---|
791 | |
---|
792 | ! --------------------------------------- |
---|
793 | |
---|
794 | ! Means |
---|
795 | |
---|
796 | DO i = 1, klon |
---|
797 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
798 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
799 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
800 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
801 | ! av_thve = sum_thve/hw0 |
---|
802 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
803 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
804 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
805 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
806 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
807 | |
---|
808 | wape(i) = -RG*hw0(i)*(av_dth(i)+ & |
---|
809 | epsim1*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
810 | |
---|
811 | END DO |
---|
812 | |
---|
813 | ! 2.2 Prognostic variable update |
---|
814 | ! ------------------------------ |
---|
815 | |
---|
816 | ! Filter out bad wakes |
---|
817 | |
---|
818 | DO k = 1, klev |
---|
819 | DO i = 1, klon |
---|
820 | IF (wape(i)<0.) THEN |
---|
821 | deltatw(i, k) = 0. |
---|
822 | deltaqw(i, k) = 0. |
---|
823 | dth(i, k) = 0. |
---|
824 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
825 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
826 | END IF |
---|
827 | END DO |
---|
828 | END DO |
---|
829 | |
---|
830 | DO i = 1, klon |
---|
831 | IF (wape(i)<0.) THEN |
---|
832 | wape(i) = 0. |
---|
833 | cstar(i) = 0. |
---|
834 | hw(i) = hwmin |
---|
835 | !jyg< |
---|
836 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
837 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
838 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
---|
839 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
840 | ! print *,'XXXX2 d_sigmaw2(i), sigmaw(i) ', d_sigmaw2(i), sigmaw(i) |
---|
841 | sigmaw(i) = sigmaw_targ |
---|
842 | !>jyg |
---|
843 | fip(i) = 0. |
---|
844 | gwake(i) = .FALSE. |
---|
845 | ELSE |
---|
846 | hw(i) = hw0(i) |
---|
847 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
848 | gwake(i) = .TRUE. |
---|
849 | END IF |
---|
850 | END DO |
---|
851 | |
---|
852 | |
---|
853 | ! Check qx and qw positivity |
---|
854 | ! -------------------------- |
---|
855 | DO i = 1, klon |
---|
856 | q0_min(i) = min((qe(i,1)-sigmaw(i)*deltaqw(i,1)), & |
---|
857 | (qe(i,1)+(1.-sigmaw(i))*deltaqw(i,1))) |
---|
858 | END DO |
---|
859 | DO k = 2, klev |
---|
860 | DO i = 1, klon |
---|
861 | q1_min(i) = min((qe(i,k)-sigmaw(i)*deltaqw(i,k)), & |
---|
862 | (qe(i,k)+(1.-sigmaw(i))*deltaqw(i,k))) |
---|
863 | IF (q1_min(i)<=q0_min(i)) THEN |
---|
864 | q0_min(i) = q1_min(i) |
---|
865 | END IF |
---|
866 | END DO |
---|
867 | END DO |
---|
868 | |
---|
869 | DO i = 1, klon |
---|
870 | ok_qx_qw(i) = q0_min(i) >= 0. |
---|
871 | alpha(i) = 1. |
---|
872 | alpha_tot(i) = 1. |
---|
873 | END DO |
---|
874 | |
---|
875 | IF (prt_level>=10) THEN |
---|
876 | PRINT *, 'wake-4, sigmaw(igout), cstar(igout), wape(igout), ktop(igout) ', & |
---|
877 | sigmaw(igout), cstar(igout), wape(igout), ktop(igout) |
---|
878 | ENDIF |
---|
879 | |
---|
880 | |
---|
881 | ! C ----------------------------------------------------------------- |
---|
882 | ! Sub-time-stepping |
---|
883 | ! ----------------- |
---|
884 | |
---|
885 | nsub = 10 |
---|
886 | dtimesub = dtime/nsub |
---|
887 | |
---|
888 | |
---|
889 | |
---|
890 | ! ------------------------------------------------------------ |
---|
891 | DO isubstep = 1, nsub |
---|
892 | ! ------------------------------------------------------------ |
---|
893 | CALL pkupper (klon, klev, ptop, ph, pupper, kupper) |
---|
894 | |
---|
895 | !print*, 'ptop, pupper, ktop, kupper', ptop, pupper, ktop, kupper |
---|
896 | |
---|
897 | ! wk_adv is the logical flag enabling wake evolution in the time advance |
---|
898 | ! loop |
---|
899 | DO i = 1, klon |
---|
900 | wk_adv(i) = ok_qx_qw(i) .AND. alpha(i) >= 1. |
---|
901 | END DO |
---|
902 | IF (prt_level>=10) THEN |
---|
903 | PRINT *, 'wake-4.1, isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) ', & |
---|
904 | isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) |
---|
905 | |
---|
906 | ENDIF |
---|
907 | |
---|
908 | ! cc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement |
---|
909 | ! negatif de ktop a kupper -------- |
---|
910 | ! cc On calcule pour cela une densite wdens0 pour laquelle on |
---|
911 | ! aurait un entrainement nul --- |
---|
912 | !jyg< |
---|
913 | ! Dans la configuration avec wdens prognostique, il s'agit d'un cas ou |
---|
914 | ! les poches sont insuffisantes pour accueillir tout le flux de masse |
---|
915 | ! des descentes unsaturees. Nous faisons alors l'hypothese que la |
---|
916 | ! convection profonde cree directement de nouvelles poches, sans passer |
---|
917 | ! par les thermiques. La nouvelle valeur de wdens est alors imposee. |
---|
918 | |
---|
919 | DO i = 1, klon |
---|
920 | ! c print *,' isubstep,wk_adv(i),cstar(i),wape(i) ', |
---|
921 | ! c $ isubstep,wk_adv(i),cstar(i),wape(i) |
---|
922 | IF (wk_adv(i) .AND. cstar(i)>0.01) THEN |
---|
923 | IF ( iflag_wk_profile == 0 ) THEN |
---|
924 | omg(i, kupper(i)+1)=-RG*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
925 | RG*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
926 | ELSE |
---|
927 | omg(i, kupper(i)+1)=0. |
---|
928 | ENDIF |
---|
929 | wdens0 = (sigmaw(i)/(4.*3.14))* & |
---|
930 | ((1.-sigmaw(i))*omg(i,kupper(i)+1)/((ph(i,1)-pupper(i))*cstar(i)))**(2) |
---|
931 | IF (prt_level >= 10) THEN |
---|
932 | print*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i), ph(i,1)-pupper(i)', & |
---|
933 | omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i), ph(i,1)-pupper(i) |
---|
934 | ENDIF |
---|
935 | IF (wdens(i)<=wdens0*1.1) THEN |
---|
936 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
937 | d_dens_bnd2(i) = d_dens_bnd2(i) + wdens0 - wdens(i) |
---|
938 | d_wdens2(i) = d_wdens2(i) + wdens0 - wdens(i) |
---|
939 | ENDIF |
---|
940 | wdens(i) = wdens0 |
---|
941 | END IF |
---|
942 | END IF |
---|
943 | END DO |
---|
944 | |
---|
945 | IF (ok_bug_gfl) THEN |
---|
946 | !!-------------------------------------------------------- |
---|
947 | !!Bug : computing gfl and rad_wk before changing sigmaw |
---|
948 | !!-------------------------------------------------------- |
---|
949 | DO i = 1, klon |
---|
950 | IF (wk_adv(i)) THEN |
---|
951 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
952 | rad_wk(i) = sqrt(sigmaw(i)/(3.14*wdens(i))) |
---|
953 | END IF |
---|
954 | END DO |
---|
955 | ENDIF ! (ok_bug_gfl) |
---|
956 | |
---|
957 | DO i = 1, klon |
---|
958 | IF (wk_adv(i)) THEN |
---|
959 | sigmaw_targ = min(sigmaw(i), sigmaw_max) |
---|
960 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
---|
961 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
962 | sigmaw(i) = sigmaw_targ |
---|
963 | END IF |
---|
964 | END DO |
---|
965 | |
---|
966 | IF (.NOT.ok_bug_gfl) THEN |
---|
967 | !!-------------------------------------------------------- |
---|
968 | !!Fix : computing gfl and rad_wk after changing sigmaw |
---|
969 | !!-------------------------------------------------------- |
---|
970 | DO i = 1, klon |
---|
971 | IF (wk_adv(i)) THEN |
---|
972 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
973 | rad_wk(i) = sqrt(sigmaw(i)/(3.14*wdens(i))) |
---|
974 | END IF |
---|
975 | END DO |
---|
976 | ENDIF ! (.NOT.ok_bug_gfl) |
---|
977 | |
---|
978 | IF (iflag_wk_pop_dyn == 1) THEN |
---|
979 | |
---|
980 | CALL wake_popdyn_1 (klon, klev, dtime, cstar, tau_wk_inv, wgen, wdens, awdens, sigmaw, & |
---|
981 | dtimesub, gfl, rad_wk, f_shear, drdt_pos, & |
---|
982 | d_awdens, d_wdens, d_sigmaw, & |
---|
983 | iflag_wk_act, wk_adv, cin, wape, & |
---|
984 | drdt, & |
---|
985 | d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd, & |
---|
986 | d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd, & |
---|
987 | d_wdens_targ, d_sigmaw_targ) |
---|
988 | |
---|
989 | ! The variable "death_rate" is significant only when iflag_wk_pop_dyn = 0. |
---|
990 | ! Here, it has to be set to zero. |
---|
991 | death_rate(:) = 0. |
---|
992 | |
---|
993 | ELSEIF (iflag_wk_pop_dyn == 2) THEN |
---|
994 | CALL wake_popdyn_2 ( klon, klev, wk_adv, dtimesub, wgen, & |
---|
995 | sigmaw, wdens, awdens, & !! states variables |
---|
996 | gfl, cstar, cin, wape, rad_wk, & |
---|
997 | d_sigmaw, d_wdens, d_awdens, & !! tendences |
---|
998 | cont_fact, & |
---|
999 | d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd, & |
---|
1000 | d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd, & |
---|
1001 | d_adens_death, d_adens_icol, d_adens_acol, d_adens_bnd ) |
---|
1002 | death_rate(:) = 0. |
---|
1003 | sigmaw=sigmaw-d_sigmaw |
---|
1004 | wdens=wdens-d_wdens |
---|
1005 | awdens=awdens-d_awdens |
---|
1006 | |
---|
1007 | ELSEIF (iflag_wk_pop_dyn == 0) THEN |
---|
1008 | |
---|
1009 | ! cc nrlmd |
---|
1010 | |
---|
1011 | DO i = 1, klon |
---|
1012 | IF (wk_adv(i)) THEN |
---|
1013 | ! cc nrlmd Introduction du taux de mortalite des poches et |
---|
1014 | ! test sur sigmaw_max=0.4 |
---|
1015 | ! cc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
---|
1016 | IF (sigmaw(i)>=sigmaw_max) THEN |
---|
1017 | death_rate(i) = gfl(i)*cstar(i)/sigmaw(i) |
---|
1018 | ELSE |
---|
1019 | death_rate(i) = 0. |
---|
1020 | END IF |
---|
1021 | |
---|
1022 | d_sigmaw(i) = gfl(i)*cstar(i)*dtimesub - death_rate(i)*sigmaw(i)* & |
---|
1023 | dtimesub |
---|
1024 | ! $ - nat_rate(i)*sigmaw(i)*dtimesub |
---|
1025 | ! c print*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
