| 1 | MODULE lmdz_wake |
|---|
| 2 | |
|---|
| 3 | ! $Id: lmdz_wake.F90 4727 2023-10-19 14:02:57Z ymeurdesoif $ |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | SUBROUTINE wake(klon,klev,znatsurf, p, ph, pi, dtime, & |
|---|
| 8 | tenv0, qe0, omgb, & |
|---|
| 9 | dtdwn, dqdwn, amdwn, amup, dta, dqa, wgen, & |
|---|
| 10 | sigd_con, Cin, & |
|---|
| 11 | deltatw, deltaqw, sigmaw, awdens, wdens, & ! state variables |
|---|
| 12 | dth, hw, wape, fip, gfl, & |
|---|
| 13 | dtls, dqls, ktopw, omgbdth, dp_omgb, tu, qu, & |
|---|
| 14 | dtke, dqke, omg, dp_deltomg, wkspread, cstar, & |
|---|
| 15 | d_deltat_gw, & ! tendencies |
|---|
| 16 | d_deltatw2, d_deltaqw2, d_sigmaw2, d_awdens2, d_wdens2) ! tendencies |
|---|
| 17 | |
|---|
| 18 | |
|---|
| 19 | ! ************************************************************** |
|---|
| 20 | ! * |
|---|
| 21 | ! WAKE * |
|---|
| 22 | ! retour a un Pupper fixe * |
|---|
| 23 | ! * |
|---|
| 24 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
|---|
| 25 | ! modified by : ROEHRIG Romain 01/29/2007 * |
|---|
| 26 | ! ************************************************************** |
|---|
| 27 | |
|---|
| 28 | |
|---|
| 29 | USE lmdz_wake_ini , ONLY : wake_ini |
|---|
| 30 | USE lmdz_wake_ini , ONLY : prt_level,epsim1,RG,RD |
|---|
| 31 | USE lmdz_wake_ini , ONLY : stark, wdens_ref, coefgw, alpk, wk_pupper |
|---|
| 32 | USE lmdz_wake_ini , ONLY : crep_upper, crep_sol, tau_cv, rzero, aa0, flag_wk_check_trgl |
|---|
| 33 | USE lmdz_wake_ini , ONLY : ok_bug_gfl |
|---|
| 34 | USE lmdz_wake_ini , ONLY : iflag_wk_act, iflag_wk_check_trgl, iflag_wk_pop_dyn, wdensmin |
|---|
| 35 | USE lmdz_wake_ini , ONLY : sigmad, hwmin, wapecut, cstart, sigmaw_max, dens_rate, epsilon_loc |
|---|
| 36 | USE lmdz_wake_ini , ONLY : iflag_wk_profile |
|---|
| 37 | |
|---|
| 38 | |
|---|
| 39 | IMPLICIT NONE |
|---|
| 40 | ! ============================================================================ |
|---|
| 41 | |
|---|
| 42 | |
|---|
| 43 | ! But : Decrire le comportement des poches froides apparaissant dans les |
|---|
| 44 | ! grands systemes convectifs, et fournir l'energie disponible pour |
|---|
| 45 | ! le declenchement de nouvelles colonnes convectives. |
|---|
| 46 | |
|---|
| 47 | ! State variables : |
|---|
| 48 | ! deltatw : temperature difference between wake and off-wake regions |
|---|
| 49 | ! deltaqw : specific humidity difference between wake and off-wake regions |
|---|
| 50 | ! sigmaw : fractional area covered by wakes. |
|---|
| 51 | ! wdens : number of wakes per unit area |
|---|
| 52 | |
|---|
| 53 | ! Variable de sortie : |
|---|
| 54 | |
|---|
| 55 | ! wape : WAke Potential Energy |
|---|
| 56 | ! fip : Front Incident Power (W/m2) - ALP |
|---|
| 57 | ! gfl : Gust Front Length per unit area (m-1) |
|---|
| 58 | ! dtls : large scale temperature tendency due to wake |
|---|
| 59 | ! dqls : large scale humidity tendency due to wake |
|---|
| 60 | ! hw : wake top hight (given by hw*deltatw(1)/2=wape) |
|---|
| 61 | ! dp_omgb : vertical gradient of large scale omega |
|---|
| 62 | ! awdens : densite de poches actives |
|---|
| 63 | ! wdens : densite de poches |
|---|
| 64 | ! omgbdth: flux of Delta_Theta transported by LS omega |
|---|
| 65 | ! dtKE : differential heating (wake - unpertubed) |
|---|
| 66 | ! dqKE : differential moistening (wake - unpertubed) |
|---|
| 67 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
|---|
| 68 | ! dp_deltomg : vertical gradient of omg (s-1) |
|---|
| 69 | ! wkspread : spreading term in d_t_wake and d_q_wake |
|---|
| 70 | ! deltatw : updated temperature difference (T_w-T_u). |
|---|
| 71 | ! deltaqw : updated humidity difference (q_w-q_u). |
|---|
| 72 | ! sigmaw : updated wake fractional area. |
|---|
| 73 | ! d_deltat_gw : delta T tendency due to GW |
|---|
| 74 | |
|---|
| 75 | ! Variables d'entree : |
|---|
| 76 | |
|---|
| 77 | ! aire : aire de la maille |
|---|
| 78 | ! tenv0 : temperature dans l'environnement (K) |
|---|
| 79 | ! qe0 : humidite dans l'environnement (kg/kg) |
|---|
| 80 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
|---|
| 81 | ! dtdwn: source de chaleur due aux descentes (K/s) |
|---|
| 82 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
|---|
| 83 | ! dta : source de chaleur due courants satures et detrain (K/s) |
|---|
| 84 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
|---|
| 85 | ! wgen : number of wakes generated per unit area and per sec (/m^2/s) |
|---|
| 86 | ! amdwn: flux de masse total des descentes, par unite de |
|---|
| 87 | ! surface de la maille (kg/m2/s) |
|---|
| 88 | ! amup : flux de masse total des ascendances, par unite de |
|---|
| 89 | ! surface de la maille (kg/m2/s) |
|---|
| 90 | ! sigd_con: |
|---|
| 91 | ! Cin : convective inhibition |
|---|
| 92 | ! p : pressions aux milieux des couches (Pa) |
|---|
| 93 | ! ph : pressions aux interfaces (Pa) |
|---|
| 94 | ! pi : (p/p_0)**kapa (adim) |
|---|
| 95 | ! dtime: increment temporel (s) |
|---|
| 96 | |
|---|
| 97 | ! Variables internes : |
|---|
| 98 | |
|---|
| 99 | ! rhow : masse volumique de la poche froide |
|---|
| 100 | ! rho : environment density at P levels |
|---|
| 101 | ! rhoh : environment density at Ph levels |
|---|
| 102 | ! tenv : environment temperature | may change within |
|---|
| 103 | ! qe : environment humidity | sub-time-stepping |
|---|
| 104 | ! the : environment potential temperature |
|---|
| 105 | ! thu : potential temperature in undisturbed area |
|---|
| 106 | ! tu : temperature in undisturbed area |
|---|
| 107 | ! qu : humidity in undisturbed area |
|---|
| 108 | ! dp_omgb: vertical gradient og LS omega |
|---|
| 109 | ! omgbw : wake average vertical omega |
|---|
| 110 | ! dp_omgbw: vertical gradient of omgbw |
|---|
| 111 | ! omgbdq : flux of Delta_q transported by LS omega |
|---|
| 112 | ! dth : potential temperature diff. wake-undist. |
|---|
| 113 | ! th1 : first pot. temp. for vertical advection (=thu) |
|---|
| 114 | ! th2 : second pot. temp. for vertical advection (=thw) |
|---|
| 115 | ! q1 : first humidity for vertical advection |
|---|
| 116 | ! q2 : second humidity for vertical advection |
|---|
| 117 | ! d_deltatw : terme de redistribution pour deltatw |
|---|
| 118 | ! d_deltaqw : terme de redistribution pour deltaqw |
|---|
| 119 | ! deltatw0 : deltatw initial |
|---|
| 120 | ! deltaqw0 : deltaqw initial |
|---|
| 121 | ! hw0 : wake top hight (defined as the altitude at which deltatw=0) |
|---|
| 122 | ! amflux : horizontal mass flux through wake boundary |
|---|
| 123 | ! wdens_ref: initial number of wakes per unit area (3D) or per |
|---|
| 124 | ! unit length (2D), at the beginning of each time step |
|---|
| 125 | ! Tgw : 1 sur la periode de onde de gravite |
|---|
| 126 | ! Cgw : vitesse de propagation de onde de gravite |
|---|
| 127 | ! LL : distance entre 2 poches |
|---|
| 128 | |
|---|
| 129 | ! ------------------------------------------------------------------------- |
|---|
| 130 | ! Declaration de variables |
|---|
| 131 | ! ------------------------------------------------------------------------- |
|---|
| 132 | |
|---|
| 133 | |
|---|
| 134 | ! Arguments en entree |
|---|
| 135 | ! -------------------- |
|---|
| 136 | |
|---|
| 137 | INTEGER, INTENT(IN) :: klon,klev |
|---|
| 138 | INTEGER, DIMENSION (klon), INTENT(IN) :: znatsurf |
|---|
| 139 | REAL, DIMENSION (klon, klev), INTENT(IN) :: p, pi |
|---|
| 140 | REAL, DIMENSION (klon, klev+1), INTENT(IN) :: ph |
|---|
| 141 | REAL, DIMENSION (klon, klev), INTENT(IN) :: omgb |
|---|
| 142 | REAL, INTENT(IN) :: dtime |
|---|
| 143 | REAL, DIMENSION (klon, klev), INTENT(IN) :: tenv0, qe0 |
|---|
| 144 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dtdwn, dqdwn |
|---|
| 145 | REAL, DIMENSION (klon, klev), INTENT(IN) :: amdwn, amup |
|---|
| 146 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dta, dqa |
|---|
| 147 | REAL, DIMENSION (klon), INTENT(IN) :: wgen |
|---|
| 148 | REAL, DIMENSION (klon), INTENT(IN) :: sigd_con |
|---|
| 149 | REAL, DIMENSION (klon), INTENT(IN) :: Cin |
|---|
| 150 | |
|---|
| 151 | ! |
|---|
| 152 | ! Input/Output |
|---|
| 153 | ! State variables |
|---|
| 154 | REAL, DIMENSION (klon, klev), INTENT(INOUT) :: deltatw, deltaqw |
|---|
| 155 | REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw |
|---|
| 156 | REAL, DIMENSION (klon), INTENT(INOUT) :: awdens |
|---|
| 157 | REAL, DIMENSION (klon), INTENT(INOUT) :: wdens |
|---|
| 158 | |
|---|
| 159 | ! Sorties |
|---|
| 160 | ! -------- |
|---|
| 161 | |
|---|
| 162 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dth |
|---|
| 163 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: tu, qu |
|---|
| 164 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtls, dqls |
|---|
| 165 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtke, dqke |
|---|
| 166 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: wkspread ! unused (jyg) |
|---|
| 167 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: omgbdth, omg |
|---|
| 168 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dp_omgb, dp_deltomg |
|---|
| 169 | REAL, DIMENSION (klon), INTENT(OUT) :: hw, wape, fip, gfl, cstar |
|---|
| 170 | INTEGER, DIMENSION (klon), INTENT(OUT) :: ktopw |
|---|
| 171 | ! Tendencies of state variables (2 is appended to the names of fields which are the cumul of fields |
|---|
| 172 | ! computed at each sub-timestep; e.g. d_wdens2 is the cumul of d_wdens) |
|---|
| 173 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltat_gw |
|---|
| 174 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltatw2, d_deltaqw2 |
|---|
| 175 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw2, d_awdens2, d_wdens2 |
|---|
| 176 | |
|---|
| 177 | ! Variables internes |
|---|
| 178 | ! ------------------- |
|---|
| 179 | |
|---|
| 180 | ! Variables a fixer |
|---|
| 181 | |
|---|
| 182 | REAL :: delta_t_min |
|---|
| 183 | INTEGER :: nsub |
|---|
| 184 | REAL :: dtimesub |
|---|
| 185 | REAL :: wdens0 |
|---|
| 186 | ! IM 080208 |
|---|
| 187 | LOGICAL, DIMENSION (klon) :: gwake |
|---|
| 188 | |
|---|
| 189 | ! Variables de sauvegarde |
|---|
| 190 | REAL, DIMENSION (klon, klev) :: deltatw0 |
|---|
| 191 | REAL, DIMENSION (klon, klev) :: deltaqw0 |
|---|
| 192 | REAL, DIMENSION (klon, klev) :: tenv, qe |
|---|
| 193 | !! REAL, DIMENSION (klon) :: sigmaw1 |
|---|
| 194 | |
|---|
| 195 | ! Variables liees a la dynamique de population 1 |
|---|
| 196 | REAL, DIMENSION(klon) :: act |
|---|
| 197 | REAL, DIMENSION(klon) :: rad_wk, tau_wk_inv |
|---|
| 198 | REAL, DIMENSION(klon) :: f_shear |
|---|
| 199 | REAL, DIMENSION(klon) :: drdt |
|---|
| 200 | |
|---|
| 201 | ! Variables liees a la dynamique de population 2 |
|---|
| 202 | REAL, DIMENSION(klon) :: cont_fact |
|---|
| 203 | |
|---|
| 204 | !! REAL, DIMENSION(klon) :: d_sig_gen, d_sig_death, d_sig_col |
|---|
| 205 | REAL, DIMENSION(klon) :: wape1_act, wape2_act |
|---|
| 206 | LOGICAL, DIMENSION (klon) :: kill_wake |
|---|
| 207 | REAL :: drdt_pos |
|---|
| 208 | REAL :: tau_wk_inv_min |
|---|
| 209 | ! Some components of the tendencies of state variables |
|---|
| 210 | REAL, DIMENSION (klon) :: d_sig_gen2, d_sig_death2, d_sig_col2, d_sig_spread2, d_sig_bnd2 |
|---|
| 211 | REAL, DIMENSION (klon) :: d_dens_gen2, d_dens_death2, d_dens_col2, d_dens_bnd2 |
|---|
| 212 | REAL, DIMENSION (klon) :: d_adens_death2, d_adens_icol2, d_adens_acol2, d_adens_bnd2 |
|---|
| 213 | |
|---|
| 214 | ! Variables pour les GW |
|---|
| 215 | REAL, DIMENSION (klon) :: ll |
|---|
| 216 | REAL, DIMENSION (klon, klev) :: n2 |
|---|
| 217 | REAL, DIMENSION (klon, klev) :: cgw |
|---|
| 218 | REAL, DIMENSION (klon, klev) :: tgw |
|---|
| 219 | |
|---|
| 220 | ! Variables liees au calcul de hw |
|---|
| 221 | REAL, DIMENSION (klon) :: ptop_provis, ptop, ptop_new |
|---|
| 222 | REAL, DIMENSION (klon) :: sum_dth |
|---|
| 223 | REAL, DIMENSION (klon) :: dthmin |
|---|