1026 | ! c $ death_rate(i),ktop(i),kupper(i)', |
---|
1027 | ! c $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
1028 | ! c $ death_rate(i),ktop(i),kupper(i) |
---|
1029 | |
---|
1030 | ! sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
---|
1031 | ! sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! |
---|
1032 | ! wdens = wdens0/(10.*sigmaw) |
---|
1033 | ! sigmaw =max(sigmaw,sigd_con) |
---|
1034 | ! sigmaw =max(sigmaw,sigmad) |
---|
1035 | END IF |
---|
1036 | END DO |
---|
1037 | |
---|
1038 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
1039 | |
---|
1040 | |
---|
1041 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
1042 | ! IM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
---|
1043 | ! IM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on definit |
---|
1044 | ! IM 060208 au niveau k=1... |
---|
1045 | !JYG 161013 Correction : maintenant omg est dimensionne a klev. |
---|
1046 | DO k = 1, klev |
---|
1047 | DO i = 1, klon |
---|
1048 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1049 | dp_deltomg(i, k) = 0. |
---|
1050 | END IF |
---|
1051 | END DO |
---|
1052 | END DO |
---|
1053 | DO k = 1, klev |
---|
1054 | DO i = 1, klon |
---|
1055 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1056 | omg(i, k) = 0. |
---|
1057 | END IF |
---|
1058 | END DO |
---|
1059 | END DO |
---|
1060 | |
---|
1061 | DO i = 1, klon |
---|
1062 | IF (wk_adv(i)) THEN |
---|
1063 | z(i) = 0. |
---|
1064 | omg(i, 1) = 0. |
---|
1065 | dp_deltomg(i, 1) = -(gfl(i)*cstar(i))/(sigmaw(i)*(1-sigmaw(i))) |
---|
1066 | END IF |
---|
1067 | END DO |
---|
1068 | |
---|
1069 | DO k = 2, klev |
---|
1070 | DO i = 1, klon |
---|
1071 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
1072 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*RG) |
---|
1073 | z(i) = z(i) + dz(i) |
---|
1074 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
1075 | omg(i, k) = dp_deltomg(i, 1)*z(i) |
---|
1076 | END IF |
---|
1077 | END DO |
---|
1078 | END DO |
---|
1079 | |
---|
1080 | DO i = 1, klon |
---|
1081 | IF (wk_adv(i)) THEN |
---|
1082 | dztop(i) = -(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*RG) |
---|
1083 | ztop(i) = z(i) + dztop(i) |
---|
1084 | omgtop(i) = dp_deltomg(i, 1)*ztop(i) |
---|
1085 | END IF |
---|
1086 | END DO |
---|
1087 | |
---|
1088 | IF (prt_level>=10) THEN |
---|
1089 | PRINT *, 'wake-4.2, omg(igout,k) ', (k,omg(igout,k), k=1,klev) |
---|
1090 | PRINT *, 'wake-4.2, omgtop(igout), ptop(igout), ktop(igout) ', & |
---|
1091 | omgtop(igout), ptop(igout), ktop(igout) |
---|
1092 | ENDIF |
---|
1093 | |
---|
1094 | ! ----------------- |
---|
1095 | ! From m/s to Pa/s |
---|
1096 | ! ----------------- |
---|
1097 | |
---|
1098 | DO i = 1, klon |
---|
1099 | IF (wk_adv(i)) THEN |
---|
1100 | omgtop(i) = -rho(i, ktop(i))*RG*omgtop(i) |
---|
1101 | dp_deltomg(i, 1) = omgtop(i)/(ptop(i)-ph(i,1)) |
---|
1102 | END IF |
---|
1103 | END DO |
---|
1104 | |
---|
1105 | DO k = 1, klev |
---|
1106 | DO i = 1, klon |
---|
1107 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
1108 | omg(i, k) = -rho(i, k)*RG*omg(i, k) |
---|
1109 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
1110 | END IF |
---|
1111 | END DO |
---|
1112 | END DO |
---|
1113 | |
---|
1114 | ! raccordement lineaire de omg de ptop a pupper |
---|
1115 | |
---|
1116 | DO i = 1, klon |
---|
1117 | IF (wk_adv(i) .AND. kupper(i)>ktop(i)) THEN |
---|
1118 | IF ( iflag_wk_profile == 0 ) THEN |
---|
1119 | omg(i, kupper(i)+1) =-RG*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
1120 | RG*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
1121 | ELSE |
---|
1122 | omg(i, kupper(i)+1) = 0. |
---|
1123 | ENDIF |
---|
1124 | dp_deltomg(i, kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ & |
---|
1125 | (ptop(i)-pupper(i)) |
---|
1126 | END IF |
---|
1127 | END DO |
---|
1128 | |
---|
1129 | ! c DO i=1,klon |
---|
1130 | ! c print*,'Pente entre 0 et kupper (reference)' |
---|
1131 | ! c $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) |
---|
1132 | ! c print*,'Pente entre ktop et kupper' |
---|
1133 | ! c $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) |
---|
1134 | ! c ENDDO |
---|
1135 | ! c |
---|
1136 | DO k = 1, klev |
---|
1137 | DO i = 1, klon |
---|
1138 | IF (wk_adv(i) .AND. k>ktop(i) .AND. k<=kupper(i)) THEN |
---|
1139 | dp_deltomg(i, k) = dp_deltomg(i, kupper(i)) |
---|
1140 | omg(i, k) = omgtop(i) + (ph(i,k)-ptop(i))*dp_deltomg(i, kupper(i)) |
---|
1141 | END IF |
---|
1142 | END DO |
---|
1143 | END DO |
---|
1144 | !! print *,'omg(igout,k) ', (k,omg(igout,k),k=1,klev) |
---|
1145 | ! cc nrlmd |
---|
1146 | ! c DO i=1,klon |
---|
1147 | ! c print*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) |
---|
1148 | ! c END DO |
---|
1149 | ! cc |
---|
1150 | |
---|
1151 | |
---|
1152 | ! -- Compute wake average vertical velocity omgbw |
---|
1153 | |
---|
1154 | |
---|
1155 | DO k = 1, klev |
---|
1156 | DO i = 1, klon |
---|
1157 | IF (wk_adv(i)) THEN |
---|
1158 | omgbw(i, k) = omgb(i, k) + (1.-sigmaw(i))*omg(i, k) |
---|
1159 | END IF |
---|
1160 | END DO |
---|
1161 | END DO |
---|
1162 | ! -- and its vertical gradient dp_omgbw |
---|
1163 | |
---|
1164 | DO k = 1, klev-1 |
---|
1165 | DO i = 1, klon |
---|
1166 | IF (wk_adv(i)) THEN |
---|
1167 | dp_omgbw(i, k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
1168 | END IF |
---|
1169 | END DO |
---|
1170 | END DO |
---|
1171 | DO i = 1, klon |
---|
1172 | IF (wk_adv(i)) THEN |
---|
1173 | dp_omgbw(i, klev) = 0. |
---|
1174 | END IF |
---|
1175 | END DO |
---|
1176 | |
---|
1177 | ! -- Upstream coefficients for omgb velocity |
---|
1178 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
---|
1179 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
1180 | DO k = 1, klev |
---|
1181 | DO i = 1, klon |
---|
1182 | IF (wk_adv(i)) THEN |
---|
1183 | alpha_up(i, k) = 0. |
---|
1184 | IF (omgb(i,k)>0.) alpha_up(i, k) = 1. |
---|
1185 | END IF |
---|
1186 | END DO |
---|
1187 | END DO |
---|
1188 | |
---|
1189 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
1190 | |
---|
1191 | DO i = 1, klon |
---|
1192 | IF (wk_adv(i)) THEN |
---|
1193 | rre1(i) = 1. - sigmaw(i) |
---|
1194 | rre2(i) = sigmaw(i) |
---|
1195 | END IF |
---|
1196 | END DO |
---|
1197 | rrd1 = -1. |
---|
1198 | rrd2 = 1. |
---|
1199 | |
---|
1200 | ! -- Get [Th1,Th2], dth and [q1,q2] |
---|
1201 | |
---|
1202 | DO k = 1, klev |
---|
1203 | DO i = 1, klon |
---|
1204 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
1205 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
1206 | ! print *, 'VVVVwake k, the(i,k), dth(i,k), sigmaw(i) ', k, the(i,k), dth(i,k), sigmaw(i) |
---|
1207 | th1(i, k) = the(i, k) - sigmaw(i)*dth(i, k) ! undisturbed area |
---|
1208 | th2(i, k) = the(i, k) + (1.-sigmaw(i))*dth(i, k) ! wake |
---|
1209 | q1(i, k) = qe(i, k) - sigmaw(i)*deltaqw(i, k) ! undisturbed area |
---|
1210 | q2(i, k) = qe(i, k) + (1.-sigmaw(i))*deltaqw(i, k) ! wake |
---|
1211 | END IF |
---|
1212 | END DO |
---|
1213 | END DO |
---|
1214 | |
---|
1215 | DO i = 1, klon |
---|
1216 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1217 | d_th1(i, 1) = 0. |
---|
1218 | d_th2(i, 1) = 0. |
---|
1219 | d_dth(i, 1) = 0. |
---|
1220 | d_q1(i, 1) = 0. |
---|
1221 | d_q2(i, 1) = 0. |
---|
1222 | d_dq(i, 1) = 0. |
---|
1223 | END IF |
---|
1224 | END DO |
---|
1225 | |
---|
1226 | DO k = 2, klev |
---|
1227 | DO i = 1, klon |
---|
1228 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
1229 | d_th1(i, k) = th1(i, k-1) - th1(i, k) |
---|
1230 | d_th2(i, k) = th2(i, k-1) - th2(i, k) |
---|
1231 | d_dth(i, k) = dth(i, k-1) - dth(i, k) |
---|
1232 | d_q1(i, k) = q1(i, k-1) - q1(i, k) |
---|
1233 | d_q2(i, k) = q2(i, k-1) - q2(i, k) |
---|
1234 | d_dq(i, k) = deltaqw(i, k-1) - deltaqw(i, k) |
---|
1235 | END IF |
---|
1236 | END DO |
---|
1237 | END DO |
---|
1238 | |
---|
1239 | DO i = 1, klon |
---|
1240 | IF (wk_adv(i)) THEN |
---|
1241 | omgbdth(i, 1) = 0. |
---|
1242 | omgbdq(i, 1) = 0. |
---|
1243 | END IF |
---|
1244 | END DO |
---|
1245 | |
---|
1246 | DO k = 2, klev |
---|
1247 | DO i = 1, klon |
---|
1248 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN ! loop on interfaces |
---|
1249 | omgbdth(i, k) = omgb(i, k)*(dth(i,k-1)-dth(i,k)) |
---|
1250 | omgbdq(i, k) = omgb(i, k)*(deltaqw(i,k-1)-deltaqw(i,k)) |
---|
1251 | END IF |
---|
1252 | END DO |
---|
1253 | END DO |
---|
1254 | |
---|
1255 | !! IF (prt_level>=10) THEN |
---|
1256 | IF (prt_level>=10 .and. wk_adv(igout)) THEN |
---|
1257 | PRINT *, 'wake-4.3, th1(igout,k) ', (k,th1(igout,k), k=1,kupper(igout)) |
---|
1258 | PRINT *, 'wake-4.3, th2(igout,k) ', (k,th2(igout,k), k=1,kupper(igout)) |
---|
1259 | PRINT *, 'wake-4.3, dth(igout,k) ', (k,dth(igout,k), k=1,kupper(igout)) |
---|
1260 | PRINT *, 'wake-4.3, omgbdth(igout,k) ', (k,omgbdth(igout,k), k=1,kupper(igout)) |
---|
1261 | ENDIF |
---|
1262 | |
---|
1263 | ! ----------------------------------------------------------------- |
---|
1264 | DO k = 1, klev-1 |
---|
1265 | DO i = 1, klon |
---|
1266 | IF (wk_adv(i) .AND. k<=kupper(i)-1) THEN |
---|
1267 | ! ----------------------------------------------------------------- |
---|
1268 | |
---|
1269 | ! Compute redistribution (advective) term |
---|
1270 | |
---|
1271 | d_deltatw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
1272 | (rrd1*omg(i,k)*sigmaw(i)*d_th1(i,k) - & |
---|
1273 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1)- & |
---|
1274 | (1.-alpha_up(i,k))*omgbdth(i,k)- & |
---|
1275 | alpha_up(i,k+1)*omgbdth(i,k+1))*ppi(i, k) |
---|
1276 | ! print*,'d_deltatw=', k, d_deltatw(i,k) |
---|
1277 | |
---|
1278 | d_deltaqw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