| 224 | REAL, DIMENSION (klon) :: z, dz, hw0 |
|---|
| 225 | INTEGER, DIMENSION (klon) :: ktop, kupper |
|---|
| 226 | |
|---|
| 227 | ! Variables liees au test de la forme triangulaire du profil de Delta_theta |
|---|
| 228 | REAL, DIMENSION (klon) :: sum_half_dth |
|---|
| 229 | REAL, DIMENSION (klon) :: dz_half |
|---|
| 230 | |
|---|
| 231 | ! Sub-timestep tendencies and related variables |
|---|
| 232 | REAL, DIMENSION (klon, klev) :: d_deltatw, d_deltaqw |
|---|
| 233 | REAL, DIMENSION (klon, klev) :: d_tenv, d_qe |
|---|
| 234 | REAL, DIMENSION (klon) :: d_awdens, d_wdens, d_sigmaw |
|---|
| 235 | REAL, DIMENSION (klon) :: d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd |
|---|
| 236 | REAL, DIMENSION (klon) :: d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd |
|---|
| 237 | REAL, DIMENSION (klon) :: d_adens_death, d_adens_icol, d_adens_acol, d_adens_bnd |
|---|
| 238 | REAL, DIMENSION (klon) :: alpha, alpha_tot |
|---|
| 239 | REAL, DIMENSION (klon) :: q0_min, q1_min |
|---|
| 240 | LOGICAL, DIMENSION (klon) :: wk_adv, ok_qx_qw |
|---|
| 241 | |
|---|
| 242 | ! Autres variables internes |
|---|
| 243 | INTEGER ::isubstep, k, i, igout |
|---|
| 244 | |
|---|
| 245 | REAL :: sigmaw_targ |
|---|
| 246 | REAL :: wdens_targ |
|---|
| 247 | REAL :: d_sigmaw_targ |
|---|
| 248 | REAL :: d_wdens_targ |
|---|
| 249 | |
|---|
| 250 | REAL, DIMENSION (klon) :: sum_thu, sum_tu, sum_qu, sum_thvu |
|---|
| 251 | REAL, DIMENSION (klon) :: sum_dq, sum_rho |
|---|
| 252 | REAL, DIMENSION (klon) :: sum_dtdwn, sum_dqdwn |
|---|
| 253 | REAL, DIMENSION (klon) :: av_thu, av_tu, av_qu, av_thvu |
|---|
| 254 | REAL, DIMENSION (klon) :: av_dth, av_dq, av_rho |
|---|
| 255 | REAL, DIMENSION (klon) :: av_dtdwn, av_dqdwn |
|---|
| 256 | |
|---|
| 257 | REAL, DIMENSION (klon, klev) :: rho, rhow |
|---|
| 258 | REAL, DIMENSION (klon, klev+1) :: rhoh |
|---|
| 259 | REAL, DIMENSION (klon, klev) :: rhow_moyen |
|---|
| 260 | REAL, DIMENSION (klon, klev) :: zh |
|---|
| 261 | REAL, DIMENSION (klon, klev+1) :: zhh |
|---|
| 262 | REAL, DIMENSION (klon, klev) :: epaisseur1, epaisseur2 |
|---|
| 263 | |
|---|
| 264 | REAL, DIMENSION (klon, klev) :: the, thu |
|---|
| 265 | |
|---|
| 266 | REAL, DIMENSION (klon, klev) :: omgbw |
|---|
| 267 | REAL, DIMENSION (klon) :: pupper |
|---|
| 268 | REAL, DIMENSION (klon) :: omgtop |
|---|
| 269 | REAL, DIMENSION (klon, klev) :: dp_omgbw |
|---|
| 270 | REAL, DIMENSION (klon) :: ztop, dztop |
|---|
| 271 | REAL, DIMENSION (klon, klev) :: alpha_up |
|---|
| 272 | |
|---|
| 273 | REAL, DIMENSION (klon) :: rre1, rre2 |
|---|
| 274 | REAL :: rrd1, rrd2 |
|---|
| 275 | REAL, DIMENSION (klon, klev) :: th1, th2, q1, q2 |
|---|
| 276 | REAL, DIMENSION (klon, klev) :: d_th1, d_th2, d_dth |
|---|
| 277 | REAL, DIMENSION (klon, klev) :: d_q1, d_q2, d_dq |
|---|
| 278 | REAL, DIMENSION (klon, klev) :: omgbdq |
|---|
| 279 | |
|---|
| 280 | REAL, DIMENSION (klon) :: ff, gg |
|---|
| 281 | REAL, DIMENSION (klon) :: wape2, cstar2, heff |
|---|
| 282 | |
|---|
| 283 | REAL, DIMENSION (klon, klev) :: crep |
|---|
| 284 | |
|---|
| 285 | REAL, DIMENSION (klon, klev) :: ppi |
|---|
| 286 | |
|---|
| 287 | ! cc nrlmd |
|---|
| 288 | REAL, DIMENSION (klon) :: death_rate |
|---|
| 289 | !! REAL, DIMENSION (klon) :: nat_rate |
|---|
| 290 | REAL, DIMENSION (klon, klev) :: entr |
|---|
| 291 | REAL, DIMENSION (klon, klev) :: detr |
|---|
| 292 | |
|---|
| 293 | REAL, DIMENSION(klon) :: sigmaw_in ! pour les prints |
|---|
| 294 | REAL, DIMENSION(klon) :: awdens_in, wdens_in ! pour les prints |
|---|
| 295 | |
|---|
| 296 | ! ------------------------------------------------------------------------- |
|---|
| 297 | ! Initialisations |
|---|
| 298 | ! ------------------------------------------------------------------------- |
|---|
| 299 | ! ALON = 3.e5 |
|---|
| 300 | ! alon = 1.E6 |
|---|
| 301 | |
|---|
| 302 | ! Provisionnal; to be suppressed when f_shear is parameterized |
|---|
| 303 | f_shear(:) = 1. ! 0. for strong shear, 1. for weak shear |
|---|
| 304 | |
|---|
| 305 | |
|---|
| 306 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
|---|
| 307 | |
|---|
| 308 | ! coefgw : Coefficient pour les ondes de gravite |
|---|
| 309 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
|---|
| 310 | ! wdens : Densite surfacique de poche froide |
|---|
| 311 | ! ------------------------------------------------------------------------- |
|---|
| 312 | |
|---|
| 313 | ! cc nrlmd coefgw=10 |
|---|
| 314 | ! coefgw=1 |
|---|
| 315 | ! wdens0 = 1.0/(alon**2) |
|---|
| 316 | ! cc nrlmd wdens = 1.0/(alon**2) |
|---|
| 317 | ! cc nrlmd stark = 0.50 |
|---|
| 318 | ! CRtest |
|---|
| 319 | ! cc nrlmd alpk=0.1 |
|---|
| 320 | ! alpk = 1.0 |
|---|
| 321 | ! alpk = 0.5 |
|---|
| 322 | ! alpk = 0.05 |
|---|
| 323 | !print *,'XXXX dtime input ', dtime |
|---|
| 324 | igout = klon/2+1/klon |
|---|
| 325 | |
|---|
| 326 | IF (iflag_wk_pop_dyn == 0) THEN |
|---|
| 327 | ! Initialisation de toutes des densites a wdens_ref. |
|---|
| 328 | ! Les densites peuvent evoluer si les poches debordent |
|---|
| 329 | ! (voir au tout debut de la boucle sur les substeps) |
|---|
| 330 | !jyg< |
|---|
| 331 | !! wdens(:) = wdens_ref |
|---|
| 332 | DO i = 1,klon |
|---|
| 333 | wdens(i) = wdens_ref(znatsurf(i)+1) |
|---|
| 334 | ENDDO |
|---|
| 335 | !>jyg |
|---|
| 336 | ENDIF ! (iflag_wk_pop_dyn == 0) |
|---|
| 337 | |
|---|
| 338 | ! print*,'stark',stark |
|---|
| 339 | ! print*,'alpk',alpk |
|---|
| 340 | ! print*,'wdens',wdens |
|---|
| 341 | ! print*,'coefgw',coefgw |
|---|
| 342 | ! cc |
|---|
| 343 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
|---|
| 344 | ! ------------------------------------------------------------------------- |
|---|
| 345 | |
|---|
| 346 | delta_t_min = 0.2 |
|---|
| 347 | |
|---|
| 348 | ! 1. - Save initial values, initialize tendencies, initialize output fields |
|---|
| 349 | ! ------------------------------------------------------------------------ |
|---|
| 350 | |
|---|
| 351 | !jyg< |
|---|
| 352 | !! DO k = 1, klev |
|---|
| 353 | !! DO i = 1, klon |
|---|
| 354 | !! ppi(i, k) = pi(i, k) |
|---|
| 355 | !! deltatw0(i, k) = deltatw(i, k) |
|---|
| 356 | !! deltaqw0(i, k) = deltaqw(i, k) |
|---|
| 357 | !! tenv(i, k) = tenv0(i, k) |
|---|
| 358 | !! qe(i, k) = qe0(i, k) |
|---|
| 359 | !! dtls(i, k) = 0. |
|---|
| 360 | !! dqls(i, k) = 0. |
|---|
| 361 | !! d_deltat_gw(i, k) = 0. |
|---|
| 362 | !! d_tenv(i, k) = 0. |
|---|
| 363 | !! d_qe(i, k) = 0. |
|---|
| 364 | !! d_deltatw(i, k) = 0. |
|---|
| 365 | !! d_deltaqw(i, k) = 0. |
|---|
| 366 | !! ! IM 060508 beg |
|---|
| 367 | !! d_deltatw2(i, k) = 0. |
|---|
| 368 | !! d_deltaqw2(i, k) = 0. |
|---|
| 369 | !! ! IM 060508 end |
|---|
| 370 | !! END DO |
|---|
| 371 | !! END DO |
|---|
| 372 | ppi(:,:) = pi(:,:) |
|---|
| 373 | deltatw0(:,:) = deltatw(:,:) |
|---|
| 374 | deltaqw0(:,:) = deltaqw(:,:) |
|---|
| 375 | tenv(:,:) = tenv0(:,:) |
|---|
| 376 | qe(:,:) = qe0(:,:) |
|---|
| 377 | dtls(:,:) = 0. |
|---|
| 378 | dqls(:,:) = 0. |
|---|
| 379 | d_deltat_gw(:,:) = 0. |
|---|
| 380 | d_tenv(:,:) = 0. |
|---|
| 381 | d_qe(:,:) = 0. |
|---|
| 382 | d_deltatw(:,:) = 0. |
|---|
| 383 | d_deltaqw(:,:) = 0. |
|---|
| 384 | d_deltatw2(:,:) = 0. |
|---|
| 385 | d_deltaqw2(:,:) = 0. |
|---|
| 386 | |
|---|
| 387 | IF (iflag_wk_act == 0) THEN |
|---|
| 388 | act(:) = 0. |
|---|
| 389 | ELSEIF (iflag_wk_act == 1) THEN |
|---|
| 390 | act(:) = 1. |
|---|
| 391 | ENDIF |
|---|
| 392 | |
|---|
| 393 | !! DO i = 1, klon |
|---|
| 394 | !! sigmaw_in(i) = sigmaw(i) |
|---|
| 395 | !! END DO |
|---|
| 396 | sigmaw_in(:) = sigmaw(:) |
|---|
| 397 | !>jyg |
|---|
| 398 | ! |
|---|
| 399 | IF (iflag_wk_pop_dyn >= 1) THEN |
|---|
| 400 | awdens_in(:) = awdens(:) |
|---|
| 401 | wdens_in(:) = wdens(:) |
|---|
| 402 | !! wdens(:) = wdens(:) + wgen(:)*dtime |
|---|
| 403 | !! d_wdens2(:) = wgen(:)*dtime |
|---|
| 404 | !! ELSE |
|---|
| 405 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
|---|
| 406 | |
|---|
| 407 | |
|---|
| 408 | ! sigmaw1=sigmaw |
|---|
| 409 | ! IF (sigd_con.GT.sigmaw1) THEN |
|---|
| 410 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
|---|
| 411 | ! ENDIF |
|---|
| 412 | IF (iflag_wk_pop_dyn >= 1) THEN |
|---|
| 413 | DO i = 1, klon |
|---|
| 414 | d_dens_gen2(i) = 0. |
|---|
| 415 | d_dens_death2(i) = 0. |
|---|
| 416 | d_dens_col2(i) = 0. |
|---|
| 417 | d_awdens2(i) = 0. |
|---|
| 418 | ! |
|---|
| 419 | wdens_targ = max(wdens(i),wdensmin) |
|---|
| 420 | d_dens_bnd2(i) = wdens_targ - wdens(i) |
|---|
| 421 | d_wdens2(i) = wdens_targ - wdens(i) |
|---|
| 422 | wdens(i) = wdens_targ |
|---|
| 423 | END DO |
|---|
| 424 | IF (iflag_wk_pop_dyn == 2) THEN |
|---|
| 425 | DO i = 1, klon |
|---|
| 426 | d_adens_death2(i) = 0. |
|---|
| 427 | d_adens_icol2(i) = 0. |
|---|
| 428 | d_adens_acol2(i) = 0. |
|---|
| 429 | ! |
|---|
| 430 | wdens_targ = min(max(awdens(i),0.),wdens(i)) |
|---|
| 431 | d_adens_bnd2(i) = wdens_targ - awdens(i) |
|---|
| 432 | d_awdens2(i) = wdens_targ - awdens(i) |
|---|
| 433 | awdens(i) = wdens_targ |
|---|
| 434 | END DO |
|---|
| 435 | ENDIF ! (iflag_wk_pop_dyn == 2) |
|---|
| 436 | ELSE |
|---|
| 437 | DO i = 1, klon |
|---|
| 438 | d_awdens2(i) = 0. |
|---|
| 439 | d_wdens2(i) = 0. |
|---|
| 440 | END DO |
|---|
| 441 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
|---|
| 442 | ! |
|---|
| 443 | DO i = 1, klon |
|---|
| 444 | ! c sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) |
|---|
| 445 | !jyg< |
|---|
| 446 | !! sigmaw(i) = amax1(sigmaw(i), sigmad) |
|---|
| 447 | !! sigmaw(i) = amin1(sigmaw(i), 0.99) |
|---|
| 448 | d_sig_gen2(i) = 0. |
|---|
| 449 | d_sig_death2(i) = 0. |
|---|
| 450 | d_sig_col2(i) = 0. |
|---|
| 451 | d_sig_spread2(i)= 0. |
|---|
| 452 | sigmaw_targ = min(max(sigmaw(i), sigmad),0.99) |
|---|
| 453 | d_sig_bnd2(i) = sigmaw_targ - sigmaw(i) |
|---|
| 454 | d_sigmaw2(i) = sigmaw_targ - sigmaw(i) |
|---|
| 455 | ! print *,'XXXX1 d_sigmaw2(i), sigmaw(i) ', d_sigmaw2(i), sigmaw(i) |
|---|
| 456 | sigmaw(i) = sigmaw_targ |
|---|
| 457 | !>jyg |
|---|
| 458 | END DO |
|---|
| 459 | |
|---|
| 460 | wape(:) = 0. |
|---|
| 461 | wape2(:) = 0. |
|---|
| 462 | d_sigmaw(:) = 0. |
|---|
| 463 | ktopw(:) = 0 |
|---|
| 464 | ! |
|---|
| 465 | !<jyg |
|---|
| 466 | dth(:,:) = 0. |
|---|
| 467 | tu(:,:) = 0. |
|---|
| 468 | qu(:,:) = 0. |
|---|
| 469 | dtke(:,:) = 0. |
|---|
| 470 | dqke(:,:) = 0. |
|---|
| 471 | wkspread(:,:) = 0. |
|---|
| 472 | omgbdth(:,:) = 0. |
|---|
| 473 | omg(:,:) = 0. |
|---|
| 474 | dp_omgb(:,:) = 0. |
|---|
| 475 | dp_deltomg(:,:) = 0. |
|---|
| 476 | hw(:) = 0. |
|---|
| 477 | wape(:) = 0. |
|---|
| 478 | fip(:) = 0. |
|---|
| 479 | gfl(:) = 0. |
|---|
| 480 | cstar(:) = 0. |
|---|
| 481 | ktopw(:) = 0 |
|---|
| 482 | ! |
|---|
| 483 | ! Vertical advection local variables |
|---|
| 484 | omgbw(:,:) = 0. |
|---|
| 485 | omgtop(:) = 0 |
|---|
| 486 | dp_omgbw(:,:) = 0. |
|---|
| 487 | omgbdq(:,:) = 0. |
|---|
| 488 | |
|---|
| 489 | !>jyg |
|---|
| 490 | ! |
|---|
| 491 | IF (prt_level>=10) THEN |
|---|
| 492 | PRINT *, 'wake-1, sigmaw(igout) ', sigmaw(igout) |
|---|
| 493 | PRINT *, 'wake-1, deltatw(igout,k) ', (k,deltatw(igout,k), k=1,klev) |
|---|
| 494 | PRINT *, 'wake-1, deltaqw(igout,k) ', (k,deltaqw(igout,k), k=1,klev) |
|---|
| 495 | PRINT *, 'wake-1, dowwdraughts, amdwn(igout,k) ', (k,amdwn(igout,k), k=1,klev) |
|---|
| 496 | PRINT *, 'wake-1, dowwdraughts, dtdwn(igout,k) ', (k,dtdwn(igout,k), k=1,klev) |
|---|
| 497 | PRINT *, 'wake-1, dowwdraughts, dqdwn(igout,k) ', (k,dqdwn(igout,k), k=1,klev) |
|---|
| 498 | PRINT *, 'wake-1, updraughts, amup(igout,k) ', (k,amup(igout,k), k=1,klev) |
|---|
| 499 | PRINT *, 'wake-1, updraughts, dta(igout,k) ', (k,dta(igout,k), k=1,klev) |
|---|
| 500 | PRINT *, 'wake-1, updraughts, dqa(igout,k) ', (k,dqa(igout,k), k=1,klev) |
|---|
| 501 | ENDIF |
|---|
| 502 | |
|---|
| 503 | ! 2. - Prognostic part |
|---|
| 504 | ! -------------------- |
|---|
| 505 | |
|---|
| 506 | |
|---|
| 507 | ! 2.1 - Undisturbed area and Wake integrals |
|---|
| 508 | ! --------------------------------------------------------- |
|---|
| 509 | |
|---|
| 510 | DO i = 1, klon |
|---|
| 511 | z(i) = 0. |
|---|
| 512 | ktop(i) = 0 |
|---|
| 513 | kupper(i) = 0 |
|---|
| 514 | sum_thu(i) = 0. |
|---|
| 515 | sum_tu(i) = 0. |
|---|
| 516 | sum_qu(i) = 0. |
|---|
| 517 | sum_thvu(i) = 0. |
|---|
| 518 | sum_dth(i) = 0. |
|---|
| 519 | sum_dq(i) = 0. |
|---|
| 520 | sum_rho(i) = 0. |
|---|
| 521 | sum_dtdwn(i) = 0. |
|---|
| 522 | sum_dqdwn(i) = 0. |
|---|
| 523 | |
|---|
| 524 | av_thu(i) = 0. |
|---|
| 525 | av_tu(i) = 0. |
|---|
| 526 | av_qu(i) = 0. |
|---|
| 527 | av_thvu(i) = 0. |
|---|
| 528 | av_dth(i) = 0. |
|---|
| 529 | av_dq(i) = 0. |
|---|
| 530 | av_rho(i) = 0. |
|---|
| 531 | av_dtdwn(i) = 0. |
|---|
| 532 | av_dqdwn(i) = 0. |
|---|
| 533 | END DO |
|---|
| 534 | |
|---|
| 535 | ! Distance between wakes |
|---|
| 536 | DO i = 1, klon |
|---|
| 537 | ll(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) |
|---|
| 538 | END DO |
|---|
| 539 | ! Potential temperatures and humidity |
|---|
| 540 | ! ---------------------------------------------------------- |
|---|
| 541 | DO k = 1, klev |
|---|
| 542 | DO i = 1, klon |
|---|
| 543 | ! write(*,*)'wake 1',i,k,RD,tenv(i,k) |
|---|
| 544 | rho(i, k) = p(i, k)/(RD*tenv(i,k)) |
|---|
| 545 | ! write(*,*)'wake 2',rho(i,k) |
|---|
| 546 | IF (k==1) THEN |
|---|
| 547 | ! write(*,*)'wake 3',i,k,rd,tenv(i,k) |
|---|
| 548 | rhoh(i, k) = ph(i, k)/(RD*tenv(i,k)) |
|---|
| 549 | ! write(*,*)'wake 4',i,k,rd,tenv(i,k) |
|---|
| 550 | zhh(i, k) = 0 |
|---|
| 551 | ELSE |
|---|
| 552 | ! write(*,*)'wake 5',rd,(tenv(i,k)+tenv(i,k-1)) |
|---|
| 553 | rhoh(i, k) = ph(i, k)*2./(RD*(tenv(i,k)+tenv(i,k-1))) |
|---|
| 554 | ! write(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) |
|---|
| 555 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*RG) + zhh(i, k-1) |
|---|
| 556 | END IF |
|---|
| 557 | ! write(*,*)'wake 7',ppi(i,k) |
|---|
| 558 | the(i, k) = tenv(i, k)/ppi(i, k) |
|---|
| 559 | thu(i, k) = (tenv(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
|---|
| 560 | tu(i, k) = tenv(i, k) - deltatw(i, k)*sigmaw(i) |
|---|
| 561 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
|---|
| 562 | ! write(*,*)'wake 8',(RD*(tenv(i,k)+deltatw(i,k))) |
|---|
| 563 | rhow(i, k) = p(i, k)/(RD*(tenv(i,k)+deltatw(i,k))) |
|---|
| 564 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
|---|
| 565 | END DO |
|---|
| 566 | END DO |
|---|
| 567 | |
|---|
| 568 | DO k = 1, klev - 1 |
|---|
| 569 | DO i = 1, klon |
|---|
| 570 | IF (k==1) THEN |
|---|
| 571 | n2(i, k) = 0 |
|---|
| 572 | ELSE |
|---|
| 573 | n2(i, k) = amax1(0., -RG**2/the(i,k)*rho(i,k)*(the(i,k+1)-the(i,k-1))/ & |
|---|
| 574 | (p(i,k+1)-p(i,k-1))) |
|---|
| 575 | END IF |
|---|
| 576 | zh(i, k) = (zhh(i,k)+zhh(i,k+1))/2 |
|---|
| 577 | |
|---|
| 578 | cgw(i, k) = sqrt(n2(i,k))*zh(i, k) |
|---|
| 579 | tgw(i, k) = coefgw*cgw(i, k)/ll(i) |
|---|
| 580 | END DO |
|---|
| 581 | END DO |
|---|
| 582 | |
|---|
| 583 | DO i = 1, klon |
|---|
| 584 | n2(i, klev) = 0 |
|---|
| 585 | zh(i, klev) = 0 |
|---|
| 586 | cgw(i, klev) = 0 |
|---|
| 587 | tgw(i, klev) = 0 |
|---|
| 588 | END DO |
|---|
| 589 | |
|---|
| 590 | ! Calcul de la masse volumique moyenne de la colonne (bdlmd) |
|---|
| 591 | ! ----------------------------------------------------------------- |
|---|
| 592 | |
|---|
| 593 | DO k = 1, klev |
|---|
| 594 | DO i = 1, klon |
|---|
| 595 | epaisseur1(i, k) = 0. |
|---|
| 596 | epaisseur2(i, k) = 0. |
|---|
| 597 | END DO |
|---|
| 598 | END DO |
|---|
| 599 | |
|---|
| 600 | DO i = 1, klon |
|---|
| 601 | epaisseur1(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*RG) + 1. |
|---|
| 602 | epaisseur2(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*RG) + 1. |
|---|
| 603 | rhow_moyen(i, 1) = rhow(i, 1) |
|---|
| 604 | END DO |
|---|
| 605 | |
|---|
| 606 | DO k = 2, klev |
|---|
| 607 | DO i = 1, klon |
|---|
| 608 | epaisseur1(i, k) = -(ph(i,k+1)-ph(i,k))/(rho(i,k)*RG) + 1. |
|---|
| 609 | epaisseur2(i, k) = epaisseur2(i, k-1) + epaisseur1(i, k) |
|---|
| 610 | rhow_moyen(i, k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+rhow(i,k)* & |
|---|
| 611 | epaisseur1(i,k))/epaisseur2(i, k) |
|---|
| 612 | END DO |
|---|
| 613 | END DO |
|---|
| 614 | |
|---|
| 615 | |
|---|
| 616 | ! Choose an integration bound well above wake top |
|---|
| 617 | ! ----------------------------------------------------------------- |
|---|
| 618 | |
|---|
| 619 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
|---|
| 620 | ! -------------------------------------------------------- |
|---|
| 621 | |
|---|
| 622 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
|---|
| 623 | |
|---|
| 624 | DO i = 1, klon |
|---|
| 625 | ptop_provis(i) = ph(i, 1) |
|---|
| 626 | END DO |
|---|
| 627 | DO k = 2, klev |
|---|
| 628 | DO i = 1, klon |
|---|
| 629 | |
|---|
| 630 | ! IM v3JYG; ptop_provis(i).LT. ph(i,1) |
|---|
| 631 | |
|---|
| 632 | IF (dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min .AND. & |
|---|
| 633 | ptop_provis(i)==ph(i,1)) THEN |
|---|
| 634 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)- & |
|---|
| 635 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
|---|
| 636 | END IF |
|---|
| 637 | END DO |
|---|
| 638 | END DO |
|---|
| 639 | |
|---|
| 640 | ! -2/ dth integral |
|---|
| 641 | |
|---|
| 642 | DO i = 1, klon |
|---|
| 643 | sum_dth(i) = 0. |
|---|
| 644 | dthmin(i) = -delta_t_min |
|---|
| 645 | z(i) = 0. |
|---|
| 646 | END DO |
|---|
| 647 | |
|---|
| 648 | DO k = 1, klev |
|---|
| 649 | DO i = 1, klon |
|---|
| 650 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*RG) |
|---|
| 651 | IF (dz(i)>0) THEN |
|---|
| 652 | z(i) = z(i) + dz(i) |
|---|
| 653 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
|---|
| 654 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
|---|
| 655 | END IF |
|---|
| 656 | END DO |
|---|
| 657 | END DO |
|---|
| 658 | |
|---|
| 659 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
|---|
| 660 | |
|---|
| 661 | DO i = 1, klon |
|---|
| 662 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
|---|
| 663 | hw0(i) = amax1(hwmin, hw0(i)) |
|---|
| 664 | END DO |
|---|
| 665 | |
|---|
| 666 | ! -4/ now, get Ptop |
|---|
| 667 | |
|---|
| 668 | DO i = 1, klon |
|---|
| 669 | z(i) = 0. |
|---|
| 670 | ptop(i) = ph(i, 1) |
|---|
| 671 | END DO |
|---|
| 672 | |
|---|
| 673 | DO k = 1, klev |
|---|
| 674 | DO i = 1, klon |
|---|
| 675 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*RG), hw0(i)-z(i)) |
|---|
| 676 | IF (dz(i)>0) THEN |
|---|
| 677 | z(i) = z(i) + dz(i) |
|---|
| 678 | ptop(i) = ph(i, k) - rho(i, k)*RG*dz(i) |
|---|
| 679 | END IF |
|---|
| 680 | END DO |
|---|
| 681 | END DO |
|---|
| 682 | |
|---|
| 683 | IF (prt_level>=10) THEN |
|---|
| 684 | PRINT *, 'wake-2, ptop_provis(igout), ptop(igout) ', ptop_provis(igout), ptop(igout) |
|---|
| 685 | ENDIF |
|---|
| 686 | |
|---|
| 687 | |
|---|
| 688 | ! -5/ Determination de ktop et kupper |
|---|
| 689 | |
|---|
| 690 | CALL pkupper (klon, klev, ptop, ph, pupper, kupper) |
|---|
| 691 | |
|---|
| 692 | DO k = klev, 1, -1 |
|---|
| 693 | DO i = 1, klon |
|---|
| 694 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
|---|
| 695 | END DO |
|---|
| 696 | END DO |
|---|
| 697 | !print*, 'ptop, pupper, ktop, kupper', ptop, pupper, ktop, kupper |
|---|
| 698 | |
|---|
| 699 | |
|---|
| 700 | |
|---|
| 701 | ! -6/ Correct ktop and ptop |
|---|
| 702 | |
|---|
| 703 | DO i = 1, klon |
|---|
| 704 | ptop_new(i) = ptop(i) |
|---|
| 705 | END DO |
|---|
| 706 | DO k = klev, 2, -1 |
|---|
| 707 | DO i = 1, klon |
|---|
| 708 | IF (k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
|---|
| 709 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
|---|
| 710 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
|---|
| 711 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
|---|
| 712 | END IF |
|---|
| 713 | END DO |
|---|
| 714 | END DO |
|---|
| 715 | |
|---|
| 716 | DO i = 1, klon |
|---|
| 717 | ptop(i) = ptop_new(i) |
|---|
| 718 | END DO |
|---|
| 719 | |
|---|
| 720 | DO k = klev, 1, -1 |
|---|
| 721 | DO i = 1, klon |
|---|
| 722 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
|---|
| 723 | END DO |
|---|
| 724 | END DO |
|---|
| 725 | |
|---|
| 726 | IF (prt_level>=10) THEN |
|---|
| 727 | PRINT *, 'wake-3, ktop(igout), kupper(igout) ', ktop(igout), kupper(igout) |
|---|
| 728 | ENDIF |
|---|
| 729 | |
|---|
| 730 | ! -5/ Set deltatw & deltaqw to 0 above kupper |
|---|
| 731 | |
|---|
| 732 | DO k = 1, klev |
|---|
| 733 | DO i = 1, klon |
|---|
| 734 | IF (k>=kupper(i)) THEN |
|---|
| 735 | deltatw(i, k) = 0. |
|---|
| 736 | deltaqw(i, k) = 0. |
|---|
| 737 | d_deltatw2(i,k) = -deltatw0(i,k) |
|---|
| 738 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
|---|
| 739 | END IF |
|---|
| 740 | END DO |
|---|
| 741 | END DO |
|---|
| 742 | |
|---|
| 743 | |
|---|
| 744 | ! Vertical gradient of LS omega |
|---|
| 745 | |
|---|
| 746 | DO k = 1, klev |
|---|
| 747 | DO i = 1, klon |
|---|
| 748 | IF (k<=kupper(i)) THEN |
|---|
| 749 | dp_omgb(i, k) = (omgb(i,k+1)-omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
|---|
| 750 | END IF |
|---|
| 751 | END DO |
|---|
| 752 | END DO |
|---|
| 753 | |
|---|
| 754 | ! Integrals (and wake top level number) |
|---|
| 755 | ! -------------------------------------- |
|---|
| 756 | |
|---|
| 757 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
|---|
| 758 | |
|---|
| 759 | DO i = 1, klon |
|---|
| 760 | z(i) = 1. |
|---|
| 761 | dz(i) = 1. |
|---|
| 762 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
|---|
| 763 | sum_dth(i) = 0. |
|---|
| 764 | END DO |
|---|
| 765 | |
|---|
| 766 | DO k = 1, klev |
|---|
| 767 | DO i = 1, klon |
|---|
| 768 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*RG) |
|---|
| 769 | IF (dz(i)>0) THEN |
|---|
| 770 | z(i) = z(i) + dz(i) |
|---|
| 771 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
|---|
| 772 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
|---|
| 773 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
|---|
| 774 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
|---|
| 775 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
|---|
| 776 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
|---|
| 777 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
|---|
| 778 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
|---|
| 779 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
|---|
| 780 | END IF |
|---|
| 781 | END DO |
|---|
| 782 | END DO |
|---|
| 783 | |
|---|
| 784 | DO i = 1, klon |
|---|
| 785 | hw0(i) = z(i) |
|---|
| 786 | END DO |
|---|
| 787 | |
|---|
| 788 | |
|---|
| 789 | ! 2.1 - WAPE and mean forcing computation |
|---|
| 790 | ! --------------------------------------- |
|---|
| 791 | |
|---|
| 792 | ! --------------------------------------- |
|---|
| 793 | |
|---|
| 794 | ! Means |
|---|
| 795 | |
|---|
| 796 | DO i = 1, klon |
|---|
| 797 | av_thu(i) = sum_thu(i)/hw0(i) |
|---|
| 798 | av_tu(i) = sum_tu(i)/hw0(i) |
|---|
| 799 | av_qu(i) = sum_qu(i)/hw0(i) |
|---|
| 800 | av_thvu(i) = sum_thvu(i)/hw0(i) |
|---|
| 801 | ! av_thve = sum_thve/hw0 |
|---|
| 802 | av_dth(i) = sum_dth(i)/hw0(i) |
|---|
| 803 | av_dq(i) = sum_dq(i)/hw0(i) |
|---|
| 804 | av_rho(i) = sum_rho(i)/hw0(i) |
|---|
| 805 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
|---|
| 806 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
|---|
| 807 | |
|---|
| 808 | wape(i) = -RG*hw0(i)*(av_dth(i)+ & |
|---|
| 809 | epsim1*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
|---|
| 810 | |
|---|
| 811 | END DO |
|---|
| 812 | |
|---|
| 813 | ! 2.2 Prognostic variable update |