1279 | (rrd1*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
---|
1280 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1)- & |
---|
1281 | (1.-alpha_up(i,k))*omgbdq(i,k)- & |
---|
1282 | alpha_up(i,k+1)*omgbdq(i,k+1)) |
---|
1283 | ! print*,'d_deltaqw=', k, d_deltaqw(i,k) |
---|
1284 | |
---|
1285 | ! and increment large scale tendencies |
---|
1286 | |
---|
1287 | |
---|
1288 | |
---|
1289 | |
---|
1290 | ! C |
---|
1291 | ! ----------------------------------------------------------------- |
---|
1292 | d_tenv(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)- & |
---|
1293 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1))/ & |
---|
1294 | (ph(i,k)-ph(i,k+1)) & |
---|
1295 | -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*(omg(i,k)-omg(i,k+1))/ & |
---|
1296 | (ph(i,k)-ph(i,k+1)) )*ppi(i, k) |
---|
1297 | |
---|
1298 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
---|
1299 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1))/ & |
---|
1300 | (ph(i,k)-ph(i,k+1)) & |
---|
1301 | -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*(omg(i,k)-omg(i,k+1))/ & |
---|
1302 | (ph(i,k)-ph(i,k+1)) ) |
---|
1303 | ELSE IF (wk_adv(i) .AND. k==kupper(i)) THEN |
---|
1304 | d_tenv(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)/(ph(i,k)-ph(i,k+1)))*ppi(i, k) |
---|
1305 | |
---|
1306 | d_qe(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)/(ph(i,k)-ph(i,k+1))) |
---|
1307 | |
---|
1308 | END IF |
---|
1309 | ! cc |
---|
1310 | END DO |
---|
1311 | END DO |
---|
1312 | ! ------------------------------------------------------------------ |
---|
1313 | |
---|
1314 | IF (prt_level>=10) THEN |
---|
1315 | PRINT *, 'wake-4.3, d_deltatw(igout,k) ', (k,d_deltatw(igout,k), k=1,klev) |
---|
1316 | PRINT *, 'wake-4.3, d_deltaqw(igout,k) ', (k,d_deltaqw(igout,k), k=1,klev) |
---|
1317 | ENDIF |
---|
1318 | |
---|
1319 | ! Increment state variables |
---|
1320 | !jyg< |
---|
1321 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
1322 | DO k = 1, klev |
---|
1323 | DO i = 1, klon |
---|
1324 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1325 | detr(i,k) = - d_sig_death(i) - d_sig_col(i) |
---|
1326 | entr(i,k) = d_sig_gen(i) |
---|
1327 | ENDIF |
---|
1328 | ENDDO |
---|
1329 | ENDDO |
---|
1330 | ELSE ! (iflag_wk_pop_dyn >= 1) |
---|
1331 | DO k = 1, klev |
---|
1332 | DO i = 1, klon |
---|
1333 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1334 | detr(i, k) = 0. |
---|
1335 | |
---|
1336 | entr(i, k) = 0. |
---|
1337 | ENDIF |
---|
1338 | ENDDO |
---|
1339 | ENDDO |
---|
1340 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
1341 | |
---|
1342 | |
---|
1343 | |
---|
1344 | DO k = 1, klev |
---|
1345 | DO i = 1, klon |
---|
1346 | ! cc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
---|
1347 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1348 | ! cc |
---|
1349 | |
---|
1350 | |
---|
1351 | |
---|
1352 | ! Coefficient de repartition |
---|
1353 | |
---|
1354 | crep(i, k) = crep_sol*(ph(i,kupper(i))-ph(i,k))/ & |
---|
1355 | (ph(i,kupper(i))-ph(i,1)) |
---|
1356 | crep(i, k) = crep(i, k) + crep_upper*(ph(i,1)-ph(i,k))/ & |
---|
1357 | (p(i,1)-ph(i,kupper(i))) |
---|
1358 | |
---|
1359 | |
---|
1360 | ! Reintroduce compensating subsidence term. |
---|
1361 | |
---|
1362 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
1363 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
1364 | ! . /(1-sigmaw) |
---|
1365 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
1366 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
1367 | ! . /(1-sigmaw) |
---|
1368 | |
---|
1369 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
1370 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
1371 | ! . /(1-sigmaw) |
---|
1372 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
1373 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
1374 | ! . /(1-sigmaw) |
---|
1375 | |
---|
1376 | dtke(i, k) = (dtdwn(i,k)/sigmaw(i)-dta(i,k)/(1.-sigmaw(i))) |
---|
1377 | dqke(i, k) = (dqdwn(i,k)/sigmaw(i)-dqa(i,k)/(1.-sigmaw(i))) |
---|
1378 | ! print*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) |
---|
1379 | |
---|
1380 | ! |
---|
1381 | |
---|
1382 | ! cc nrlmd Prise en compte du taux de mortalite |
---|
1383 | ! cc Definitions de entr, detr |
---|
1384 | !jyg< |
---|
1385 | !! detr(i, k) = 0. |
---|
1386 | !! |
---|
1387 | !! entr(i, k) = detr(i, k) + gfl(i)*cstar(i) + & |
---|
1388 | !! sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
1389 | !! |
---|
1390 | entr(i, k) = entr(i,k) + gfl(i)*cstar(i) + & |
---|
1391 | sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
1392 | !>jyg |
---|
1393 | wkspread(i, k) = (entr(i,k)-detr(i,k))/sigmaw(i) |
---|
1394 | |
---|
1395 | ! cc wkspread(i,k) = |
---|
1396 | ! (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
---|
1397 | ! cc $ sigmaw(i) |
---|
1398 | |
---|
1399 | |
---|
1400 | ! ajout d'un effet onde de gravite -Tgw(k)*deltatw(k) 03/02/06 YU |
---|
1401 | ! Jingmei |
---|
1402 | |
---|
1403 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), |
---|
1404 | ! & Tgw(i,k),deltatw(i,k) |
---|
1405 | d_deltat_gw(i, k) = d_deltat_gw(i, k) - tgw(i, k)*deltatw(i, k)* & |
---|
1406 | dtimesub |
---|
1407 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) |
---|
1408 | ff(i) = d_deltatw(i, k)/dtimesub |
---|
1409 | |
---|
1410 | ! Sans GW |
---|
1411 | |
---|
1412 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-wkspread(k)*deltatw(k)) |
---|
1413 | |
---|
1414 | ! GW formule 1 |
---|
1415 | |
---|
1416 | ! deltatw(k) = deltatw(k)+dtimesub* |
---|
1417 | ! $ (ff+dtKE(k) - wkspread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
1418 | |
---|
1419 | ! GW formule 2 |
---|
1420 | |
---|
1421 | IF (dtimesub*tgw(i,k)<1.E-10) THEN |
---|
1422 | d_deltatw(i, k) = dtimesub*(ff(i)+dtke(i,k) - & |
---|
1423 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
---|
1424 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & ! cc |
---|
1425 | tgw(i,k)*deltatw(i,k) ) |
---|
1426 | ELSE |
---|
1427 | d_deltatw(i, k) = 1/tgw(i, k)*(1-exp(-dtimesub*tgw(i,k)))* & |
---|
1428 | (ff(i)+dtke(i,k) - & |
---|
1429 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
---|
1430 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & |
---|
1431 | tgw(i,k)*deltatw(i,k) ) |
---|
1432 | END IF |
---|
1433 | |
---|
1434 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
1435 | |
---|
1436 | gg(i) = d_deltaqw(i, k)/dtimesub |
---|
1437 | |
---|
1438 | d_deltaqw(i, k) = dtimesub*(gg(i)+dqke(i,k) - & |
---|
1439 | entr(i,k)*deltaqw(i,k)/sigmaw(i) - & |
---|
1440 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltaqw(i,k)/(1.-sigmaw(i))) |
---|
1441 | ! cc |
---|
1442 | |
---|
1443 | ! cc nrlmd |
---|
1444 | ! cc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
---|
1445 | ! cc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
---|
1446 | ! cc |
---|
1447 | END IF |
---|
1448 | END DO |
---|
1449 | END DO |
---|
1450 | |
---|
1451 | |
---|
1452 | ! Scale tendencies so that water vapour remains positive in w and x. |
---|
1453 | |
---|
1454 | CALL wake_vec_modulation(klon, klev, wk_adv, epsilon_loc, qe, d_qe, deltaqw, & |
---|
1455 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
1456 | ! |
---|
1457 | ! Alpha_tot = Product of all the alpha's |
---|
1458 | DO i = 1, klon |
---|
1459 | IF (wk_adv(i)) THEN |
---|
1460 | alpha_tot(i) = alpha_tot(i)*alpha(i) |
---|
1461 | END IF |
---|
1462 | END DO |
---|
1463 | |
---|
1464 | ! cc nrlmd |
---|
1465 | ! c print*,'alpha' |
---|
1466 | ! c do i=1,klon |
---|
1467 | ! c print*,alpha(i) |
---|
1468 | ! c end do |
---|
1469 | ! cc |
---|
1470 | DO k = 1, klev |
---|
1471 | DO i = 1, klon |
---|
1472 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1473 | d_tenv(i, k) = alpha(i)*d_tenv(i, k) |
---|
1474 | d_qe(i, k) = alpha(i)*d_qe(i, k) |
---|
1475 | d_deltatw(i, k) = alpha(i)*d_deltatw(i, k) |
---|
1476 | d_deltaqw(i, k) = alpha(i)*d_deltaqw(i, k) |
---|
1477 | d_deltat_gw(i, k) = alpha(i)*d_deltat_gw(i, k) |
---|
1478 | END IF |
---|
1479 | END DO |
---|
1480 | END DO |
---|
1481 | DO i = 1, klon |
---|
1482 | IF (wk_adv(i)) THEN |
---|
1483 | d_sigmaw(i) = alpha(i)*d_sigmaw(i) |
---|
1484 | END IF |
---|
1485 | END DO |
---|
1486 | |
---|
1487 | ! Update large scale variables and wake variables |
---|
1488 | ! IM 060208 manque DO i + remplace DO k=1,kupper(i) |
---|
1489 | ! IM 060208 DO k = 1,kupper(i) |
---|
1490 | DO k = 1, klev |
---|
1491 | DO i = 1, klon |
---|
1492 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1493 | dtls(i, k) = dtls(i, k) + d_tenv(i, k) |
---|
1494 | dqls(i, k) = dqls(i, k) + d_qe(i, k) |
---|
1495 | ! cc nrlmd |
---|
1496 | d_deltatw2(i, k) = d_deltatw2(i, k) + d_deltatw(i, k) |
---|
1497 | d_deltaqw2(i, k) = d_deltaqw2(i, k) + d_deltaqw(i, k) |
---|
1498 | ! cc |
---|
1499 | END IF |
---|
1500 | END DO |
---|
1501 | END DO |
---|
1502 | DO k = 1, klev |
---|
1503 | DO i = 1, klon |
---|
1504 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1505 | tenv(i, k) = tenv0(i, k) + dtls(i, k) |
---|
1506 | qe(i, k) = qe0(i, k) + dqls(i, k) |
---|
1507 | the(i, k) = tenv(i, k)/ppi(i, k) |
---|
1508 | deltatw(i, k) = deltatw(i, k) + d_deltatw(i, k) |
---|
1509 | deltaqw(i, k) = deltaqw(i, k) + d_deltaqw(i, k) |
---|
1510 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
1511 | ! c print*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) |
---|
1512 | ! c $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) |
---|
1513 | END IF |
---|
1514 | END DO |
---|
1515 | END DO |
---|
1516 | ! |
---|
1517 | DO i = 1, klon |
---|
1518 | IF (wk_adv(i)) THEN |
---|