|---|
| 814 | ! ------------------------------ |
|---|
| 815 | |
|---|
| 816 | ! Filter out bad wakes |
|---|
| 817 | |
|---|
| 818 | DO k = 1, klev |
|---|
| 819 | DO i = 1, klon |
|---|
| 820 | IF (wape(i)<0.) THEN |
|---|
| 821 | deltatw(i, k) = 0. |
|---|
| 822 | deltaqw(i, k) = 0. |
|---|
| 823 | dth(i, k) = 0. |
|---|
| 824 | d_deltatw2(i,k) = -deltatw0(i,k) |
|---|
| 825 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
|---|
| 826 | END IF |
|---|
| 827 | END DO |
|---|
| 828 | END DO |
|---|
| 829 | |
|---|
| 830 | DO i = 1, klon |
|---|
| 831 | IF (wape(i)<0.) THEN |
|---|
| 832 | wape(i) = 0. |
|---|
| 833 | cstar(i) = 0. |
|---|
| 834 | hw(i) = hwmin |
|---|
| 835 | !jyg< |
|---|
| 836 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
|---|
| 837 | sigmaw_targ = max(sigmad, sigd_con(i)) |
|---|
| 838 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 839 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 840 | ! print *,'XXXX2 d_sigmaw2(i), sigmaw(i) ', d_sigmaw2(i), sigmaw(i) |
|---|
| 841 | sigmaw(i) = sigmaw_targ |
|---|
| 842 | !>jyg |
|---|
| 843 | fip(i) = 0. |
|---|
| 844 | gwake(i) = .FALSE. |
|---|
| 845 | ELSE |
|---|
| 846 | hw(i) = hw0(i) |
|---|
| 847 | cstar(i) = stark*sqrt(2.*wape(i)) |
|---|
| 848 | gwake(i) = .TRUE. |
|---|
| 849 | END IF |
|---|
| 850 | END DO |
|---|
| 851 | |
|---|
| 852 | |
|---|
| 853 | ! Check qx and qw positivity |
|---|
| 854 | ! -------------------------- |
|---|
| 855 | DO i = 1, klon |
|---|
| 856 | q0_min(i) = min((qe(i,1)-sigmaw(i)*deltaqw(i,1)), & |
|---|
| 857 | (qe(i,1)+(1.-sigmaw(i))*deltaqw(i,1))) |
|---|
| 858 | END DO |
|---|
| 859 | DO k = 2, klev |
|---|
| 860 | DO i = 1, klon |
|---|
| 861 | q1_min(i) = min((qe(i,k)-sigmaw(i)*deltaqw(i,k)), & |
|---|
| 862 | (qe(i,k)+(1.-sigmaw(i))*deltaqw(i,k))) |
|---|
| 863 | IF (q1_min(i)<=q0_min(i)) THEN |
|---|
| 864 | q0_min(i) = q1_min(i) |
|---|
| 865 | END IF |
|---|
| 866 | END DO |
|---|
| 867 | END DO |
|---|
| 868 | |
|---|
| 869 | DO i = 1, klon |
|---|
| 870 | ok_qx_qw(i) = q0_min(i) >= 0. |
|---|
| 871 | alpha(i) = 1. |
|---|
| 872 | alpha_tot(i) = 1. |
|---|
| 873 | END DO |
|---|
| 874 | |
|---|
| 875 | IF (prt_level>=10) THEN |
|---|
| 876 | PRINT *, 'wake-4, sigmaw(igout), cstar(igout), wape(igout), ktop(igout) ', & |
|---|
| 877 | sigmaw(igout), cstar(igout), wape(igout), ktop(igout) |
|---|
| 878 | ENDIF |
|---|
| 879 | |
|---|
| 880 | |
|---|
| 881 | ! C ----------------------------------------------------------------- |
|---|
| 882 | ! Sub-time-stepping |
|---|
| 883 | ! ----------------- |
|---|
| 884 | |
|---|
| 885 | nsub = 10 |
|---|
| 886 | dtimesub = dtime/nsub |
|---|
| 887 | |
|---|
| 888 | |
|---|
| 889 | |
|---|
| 890 | ! ------------------------------------------------------------ |
|---|
| 891 | DO isubstep = 1, nsub |
|---|
| 892 | ! ------------------------------------------------------------ |
|---|
| 893 | CALL pkupper (klon, klev, ptop, ph, pupper, kupper) |
|---|
| 894 | |
|---|
| 895 | !print*, 'ptop, pupper, ktop, kupper', ptop, pupper, ktop, kupper |
|---|
| 896 | |
|---|
| 897 | ! wk_adv is the logical flag enabling wake evolution in the time advance |
|---|
| 898 | ! loop |
|---|
| 899 | DO i = 1, klon |
|---|
| 900 | wk_adv(i) = ok_qx_qw(i) .AND. alpha(i) >= 1. |
|---|
| 901 | END DO |
|---|
| 902 | IF (prt_level>=10) THEN |
|---|
| 903 | PRINT *, 'wake-4.1, isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) ', & |
|---|
| 904 | isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) |
|---|
| 905 | |
|---|
| 906 | ENDIF |
|---|
| 907 | |
|---|
| 908 | ! cc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement |
|---|
| 909 | ! negatif de ktop a kupper -------- |
|---|
| 910 | ! cc On calcule pour cela une densite wdens0 pour laquelle on |
|---|
| 911 | ! aurait un entrainement nul --- |
|---|
| 912 | !jyg< |
|---|
| 913 | ! Dans la configuration avec wdens prognostique, il s'agit d'un cas ou |
|---|
| 914 | ! les poches sont insuffisantes pour accueillir tout le flux de masse |
|---|
| 915 | ! des descentes unsaturees. Nous faisons alors l'hypothese que la |
|---|
| 916 | ! convection profonde cree directement de nouvelles poches, sans passer |
|---|
| 917 | ! par les thermiques. La nouvelle valeur de wdens est alors imposee. |
|---|
| 918 | |
|---|
| 919 | DO i = 1, klon |
|---|
| 920 | ! c print *,' isubstep,wk_adv(i),cstar(i),wape(i) ', |
|---|
| 921 | ! c $ isubstep,wk_adv(i),cstar(i),wape(i) |
|---|
| 922 | IF (wk_adv(i) .AND. cstar(i)>0.01) THEN |
|---|
| 923 | IF ( iflag_wk_profile == 0 ) THEN |
|---|
| 924 | omg(i, kupper(i)+1)=-RG*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
|---|
| 925 | RG*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
|---|
| 926 | ELSE |
|---|
| 927 | omg(i, kupper(i)+1)=0. |
|---|
| 928 | ENDIF |
|---|
| 929 | wdens0 = (sigmaw(i)/(4.*3.14))* & |
|---|
| 930 | ((1.-sigmaw(i))*omg(i,kupper(i)+1)/((ph(i,1)-pupper(i))*cstar(i)))**(2) |
|---|
| 931 | IF (prt_level >= 10) THEN |
|---|
| 932 | print*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i), ph(i,1)-pupper(i)', & |
|---|
| 933 | omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i), ph(i,1)-pupper(i) |
|---|
| 934 | ENDIF |
|---|
| 935 | IF (wdens(i)<=wdens0*1.1) THEN |
|---|
| 936 | IF (iflag_wk_pop_dyn >= 1) THEN |
|---|
| 937 | d_dens_bnd2(i) = d_dens_bnd2(i) + wdens0 - wdens(i) |
|---|
| 938 | d_wdens2(i) = d_wdens2(i) + wdens0 - wdens(i) |
|---|
| 939 | ENDIF |
|---|
| 940 | wdens(i) = wdens0 |
|---|
| 941 | END IF |
|---|
| 942 | END IF |
|---|
| 943 | END DO |
|---|
| 944 | |
|---|
| 945 | IF (ok_bug_gfl) THEN |
|---|
| 946 | !!-------------------------------------------------------- |
|---|
| 947 | !!Bug : computing gfl and rad_wk before changing sigmaw |
|---|
| 948 | !!-------------------------------------------------------- |
|---|
| 949 | DO i = 1, klon |
|---|
| 950 | IF (wk_adv(i)) THEN |
|---|
| 951 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
|---|
| 952 | rad_wk(i) = sqrt(sigmaw(i)/(3.14*wdens(i))) |
|---|
| 953 | END IF |
|---|
| 954 | END DO |
|---|
| 955 | ENDIF ! (ok_bug_gfl) |
|---|
| 956 | |
|---|
| 957 | DO i = 1, klon |
|---|
| 958 | IF (wk_adv(i)) THEN |
|---|
| 959 | sigmaw_targ = min(sigmaw(i), sigmaw_max) |
|---|
| 960 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 961 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 962 | sigmaw(i) = sigmaw_targ |
|---|
| 963 | END IF |
|---|
| 964 | END DO |
|---|
| 965 | |
|---|
| 966 | IF (.NOT.ok_bug_gfl) THEN |
|---|
| 967 | !!-------------------------------------------------------- |
|---|
| 968 | !!Fix : computing gfl and rad_wk after changing sigmaw |
|---|
| 969 | !!-------------------------------------------------------- |
|---|
| 970 | DO i = 1, klon |
|---|
| 971 | IF (wk_adv(i)) THEN |
|---|
| 972 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
|---|
| 973 | rad_wk(i) = sqrt(sigmaw(i)/(3.14*wdens(i))) |
|---|
| 974 | END IF |
|---|
| 975 | END DO |
|---|
| 976 | ENDIF ! (.NOT.ok_bug_gfl) |
|---|
| 977 | |
|---|
| 978 | IF (iflag_wk_pop_dyn == 1) THEN |
|---|
| 979 | |
|---|
| 980 | CALL wake_popdyn_1 (klon, klev, dtime, cstar, tau_wk_inv, wgen, wdens, awdens, sigmaw, & |
|---|
| 981 | dtimesub, gfl, rad_wk, f_shear, drdt_pos, & |
|---|
| 982 | d_awdens, d_wdens, d_sigmaw, & |
|---|
| 983 | iflag_wk_act, wk_adv, cin, wape, & |
|---|
| 984 | drdt, & |
|---|
| 985 | d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd, & |
|---|
| 986 | d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd, & |
|---|
| 987 | d_wdens_targ, d_sigmaw_targ) |
|---|
| 988 | |
|---|
| 989 | ! The variable "death_rate" is significant only when iflag_wk_pop_dyn = 0. |
|---|
| 990 | ! Here, it has to be set to zero. |
|---|
| 991 | death_rate(:) = 0. |
|---|
| 992 | |
|---|
| 993 | ELSEIF (iflag_wk_pop_dyn == 2) THEN |
|---|
| 994 | CALL wake_popdyn_2 ( klon, klev, wk_adv, dtimesub, wgen, & |
|---|
| 995 | sigmaw, wdens, awdens, & !! states variables |
|---|
| 996 | gfl, cstar, cin, wape, rad_wk, & |
|---|
| 997 | d_sigmaw, d_wdens, d_awdens, & !! tendences |
|---|
| 998 | cont_fact, & |
|---|
| 999 | d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd, & |
|---|
| 1000 | d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd, & |
|---|
| 1001 | d_adens_death, d_adens_icol, d_adens_acol, d_adens_bnd ) |
|---|
| 1002 | death_rate(:) = 0. |
|---|
| 1003 | sigmaw=sigmaw-d_sigmaw |
|---|
| 1004 | wdens=wdens-d_wdens |
|---|
| 1005 | awdens=awdens-d_awdens |
|---|
| 1006 | |
|---|
| 1007 | ELSEIF (iflag_wk_pop_dyn == 0) THEN |
|---|
| 1008 | |
|---|
| 1009 | ! cc nrlmd |
|---|
| 1010 | |
|---|
| 1011 | DO i = 1, klon |
|---|
| 1012 | IF (wk_adv(i)) THEN |
|---|
| 1013 | ! cc nrlmd Introduction du taux de mortalite des poches et |
|---|
| 1014 | ! test sur sigmaw_max=0.4 |
|---|
| 1015 | ! cc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
|---|
| 1016 | IF (sigmaw(i)>=sigmaw_max) THEN |
|---|
| 1017 | death_rate(i) = gfl(i)*cstar(i)/sigmaw(i) |
|---|
| 1018 | ELSE |
|---|
| 1019 | death_rate(i) = 0. |
|---|
| 1020 | END IF |
|---|
| 1021 | |
|---|
| 1022 | d_sigmaw(i) = gfl(i)*cstar(i)*dtimesub - death_rate(i)*sigmaw(i)* & |
|---|
| 1023 | dtimesub |
|---|
| 1024 | ! $ - nat_rate(i)*sigmaw(i)*dtimesub |
|---|
| 1025 | ! c print*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
|---|
| 1026 | ! c $ death_rate(i),ktop(i),kupper(i)', |
|---|
| 1027 | ! c $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
|---|
| 1028 | ! c $ death_rate(i),ktop(i),kupper(i) |
|---|
| 1029 | |
|---|
| 1030 | ! sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
|---|
| 1031 | ! sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! |
|---|
| 1032 | ! wdens = wdens0/(10.*sigmaw) |
|---|
| 1033 | ! sigmaw =max(sigmaw,sigd_con) |
|---|
| 1034 | ! sigmaw =max(sigmaw,sigmad) |
|---|
| 1035 | END IF |
|---|
| 1036 | END DO |
|---|
| 1037 | |
|---|
| 1038 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
|---|
| 1039 | |
|---|
| 1040 | |
|---|
| 1041 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
|---|
| 1042 | ! IM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
|---|
| 1043 | ! IM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on definit |
|---|
| 1044 | ! IM 060208 au niveau k=1... |
|---|
| 1045 | !JYG 161013 Correction : maintenant omg est dimensionne a klev. |
|---|
| 1046 | DO k = 1, klev |
|---|
| 1047 | DO i = 1, klon |
|---|
| 1048 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1049 | dp_deltomg(i, k) = 0. |
|---|
| 1050 | END IF |
|---|
| 1051 | END DO |
|---|
| 1052 | END DO |
|---|
| 1053 | DO k = 1, klev |
|---|
| 1054 | DO i = 1, klon |
|---|
| 1055 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1056 | omg(i, k) = 0. |
|---|
| 1057 | END IF |
|---|
| 1058 | END DO |
|---|
| 1059 | END DO |
|---|
| 1060 | |
|---|
| 1061 | DO i = 1, klon |
|---|
| 1062 | IF (wk_adv(i)) THEN |
|---|
| 1063 | z(i) = 0. |
|---|
| 1064 | omg(i, 1) = 0. |
|---|
| 1065 | dp_deltomg(i, 1) = -(gfl(i)*cstar(i))/(sigmaw(i)*(1-sigmaw(i))) |
|---|
| 1066 | END IF |
|---|
| 1067 | END DO |
|---|
| 1068 | |
|---|
| 1069 | DO k = 2, klev |
|---|
| 1070 | DO i = 1, klon |
|---|
| 1071 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
|---|
| 1072 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*RG) |
|---|
| 1073 | z(i) = z(i) + dz(i) |
|---|
| 1074 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
|---|
| 1075 | omg(i, k) = dp_deltomg(i, 1)*z(i) |
|---|
| 1076 | END IF |
|---|
| 1077 | END DO |
|---|
| 1078 | END DO |
|---|
| 1079 | |
|---|
| 1080 | DO i = 1, klon |
|---|
| 1081 | IF (wk_adv(i)) THEN |
|---|
| 1082 | dztop(i) = -(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*RG) |
|---|
| 1083 | ztop(i) = z(i) + dztop(i) |
|---|
| 1084 | omgtop(i) = dp_deltomg(i, 1)*ztop(i) |
|---|
| 1085 | END IF |
|---|
| 1086 | END DO |
|---|
| 1087 | |
|---|
| 1088 | IF (prt_level>=10) THEN |