1519 | sigmaw(i) = sigmaw(i) + d_sigmaw(i) |
---|
1520 | d_sigmaw2(i) = d_sigmaw2(i) + d_sigmaw(i) |
---|
1521 | ! print *,'XXXX4 d_sigmaw2(i), sigmaw(i) ', d_sigmaw2(i), sigmaw(i) |
---|
1522 | END IF |
---|
1523 | END DO |
---|
1524 | !jyg< |
---|
1525 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
1526 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! sigmaw !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1527 | ! Cumulatives |
---|
1528 | DO i = 1, klon |
---|
1529 | IF (wk_adv(i)) THEN |
---|
1530 | d_sig_gen2(i) = d_sig_gen2(i) + d_sig_gen(i) |
---|
1531 | d_sig_death2(i) = d_sig_death2(i) + d_sig_death(i) |
---|
1532 | d_sig_col2(i) = d_sig_col2(i) + d_sig_col(i) |
---|
1533 | d_sig_spread2(i)= d_sig_spread2(i)+ d_sig_spread(i) |
---|
1534 | d_sig_bnd2(i) = d_sig_bnd2(i) + d_sig_bnd(i) |
---|
1535 | END IF |
---|
1536 | END DO |
---|
1537 | ! Bounds |
---|
1538 | DO i = 1, klon |
---|
1539 | IF (wk_adv(i)) THEN |
---|
1540 | sigmaw_targ = max(sigmaw(i),sigmad) |
---|
1541 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
---|
1542 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
1543 | ! print *,'XXXX5 d_sigmaw2(i), sigmaw(i) ', d_sigmaw2(i), sigmaw(i) |
---|
1544 | sigmaw(i) = sigmaw_targ |
---|
1545 | END IF |
---|
1546 | END DO |
---|
1547 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! wdens !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1548 | ! Cumulatives |
---|
1549 | DO i = 1, klon |
---|
1550 | IF (wk_adv(i)) THEN |
---|
1551 | wdens(i) = wdens(i) + d_wdens(i) |
---|
1552 | d_wdens2(i) = d_wdens2(i) + d_wdens(i) |
---|
1553 | d_dens_gen2(i) = d_dens_gen2(i) + d_dens_gen(i) |
---|
1554 | d_dens_death2(i) = d_dens_death2(i) + d_dens_death(i) |
---|
1555 | d_dens_col2(i) = d_dens_col2(i) + d_dens_col(i) |
---|
1556 | d_dens_bnd2(i) = d_dens_bnd2(i) + d_dens_bnd(i) |
---|
1557 | END IF |
---|
1558 | END DO |
---|
1559 | ! Bounds |
---|
1560 | DO i = 1, klon |
---|
1561 | IF (wk_adv(i)) THEN |
---|
1562 | wdens_targ = max(wdens(i),wdensmin) |
---|
1563 | d_dens_bnd2(i) = d_dens_bnd2(i) + wdens_targ - wdens(i) |
---|
1564 | d_wdens2(i) = d_wdens2(i) + wdens_targ - wdens(i) |
---|
1565 | wdens(i) = wdens_targ |
---|
1566 | END IF |
---|
1567 | END DO |
---|
1568 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! awdens !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1569 | ! Cumulatives |
---|
1570 | DO i = 1, klon |
---|
1571 | IF (wk_adv(i)) THEN |
---|
1572 | awdens(i) = awdens(i) + d_awdens(i) |
---|
1573 | d_awdens2(i) = d_awdens2(i) + d_awdens(i) |
---|
1574 | END IF |
---|
1575 | END DO |
---|
1576 | ! Bounds |
---|
1577 | DO i = 1, klon |
---|
1578 | IF (wk_adv(i)) THEN |
---|
1579 | wdens_targ = min( max(awdens(i),0.), wdens(i) ) |
---|
1580 | d_awdens2(i) = d_awdens2(i) + wdens_targ - awdens(i) |
---|
1581 | awdens(i) = wdens_targ |
---|
1582 | END IF |
---|
1583 | END DO |
---|
1584 | ! |
---|
1585 | IF (iflag_wk_pop_dyn == 2) THEN |
---|
1586 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! awdens again for iflag_wk_pop_dyn = 2!!!!!! |
---|
1587 | ! Cumulatives |
---|
1588 | DO i = 1, klon |
---|
1589 | IF (wk_adv(i)) THEN |
---|
1590 | d_adens_death2(i) = d_adens_death2(i) + d_adens_death(i) |
---|
1591 | d_adens_icol2(i) = d_adens_icol2(i) + d_adens_icol(i) |
---|
1592 | d_adens_acol2(i) = d_adens_acol2(i) + d_adens_acol(i) |
---|
1593 | d_adens_bnd2(i) = d_adens_bnd2(i) + d_adens_bnd(i) |
---|
1594 | END IF |
---|
1595 | END DO |
---|
1596 | ! Bounds |
---|
1597 | DO i = 1, klon |
---|
1598 | IF (wk_adv(i)) THEN |
---|
1599 | wdens_targ = min( max(awdens(i),0.), wdens(i) ) |
---|
1600 | d_adens_bnd2(i) = d_adens_bnd2(i) + wdens_targ - awdens(i) |
---|
1601 | END IF |
---|
1602 | END DO |
---|
1603 | ENDIF ! (iflag_wk_pop_dyn == 2) |
---|
1604 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
1605 | |
---|
1606 | |
---|
1607 | ! Determine Ptop from buoyancy integral |
---|
1608 | ! --------------------------------------- |
---|
1609 | |
---|
1610 | ! - 1/ Pressure of the level where dth changes sign. |
---|
1611 | |
---|
1612 | DO i = 1, klon |
---|
1613 | IF (wk_adv(i)) THEN |
---|
1614 | ptop_provis(i) = ph(i, 1) |
---|
1615 | END IF |
---|
1616 | END DO |
---|
1617 | |
---|
1618 | DO k = 2, klev |
---|
1619 | DO i = 1, klon |
---|
1620 | IF (wk_adv(i) .AND. ptop_provis(i)==ph(i,1) .AND. & |
---|
1621 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
1622 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
---|
1623 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
1624 | END IF |
---|
1625 | END DO |
---|
1626 | END DO |
---|
1627 | |
---|
1628 | ! - 2/ dth integral |
---|
1629 | |
---|
1630 | DO i = 1, klon |
---|
1631 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1632 | sum_dth(i) = 0. |
---|
1633 | dthmin(i) = -delta_t_min |
---|
1634 | z(i) = 0. |
---|
1635 | END IF |
---|
1636 | END DO |
---|
1637 | |
---|
1638 | DO k = 1, klev |
---|
1639 | DO i = 1, klon |
---|
1640 | IF (wk_adv(i)) THEN |
---|
1641 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*RG) |
---|
1642 | IF (dz(i)>0) THEN |
---|
1643 | z(i) = z(i) + dz(i) |
---|
1644 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
1645 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
1646 | END IF |
---|
1647 | END IF |
---|
1648 | END DO |
---|
1649 | END DO |
---|
1650 | |
---|
1651 | ! - 3/ height of triangle with area= sum_dth and base = dthmin |
---|
1652 | |
---|
1653 | DO i = 1, klon |
---|
1654 | IF (wk_adv(i)) THEN |
---|
1655 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
1656 | hw(i) = amax1(hwmin, hw(i)) |
---|
1657 | END IF |
---|
1658 | END DO |
---|
1659 | |
---|
1660 | ! - 4/ now, get Ptop |
---|
1661 | |
---|
1662 | DO i = 1, klon |
---|
1663 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1664 | ktop(i) = 0 |
---|
1665 | z(i) = 0. |
---|
1666 | END IF |
---|
1667 | END DO |
---|
1668 | |
---|
1669 | DO k = 1, klev |
---|
1670 | DO i = 1, klon |
---|
1671 | IF (wk_adv(i)) THEN |
---|
1672 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*RG), hw(i)-z(i)) |
---|
1673 | IF (dz(i)>0) THEN |
---|
1674 | z(i) = z(i) + dz(i) |
---|
1675 | ptop(i) = ph(i, k) - rho(i, k)*RG*dz(i) |
---|
1676 | ktop(i) = k |
---|
1677 | END IF |
---|
1678 | END IF |
---|
1679 | END DO |
---|
1680 | END DO |
---|
1681 | |
---|
1682 | ! 4.5/Correct ktop and ptop |
---|
1683 | |
---|
1684 | DO i = 1, klon |
---|
1685 | IF (wk_adv(i)) THEN |
---|
1686 | ptop_new(i) = ptop(i) |
---|
1687 | END IF |
---|
1688 | END DO |
---|
1689 | |
---|
1690 | DO k = klev, 2, -1 |
---|
1691 | DO i = 1, klon |
---|
1692 | ! IM v3JYG; IF (k .GE. ktop(i) |
---|
1693 | IF (wk_adv(i) .AND. k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
1694 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
1695 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
---|
1696 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
1697 | END IF |
---|
1698 | END DO |
---|
1699 | END DO |
---|
1700 | |
---|
1701 | |
---|
1702 | DO i = 1, klon |
---|
1703 | IF (wk_adv(i)) THEN |
---|
1704 | ptop(i) = ptop_new(i) |
---|
1705 | END IF |
---|
1706 | END DO |
---|
1707 | |
---|
1708 | DO k = klev, 1, -1 |
---|
1709 | DO i = 1, klon |
---|
1710 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1711 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
1712 | END IF |
---|
1713 | END DO |
---|
1714 | END DO |
---|
1715 | |
---|
1716 | ! 5/ Set deltatw & deltaqw to 0 above kupper |
---|
1717 | |
---|
1718 | DO k = 1, klev |
---|
1719 | DO i = 1, klon |
---|
1720 | IF (wk_adv(i) .AND. k>=kupper(i)) THEN |
---|
1721 | deltatw(i, k) = 0. |
---|
1722 | deltaqw(i, k) = 0. |
---|
1723 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
1724 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
1725 | END IF |
---|
1726 | END DO |
---|
1727 | END DO |
---|
1728 | |
---|
1729 | |
---|
1730 | ! -------------Cstar computation--------------------------------- |
---|
1731 | DO i = 1, klon |
---|
1732 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1733 | sum_thu(i) = 0. |
---|
1734 | sum_tu(i) = 0. |
---|
1735 | sum_qu(i) = 0. |
---|
1736 | sum_thvu(i) = 0. |
---|
1737 | sum_dth(i) = 0. |
---|
1738 | sum_dq(i) = 0. |
---|
1739 | sum_rho(i) = 0. |
---|
1740 | sum_dtdwn(i) = 0. |
---|
1741 | sum_dqdwn(i) = 0. |
---|
1742 | |
---|
1743 | av_thu(i) = 0. |
---|
1744 | av_tu(i) = 0. |
---|
1745 | av_qu(i) = 0. |
---|
1746 | av_thvu(i) = 0. |
---|
1747 | av_dth(i) = 0. |
---|
1748 | av_dq(i) = 0. |
---|
1749 | av_rho(i) = 0. |
---|
1750 | av_dtdwn(i) = 0. |
---|
1751 | av_dqdwn(i) = 0. |
---|
1752 | END IF |
---|
1753 | END DO |
---|
1754 | |
---|
1755 | ! Integrals (and wake top level number) |
---|
1756 | ! -------------------------------------- |
---|
1757 | |
---|
1758 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
1759 | |
---|
1760 | DO i = 1, klon |
---|
1761 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1762 | z(i) = 1. |
---|
1763 | dz(i) = 1. |
---|
1764 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
1765 | sum_dth(i) = 0. |
---|
1766 | END IF |
---|
1767 | END DO |
---|
1768 | |
---|
1769 | DO k = 1, klev |
---|
1770 | DO i = 1, klon |
---|
1771 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1772 | dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*RG) |
---|
1773 | IF (dz(i)>0) THEN |
---|
1774 | z(i) = z(i) + dz(i) |
---|
1775 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
1776 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
1777 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
1778 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
1779 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