|---|
| 1089 | PRINT *, 'wake-4.2, omg(igout,k) ', (k,omg(igout,k), k=1,klev) |
|---|
| 1090 | PRINT *, 'wake-4.2, omgtop(igout), ptop(igout), ktop(igout) ', & |
|---|
| 1091 | omgtop(igout), ptop(igout), ktop(igout) |
|---|
| 1092 | ENDIF |
|---|
| 1093 | |
|---|
| 1094 | ! ----------------- |
|---|
| 1095 | ! From m/s to Pa/s |
|---|
| 1096 | ! ----------------- |
|---|
| 1097 | |
|---|
| 1098 | DO i = 1, klon |
|---|
| 1099 | IF (wk_adv(i)) THEN |
|---|
| 1100 | omgtop(i) = -rho(i, ktop(i))*RG*omgtop(i) |
|---|
| 1101 | dp_deltomg(i, 1) = omgtop(i)/(ptop(i)-ph(i,1)) |
|---|
| 1102 | END IF |
|---|
| 1103 | END DO |
|---|
| 1104 | |
|---|
| 1105 | DO k = 1, klev |
|---|
| 1106 | DO i = 1, klon |
|---|
| 1107 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
|---|
| 1108 | omg(i, k) = -rho(i, k)*RG*omg(i, k) |
|---|
| 1109 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
|---|
| 1110 | END IF |
|---|
| 1111 | END DO |
|---|
| 1112 | END DO |
|---|
| 1113 | |
|---|
| 1114 | ! raccordement lineaire de omg de ptop a pupper |
|---|
| 1115 | |
|---|
| 1116 | DO i = 1, klon |
|---|
| 1117 | IF (wk_adv(i) .AND. kupper(i)>ktop(i)) THEN |
|---|
| 1118 | IF ( iflag_wk_profile == 0 ) THEN |
|---|
| 1119 | omg(i, kupper(i)+1) =-RG*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
|---|
| 1120 | RG*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
|---|
| 1121 | ELSE |
|---|
| 1122 | omg(i, kupper(i)+1) = 0. |
|---|
| 1123 | ENDIF |
|---|
| 1124 | dp_deltomg(i, kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ & |
|---|
| 1125 | (ptop(i)-pupper(i)) |
|---|
| 1126 | END IF |
|---|
| 1127 | END DO |
|---|
| 1128 | |
|---|
| 1129 | ! c DO i=1,klon |
|---|
| 1130 | ! c print*,'Pente entre 0 et kupper (reference)' |
|---|
| 1131 | ! c $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) |
|---|
| 1132 | ! c print*,'Pente entre ktop et kupper' |
|---|
| 1133 | ! c $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) |
|---|
| 1134 | ! c ENDDO |
|---|
| 1135 | ! c |
|---|
| 1136 | DO k = 1, klev |
|---|
| 1137 | DO i = 1, klon |
|---|
| 1138 | IF (wk_adv(i) .AND. k>ktop(i) .AND. k<=kupper(i)) THEN |
|---|
| 1139 | dp_deltomg(i, k) = dp_deltomg(i, kupper(i)) |
|---|
| 1140 | omg(i, k) = omgtop(i) + (ph(i,k)-ptop(i))*dp_deltomg(i, kupper(i)) |
|---|
| 1141 | END IF |
|---|
| 1142 | END DO |
|---|
| 1143 | END DO |
|---|
| 1144 | !! print *,'omg(igout,k) ', (k,omg(igout,k),k=1,klev) |
|---|
| 1145 | ! cc nrlmd |
|---|
| 1146 | ! c DO i=1,klon |
|---|
| 1147 | ! c print*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) |
|---|
| 1148 | ! c END DO |
|---|
| 1149 | ! cc |
|---|
| 1150 | |
|---|
| 1151 | |
|---|
| 1152 | ! -- Compute wake average vertical velocity omgbw |
|---|
| 1153 | |
|---|
| 1154 | |
|---|
| 1155 | DO k = 1, klev |
|---|
| 1156 | DO i = 1, klon |
|---|
| 1157 | IF (wk_adv(i)) THEN |
|---|
| 1158 | omgbw(i, k) = omgb(i, k) + (1.-sigmaw(i))*omg(i, k) |
|---|
| 1159 | END IF |
|---|
| 1160 | END DO |
|---|
| 1161 | END DO |
|---|
| 1162 | ! -- and its vertical gradient dp_omgbw |
|---|
| 1163 | |
|---|
| 1164 | DO k = 1, klev-1 |
|---|
| 1165 | DO i = 1, klon |
|---|
| 1166 | IF (wk_adv(i)) THEN |
|---|
| 1167 | dp_omgbw(i, k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
|---|
| 1168 | END IF |
|---|
| 1169 | END DO |
|---|
| 1170 | END DO |
|---|
| 1171 | DO i = 1, klon |
|---|
| 1172 | IF (wk_adv(i)) THEN |
|---|
| 1173 | dp_omgbw(i, klev) = 0. |
|---|
| 1174 | END IF |
|---|
| 1175 | END DO |
|---|
| 1176 | |
|---|
| 1177 | ! -- Upstream coefficients for omgb velocity |
|---|
| 1178 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
|---|
| 1179 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
|---|
| 1180 | DO k = 1, klev |
|---|
| 1181 | DO i = 1, klon |
|---|
| 1182 | IF (wk_adv(i)) THEN |
|---|
| 1183 | alpha_up(i, k) = 0. |
|---|
| 1184 | IF (omgb(i,k)>0.) alpha_up(i, k) = 1. |
|---|
| 1185 | END IF |
|---|
| 1186 | END DO |
|---|
| 1187 | END DO |
|---|
| 1188 | |
|---|
| 1189 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
|---|
| 1190 | |
|---|
| 1191 | DO i = 1, klon |
|---|
| 1192 | IF (wk_adv(i)) THEN |
|---|
| 1193 | rre1(i) = 1. - sigmaw(i) |
|---|
| 1194 | rre2(i) = sigmaw(i) |
|---|
| 1195 | END IF |
|---|
| 1196 | END DO |
|---|
| 1197 | rrd1 = -1. |
|---|
| 1198 | rrd2 = 1. |
|---|
| 1199 | |
|---|
| 1200 | ! -- Get [Th1,Th2], dth and [q1,q2] |
|---|
| 1201 | |
|---|
| 1202 | DO k = 1, klev |
|---|
| 1203 | DO i = 1, klon |
|---|
| 1204 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
|---|
| 1205 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
|---|
| 1206 | ! print *, 'VVVVwake k, the(i,k), dth(i,k), sigmaw(i) ', k, the(i,k), dth(i,k), sigmaw(i) |
|---|
| 1207 | th1(i, k) = the(i, k) - sigmaw(i)*dth(i, k) ! undisturbed area |
|---|
| 1208 | th2(i, k) = the(i, k) + (1.-sigmaw(i))*dth(i, k) ! wake |
|---|
| 1209 | q1(i, k) = qe(i, k) - sigmaw(i)*deltaqw(i, k) ! undisturbed area |
|---|
| 1210 | q2(i, k) = qe(i, k) + (1.-sigmaw(i))*deltaqw(i, k) ! wake |
|---|
| 1211 | END IF |
|---|
| 1212 | END DO |
|---|
| 1213 | END DO |
|---|
| 1214 | |
|---|
| 1215 | DO i = 1, klon |
|---|
| 1216 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1217 | d_th1(i, 1) = 0. |
|---|
| 1218 | d_th2(i, 1) = 0. |
|---|
| 1219 | d_dth(i, 1) = 0. |
|---|
| 1220 | d_q1(i, 1) = 0. |
|---|
| 1221 | d_q2(i, 1) = 0. |
|---|
| 1222 | d_dq(i, 1) = 0. |
|---|
| 1223 | END IF |
|---|
| 1224 | END DO |
|---|
| 1225 | |
|---|
| 1226 | DO k = 2, klev |
|---|
| 1227 | DO i = 1, klon |
|---|
| 1228 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
|---|
| 1229 | d_th1(i, k) = th1(i, k-1) - th1(i, k) |
|---|
| 1230 | d_th2(i, k) = th2(i, k-1) - th2(i, k) |
|---|
| 1231 | d_dth(i, k) = dth(i, k-1) - dth(i, k) |
|---|
| 1232 | d_q1(i, k) = q1(i, k-1) - q1(i, k) |
|---|
| 1233 | d_q2(i, k) = q2(i, k-1) - q2(i, k) |
|---|
| 1234 | d_dq(i, k) = deltaqw(i, k-1) - deltaqw(i, k) |
|---|
| 1235 | END IF |
|---|
| 1236 | END DO |
|---|
| 1237 | END DO |
|---|
| 1238 | |
|---|
| 1239 | DO i = 1, klon |
|---|
| 1240 | IF (wk_adv(i)) THEN |
|---|
| 1241 | omgbdth(i, 1) = 0. |
|---|
| 1242 | omgbdq(i, 1) = 0. |
|---|
| 1243 | END IF |
|---|
| 1244 | END DO |
|---|
| 1245 | |
|---|
| 1246 | DO k = 2, klev |
|---|
| 1247 | DO i = 1, klon |
|---|
| 1248 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN ! loop on interfaces |
|---|
| 1249 | omgbdth(i, k) = omgb(i, k)*(dth(i,k-1)-dth(i,k)) |
|---|
| 1250 | omgbdq(i, k) = omgb(i, k)*(deltaqw(i,k-1)-deltaqw(i,k)) |
|---|
| 1251 | END IF |
|---|
| 1252 | END DO |
|---|
| 1253 | END DO |
|---|
| 1254 | |
|---|
| 1255 | !! IF (prt_level>=10) THEN |
|---|
| 1256 | IF (prt_level>=10 .and. wk_adv(igout)) THEN |
|---|
| 1257 | PRINT *, 'wake-4.3, th1(igout,k) ', (k,th1(igout,k), k=1,kupper(igout)) |
|---|
| 1258 | PRINT *, 'wake-4.3, th2(igout,k) ', (k,th2(igout,k), k=1,kupper(igout)) |
|---|
| 1259 | PRINT *, 'wake-4.3, dth(igout,k) ', (k,dth(igout,k), k=1,kupper(igout)) |
|---|
| 1260 | PRINT *, 'wake-4.3, omgbdth(igout,k) ', (k,omgbdth(igout,k), k=1,kupper(igout)) |
|---|
| 1261 | ENDIF |
|---|
| 1262 | |
|---|
| 1263 | ! ----------------------------------------------------------------- |
|---|
| 1264 | DO k = 1, klev-1 |
|---|
| 1265 | DO i = 1, klon |
|---|
| 1266 | IF (wk_adv(i) .AND. k<=kupper(i)-1) THEN |
|---|
| 1267 | ! ----------------------------------------------------------------- |
|---|
| 1268 | |
|---|
| 1269 | ! Compute redistribution (advective) term |
|---|
| 1270 | |
|---|
| 1271 | d_deltatw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
|---|
| 1272 | (rrd1*omg(i,k)*sigmaw(i)*d_th1(i,k) - & |
|---|
| 1273 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1)- & |
|---|
| 1274 | (1.-alpha_up(i,k))*omgbdth(i,k)- & |
|---|
| 1275 | alpha_up(i,k+1)*omgbdth(i,k+1))*ppi(i, k) |
|---|
| 1276 | ! print*,'d_deltatw=', k, d_deltatw(i,k) |
|---|
| 1277 | |
|---|
| 1278 | d_deltaqw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
|---|
| 1279 | (rrd1*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
|---|
| 1280 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1)- & |
|---|
| 1281 | (1.-alpha_up(i,k))*omgbdq(i,k)- & |
|---|
| 1282 | alpha_up(i,k+1)*omgbdq(i,k+1)) |
|---|
| 1283 | ! print*,'d_deltaqw=', k, d_deltaqw(i,k) |
|---|
| 1284 | |
|---|
| 1285 | ! and increment large scale tendencies |
|---|
| 1286 | |
|---|
| 1287 | |
|---|
| 1288 | |
|---|
| 1289 | |
|---|
| 1290 | ! C |
|---|
| 1291 | ! ----------------------------------------------------------------- |
|---|
| 1292 | d_tenv(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)- & |
|---|
| 1293 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1))/ & |
|---|
| 1294 | (ph(i,k)-ph(i,k+1)) & |
|---|
| 1295 | -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*(omg(i,k)-omg(i,k+1))/ & |
|---|
| 1296 | (ph(i,k)-ph(i,k+1)) )*ppi(i, k) |
|---|
| 1297 | |
|---|
| 1298 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
|---|
| 1299 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1))/ & |
|---|
| 1300 | (ph(i,k)-ph(i,k+1)) & |
|---|
| 1301 | -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*(omg(i,k)-omg(i,k+1))/ & |
|---|
| 1302 | (ph(i,k)-ph(i,k+1)) ) |
|---|
| 1303 | ELSE IF (wk_adv(i) .AND. k==kupper(i)) THEN |
|---|
| 1304 | d_tenv(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)/(ph(i,k)-ph(i,k+1)))*ppi(i, k) |
|---|
| 1305 | |
|---|
| 1306 | d_qe(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)/(ph(i,k)-ph(i,k+1))) |
|---|
| 1307 | |
|---|
| 1308 | END IF |
|---|
| 1309 | ! cc |
|---|
| 1310 | END DO |
|---|
| 1311 | END DO |
|---|
| 1312 | ! ------------------------------------------------------------------ |
|---|
| 1313 | |
|---|
| 1314 | IF (prt_level>=10) THEN |
|---|
| 1315 | PRINT *, 'wake-4.3, d_deltatw(igout,k) ', (k,d_deltatw(igout,k), k=1,klev) |
|---|
| 1316 | PRINT *, 'wake-4.3, d_deltaqw(igout,k) ', (k,d_deltaqw(igout,k), k=1,klev) |
|---|
| 1317 | ENDIF |
|---|
| 1318 | |
|---|
| 1319 | ! Increment state variables |
|---|
| 1320 | !jyg< |
|---|
| 1321 | IF (iflag_wk_pop_dyn >= 1) THEN |
|---|
| 1322 | DO k = 1, klev |
|---|
| 1323 | DO i = 1, klon |
|---|
| 1324 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
|---|
| 1325 | detr(i,k) = - d_sig_death(i) - d_sig_col(i) |
|---|
| 1326 | entr(i,k) = d_sig_gen(i) |
|---|
| 1327 | ENDIF |
|---|
| 1328 | ENDDO |
|---|
| 1329 | ENDDO |
|---|
| 1330 | ELSE ! (iflag_wk_pop_dyn >= 1) |
|---|
| 1331 | DO k = 1, klev |
|---|
| 1332 | DO i = 1, klon |
|---|
| 1333 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
|---|
| 1334 | detr(i, k) = 0. |
|---|
| 1335 | |
|---|
| 1336 | entr(i, k) = 0. |
|---|
| 1337 | ENDIF |
|---|
| 1338 | ENDDO |
|---|
| 1339 | ENDDO |
|---|
| 1340 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
|---|
| 1341 | |
|---|
| 1342 | |
|---|
| 1343 | |
|---|
| 1344 | DO k = 1, klev |
|---|
| 1345 | DO i = 1, klon |
|---|
| 1346 | ! cc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
|---|
| 1347 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
|---|
| 1348 | ! cc |
|---|
| 1349 | |
|---|
| 1350 | |
|---|
| 1351 | |
|---|
| 1352 | ! Coefficient de repartition |
|---|
| 1353 | |
|---|
| 1354 | crep(i, k) = crep_sol*(ph(i,kupper(i))-ph(i,k))/ & |
|---|
| 1355 | (ph(i,kupper(i))-ph(i,1)) |
|---|
| 1356 | crep(i, k) = crep(i, k) + crep_upper*(ph(i,1)-ph(i,k))/ & |
|---|
| 1357 | (p(i,1)-ph(i,kupper(i))) |
|---|
| 1358 | |
|---|
| 1359 | |
|---|
| 1360 | ! Reintroduce compensating subsidence term. |
|---|
| 1361 | |
|---|
| 1362 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
|---|
| 1363 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
|---|
| 1364 | ! . /(1-sigmaw) |
|---|
| 1365 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
|---|
| 1366 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
|---|
| 1367 | ! . /(1-sigmaw) |
|---|
| 1368 | |
|---|