1780 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
1781 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
1782 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
1783 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
1784 | END IF |
---|
1785 | END IF |
---|
1786 | END DO |
---|
1787 | END DO |
---|
1788 | |
---|
1789 | DO i = 1, klon |
---|
1790 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1791 | hw0(i) = z(i) |
---|
1792 | END IF |
---|
1793 | END DO |
---|
1794 | |
---|
1795 | |
---|
1796 | ! - WAPE and mean forcing computation |
---|
1797 | ! --------------------------------------- |
---|
1798 | |
---|
1799 | ! --------------------------------------- |
---|
1800 | |
---|
1801 | ! Means |
---|
1802 | |
---|
1803 | DO i = 1, klon |
---|
1804 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1805 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
1806 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
1807 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
1808 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
1809 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
1810 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
1811 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
1812 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
1813 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
1814 | |
---|
1815 | wape(i) = -RG*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
---|
1816 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
1817 | END IF |
---|
1818 | END DO |
---|
1819 | |
---|
1820 | ! Filter out bad wakes |
---|
1821 | |
---|
1822 | DO k = 1, klev |
---|
1823 | DO i = 1, klon |
---|
1824 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1825 | IF (wape(i)<0.) THEN |
---|
1826 | deltatw(i, k) = 0. |
---|
1827 | deltaqw(i, k) = 0. |
---|
1828 | dth(i, k) = 0. |
---|
1829 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
1830 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
1831 | END IF |
---|
1832 | END IF |
---|
1833 | END DO |
---|
1834 | END DO |
---|
1835 | |
---|
1836 | DO i = 1, klon |
---|
1837 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1838 | IF (wape(i)<0.) THEN |
---|
1839 | wape(i) = 0. |
---|
1840 | cstar(i) = 0. |
---|
1841 | hw(i) = hwmin |
---|
1842 | !jyg< |
---|
1843 | !! sigmaw(i) = max(sigmad, sigd_con(i)) |
---|
1844 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
1845 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
---|
1846 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
1847 | ! print *,'XXXX6 d_sigmaw2(i), sigmaw(i) ', d_sigmaw2(i), sigmaw(i) |
---|
1848 | sigmaw(i) = sigmaw_targ |
---|
1849 | !>jyg |
---|
1850 | fip(i) = 0. |
---|
1851 | gwake(i) = .FALSE. |
---|
1852 | ELSE |
---|
1853 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
1854 | gwake(i) = .TRUE. |
---|
1855 | END IF |
---|
1856 | END IF |
---|
1857 | END DO |
---|
1858 | |
---|
1859 | END DO ! end sub-timestep loop |
---|
1860 | |
---|
1861 | IF (prt_level>=10) THEN |
---|
1862 | PRINT *, 'wake-5, sigmaw(igout), cstar(igout), wape(igout), ptop(igout) ', & |
---|
1863 | sigmaw(igout), cstar(igout), wape(igout), ptop(igout) |
---|
1864 | ENDIF |
---|
1865 | |
---|
1866 | |
---|
1867 | ! ---------------------------------------------------------- |
---|
1868 | ! Determine wake final state; recompute wape, cstar, ktop; |
---|
1869 | ! filter out bad wakes. |
---|
1870 | ! ---------------------------------------------------------- |
---|
1871 | |
---|
1872 | ! 2.1 - Undisturbed area and Wake integrals |
---|
1873 | ! --------------------------------------------------------- |
---|
1874 | |
---|
1875 | DO i = 1, klon |
---|
1876 | ! cc nrlmd if (wk_adv(i)) then !!! nrlmd |
---|
1877 | IF (ok_qx_qw(i)) THEN |
---|
1878 | ! cc |
---|
1879 | z(i) = 0. |
---|
1880 | sum_thu(i) = 0. |
---|
1881 | sum_tu(i) = 0. |
---|
1882 | sum_qu(i) = 0. |
---|
1883 | sum_thvu(i) = 0. |
---|
1884 | sum_dth(i) = 0. |
---|
1885 | sum_half_dth(i) = 0. |
---|
1886 | sum_dq(i) = 0. |
---|
1887 | sum_rho(i) = 0. |
---|
1888 | sum_dtdwn(i) = 0. |
---|
1889 | sum_dqdwn(i) = 0. |
---|
1890 | |
---|
1891 | av_thu(i) = 0. |
---|
1892 | av_tu(i) = 0. |
---|
1893 | av_qu(i) = 0. |
---|
1894 | av_thvu(i) = 0. |
---|
1895 | av_dth(i) = 0. |
---|
1896 | av_dq(i) = 0. |
---|
1897 | av_rho(i) = 0. |
---|
1898 | av_dtdwn(i) = 0. |
---|
1899 | av_dqdwn(i) = 0. |
---|
1900 | |
---|
1901 | dthmin(i) = -delta_t_min |
---|
1902 | END IF |
---|
1903 | END DO |
---|
1904 | ! Potential temperatures and humidity |
---|
1905 | ! ---------------------------------------------------------- |
---|
1906 | |
---|
1907 | DO k = 1, klev |
---|
1908 | DO i = 1, klon |
---|
1909 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1910 | IF (ok_qx_qw(i)) THEN |
---|
1911 | ! cc |
---|
1912 | rho(i, k) = p(i, k)/(RD*tenv(i,k)) |
---|
1913 | IF (k==1) THEN |
---|
1914 | rhoh(i, k) = ph(i, k)/(RD*tenv(i,k)) |
---|
1915 | zhh(i, k) = 0 |
---|
1916 | ELSE |
---|
1917 | rhoh(i, k) = ph(i, k)*2./(RD*(tenv(i,k)+tenv(i,k-1))) |
---|
1918 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*RG) + zhh(i, k-1) |
---|
1919 | END IF |
---|
1920 | the(i, k) = tenv(i, k)/ppi(i, k) |
---|
1921 | thu(i, k) = (tenv(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
1922 | tu(i, k) = tenv(i, k) - deltatw(i, k)*sigmaw(i) |
---|
1923 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
1924 | rhow(i, k) = p(i, k)/(RD*(tenv(i,k)+deltatw(i,k))) |
---|
1925 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
1926 | END IF |
---|
1927 | END DO |
---|
1928 | END DO |
---|
1929 | |
---|
1930 | ! Integrals (and wake top level number) |
---|
1931 | ! ----------------------------------------------------------- |
---|
1932 | |
---|
1933 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
1934 | |
---|
1935 | DO i = 1, klon |
---|
1936 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1937 | IF (ok_qx_qw(i)) THEN |
---|
1938 | ! cc |
---|
1939 | z(i) = 1. |
---|
1940 | dz(i) = 1. |
---|
1941 | dz_half(i) = 1. |
---|
1942 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
1943 | sum_dth(i) = 0. |
---|
1944 | END IF |
---|
1945 | END DO |
---|
1946 | |
---|
1947 | DO k = 1, klev |
---|
1948 | DO i = 1, klon |
---|
1949 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1950 | IF (ok_qx_qw(i)) THEN |
---|
1951 | ! cc |
---|
1952 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*RG) |
---|
1953 | dz_half(i) = -(amax1(ph(i,k+1),0.5*(ptop(i)+ph(i,1)))-ph(i,k))/(rho(i,k)*RG) |
---|
1954 | IF (dz(i)>0) THEN |
---|
1955 | z(i) = z(i) + dz(i) |
---|
1956 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
1957 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
1958 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
1959 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
1960 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
1961 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
1962 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
1963 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
1964 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
1965 | ! |
---|
1966 | dthmin(i) = min(dthmin(i), dth(i,k)) |
---|
1967 | END IF |
---|
1968 | IF (dz_half(i)>0) THEN |
---|
1969 | sum_half_dth(i) = sum_half_dth(i) + dth(i, k)*dz_half(i) |
---|
1970 | END IF |
---|
1971 | END IF |
---|
1972 | END DO |
---|
1973 | END DO |
---|
1974 | |
---|
1975 | DO i = 1, klon |
---|
1976 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1977 | IF (ok_qx_qw(i)) THEN |
---|
1978 | ! cc |
---|
1979 | hw0(i) = z(i) |
---|
1980 | END IF |
---|
1981 | END DO |
---|
1982 | |
---|
1983 | ! - WAPE and mean forcing computation |
---|
1984 | ! ------------------------------------------------------------- |
---|
1985 | |
---|
1986 | ! Means |
---|
1987 | |
---|
1988 | DO i = 1, klon |
---|
1989 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1990 | IF (ok_qx_qw(i)) THEN |
---|
1991 | ! cc |
---|
1992 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
1993 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
1994 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
1995 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
1996 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
1997 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
1998 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
1999 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
2000 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
2001 | |
---|
2002 | wape2(i) = -RG*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
---|
2003 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
2004 | END IF |
---|
2005 | END DO |
---|
2006 | |
---|
2007 | |
---|
2008 | |
---|
2009 | ! Prognostic variable update |
---|
2010 | ! ------------------------------------------------------------ |
---|
2011 | |
---|
2012 | ! Filter out bad wakes |
---|
2013 | |
---|
2014 | IF (iflag_wk_check_trgl>=1) THEN |
---|
2015 | ! Check triangular shape of dth profile |
---|
2016 | DO i = 1, klon |
---|
2017 | IF (ok_qx_qw(i)) THEN |
---|
2018 | !! print *,'wake, hw0(i), dthmin(i) ', hw0(i), dthmin(i) |
---|
2019 | !! print *,'wake, 2.*sum_dth(i)/(hw0(i)*dthmin(i)) ', & |
---|
2020 | !! 2.*sum_dth(i)/(hw0(i)*dthmin(i)) |
---|
2021 | !! print *,'wake, sum_half_dth(i), sum_dth(i) ', & |
---|
2022 | !! sum_half_dth(i), sum_dth(i) |
---|
2023 | IF ((hw0(i) < 1.) .or. (dthmin(i) >= -delta_t_min) ) THEN |
---|
2024 | wape2(i) = -1. |
---|
2025 | !! print *,'wake, rej 1' |
---|
2026 | ELSE IF (iflag_wk_check_trgl==1.AND.abs(2.*sum_dth(i)/(hw0(i)*dthmin(i)) - 1.) > 0.5) THEN |
---|
2027 | wape2(i) = -1. |
---|
2028 | !! print *,'wake, rej 2' |
---|
2029 | ELSE IF (abs(sum_half_dth(i)) < 0.5*abs(sum_dth(i)) ) THEN |
---|
2030 | wape2(i) = -1. |
---|
2031 | !! print *,'wake, rej 3' |
---|
2032 | END IF |
---|
2033 | END IF |
---|
2034 | END DO |
---|
2035 | END IF |
---|
2036 | |
---|
2037 | |
---|
2038 | DO k = 1, klev |
---|
2039 | DO i = 1, klon |
---|
2040 | ! cc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN |
---|
2041 | IF (ok_qx_qw(i) .AND. wape2(i)<0.) THEN |
---|
2042 | ! cc |
---|
2043 | deltatw(i, k) = 0. |
---|
2044 | deltaqw(i, k) = 0. |
---|
2045 | dth(i, k) = 0. |
---|
2046 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
2047 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
2048 | END IF |
---|
2049 | END DO |
---|
2050 | END DO |
---|
2051 | |
---|
2052 | |
---|
2053 | DO i = 1, klon |
---|
2054 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
2055 | IF (ok_qx_qw(i)) THEN |
---|
2056 | ! cc |
---|
2057 | IF (wape2(i)<0.) THEN |
---|
2058 | wape2(i) = 0. |
---|
2059 | cstar2(i) = 0. |
---|
2060 | hw(i) = hwmin |
---|
2061 | !jyg< |
---|
2062 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
2063 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
2064 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
---|
2065 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
2066 | ! print *,'XXXX7 d_sigmaw2(i), sigmaw(i) ', d_sigmaw2(i), sigmaw(i) |
---|
2067 | sigmaw(i) = sigmaw_targ |
---|
2068 | !>jyg |
---|
2069 | fip(i) = 0. |
---|
2070 | gwake(i) = .FALSE. |
---|
2071 | ELSE |
---|
2072 | IF (prt_level>=10) PRINT *, 'wape2>0' |
---|
2073 | cstar2(i) = stark*sqrt(2.*wape2(i)) |
---|
2074 | gwake(i) = .TRUE. |
---|
2075 | END IF |
---|
2076 | END IF |
---|
2077 | END DO |
---|
2078 | |
---|
2079 | DO i = 1, klon |
---|
2080 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
2081 | IF (ok_qx_qw(i)) THEN |
---|
2082 | ! cc |
---|
2083 | ktopw(i) = ktop(i) |
---|
2084 | END IF |
---|
2085 | END DO |
---|
2086 | |
---|
2087 | DO i = 1, klon |
---|
2088 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
2089 | IF (ok_qx_qw(i)) THEN |
---|
2090 | ! cc |
---|
2091 | IF (ktopw(i)>0 .AND. gwake(i)) THEN |
---|
2092 | |
---|
2093 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
2094 | ! cc heff = 600. |
---|
2095 | ! Utilisation de la hauteur hw |
---|
2096 | ! c heff = 0.7*hw |
---|
2097 | heff(i) = hw(i) |
---|
2098 | |
---|
2099 | fip(i) = 0.5*rho(i, ktopw(i))*cstar2(i)**3*heff(i)*2* & |
---|
2100 | sqrt(sigmaw(i)*wdens(i)*3.14) |
---|
2101 | fip(i) = alpk*fip(i) |
---|
2102 | ! jyg2 |
---|
2103 | ELSE |
---|
2104 | fip(i) = 0. |
---|
2105 | END IF |
---|
2106 | END IF |
---|
2107 | END DO |
---|
2108 | |
---|
2109 | ! Limitation de sigmaw |
---|
2110 | |
---|
2111 | ! cc nrlmd |
---|
2112 | ! DO i=1,klon |
---|
2113 | ! IF (OK_qx_qw(i)) THEN |
---|
2114 | ! IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max |
---|
2115 | ! ENDIF |
---|
2116 | ! ENDDO |
---|
2117 | ! cc |
---|
2118 | |
---|
2119 | !jyg< |
---|
2120 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
2121 | DO i = 1, klon |
---|
2122 | kill_wake(i) = ((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
2123 | .NOT. ok_qx_qw(i) .OR. (wdens(i) < 2.*wdensmin) |
---|
2124 | ENDDO |
---|
2125 | ELSE ! (iflag_wk_pop_dyn >= 1) |
---|
2126 | DO i = 1, klon |
---|
2127 | kill_wake(i) = ((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
2128 | .NOT. ok_qx_qw(i) |
---|
2129 | ENDDO |
---|
2130 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
2131 | !>jyg |
---|
2132 | |
---|
2133 | DO k = 1, klev |
---|
2134 | DO i = 1, klon |
---|
2135 | !!jyg IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
2136 | !!jyg .NOT. ok_qx_qw(i)) THEN |
---|
2137 | IF (kill_wake(i)) THEN |
---|
2138 | ! cc |
---|
2139 | dtls(i, k) = 0. |
---|
2140 | dqls(i, k) = 0. |
---|
2141 | deltatw(i, k) = 0. |
---|
2142 | deltaqw(i, k) = 0. |
---|
2143 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
2144 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
2145 | END IF ! (kill_wake(i)) |
---|
2146 | END DO |
---|
2147 | END DO |
---|
2148 | |
---|
2149 | DO i = 1, klon |
---|
2150 | !!jyg IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
2151 | !!jyg .NOT. ok_qx_qw(i)) THEN |
---|
2152 | IF (kill_wake(i)) THEN |
---|
2153 | ktopw(i) = 0 |
---|
2154 | wape(i) = 0. |
---|
2155 | cstar(i) = 0. |
---|
2156 | !!jyg Outside subroutine "Wake" hw, wdens and sigmaw are zero when there are no wakes |
---|
2157 | !! hw(i) = hwmin !jyg |
---|
2158 | !! sigmaw(i) = sigmad !jyg |
---|
2159 | hw(i) = 0. !jyg |
---|
2160 | fip(i) = 0. |
---|
2161 | !! sigmaw(i) = 0. !jyg |
---|
2162 | sigmaw_targ = 0. |
---|
2163 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
---|
2164 | !! d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
2165 | d_sigmaw2(i) = sigmaw_targ - sigmaw_in(i) ! _in = correction jyg 20220124 |
---|
2166 | ! print *,'XXXX8 d_sigmaw2(i), sigmaw(i) ', d_sigmaw2(i), sigmaw(i) |
---|
2167 | sigmaw(i) = sigmaw_targ |
---|
2168 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
2169 | !! awdens(i) = 0. |
---|
2170 | !! wdens(i) = 0. |
---|
2171 | wdens_targ = 0. |
---|
2172 | d_dens_bnd2(i) = d_dens_bnd2(i) + wdens_targ - wdens(i) |
---|
2173 | !! d_wdens2(i) = wdens_targ - wdens(i) |
---|
2174 | d_wdens2(i) = wdens_targ - wdens_in(i) ! jyg 20220916 |
---|
2175 | wdens(i) = wdens_targ |
---|
2176 | wdens_targ = 0. |
---|
2177 | !!jyg: bug fix : the d_adens_bnd2 computation must be before the update of awdens. |
---|
2178 | IF (iflag_wk_pop_dyn == 2) THEN |
---|
2179 | d_adens_bnd2(i) = d_adens_bnd2(i) + wdens_targ - awdens(i) |
---|
2180 | ENDIF ! (iflag_wk_pop_dyn == 2) |
---|
2181 | !! d_awdens2(i) = wdens_targ - awdens(i) |
---|
2182 | d_awdens2(i) = wdens_targ - awdens_in(i) ! jyg 20220916 |
---|
2183 | awdens(i) = wdens_targ |
---|
2184 | !! IF (iflag_wk_pop_dyn == 2) THEN |
---|
2185 | !! d_adens_bnd2(i) = d_adens_bnd2(i) + wdens_targ - awdens(i) |
---|
2186 | !! ENDIF ! (iflag_wk_pop_dyn == 2) |
---|
2187 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
2188 | ELSE ! (kill_wake(i)) |
---|
2189 | wape(i) = wape2(i) |
---|
2190 | cstar(i) = cstar2(i) |
---|
2191 | END IF ! (kill_wake(i)) |
---|
2192 | ! c print*,'wape wape2 ktopw OK_qx_qw =', |
---|
2193 | ! c $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) |
---|
2194 | END DO |
---|
2195 | |
---|
2196 | IF (prt_level>=10) THEN |
---|
2197 | PRINT *, 'wake-6, wape wape2 ktopw OK_qx_qw =', & |
---|
2198 | wape(igout),wape2(igout),ktopw(igout),OK_qx_qw(igout) |
---|
2199 | ENDIF |
---|
2200 | |
---|
2201 | |
---|
2202 | ! ----------------------------------------------------------------- |
---|
2203 | ! Get back to tendencies per second |
---|
2204 | |
---|
2205 | DO k = 1, klev |
---|
2206 | DO i = 1, klon |
---|
2207 | |
---|
2208 | ! cc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
2209 | !jyg< |
---|
2210 | !! IF (ok_qx_qw(i) .AND. k<=kupper(i)) THEN |
---|
2211 | IF (ok_qx_qw(i)) THEN |
---|
2212 | !>jyg |
---|
2213 | ! cc |
---|
2214 | dtls(i, k) = dtls(i, k)/dtime |
---|
2215 | dqls(i, k) = dqls(i, k)/dtime |
---|
2216 | d_deltatw2(i, k) = d_deltatw2(i, k)/dtime |
---|
2217 | d_deltaqw2(i, k) = d_deltaqw2(i, k)/dtime |
---|
2218 | d_deltat_gw(i, k) = d_deltat_gw(i, k)/dtime |
---|
2219 | ! c print*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) |
---|
2220 | ! c $ ,death_rate(i)*sigmaw(i) |
---|
2221 | END IF |
---|
2222 | END DO |
---|
2223 | END DO |
---|
2224 | !jyg< |
---|
2225 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
2226 | DO i = 1, klon |
---|
2227 | IF (ok_qx_qw(i)) THEN |
---|
2228 | d_sig_gen2(i) = d_sig_gen2(i)/dtime |
---|
2229 | d_sig_death2(i) = d_sig_death2(i)/dtime |
---|
2230 | d_sig_col2(i) = d_sig_col2(i)/dtime |
---|
2231 | d_sig_spread2(i) = d_sig_spread2(i)/dtime |
---|
2232 | d_sig_bnd2(i) = d_sig_bnd2(i)/dtime |
---|
2233 | d_sigmaw2(i) = d_sigmaw2(i)/dtime |
---|
2234 | ! print *,'XXXX9 d_sigmaw2(i), sigmaw(i), dtime ', d_sigmaw2(i), sigmaw(i), dtime |
---|
2235 | ! |
---|
2236 | d_dens_gen2(i) = d_dens_gen2(i)/dtime |
---|
2237 | d_dens_death2(i) = d_dens_death2(i)/dtime |
---|
2238 | d_dens_col2(i) = d_dens_col2(i)/dtime |
---|
2239 | d_dens_bnd2(i) = d_dens_bnd2(i)/dtime |
---|
2240 | d_awdens2(i) = d_awdens2(i)/dtime |
---|
2241 | d_wdens2(i) = d_wdens2(i)/dtime |
---|
2242 | ENDIF |
---|
2243 | ENDDO |
---|
2244 | IF (iflag_wk_pop_dyn == 2) THEN |
---|
2245 | DO i = 1, klon |
---|
2246 | IF (ok_qx_qw(i)) THEN |
---|
2247 | d_adens_death2(i) = d_adens_death2(i)/dtime |
---|
2248 | d_adens_icol2(i) = d_adens_icol2(i)/dtime |
---|
2249 | d_adens_acol2(i) = d_adens_acol2(i)/dtime |
---|
2250 | d_adens_bnd2(i) = d_adens_bnd2(i)/dtime |
---|
2251 | ENDIF |
---|
2252 | ENDDO |
---|
2253 | ENDIF ! (iflag_wk_pop_dyn == 2) |
---|
2254 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
2255 | |
---|
2256 | !>jyg |
---|
2257 | |
---|
2258 | RETURN |
---|
2259 | END SUBROUTINE wake |
---|
2260 | |
---|
2261 | SUBROUTINE wake_vec_modulation(nlon, nl, wk_adv, epsilon_loc, qe, d_qe, deltaqw, & |
---|
2262 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
2263 | ! ------------------------------------------------------ |
---|
2264 | ! Dtermination du coefficient alpha tel que les tendances |
---|
2265 | ! corriges alpha*d_G, pour toutes les grandeurs G, correspondent |
---|
2266 | ! a une humidite positive dans la zone (x) et dans la zone (w). |
---|
2267 | ! ------------------------------------------------------ |
---|
2268 | IMPLICIT NONE |
---|
2269 | |
---|
2270 | ! Input |
---|
2271 | REAL qe(nlon, nl), d_qe(nlon, nl) |
---|
2272 | REAL deltaqw(nlon, nl), d_deltaqw(nlon, nl) |