| 1369 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
|---|
| 1370 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
|---|
| 1371 | ! . /(1-sigmaw) |
|---|
| 1372 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
|---|
| 1373 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
|---|
| 1374 | ! . /(1-sigmaw) |
|---|
| 1375 | |
|---|
| 1376 | dtke(i, k) = (dtdwn(i,k)/sigmaw(i)-dta(i,k)/(1.-sigmaw(i))) |
|---|
| 1377 | dqke(i, k) = (dqdwn(i,k)/sigmaw(i)-dqa(i,k)/(1.-sigmaw(i))) |
|---|
| 1378 | ! print*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) |
|---|
| 1379 | |
|---|
| 1380 | ! |
|---|
| 1381 | |
|---|
| 1382 | ! cc nrlmd Prise en compte du taux de mortalite |
|---|
| 1383 | ! cc Definitions de entr, detr |
|---|
| 1384 | !jyg< |
|---|
| 1385 | !! detr(i, k) = 0. |
|---|
| 1386 | !! |
|---|
| 1387 | !! entr(i, k) = detr(i, k) + gfl(i)*cstar(i) + & |
|---|
| 1388 | !! sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
|---|
| 1389 | !! |
|---|
| 1390 | entr(i, k) = entr(i,k) + gfl(i)*cstar(i) + & |
|---|
| 1391 | sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
|---|
| 1392 | !>jyg |
|---|
| 1393 | wkspread(i, k) = (entr(i,k)-detr(i,k))/sigmaw(i) |
|---|
| 1394 | |
|---|
| 1395 | ! cc wkspread(i,k) = |
|---|
| 1396 | ! (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
|---|
| 1397 | ! cc $ sigmaw(i) |
|---|
| 1398 | |
|---|
| 1399 | |
|---|
| 1400 | ! ajout d'un effet onde de gravite -Tgw(k)*deltatw(k) 03/02/06 YU |
|---|
| 1401 | ! Jingmei |
|---|
| 1402 | |
|---|
| 1403 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), |
|---|
| 1404 | ! & Tgw(i,k),deltatw(i,k) |
|---|
| 1405 | d_deltat_gw(i, k) = d_deltat_gw(i, k) - tgw(i, k)*deltatw(i, k)* & |
|---|
| 1406 | dtimesub |
|---|
| 1407 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) |
|---|
| 1408 | ff(i) = d_deltatw(i, k)/dtimesub |
|---|
| 1409 | |
|---|
| 1410 | ! Sans GW |
|---|
| 1411 | |
|---|
| 1412 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-wkspread(k)*deltatw(k)) |
|---|
| 1413 | |
|---|
| 1414 | ! GW formule 1 |
|---|
| 1415 | |
|---|
| 1416 | ! deltatw(k) = deltatw(k)+dtimesub* |
|---|
| 1417 | ! $ (ff+dtKE(k) - wkspread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
|---|
| 1418 | |
|---|
| 1419 | ! GW formule 2 |
|---|
| 1420 | |
|---|
| 1421 | IF (dtimesub*tgw(i,k)<1.E-10) THEN |
|---|
| 1422 | d_deltatw(i, k) = dtimesub*(ff(i)+dtke(i,k) - & |
|---|
| 1423 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
|---|
| 1424 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & ! cc |
|---|
| 1425 | tgw(i,k)*deltatw(i,k) ) |
|---|
| 1426 | ELSE |
|---|
| 1427 | d_deltatw(i, k) = 1/tgw(i, k)*(1-exp(-dtimesub*tgw(i,k)))* & |
|---|
| 1428 | (ff(i)+dtke(i,k) - & |
|---|
| 1429 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
|---|
| 1430 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & |
|---|
| 1431 | tgw(i,k)*deltatw(i,k) ) |
|---|
| 1432 | END IF |
|---|
| 1433 | |
|---|
| 1434 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
|---|
| 1435 | |
|---|
| 1436 | gg(i) = d_deltaqw(i, k)/dtimesub |
|---|
| 1437 | |
|---|
| 1438 | d_deltaqw(i, k) = dtimesub*(gg(i)+dqke(i,k) - & |
|---|
| 1439 | entr(i,k)*deltaqw(i,k)/sigmaw(i) - & |
|---|
| 1440 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltaqw(i,k)/(1.-sigmaw(i))) |
|---|
| 1441 | ! cc |
|---|
| 1442 | |
|---|
| 1443 | ! cc nrlmd |
|---|
| 1444 | ! cc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
|---|
| 1445 | ! cc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
|---|
| 1446 | ! cc |
|---|
| 1447 | END IF |
|---|
| 1448 | END DO |
|---|
| 1449 | END DO |
|---|
| 1450 | |
|---|
| 1451 | |
|---|
| 1452 | ! Scale tendencies so that water vapour remains positive in w and x. |
|---|
| 1453 | |
|---|
| 1454 | CALL wake_vec_modulation(klon, klev, wk_adv, epsilon_loc, qe, d_qe, deltaqw, & |
|---|
| 1455 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
|---|
| 1456 | ! |
|---|
| 1457 | ! Alpha_tot = Product of all the alpha's |
|---|
| 1458 | DO i = 1, klon |
|---|
| 1459 | IF (wk_adv(i)) THEN |
|---|
| 1460 | alpha_tot(i) = alpha_tot(i)*alpha(i) |
|---|
| 1461 | END IF |
|---|
| 1462 | END DO |
|---|
| 1463 | |
|---|
| 1464 | ! cc nrlmd |
|---|
| 1465 | ! c print*,'alpha' |
|---|
| 1466 | ! c do i=1,klon |
|---|
| 1467 | ! c print*,alpha(i) |
|---|
| 1468 | ! c end do |
|---|
| 1469 | ! cc |
|---|
| 1470 | DO k = 1, klev |
|---|
| 1471 | DO i = 1, klon |
|---|
| 1472 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
|---|
| 1473 | d_tenv(i, k) = alpha(i)*d_tenv(i, k) |
|---|
| 1474 | d_qe(i, k) = alpha(i)*d_qe(i, k) |
|---|
| 1475 | d_deltatw(i, k) = alpha(i)*d_deltatw(i, k) |
|---|
| 1476 | d_deltaqw(i, k) = alpha(i)*d_deltaqw(i, k) |
|---|
| 1477 | d_deltat_gw(i, k) = alpha(i)*d_deltat_gw(i, k) |
|---|
| 1478 | END IF |
|---|
| 1479 | END DO |
|---|
| 1480 | END DO |
|---|
| 1481 | DO i = 1, klon |
|---|
| 1482 | IF (wk_adv(i)) THEN |
|---|
| 1483 | d_sigmaw(i) = alpha(i)*d_sigmaw(i) |
|---|
| 1484 | END IF |
|---|
| 1485 | END DO |
|---|
| 1486 | |
|---|
| 1487 | ! Update large scale variables and wake variables |
|---|
| 1488 | ! IM 060208 manque DO i + remplace DO k=1,kupper(i) |
|---|
| 1489 | ! IM 060208 DO k = 1,kupper(i) |
|---|
| 1490 | DO k = 1, klev |
|---|
| 1491 | DO i = 1, klon |
|---|
| 1492 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
|---|
| 1493 | dtls(i, k) = dtls(i, k) + d_tenv(i, k) |
|---|
| 1494 | dqls(i, k) = dqls(i, k) + d_qe(i, k) |
|---|
| 1495 | ! cc nrlmd |
|---|
| 1496 | d_deltatw2(i, k) = d_deltatw2(i, k) + d_deltatw(i, k) |
|---|
| 1497 | d_deltaqw2(i, k) = d_deltaqw2(i, k) + d_deltaqw(i, k) |
|---|
| 1498 | ! cc |
|---|
| 1499 | END IF |
|---|
| 1500 | END DO |
|---|
| 1501 | END DO |
|---|
| 1502 | DO k = 1, klev |
|---|
| 1503 | DO i = 1, klon |
|---|
| 1504 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
|---|
| 1505 | tenv(i, k) = tenv0(i, k) + dtls(i, k) |
|---|
| 1506 | qe(i, k) = qe0(i, k) + dqls(i, k) |
|---|
| 1507 | the(i, k) = tenv(i, k)/ppi(i, k) |
|---|
| 1508 | deltatw(i, k) = deltatw(i, k) + d_deltatw(i, k) |
|---|
| 1509 | deltaqw(i, k) = deltaqw(i, k) + d_deltaqw(i, k) |
|---|
| 1510 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
|---|
| 1511 | ! c print*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) |
|---|
| 1512 | ! c $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) |
|---|
| 1513 | END IF |
|---|
| 1514 | END DO |
|---|
| 1515 | END DO |
|---|
| 1516 | ! |
|---|
| 1517 | DO i = 1, klon |
|---|
| 1518 | IF (wk_adv(i)) THEN |
|---|
| 1519 | sigmaw(i) = sigmaw(i) + d_sigmaw(i) |
|---|
| 1520 | d_sigmaw2(i) = d_sigmaw2(i) + d_sigmaw(i) |
|---|
| 1521 | ! print *,'XXXX4 d_sigmaw2(i), sigmaw(i) ', d_sigmaw2(i), sigmaw(i) |
|---|
| 1522 | END IF |
|---|
| 1523 | END DO |
|---|
| 1524 | !jyg< |
|---|
| 1525 | IF (iflag_wk_pop_dyn >= 1) THEN |
|---|
| 1526 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! sigmaw !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1527 | ! Cumulatives |
|---|
| 1528 | DO i = 1, klon |
|---|
| 1529 | IF (wk_adv(i)) THEN |
|---|
| 1530 | d_sig_gen2(i) = d_sig_gen2(i) + d_sig_gen(i) |
|---|
| 1531 | d_sig_death2(i) = d_sig_death2(i) + d_sig_death(i) |
|---|
| 1532 | d_sig_col2(i) = d_sig_col2(i) + d_sig_col(i) |
|---|
| 1533 | d_sig_spread2(i)= d_sig_spread2(i)+ d_sig_spread(i) |
|---|
| 1534 | d_sig_bnd2(i) = d_sig_bnd2(i) + d_sig_bnd(i) |
|---|
| 1535 | END IF |
|---|
| 1536 | END DO |
|---|
| 1537 | ! Bounds |
|---|
| 1538 | DO i = 1, klon |
|---|
| 1539 | IF (wk_adv(i)) THEN |
|---|
| 1540 | sigmaw_targ = max(sigmaw(i),sigmad) |
|---|
| 1541 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 1542 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 1543 | ! print *,'XXXX5 d_sigmaw2(i), sigmaw(i) ', d_sigmaw2(i), sigmaw(i) |
|---|
| 1544 | sigmaw(i) = sigmaw_targ |
|---|
| 1545 | END IF |
|---|
| 1546 | END DO |
|---|
| 1547 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! wdens !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1548 | ! Cumulatives |
|---|
| 1549 | DO i = 1, klon |
|---|
| 1550 | IF (wk_adv(i)) THEN |
|---|
| 1551 | wdens(i) = wdens(i) + d_wdens(i) |
|---|
| 1552 | d_wdens2(i) = d_wdens2(i) + d_wdens(i) |
|---|
| 1553 | d_dens_gen2(i) = d_dens_gen2(i) + d_dens_gen(i) |
|---|
| 1554 | d_dens_death2(i) = d_dens_death2(i) + d_dens_death(i) |
|---|
| 1555 | d_dens_col2(i) = d_dens_col2(i) + d_dens_col(i) |
|---|
| 1556 | d_dens_bnd2(i) = d_dens_bnd2(i) + d_dens_bnd(i) |
|---|
| 1557 | END IF |
|---|
| 1558 | END DO |
|---|
| 1559 | ! Bounds |
|---|
| 1560 | DO i = 1, klon |
|---|
| 1561 | IF (wk_adv(i)) THEN |
|---|
| 1562 | wdens_targ = max(wdens(i),wdensmin) |
|---|
| 1563 | d_dens_bnd2(i) = d_dens_bnd2(i) + wdens_targ - wdens(i) |
|---|
| 1564 | d_wdens2(i) = d_wdens2(i) + wdens_targ - wdens(i) |
|---|
| 1565 | wdens(i) = wdens_targ |
|---|
| 1566 | END IF |
|---|
| 1567 | END DO |
|---|
| 1568 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! awdens !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1569 | ! Cumulatives |
|---|
| 1570 | DO i = 1, klon |
|---|
| 1571 | IF (wk_adv(i)) THEN |
|---|
| 1572 | awdens(i) = awdens(i) + d_awdens(i) |
|---|
| 1573 | d_awdens2(i) = d_awdens2(i) + d_awdens(i) |
|---|
| 1574 | END IF |
|---|
| 1575 | END DO |
|---|
| 1576 | ! Bounds |
|---|
| 1577 | DO i = 1, klon |
|---|
| 1578 | IF (wk_adv(i)) THEN |
|---|
| 1579 | wdens_targ = min( max(awdens(i),0.), wdens(i) ) |
|---|
| 1580 | d_awdens2(i) = d_awdens2(i) + wdens_targ - awdens(i) |
|---|
| 1581 | awdens(i) = wdens_targ |
|---|
| 1582 | END IF |
|---|
| 1583 | END DO |
|---|
| 1584 | ! |
|---|
| 1585 | IF (iflag_wk_pop_dyn == 2) THEN |
|---|
| 1586 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! awdens again for iflag_wk_pop_dyn = 2!!!!!! |
|---|
| 1587 | ! Cumulatives |
|---|
| 1588 | DO i = 1, klon |
|---|
| 1589 | IF (wk_adv(i)) THEN |
|---|
| 1590 | d_adens_death2(i) = d_adens_death2(i) + d_adens_death(i) |
|---|
| 1591 | d_adens_icol2(i) = d_adens_icol2(i) + d_adens_icol(i) |
|---|
| 1592 | d_adens_acol2(i) = d_adens_acol2(i) + d_adens_acol(i) |
|---|
| 1593 | d_adens_bnd2(i) = d_adens_bnd2(i) + d_adens_bnd(i) |
|---|
| 1594 | END IF |
|---|
| 1595 | END DO |
|---|
| 1596 | ! Bounds |
|---|
| 1597 | DO i = 1, klon |
|---|
| 1598 | IF (wk_adv(i)) THEN |
|---|
| 1599 | wdens_targ = min( max(awdens(i),0.), wdens(i) ) |
|---|
| 1600 | d_adens_bnd2(i) = d_adens_bnd2(i) + wdens_targ - awdens(i) |
|---|
| 1601 | END IF |
|---|
| 1602 | END DO |
|---|
| 1603 | ENDIF ! (iflag_wk_pop_dyn == 2) |
|---|
| 1604 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
|---|
| 1605 | |
|---|
| 1606 | |
|---|
| 1607 | ! Determine Ptop from buoyancy integral |
|---|
| 1608 | ! --------------------------------------- |
|---|
| 1609 | |
|---|
| 1610 | ! - 1/ Pressure of the level where dth changes sign. |
|---|
| 1611 | |
|---|
| 1612 | DO i = 1, klon |
|---|
| 1613 | IF (wk_adv(i)) THEN |
|---|
| 1614 | ptop_provis(i) = ph(i, 1) |
|---|
| 1615 | END IF |
|---|
| 1616 | END DO |
|---|
| 1617 | |
|---|
| 1618 | DO k = 2, klev |
|---|
| 1619 | DO i = 1, klon |
|---|
| 1620 | IF (wk_adv(i) .AND. ptop_provis(i)==ph(i,1) .AND. & |
|---|
| 1621 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
|---|
| 1622 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
|---|
| 1623 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
|---|
| 1624 | END IF |
|---|
| 1625 | END DO |
|---|
| 1626 | END DO |
|---|
| 1627 | |
|---|
| 1628 | ! - 2/ dth integral |
|---|
| 1629 | |
|---|
| 1630 | DO i = 1, klon |
|---|
| 1631 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1632 | sum_dth(i) = 0. |
|---|
| 1633 | dthmin(i) = -delta_t_min |
|---|
| 1634 | z(i) = 0. |
|---|
| 1635 | END IF |
|---|
| 1636 | END DO |
|---|
| 1637 | |
|---|
| 1638 | DO k = 1, klev |
|---|
| 1639 | DO i = 1, klon |
|---|
| 1640 | IF (wk_adv(i)) THEN |
|---|
| 1641 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*RG) |
|---|
| 1642 | IF (dz(i)>0) THEN |
|---|
| 1643 | z(i) = z(i) + dz(i) |
|---|
| 1644 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
|---|
| 1645 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
|---|
| 1646 | END IF |
|---|
| 1647 | END IF |
|---|
| 1648 | END DO |
|---|
| 1649 | END DO |
|---|
| 1650 | |
|---|
| 1651 | ! - 3/ height of triangle with area= sum_dth and base = dthmin |
|---|
| 1652 | |
|---|
| 1653 | DO i = 1, klon |
|---|
| 1654 | IF (wk_adv(i)) THEN |
|---|
| 1655 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
|---|
| 1656 | hw(i) = amax1(hwmin, hw(i)) |
|---|
| 1657 | END IF |
|---|
| 1658 | END DO |
|---|
| 1659 | |
|---|
| 1660 | ! - 4/ now, get Ptop |
|---|
| 1661 | |
|---|
| 1662 | DO i = 1, klon |
|---|
| 1663 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1664 | ktop(i) = 0 |
|---|
| 1665 | z(i) = 0. |
|---|
| 1666 | END IF |
|---|
| 1667 | END DO |
|---|
| 1668 | |
|---|
| 1669 | DO k = 1, klev |
|---|
| 1670 | DO i = 1, klon |
|---|
| 1671 | IF (wk_adv(i)) THEN |
|---|
| 1672 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*RG), hw(i)-z(i)) |
|---|
| 1673 | IF (dz(i)>0) THEN |
|---|
| 1674 | z(i) = z(i) + dz(i) |
|---|
| 1675 | ptop(i) = ph(i, k) - rho(i, k)*RG*dz(i) |
|---|
| 1676 | ktop(i) = k |
|---|
| 1677 | END IF |
|---|
| 1678 | END IF |
|---|
| 1679 | END DO |
|---|
| 1680 | END DO |
|---|
| 1681 | |
|---|
| 1682 | ! 4.5/Correct ktop and ptop |
|---|
| 1683 | |
|---|
| 1684 | DO i = 1, klon |
|---|
| 1685 | IF (wk_adv(i)) THEN |
|---|
| 1686 | ptop_new(i) = ptop(i) |
|---|
| 1687 | END IF |
|---|
| 1688 | END DO |
|---|
| 1689 | |
|---|
| 1690 | DO k = klev, 2, -1 |
|---|
| 1691 | DO i = 1, klon |
|---|
| 1692 | ! IM v3JYG; IF (k .GE. ktop(i) |
|---|
| 1693 | IF (wk_adv(i) .AND. k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
|---|
| 1694 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
|---|
| 1695 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
|---|
| 1696 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
|---|
| 1697 | END IF |
|---|
| 1698 | END DO |
|---|
| 1699 | END DO |
|---|
| 1700 | |
|---|
| 1701 | |
|---|
| 1702 | DO i = 1, klon |
|---|
| 1703 | IF (wk_adv(i)) THEN |
|---|
| 1704 | ptop(i) = ptop_new(i) |
|---|
| 1705 | END IF |
|---|
| 1706 | END DO |
|---|
| 1707 | |
|---|
| 1708 | DO k = klev, 1, -1 |
|---|
| 1709 | DO i = 1, klon |
|---|
| 1710 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1711 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
|---|
| 1712 | END IF |
|---|
| 1713 | END DO |
|---|
| 1714 | END DO |
|---|
| 1715 | |
|---|
| 1716 | ! 5/ Set deltatw & deltaqw to 0 above kupper |
|---|
| 1717 | |
|---|
| 1718 | DO k = 1, klev |
|---|
| 1719 | DO i = 1, klon |
|---|
| 1720 | IF (wk_adv(i) .AND. k>=kupper(i)) THEN |
|---|
| 1721 | deltatw(i, k) = 0. |
|---|
| 1722 | deltaqw(i, k) = 0. |
|---|
| 1723 | d_deltatw2(i,k) = -deltatw0(i,k) |
|---|
| 1724 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
|---|
| 1725 | END IF |
|---|
| 1726 | END DO |
|---|
| 1727 | END DO |
|---|
| 1728 | |
|---|
| 1729 | |
|---|
| 1730 | ! -------------Cstar computation--------------------------------- |
|---|
| 1731 | DO i = 1, klon |
|---|
| 1732 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1733 | sum_thu(i) = 0. |
|---|
| 1734 | sum_tu(i) = 0. |
|---|
| 1735 | sum_qu(i) = 0. |
|---|
| 1736 | sum_thvu(i) = 0. |
|---|
| 1737 | sum_dth(i) = 0. |
|---|
| 1738 | sum_dq(i) = 0. |
|---|
| 1739 | sum_rho(i) = 0. |
|---|
| 1740 | sum_dtdwn(i) = 0. |
|---|
| 1741 | sum_dqdwn(i) = 0. |
|---|
| 1742 | |
|---|
| 1743 | av_thu(i) = 0. |
|---|
| 1744 | av_tu(i) = 0. |
|---|
| 1745 | av_qu(i) = 0. |
|---|
| 1746 | av_thvu(i) = 0. |
|---|
| 1747 | av_dth(i) = 0. |
|---|
| 1748 | av_dq(i) = 0. |
|---|
| 1749 | av_rho(i) = 0. |
|---|
| 1750 | av_dtdwn(i) = 0. |
|---|
| 1751 | av_dqdwn(i) = 0. |
|---|
| 1752 | END IF |
|---|
| 1753 | END DO |
|---|
| 1754 | |
|---|
| 1755 | ! Integrals (and wake top level number) |
|---|
| 1756 | ! -------------------------------------- |
|---|
| 1757 | |
|---|
| 1758 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
|---|
| 1759 | |
|---|
| 1760 | DO i = 1, klon |
|---|
| 1761 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1762 | z(i) = 1. |
|---|
| 1763 | dz(i) = 1. |
|---|
| 1764 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
|---|
| 1765 | sum_dth(i) = 0. |
|---|
| 1766 | END IF |
|---|
| 1767 | END DO |
|---|
| 1768 | |
|---|
| 1769 | DO k = 1, klev |
|---|
| 1770 | DO i = 1, klon |
|---|
| 1771 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1772 | dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*RG) |
|---|
| 1773 | IF (dz(i)>0) THEN |
|---|
| 1774 | z(i) = z(i) + dz(i) |
|---|
| 1775 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
|---|
| 1776 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
|---|
| 1777 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
|---|
| 1778 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
|---|
| 1779 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
|---|
| 1780 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
|---|
| 1781 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
|---|
| 1782 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
|---|
| 1783 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
|---|
| 1784 | END IF |
|---|
| 1785 | END IF |
|---|
| 1786 | END DO |
|---|
| 1787 | END DO |
|---|
| 1788 | |
|---|
| 1789 | DO i = 1, klon |
|---|
| 1790 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1791 | hw0(i) = z(i) |
|---|
| 1792 | END IF |
|---|
| 1793 | END DO |
|---|
| 1794 | |
|---|
| 1795 | |
|---|
| 1796 | ! - WAPE and mean forcing computation |
|---|
| 1797 | ! --------------------------------------- |
|---|
| 1798 | |
|---|
| 1799 | ! --------------------------------------- |
|---|
| 1800 | |
|---|
| 1801 | ! Means |
|---|
| 1802 | |
|---|
| 1803 | DO i = 1, klon |
|---|
| 1804 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1805 | av_thu(i) = sum_thu(i)/hw0(i) |
|---|
| 1806 | av_tu(i) = sum_tu(i)/hw0(i) |
|---|
| 1807 | av_qu(i) = sum_qu(i)/hw0(i) |
|---|
| 1808 | av_thvu(i) = sum_thvu(i)/hw0(i) |
|---|
| 1809 | av_dth(i) = sum_dth(i)/hw0(i) |
|---|
| 1810 | av_dq(i) = sum_dq(i)/hw0(i) |
|---|
| 1811 | av_rho(i) = sum_rho(i)/hw0(i) |
|---|
| 1812 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
|---|
| 1813 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
|---|
| 1814 | |
|---|
| 1815 | wape(i) = -RG*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
|---|
| 1816 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
|---|
| 1817 | END IF |
|---|
| 1818 | END DO |
|---|
| 1819 | |
|---|
| 1820 | ! Filter out bad wakes |
|---|
| 1821 | |
|---|
| 1822 | DO k = 1, klev |
|---|
| 1823 | DO i = 1, klon |
|---|
| 1824 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1825 | IF (wape(i)<0.) THEN |
|---|
| 1826 | deltatw(i, k) = 0. |
|---|
| 1827 | deltaqw(i, k) = 0. |
|---|
| 1828 | dth(i, k) = 0. |
|---|
| 1829 | d_deltatw2(i,k) = -deltatw0(i,k) |
|---|
| 1830 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
|---|
| 1831 | END IF |
|---|
| 1832 | END IF |
|---|
| 1833 | END DO |
|---|
| 1834 | END DO |
|---|
| 1835 | |
|---|
| 1836 | DO i = 1, klon |
|---|
| 1837 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1838 | IF (wape(i)<0.) THEN |
|---|
| 1839 | wape(i) = 0. |
|---|
| 1840 | cstar(i) = 0. |
|---|
| 1841 | hw(i) = hwmin |
|---|
| 1842 | !jyg< |
|---|
| 1843 | !! sigmaw(i) = max(sigmad, sigd_con(i)) |
|---|
| 1844 | sigmaw_targ = max(sigmad, sigd_con(i)) |
|---|
| 1845 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 1846 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 1847 | ! print *,'XXXX6 d_sigmaw2(i), sigmaw(i) ', d_sigmaw2(i), sigmaw(i) |
|---|
| 1848 | sigmaw(i) = sigmaw_targ |
|---|
| 1849 | !>jyg |
|---|
| 1850 | fip(i) = 0. |
|---|
| 1851 | gwake(i) = .FALSE. |
|---|
| 1852 | ELSE |
|---|
| 1853 | cstar(i) = stark*sqrt(2.*wape(i)) |
|---|
| 1854 | gwake(i) = .TRUE. |
|---|
| 1855 | END IF |
|---|
| 1856 | END IF |
|---|
| 1857 | END DO |
|---|
| 1858 | |
|---|
| 1859 | END DO ! end sub-timestep loop |
|---|
| 1860 | |
|---|
| 1861 | IF (prt_level>=10) THEN |
|---|
| 1862 | PRINT *, 'wake-5, sigmaw(igout), cstar(igout), wape(igout), ptop(igout) ', & |
|---|
| 1863 | sigmaw(igout), cstar(igout), wape(igout), ptop(igout) |
|---|
| 1864 | ENDIF |
|---|
| 1865 | |
|---|
| 1866 | |
|---|
| 1867 | ! ---------------------------------------------------------- |
|---|
| 1868 | ! Determine wake final state; recompute wape, cstar, ktop; |
|---|
| 1869 | ! filter out bad wakes. |
|---|
| 1870 | ! ---------------------------------------------------------- |
|---|
| 1871 | |
|---|
| 1872 | ! 2.1 - Undisturbed area and Wake integrals |
|---|
| 1873 | ! --------------------------------------------------------- |
|---|
| 1874 | |
|---|
| 1875 | DO i = 1, klon |
|---|
| 1876 | ! cc nrlmd if (wk_adv(i)) then !!! nrlmd |
|---|
| 1877 | IF (ok_qx_qw(i)) THEN |
|---|
| 1878 | ! cc |
|---|
| 1879 | z(i) = 0. |
|---|
| 1880 | sum_thu(i) = 0. |
|---|
| 1881 | sum_tu(i) = 0. |
|---|
| 1882 | sum_qu(i) = 0. |
|---|
| 1883 | sum_thvu(i) = 0. |
|---|
| 1884 | sum_dth(i) = 0. |
|---|
| 1885 | sum_half_dth(i) = 0. |
|---|
| 1886 | sum_dq(i) = 0. |
|---|
| 1887 | sum_rho(i) = 0. |
|---|
| 1888 | sum_dtdwn(i) = 0. |
|---|
| 1889 | sum_dqdwn(i) = 0. |
|---|
| 1890 | |
|---|
| 1891 | av_thu(i) = 0. |
|---|
| 1892 | av_tu(i) = 0. |
|---|
| 1893 | av_qu(i) = 0. |
|---|
| 1894 | av_thvu(i) = 0. |
|---|
| 1895 | av_dth(i) = 0. |
|---|
| 1896 | av_dq(i) = 0. |
|---|
| 1897 | av_rho(i) = 0. |
|---|
| 1898 | av_dtdwn(i) = 0. |
|---|
| 1899 | av_dqdwn(i) = 0. |
|---|
| 1900 | |
|---|
| 1901 | dthmin(i) = -delta_t_min |
|---|
| 1902 | END IF |
|---|
| 1903 | END DO |
|---|
| 1904 | ! Potential temperatures and humidity |
|---|
| 1905 | ! ---------------------------------------------------------- |
|---|
| 1906 | |
|---|
| 1907 | DO k = 1, klev |
|---|
| 1908 | DO i = 1, klon |
|---|
| 1909 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 1910 | IF (ok_qx_qw(i)) THEN |
|---|
| 1911 | ! cc |
|---|
| 1912 | rho(i, k) = p(i, k)/(RD*tenv(i,k)) |
|---|
| 1913 | IF (k==1) THEN |
|---|
| 1914 | rhoh(i, k) = ph(i, k)/(RD*tenv(i,k)) |
|---|
| 1915 | zhh(i, k) = 0 |
|---|
| 1916 | ELSE |
|---|
| 1917 | rhoh(i, k) = ph(i, k)*2./(RD*(tenv(i,k)+tenv(i,k-1))) |
|---|
| 1918 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*RG) + zhh(i, k-1) |
|---|
| 1919 | END IF |
|---|
| 1920 | the(i, k) = tenv(i, k)/ppi(i, k) |
|---|
| 1921 | thu(i, k) = (tenv(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
|---|
| 1922 | tu(i, k) = tenv(i, k) - deltatw(i, k)*sigmaw(i) |
|---|
| 1923 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
|---|
| 1924 | rhow(i, k) = p(i, k)/(RD*(tenv(i,k)+deltatw(i,k))) |
|---|
| 1925 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
|---|
| 1926 | END IF |
|---|
| 1927 | END DO |
|---|
| 1928 | END DO |
|---|
| 1929 | |
|---|
| 1930 | ! Integrals (and wake top level number) |
|---|
| 1931 | ! ----------------------------------------------------------- |
|---|
| 1932 | |
|---|
| 1933 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
|---|
| 1934 | |
|---|
| 1935 | DO i = 1, klon |
|---|
| 1936 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 1937 | IF (ok_qx_qw(i)) THEN |
|---|
| 1938 | ! cc |
|---|
| 1939 | z(i) = 1. |
|---|
| 1940 | dz(i) = 1. |
|---|
| 1941 | dz_half(i) = 1. |
|---|
| 1942 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
|---|
| 1943 | sum_dth(i) = 0. |
|---|
| 1944 | END IF |
|---|
| 1945 | END DO |
|---|
| 1946 | |
|---|
| 1947 | DO k = 1, klev |
|---|
| 1948 | DO i = 1, klon |
|---|
| 1949 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 1950 | IF (ok_qx_qw(i)) THEN |
|---|
| 1951 | ! cc |
|---|