---|
2273 | REAL sigmaw(nlon), d_sigmaw(nlon) |
---|
2274 | LOGICAL wk_adv(nlon) |
---|
2275 | INTEGER nl, nlon |
---|
2276 | ! Output |
---|
2277 | REAL alpha(nlon) |
---|
2278 | ! Internal variables |
---|
2279 | REAL zeta(nlon, nl) |
---|
2280 | REAL alpha1(nlon) |
---|
2281 | REAL x, a, b, c, discrim |
---|
2282 | REAL epsilon_loc |
---|
2283 | INTEGER i,k |
---|
2284 | |
---|
2285 | DO k = 1, nl |
---|
2286 | DO i = 1, nlon |
---|
2287 | IF (wk_adv(i)) THEN |
---|
2288 | IF ((deltaqw(i,k)+d_deltaqw(i,k))>=0.) THEN |
---|
2289 | zeta(i, k) = 0. |
---|
2290 | ELSE |
---|
2291 | zeta(i, k) = 1. |
---|
2292 | END IF |
---|
2293 | END IF |
---|
2294 | END DO |
---|
2295 | DO i = 1, nlon |
---|
2296 | IF (wk_adv(i)) THEN |
---|
2297 | x = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + d_qe(i, k) + & |
---|
2298 | (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - d_sigmaw(i) * & |
---|
2299 | (deltaqw(i,k)+d_deltaqw(i,k)) |
---|
2300 | a = -d_sigmaw(i)*d_deltaqw(i, k) |
---|
2301 | b = d_qe(i, k) + (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - & |
---|
2302 | deltaqw(i, k)*d_sigmaw(i) |
---|
2303 | c = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + epsilon_loc |
---|
2304 | discrim = b*b - 4.*a*c |
---|
2305 | ! print*, 'x, a, b, c, discrim', x, a, b, c, discrim |
---|
2306 | IF (a+b>=0.) THEN !! Condition suffisante pour la positivite de ovap |
---|
2307 | alpha1(i) = 1. |
---|
2308 | ELSE |
---|
2309 | IF (x>=0.) THEN |
---|
2310 | alpha1(i) = 1. |
---|
2311 | ELSE |
---|
2312 | IF (a>0.) THEN |
---|
2313 | alpha1(i) = 0.9*min( (2.*c)/(-b+sqrt(discrim)), & |
---|
2314 | (-b+sqrt(discrim))/(2.*a) ) |
---|
2315 | ELSE IF (a==0.) THEN |
---|
2316 | alpha1(i) = 0.9*(-c/b) |
---|
2317 | ELSE |
---|
2318 | ! print*,'a,b,c discrim',a,b,c discrim |
---|
2319 | alpha1(i) = 0.9*max( (2.*c)/(-b+sqrt(discrim)), & |
---|
2320 | (-b+sqrt(discrim))/(2.*a)) |
---|
2321 | END IF |
---|
2322 | END IF |
---|
2323 | END IF |
---|
2324 | alpha(i) = min(alpha(i), alpha1(i)) |
---|
2325 | END IF |
---|
2326 | END DO |
---|
2327 | END DO |
---|
2328 | |
---|
2329 | RETURN |
---|
2330 | END SUBROUTINE wake_vec_modulation |
---|
2331 | |
---|
2332 | |
---|
2333 | |
---|
2334 | SUBROUTINE pkupper (klon, klev, ptop, ph, pupper, kupper) |
---|
2335 | |
---|
2336 | USE lmdz_wake_ini , ONLY : wk_pupper |
---|
2337 | IMPLICIT NONE |
---|
2338 | |
---|
2339 | INTEGER, INTENT(IN) :: klon,klev |
---|
2340 | REAL, INTENT(IN), DIMENSION (klon,klev+1) :: ph |
---|
2341 | REAL, INTENT(IN), DIMENSION (klon) :: ptop |
---|
2342 | REAL, INTENT(OUT), DIMENSION (klon) :: pupper |
---|
2343 | INTEGER, INTENT(OUT), DIMENSION (klon) :: kupper |
---|
2344 | INTEGER :: i,k |
---|
2345 | |
---|
2346 | |
---|
2347 | kupper = 0 |
---|
2348 | |
---|
2349 | IF (wk_pupper<1.) THEN |
---|
2350 | ! Choose an integration bound well above wake top |
---|
2351 | ! ----------------------------------------------------------------- |
---|
2352 | |
---|
2353 | ! Pupper = 50000. ! melting level |
---|
2354 | ! Pupper = 60000. |
---|
2355 | ! Pupper = 80000. ! essais pour case_e |
---|
2356 | DO i = 1, klon |
---|
2357 | ! pupper(i) = 0.6*ph(i, 1) |
---|
2358 | pupper(i) = wk_pupper*ph(i, 1) |
---|
2359 | pupper(i) = max(pupper(i), 45000.) |
---|
2360 | ! cc Pupper(i) = 60000. |
---|
2361 | END DO |
---|
2362 | |
---|
2363 | ELSE |
---|
2364 | |
---|
2365 | DO i=1, klon |
---|
2366 | ! pupper(i) = wk_pupper*ptop(i)+(1.-wk_pupper)*ph(i, 1) |
---|
2367 | pupper(i) = min( wk_pupper*ptop(i)+(1.-wk_pupper)*ph(i, 1) , ptop(i)-5000.) |
---|
2368 | END DO |
---|
2369 | END IF |
---|
2370 | |
---|
2371 | ! -5/ Determination de kupper |
---|
2372 | |
---|
2373 | DO k = klev, 1, -1 |
---|
2374 | DO i = 1, klon |
---|
2375 | IF (ph(i,k+1)<pupper(i)) kupper(i) = k |
---|
2376 | END DO |
---|
2377 | END DO |
---|
2378 | |
---|
2379 | ! On evite kupper = 1 et kupper = klev |
---|
2380 | DO i = 1, klon |
---|
2381 | kupper(i) = max(kupper(i), 2) |
---|
2382 | kupper(i) = min(kupper(i), klev-1) |
---|
2383 | END DO |
---|
2384 | RETURN |
---|
2385 | END SUBROUTINE pkupper |
---|
2386 | |
---|
2387 | |
---|
2388 | SUBROUTINE wake_popdyn_1(klon, klev, dtime, cstar, tau_wk_inv, wgen, wdens, awdens, sigmaw, & |
---|
2389 | dtimesub, gfl, rad_wk, f_shear, drdt_pos, & |
---|
2390 | d_awdens, d_wdens, d_sigmaw, & |
---|
2391 | iflag_wk_act, wk_adv, cin, wape, & |
---|
2392 | drdt, & |
---|
2393 | d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd, & |
---|
2394 | d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd, & |
---|
2395 | d_wdens_targ, d_sigmaw_targ) |
---|
2396 | |
---|
2397 | |
---|
2398 | USE lmdz_wake_ini , ONLY : wake_ini |
---|
2399 | USE lmdz_wake_ini , ONLY : prt_level,RG |
---|
2400 | USE lmdz_wake_ini , ONLY : stark, wdens_ref |
---|
2401 | USE lmdz_wake_ini , ONLY : tau_cv, rzero, aa0 |
---|
2402 | USE lmdz_wake_ini , ONLY : iflag_wk_pop_dyn, wdensmin |
---|
2403 | USE lmdz_wake_ini , ONLY : sigmad, cstart, sigmaw_max |
---|
2404 | |
---|
2405 | IMPLICIT NONE |
---|
2406 | |
---|
2407 | INTEGER, INTENT(IN) :: klon,klev |
---|
2408 | LOGICAL, DIMENSION (klon), INTENT(IN) :: wk_adv |
---|
2409 | REAL, INTENT(IN) :: dtime |
---|
2410 | REAL, INTENT(IN) :: dtimesub |
---|
2411 | REAL, DIMENSION (klon), INTENT(IN) :: wgen |
---|
2412 | REAL, DIMENSION (klon), INTENT(IN) :: wdens |
---|
2413 | REAL, DIMENSION (klon), INTENT(IN) :: awdens |
---|
2414 | REAL, DIMENSION (klon), INTENT(IN) :: sigmaw |
---|
2415 | REAL, DIMENSION (klon), INTENT(IN) :: gfl, cstar |
---|
2416 | REAL, DIMENSION (klon), INTENT(IN) :: cin, wape |
---|
2417 | REAL, DIMENSION (klon), INTENT(IN) :: rad_wk |
---|
2418 | REAL, DIMENSION (klon), INTENT(IN) :: f_shear |
---|
2419 | INTEGER, INTENT(IN) :: iflag_wk_act |
---|
2420 | |
---|
2421 | |
---|
2422 | ! |
---|
2423 | |
---|
2424 | ! Tendencies of state variables (2 is appended to the names of fields which are the cumul of fields |
---|
2425 | ! computed at each sub-timestep; e.g. d_wdens2 is the cumul of d_wdens) |
---|
2426 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw, d_awdens, d_wdens |
---|
2427 | REAL, DIMENSION (klon), INTENT(OUT) :: drdt |
---|
2428 | ! Some components of the tendencies of state variables |
---|
2429 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sig_gen, d_sig_death, d_sig_col, d_sig_bnd |
---|
2430 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sig_spread |
---|
2431 | REAL, DIMENSION (klon), INTENT(OUT) :: d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd |
---|
2432 | REAL, INTENT(OUT) :: d_wdens_targ, d_sigmaw_targ |
---|
2433 | |
---|
2434 | |
---|
2435 | REAL :: delta_t_min |
---|
2436 | INTEGER :: nsub |
---|
2437 | INTEGER :: i, k |
---|
2438 | REAL :: wdens0 |
---|
2439 | ! IM 080208 |
---|
2440 | LOGICAL, DIMENSION (klon) :: gwake |
---|
2441 | |
---|
2442 | ! Variables liees a la dynamique de population |
---|
2443 | REAL, DIMENSION(klon) :: act |
---|
2444 | REAL, DIMENSION(klon) :: tau_wk_inv |
---|
2445 | REAL, DIMENSION(klon) :: wape1_act, wape2_act |
---|
2446 | LOGICAL, DIMENSION (klon) :: kill_wake |
---|
2447 | REAL :: drdt_pos |
---|
2448 | REAL :: tau_wk_inv_min |
---|
2449 | |
---|
2450 | |
---|
2451 | |
---|
2452 | IF (iflag_wk_act == 0) THEN |
---|
2453 | act(:) = 0. |
---|
2454 | ELSEIF (iflag_wk_act == 1) THEN |
---|
2455 | act(:) = 1. |
---|
2456 | ELSEIF (iflag_wk_act ==2) THEN |
---|
2457 | DO i = 1, klon |
---|
2458 | IF (wk_adv(i)) THEN |
---|
2459 | wape1_act(i) = abs(cin(i)) |
---|
2460 | wape2_act(i) = 2.*wape1_act(i) + 1. |
---|
2461 | act(i) = min(1., max(0., (wape(i)-wape1_act(i)) / (wape2_act(i)-wape1_act(i)) )) |
---|
2462 | ENDIF ! (wk_adv(i)) |
---|
2463 | ENDDO |
---|
2464 | ENDIF ! (iflag_wk_act ==2) |
---|
2465 | |
---|
2466 | |
---|
2467 | DO i = 1, klon |
---|
2468 | ! print*, 'XXX wk_adv(i)', wk_adv(i) |
---|
2469 | IF (wk_adv(i)) THEN |
---|
2470 | !! tau_wk(i) = max(rad_wk(i)/(3.*cstar(i))*((cstar(i)/cstart)**1.5 - 1), 100.) |
---|
2471 | tau_wk_inv(i) = max( (3.*cstar(i))/(rad_wk(i)*((cstar(i)/cstart)**1.5 - 1)), 0.) |
---|
2472 | tau_wk_inv_min = min(tau_wk_inv(i), 1./dtimesub) |
---|
2473 | drdt(i) = (cstar(i) - wgen(i)*(sigmaw(i)/wdens(i)-aa0)/gfl(i)) / & |
---|
2474 | (1 + 2*f_shear(i)*(2.*sigmaw(i)-aa0*wdens(i)) - 2.*sigmaw(i)) |
---|
2475 | !! (1 - 2*sigmaw(i)*(1.-f_shear(i))) |
---|
2476 | drdt_pos=max(drdt(i),0.) |
---|
2477 | |
---|
2478 | !! d_wdens(i) = ( wgen(i)*(1.+2.*(sigmaw(i)-sigmad)) & |
---|
2479 | !! - wdens(i)*tau_wk_inv_min & |
---|
2480 | !! - 2.*gfl(i)*wdens(i)*Cstar(i) )*dtimesub |
---|
2481 | !jyg+mlt< |
---|
2482 | d_awdens(i) = ( wgen(i) - (1./tau_cv)*(awdens(i) - act(i)*wdens(i)) )*dtimesub |
---|
2483 | d_dens_gen(i) = wgen(i) |
---|
2484 | d_dens_death(i) = - (wdens(i)-awdens(i))*tau_wk_inv_min |
---|
2485 | d_dens_col(i) = -2.*wdens(i)*gfl(i)*drdt_pos |
---|
2486 | d_dens_gen(i) = d_dens_gen(i)*dtimesub |
---|
2487 | d_dens_death(i) = d_dens_death(i)*dtimesub |
---|
2488 | d_dens_col(i) = d_dens_col(i)*dtimesub |
---|
2489 | |
---|
2490 | d_wdens(i) = d_dens_gen(i)+d_dens_death(i)+d_dens_col(i) |
---|
2491 | !! d_wdens(i) = ( wgen(i) - (wdens(i)-awdens(i))*tau_wk_inv_min - & |
---|
2492 | !! 2.*wdens(i)*gfl(i)*drdt_pos )*dtimesub |
---|
2493 | !>jyg+mlt |
---|
2494 | ! |
---|
2495 | !jyg< |
---|
2496 | d_wdens_targ = max(d_wdens(i), wdensmin-wdens(i)) |
---|
2497 | !! d_dens_bnd(i) = d_dens_bnd(i) + d_wdens_targ - d_wdens(i) |
---|
2498 | d_dens_bnd(i) = d_wdens_targ - d_wdens(i) |
---|
2499 | d_wdens(i) = d_wdens_targ |
---|
2500 | !! d_wdens(i) = max(d_wdens(i), wdensmin-wdens(i)) |
---|
2501 | !>jyg |
---|
2502 | |
---|
2503 | !jyg+mlt< |
---|
2504 | !! d_sigmaw(i) = ( (1.-2*f_shear(i)*sigmaw(i))*(gfl(i)*Cstar(i)+wgen(i)*sigmad/wdens(i)) & |
---|
2505 | !! + 2.*f_shear(i)*wgen(i)*sigmaw(i)**2/wdens(i) & |
---|
2506 | !! - sigmaw(i)*tau_wk_inv_min )*dtimesub |
---|
2507 | d_sig_gen(i) = wgen(i)*aa0 |
---|
2508 | !! print*, 'XXX sigmaw(i), awdens(i), wdens(i), tau_wk_inv_min', & |
---|
2509 | !! sigmaw(i), awdens(i), wdens(i), tau_wk_inv_min |
---|
2510 | d_sig_death(i) = - sigmaw(i)*(1.-awdens(i)/wdens(i))*tau_wk_inv_min |
---|
2511 | !! |
---|
2512 | |
---|
2513 | d_sig_col(i) = - 2*f_shear(i)*sigmaw(i)*gfl(i)*drdt_pos |
---|
2514 | d_sig_col(i) = - 2*f_shear(i)*(2.*sigmaw(i)-wdens(i)*aa0)*gfl(i)*drdt_pos |
---|
2515 | d_sig_spread(i) = gfl(i)*cstar(i) |
---|
2516 | d_sig_gen(i) = d_sig_gen(i)*dtimesub |
---|
2517 | d_sig_death(i) = d_sig_death(i)*dtimesub |
---|
2518 | d_sig_col(i) = d_sig_col(i)*dtimesub |
---|
2519 | d_sig_spread(i) = d_sig_spread(i)*dtimesub |
---|
2520 | d_sigmaw(i) = d_sig_gen(i) + d_sig_death(i) + d_sig_col(i) + d_sig_spread(i) |
---|
2521 | !>jyg+mlt |
---|
2522 | ! |
---|
2523 | !jyg< |
---|
2524 | d_sigmaw_targ = max(d_sigmaw(i), sigmad-sigmaw(i)) |
---|
2525 | !! d_sig_bnd(i) = d_sig_bnd(i) + d_sigmaw_targ - d_sigmaw(i) |
---|
2526 | !! d_sig_bnd_provis(i) = d_sigmaw_targ - d_sigmaw(i) |
---|
2527 | d_sig_bnd(i) = d_sigmaw_targ - d_sigmaw(i) |
---|
2528 | d_sigmaw(i) = d_sigmaw_targ |
---|
2529 | !! d_sigmaw(i) = max(d_sigmaw(i), sigmad-sigmaw(i)) |
---|
2530 | !>jyg |
---|
2531 | ENDIF |
---|
2532 | ENDDO |
---|
2533 | |
---|
2534 | IF (prt_level >= 10) THEN |
---|
2535 | print *,'wake, cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), drdt(1) ', & |
---|
2536 | cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), drdt(1) |
---|
2537 | print *,'wake, wdens(1), awdens(1), act(1), d_awdens(1) ', & |
---|
2538 | wdens(1), awdens(1), act(1), d_awdens(1) |
---|
2539 | print *,'wake, wgen, -(wdens-awdens)*tau_wk_inv, -2.*wdens*gfl*drdt_pos, d_wdens ', & |
---|
2540 | wgen(1), -(wdens(1)-awdens(1))*tau_wk_inv(1), -2.*wdens(1)*gfl(1)*drdt_pos, d_wdens(1) |
---|
2541 | print *,'wake, d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) ', & |
---|
2542 | d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) |
---|
2543 | ENDIF |
---|
2544 | |
---|
2545 | RETURN |
---|
2546 | END SUBROUTINE wake_popdyn_1 |
---|
2547 | |
---|
2548 | SUBROUTINE wake_popdyn_2 ( klon, klev, wk_adv, dtimesub, wgen, & |
---|
2549 | sigmaw, wdens, awdens, & !! states variables |
---|
2550 | gfl, cstar, cin, wape, rad_wk, & |
---|
2551 | d_sigmaw, d_wdens, d_awdens, & !! tendences |
---|
2552 | cont_fact, & |
---|
2553 | d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd, & |
---|
2554 | d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd, & |
---|
2555 | d_adens_death, d_adens_icol, d_adens_acol, d_adens_bnd ) |
---|
2556 | |
---|
2557 | |
---|
2558 | |
---|
2559 | USE lmdz_wake_ini , ONLY : wake_ini |
---|
2560 | USE lmdz_wake_ini , ONLY : prt_level,RG |
---|
2561 | USE lmdz_wake_ini , ONLY : stark, wdens_ref |
---|
2562 | USE lmdz_wake_ini , ONLY : tau_cv, rzero, aa0 |
---|
2563 | USE lmdz_wake_ini , ONLY : iflag_wk_pop_dyn, wdensmin |
---|
2564 | USE lmdz_wake_ini , ONLY : sigmad, cstart, sigmaw_max |
---|
2565 | |
---|
2566 | IMPLICIT NONE |
---|
2567 | |
---|
2568 | INTEGER, INTENT(IN) :: klon,klev |
---|
2569 | LOGICAL, DIMENSION (klon), INTENT(IN) :: wk_adv |
---|
2570 | REAL, INTENT(IN) :: dtimesub |
---|
2571 | REAL, DIMENSION (klon), INTENT(IN) :: wgen !! B = birth rate of wakes |
---|
2572 | REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw !! sigma = fractional area of wakes |
---|
2573 | REAL, DIMENSION (klon), INTENT(INOUT) :: wdens !! D = number of wakes per unit area |
---|
2574 | REAL, DIMENSION (klon), INTENT(INOUT) :: awdens !! A = number of active wakes per unit area |
---|
2575 | REAL, DIMENSION (klon), INTENT(IN) :: gfl !! Lg = gust front lenght per unit area |
---|
2576 | REAL, DIMENSION (klon), INTENT(IN) :: cstar !! C* = spreading velocity of wakes |
---|
2577 | REAL, DIMENSION (klon), INTENT(IN) :: cin, wape ! RM : A Faire disparaitre |
---|
2578 | REAL, DIMENSION (klon), INTENT(IN) :: rad_wk !! r = wake radius |
---|
2579 | |
---|
2580 | ! |
---|
2581 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw, d_wdens, d_awdens |
---|
2582 | REAL, DIMENSION (klon), INTENT(OUT) :: cont_fact !! RM facteur de contact = 2 pi * rad * C* |
---|
2583 | ! Some components of the tendencies of state variables |
---|
2584 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd |
---|
2585 | REAL, DIMENSION (klon), INTENT(OUT) :: d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd |
---|
2586 | REAL, DIMENSION (klon), INTENT(OUT) :: d_adens_death, d_adens_icol, d_adens_acol, d_adens_bnd |
---|
2587 | |
---|
2588 | |
---|
2589 | !! internal variables |
---|
2590 | |
---|
2591 | INTEGER :: i, k |
---|
2592 | REAL, DIMENSION (klon) :: tau_wk_inv !! tau = life time of wakes |
---|
2593 | REAL :: tau_wk_inv_min |
---|
2594 | REAL, DIMENSION (klon) :: tau_prime !! tau_prime = life time of actives wakes |
---|
2595 | REAL :: d_wdens_targ, d_sigmaw_targ |
---|
2596 | |
---|
2597 | |
---|
2598 | !! Equations |
---|
2599 | !! dD/dt = B - (D-A)/tau - f D^2 |
---|
2600 | !! dA/dt = B - A/tau_prime + f (D-A)^2 - f A^2 |
---|
2601 | !! dsigma/dt = B a0 - sigma/D (D-A)/tau + Lg C* - f (D-A)^2 (sigma/D-a0) |
---|
2602 | !! |
---|
2603 | !! f = 2 (B (a0-sigma/D) + Lg C*) / (2 (D-A)^2 (2 sigma/D-a0) + D (1-2 sigma)) |
---|
2604 | |
---|
2605 | |
---|
2606 | DO i = 1, klon |
---|
2607 | ! print*, 'XXX wk_adv(i)', wk_adv(i) |
---|
2608 | IF (wk_adv(i)) THEN |
---|
2609 | !! tau_wk(i) = max(rad_wk(i)/(3.*cstar(i))*((cstar(i)/cstart)**1.5 - 1), 100.) |
---|
2610 | tau_wk_inv(i) = max( (3.*cstar(i))/(rad_wk(i)*((cstar(i)/cstart)**1.5 - 1)), 0.) |
---|
2611 | tau_wk_inv_min = min(tau_wk_inv(i), 1./dtimesub) |
---|
2612 | tau_prime(i) = tau_cv |
---|
2613 | !! cont_fact(i) = 2.*(wgen(i)*(aa0-sigmaw(i)/wdens(i)) + gfl(i)*cstar(i)) / & |
---|
2614 | !! (2.*(wdens(i)-awdens(i))**2*(2.*sigmaw(i)/wdens(i) - aa0) + wdens(i)*(1.-2.*sigmaw(i))) |
---|
2615 | !! cont_fact(i) = 2.*3.14*rad_wk(i)*cstar(i) ! bug |
---|
2616 | !! cont_fact(i) = 4.*3.14*rad_wk(i)*cstar(i) |
---|
2617 | cont_fact(i) = 2.*gfl(i)*cstar(i)/wdens(i) |
---|
2618 | |
---|
2619 | d_sig_gen(i) = wgen(i)*aa0 |
---|
2620 | d_sig_death(i) = - sigmaw(i)*(1.-awdens(i)/wdens(i))*tau_wk_inv_min |
---|
2621 | d_sig_col(i) = - cont_fact(i)*(wdens(i)-awdens(i))**2*(2.*sigmaw(i)/wdens(i)-aa0) |
---|
2622 | d_sig_spread(i) = gfl(i)*cstar(i) |
---|
2623 | ! |
---|
2624 | d_sig_gen(i) = d_sig_gen(i)*dtimesub |
---|
2625 | d_sig_death(i) = d_sig_death(i)*dtimesub |
---|
2626 | d_sig_col(i) = d_sig_col(i)*dtimesub |
---|
2627 | d_sig_spread(i) = d_sig_spread(i)*dtimesub |
---|
2628 | d_sigmaw(i) = d_sig_gen(i) + d_sig_death(i) + d_sig_col(i) + d_sig_spread(i) |
---|
2629 | |
---|
2630 | |
---|
2631 | d_sigmaw_targ = max(d_sigmaw(i), sigmad-sigmaw(i)) |
---|
2632 | !! d_sig_bnd(i) = d_sig_bnd(i) + d_sigmaw_targ - d_sigmaw(i) |
---|
2633 | !! d_sig_bnd_provis(i) = d_sigmaw_targ - d_sigmaw(i) |
---|
2634 | d_sig_bnd(i) = d_sigmaw_targ - d_sigmaw(i) |
---|
2635 | d_sigmaw(i) = d_sigmaw_targ |
---|
2636 | !! d_sigmaw(i) = max(d_sigmaw(i), sigmad-sigmaw(i)) |
---|
2637 | |
---|
2638 | |
---|
2639 | d_dens_gen(i) = wgen(i) |
---|
2640 | d_dens_death(i) = - (wdens(i)-awdens(i))*tau_wk_inv_min |
---|
2641 | d_dens_col(i) = - cont_fact(i)*wdens(i)**2 |
---|
2642 | ! |
---|
2643 | d_dens_gen(i) = d_dens_gen(i)*dtimesub |
---|
2644 | d_dens_death(i) = d_dens_death(i)*dtimesub |
---|
2645 | d_dens_col(i) = d_dens_col(i)*dtimesub |
---|
2646 | d_wdens(i) = d_dens_gen(i) + d_dens_death(i) + d_dens_col(i) |
---|
2647 | |
---|
2648 | |
---|
2649 | d_adens_death(i) = -awdens(i)/tau_prime(i) |
---|
2650 | d_adens_icol(i) = cont_fact(i)*(wdens(i)-awdens(i))**2 |
---|
2651 | d_adens_acol(i) = - cont_fact(i)*awdens(i)**2 |
---|
2652 | ! |
---|
2653 | d_adens_death(i) = d_adens_death(i)*dtimesub |
---|
2654 | d_adens_icol(i) = d_adens_icol(i)*dtimesub |
---|
2655 | d_adens_acol(i) = d_adens_acol(i)*dtimesub |
---|
2656 | d_awdens(i) = d_dens_gen(i) + d_adens_death(i) + d_adens_icol(i) + d_adens_acol(i) |
---|
2657 | |
---|
2658 | !! |
---|
2659 | d_wdens_targ = max(d_wdens(i), wdensmin-wdens(i)) |
---|
2660 | !! d_dens_bnd(i) = d_dens_bnd(i) + d_wdens_targ - d_wdens(i) |
---|
2661 | d_dens_bnd(i) = d_wdens_targ - d_wdens(i) |
---|
2662 | d_wdens(i) = d_wdens_targ |
---|
2663 | |
---|
2664 | d_wdens_targ = min(max(d_awdens(i),-awdens(i)), wdens(i)-awdens(i)) |
---|
2665 | !! d_dens_bnd(i) = d_dens_bnd(i) + d_wdens_targ - d_wdens(i) |
---|
2666 | d_adens_bnd(i) = d_wdens_targ - d_awdens(i) |
---|
2667 | d_awdens(i) = d_wdens_targ |
---|
2668 | |
---|
2669 | |
---|
2670 | |
---|
2671 | ENDIF |
---|
2672 | ENDDO |
---|
2673 | |
---|
2674 | IF (prt_level >= 10) THEN |
---|
2675 | print *,'wake, cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), cont_fact(1) ', & |
---|
2676 | cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), cont_fact(1) |
---|
2677 | print *,'wake, wdens(1), awdens(1), d_awdens(1) ', & |
---|
2678 | wdens(1), awdens(1), d_awdens(1) |
---|
2679 | print *,'wake, d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) ', & |
---|
2680 | d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) |
---|
2681 | ENDIF |
---|
2682 | sigmaw=sigmaw+d_sigmaw |
---|
2683 | wdens=wdens+d_wdens |
---|
2684 | awdens=awdens+d_awdens |
---|
2685 | |
---|
2686 | RETURN |
---|
2687 | END SUBROUTINE wake_popdyn_2 |
---|
2688 | |
---|
2689 | END MODULE lmdz_wake |
---|