| 1952 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*RG) |
|---|
| 1953 | dz_half(i) = -(amax1(ph(i,k+1),0.5*(ptop(i)+ph(i,1)))-ph(i,k))/(rho(i,k)*RG) |
|---|
| 1954 | IF (dz(i)>0) THEN |
|---|
| 1955 | z(i) = z(i) + dz(i) |
|---|
| 1956 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
|---|
| 1957 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
|---|
| 1958 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
|---|
| 1959 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
|---|
| 1960 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
|---|
| 1961 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
|---|
| 1962 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
|---|
| 1963 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
|---|
| 1964 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
|---|
| 1965 | ! |
|---|
| 1966 | dthmin(i) = min(dthmin(i), dth(i,k)) |
|---|
| 1967 | END IF |
|---|
| 1968 | IF (dz_half(i)>0) THEN |
|---|
| 1969 | sum_half_dth(i) = sum_half_dth(i) + dth(i, k)*dz_half(i) |
|---|
| 1970 | END IF |
|---|
| 1971 | END IF |
|---|
| 1972 | END DO |
|---|
| 1973 | END DO |
|---|
| 1974 | |
|---|
| 1975 | DO i = 1, klon |
|---|
| 1976 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 1977 | IF (ok_qx_qw(i)) THEN |
|---|
| 1978 | ! cc |
|---|
| 1979 | hw0(i) = z(i) |
|---|
| 1980 | END IF |
|---|
| 1981 | END DO |
|---|
| 1982 | |
|---|
| 1983 | ! - WAPE and mean forcing computation |
|---|
| 1984 | ! ------------------------------------------------------------- |
|---|
| 1985 | |
|---|
| 1986 | ! Means |
|---|
| 1987 | |
|---|
| 1988 | DO i = 1, klon |
|---|
| 1989 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 1990 | IF (ok_qx_qw(i)) THEN |
|---|
| 1991 | ! cc |
|---|
| 1992 | av_thu(i) = sum_thu(i)/hw0(i) |
|---|
| 1993 | av_tu(i) = sum_tu(i)/hw0(i) |
|---|
| 1994 | av_qu(i) = sum_qu(i)/hw0(i) |
|---|
| 1995 | av_thvu(i) = sum_thvu(i)/hw0(i) |
|---|
| 1996 | av_dth(i) = sum_dth(i)/hw0(i) |
|---|
| 1997 | av_dq(i) = sum_dq(i)/hw0(i) |
|---|
| 1998 | av_rho(i) = sum_rho(i)/hw0(i) |
|---|
| 1999 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
|---|
| 2000 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
|---|
| 2001 | |
|---|
| 2002 | wape2(i) = -RG*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
|---|
| 2003 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
|---|
| 2004 | END IF |
|---|
| 2005 | END DO |
|---|
| 2006 | |
|---|
| 2007 | |
|---|
| 2008 | |
|---|
| 2009 | ! Prognostic variable update |
|---|
| 2010 | ! ------------------------------------------------------------ |
|---|
| 2011 | |
|---|
| 2012 | ! Filter out bad wakes |
|---|
| 2013 | |
|---|
| 2014 | IF (iflag_wk_check_trgl>=1) THEN |
|---|
| 2015 | ! Check triangular shape of dth profile |
|---|
| 2016 | DO i = 1, klon |
|---|
| 2017 | IF (ok_qx_qw(i)) THEN |
|---|
| 2018 | !! print *,'wake, hw0(i), dthmin(i) ', hw0(i), dthmin(i) |
|---|
| 2019 | !! print *,'wake, 2.*sum_dth(i)/(hw0(i)*dthmin(i)) ', & |
|---|
| 2020 | !! 2.*sum_dth(i)/(hw0(i)*dthmin(i)) |
|---|
| 2021 | !! print *,'wake, sum_half_dth(i), sum_dth(i) ', & |
|---|
| 2022 | !! sum_half_dth(i), sum_dth(i) |
|---|
| 2023 | IF ((hw0(i) < 1.) .or. (dthmin(i) >= -delta_t_min) ) THEN |
|---|
| 2024 | wape2(i) = -1. |
|---|
| 2025 | !! print *,'wake, rej 1' |
|---|
| 2026 | ELSE IF (iflag_wk_check_trgl==1.AND.abs(2.*sum_dth(i)/(hw0(i)*dthmin(i)) - 1.) > 0.5) THEN |
|---|
| 2027 | wape2(i) = -1. |
|---|
| 2028 | !! print *,'wake, rej 2' |
|---|
| 2029 | ELSE IF (abs(sum_half_dth(i)) < 0.5*abs(sum_dth(i)) ) THEN |
|---|
| 2030 | wape2(i) = -1. |
|---|
| 2031 | !! print *,'wake, rej 3' |
|---|
| 2032 | END IF |
|---|
| 2033 | END IF |
|---|
| 2034 | END DO |
|---|
| 2035 | END IF |
|---|
| 2036 | |
|---|
| 2037 | |
|---|
| 2038 | DO k = 1, klev |
|---|
| 2039 | DO i = 1, klon |
|---|
| 2040 | ! cc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN |
|---|
| 2041 | IF (ok_qx_qw(i) .AND. wape2(i)<0.) THEN |
|---|
| 2042 | ! cc |
|---|
| 2043 | deltatw(i, k) = 0. |
|---|
| 2044 | deltaqw(i, k) = 0. |
|---|
| 2045 | dth(i, k) = 0. |
|---|
| 2046 | d_deltatw2(i,k) = -deltatw0(i,k) |
|---|
| 2047 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
|---|
| 2048 | END IF |
|---|
| 2049 | END DO |
|---|
| 2050 | END DO |
|---|
| 2051 | |
|---|
| 2052 | |
|---|
| 2053 | DO i = 1, klon |
|---|
| 2054 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 2055 | IF (ok_qx_qw(i)) THEN |
|---|
| 2056 | ! cc |
|---|
| 2057 | IF (wape2(i)<0.) THEN |
|---|
| 2058 | wape2(i) = 0. |
|---|
| 2059 | cstar2(i) = 0. |
|---|
| 2060 | hw(i) = hwmin |
|---|
| 2061 | !jyg< |
|---|
| 2062 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
|---|
| 2063 | sigmaw_targ = max(sigmad, sigd_con(i)) |
|---|
| 2064 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 2065 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 2066 | ! print *,'XXXX7 d_sigmaw2(i), sigmaw(i) ', d_sigmaw2(i), sigmaw(i) |
|---|
| 2067 | sigmaw(i) = sigmaw_targ |
|---|
| 2068 | !>jyg |
|---|
| 2069 | fip(i) = 0. |
|---|
| 2070 | gwake(i) = .FALSE. |
|---|
| 2071 | ELSE |
|---|
| 2072 | IF (prt_level>=10) PRINT *, 'wape2>0' |
|---|
| 2073 | cstar2(i) = stark*sqrt(2.*wape2(i)) |
|---|
| 2074 | gwake(i) = .TRUE. |
|---|
| 2075 | END IF |
|---|
| 2076 | END IF |
|---|
| 2077 | END DO |
|---|
| 2078 | |
|---|
| 2079 | DO i = 1, klon |
|---|
| 2080 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 2081 | IF (ok_qx_qw(i)) THEN |
|---|
| 2082 | ! cc |
|---|
| 2083 | ktopw(i) = ktop(i) |
|---|
| 2084 | END IF |
|---|
| 2085 | END DO |
|---|
| 2086 | |
|---|
| 2087 | DO i = 1, klon |
|---|
| 2088 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 2089 | IF (ok_qx_qw(i)) THEN |
|---|
| 2090 | ! cc |
|---|
| 2091 | IF (ktopw(i)>0 .AND. gwake(i)) THEN |
|---|
| 2092 | |
|---|
| 2093 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
|---|
| 2094 | ! cc heff = 600. |
|---|
| 2095 | ! Utilisation de la hauteur hw |
|---|
| 2096 | ! c heff = 0.7*hw |
|---|
| 2097 | heff(i) = hw(i) |
|---|
| 2098 | |
|---|
| 2099 | fip(i) = 0.5*rho(i, ktopw(i))*cstar2(i)**3*heff(i)*2* & |
|---|
| 2100 | sqrt(sigmaw(i)*wdens(i)*3.14) |
|---|
| 2101 | fip(i) = alpk*fip(i) |
|---|
| 2102 | ! jyg2 |
|---|
| 2103 | ELSE |
|---|
| 2104 | fip(i) = 0. |
|---|
| 2105 | END IF |
|---|
| 2106 | END IF |
|---|
| 2107 | END DO |
|---|
| 2108 | |
|---|
| 2109 | ! Limitation de sigmaw |
|---|
| 2110 | |
|---|
| 2111 | ! cc nrlmd |
|---|
| 2112 | ! DO i=1,klon |
|---|
| 2113 | ! IF (OK_qx_qw(i)) THEN |
|---|
| 2114 | ! IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max |
|---|
| 2115 | ! ENDIF |
|---|
| 2116 | ! ENDDO |
|---|
| 2117 | ! cc |
|---|
| 2118 | |
|---|
| 2119 | !jyg< |
|---|
| 2120 | IF (iflag_wk_pop_dyn >= 1) THEN |
|---|
| 2121 | DO i = 1, klon |
|---|
| 2122 | kill_wake(i) = ((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
|---|
| 2123 | .NOT. ok_qx_qw(i) .OR. (wdens(i) < 2.*wdensmin) |
|---|
| 2124 | ENDDO |
|---|
| 2125 | ELSE ! (iflag_wk_pop_dyn >= 1) |
|---|
| 2126 | DO i = 1, klon |
|---|
| 2127 | kill_wake(i) = ((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
|---|
| 2128 | .NOT. ok_qx_qw(i) |
|---|
| 2129 | ENDDO |
|---|
| 2130 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
|---|
| 2131 | !>jyg |
|---|
| 2132 | |
|---|
| 2133 | DO k = 1, klev |
|---|
| 2134 | DO i = 1, klon |
|---|
| 2135 | !!jyg IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
|---|
| 2136 | !!jyg .NOT. ok_qx_qw(i)) THEN |
|---|
| 2137 | IF (kill_wake(i)) THEN |
|---|
| 2138 | ! cc |
|---|
| 2139 | dtls(i, k) = 0. |
|---|
| 2140 | dqls(i, k) = 0. |
|---|
| 2141 | deltatw(i, k) = 0. |
|---|
| 2142 | deltaqw(i, k) = 0. |
|---|
| 2143 | d_deltatw2(i,k) = -deltatw0(i,k) |
|---|
| 2144 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
|---|
| 2145 | END IF ! (kill_wake(i)) |
|---|
| 2146 | END DO |
|---|
| 2147 | END DO |
|---|
| 2148 | |
|---|
| 2149 | DO i = 1, klon |
|---|
| 2150 | !!jyg IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
|---|
| 2151 | !!jyg .NOT. ok_qx_qw(i)) THEN |
|---|
| 2152 | IF (kill_wake(i)) THEN |
|---|
| 2153 | ktopw(i) = 0 |
|---|
| 2154 | wape(i) = 0. |
|---|
| 2155 | cstar(i) = 0. |
|---|
| 2156 | !!jyg Outside subroutine "Wake" hw, wdens and sigmaw are zero when there are no wakes |
|---|
| 2157 | !! hw(i) = hwmin !jyg |
|---|
| 2158 | !! sigmaw(i) = sigmad !jyg |
|---|
| 2159 | hw(i) = 0. !jyg |
|---|
| 2160 | fip(i) = 0. |
|---|
| 2161 | !! sigmaw(i) = 0. !jyg |
|---|
| 2162 | sigmaw_targ = 0. |
|---|
| 2163 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 2164 | !! d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 2165 | d_sigmaw2(i) = sigmaw_targ - sigmaw_in(i) ! _in = correction jyg 20220124 |
|---|
| 2166 | ! print *,'XXXX8 d_sigmaw2(i), sigmaw(i) ', d_sigmaw2(i), sigmaw(i) |
|---|
| 2167 | sigmaw(i) = sigmaw_targ |
|---|
| 2168 | IF (iflag_wk_pop_dyn >= 1) THEN |
|---|
| 2169 | !! awdens(i) = 0. |
|---|
| 2170 | !! wdens(i) = 0. |
|---|
| 2171 | wdens_targ = 0. |
|---|
| 2172 | d_dens_bnd2(i) = d_dens_bnd2(i) + wdens_targ - wdens(i) |
|---|
| 2173 | !! d_wdens2(i) = wdens_targ - wdens(i) |
|---|
| 2174 | d_wdens2(i) = wdens_targ - wdens_in(i) ! jyg 20220916 |
|---|
| 2175 | wdens(i) = wdens_targ |
|---|
| 2176 | wdens_targ = 0. |
|---|
| 2177 | !!jyg: bug fix : the d_adens_bnd2 computation must be before the update of awdens. |
|---|
| 2178 | IF (iflag_wk_pop_dyn == 2) THEN |
|---|
| 2179 | d_adens_bnd2(i) = d_adens_bnd2(i) + wdens_targ - awdens(i) |
|---|
| 2180 | ENDIF ! (iflag_wk_pop_dyn == 2) |
|---|
| 2181 | !! d_awdens2(i) = wdens_targ - awdens(i) |
|---|
| 2182 | d_awdens2(i) = wdens_targ - awdens_in(i) ! jyg 20220916 |
|---|
| 2183 | awdens(i) = wdens_targ |
|---|
| 2184 | !! IF (iflag_wk_pop_dyn == 2) THEN |
|---|
| 2185 | !! d_adens_bnd2(i) = d_adens_bnd2(i) + wdens_targ - awdens(i) |
|---|
| 2186 | !! ENDIF ! (iflag_wk_pop_dyn == 2) |
|---|
| 2187 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
|---|
| 2188 | ELSE ! (kill_wake(i)) |
|---|
| 2189 | wape(i) = wape2(i) |
|---|
| 2190 | cstar(i) = cstar2(i) |
|---|
| 2191 | END IF ! (kill_wake(i)) |
|---|
| 2192 | ! c print*,'wape wape2 ktopw OK_qx_qw =', |
|---|
| 2193 | ! c $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) |
|---|
| 2194 | END DO |
|---|
| 2195 | |
|---|
| 2196 | IF (prt_level>=10) THEN |
|---|
| 2197 | PRINT *, 'wake-6, wape wape2 ktopw OK_qx_qw =', & |
|---|
| 2198 | wape(igout),wape2(igout),ktopw(igout),OK_qx_qw(igout) |
|---|
| 2199 | ENDIF |
|---|
| 2200 | |
|---|
| 2201 | |
|---|
| 2202 | ! ----------------------------------------------------------------- |
|---|
| 2203 | ! Get back to tendencies per second |
|---|
| 2204 | |
|---|
| 2205 | DO k = 1, klev |
|---|
| 2206 | DO i = 1, klon |
|---|
| 2207 | |
|---|
| 2208 | ! cc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
|---|
| 2209 | !jyg< |
|---|
| 2210 | !! IF (ok_qx_qw(i) .AND. k<=kupper(i)) THEN |
|---|
| 2211 | IF (ok_qx_qw(i)) THEN |
|---|
| 2212 | !>jyg |
|---|
| 2213 | ! cc |
|---|
| 2214 | dtls(i, k) = dtls(i, k)/dtime |
|---|
| 2215 | dqls(i, k) = dqls(i, k)/dtime |
|---|
| 2216 | d_deltatw2(i, k) = d_deltatw2(i, k)/dtime |
|---|
| 2217 | d_deltaqw2(i, k) = d_deltaqw2(i, k)/dtime |
|---|
| 2218 | d_deltat_gw(i, k) = d_deltat_gw(i, k)/dtime |
|---|
| 2219 | ! c print*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) |
|---|
| 2220 | ! c $ ,death_rate(i)*sigmaw(i) |
|---|
| 2221 | END IF |
|---|
| 2222 | END DO |
|---|
| 2223 | END DO |
|---|
| 2224 | !jyg< |
|---|
| 2225 | IF (iflag_wk_pop_dyn >= 1) THEN |
|---|
| 2226 | DO i = 1, klon |
|---|
| 2227 | IF (ok_qx_qw(i)) THEN |
|---|
| 2228 | d_sig_gen2(i) = d_sig_gen2(i)/dtime |
|---|
| 2229 | d_sig_death2(i) = d_sig_death2(i)/dtime |
|---|
| 2230 | d_sig_col2(i) = d_sig_col2(i)/dtime |
|---|
| 2231 | d_sig_spread2(i) = d_sig_spread2(i)/dtime |
|---|
| 2232 | d_sig_bnd2(i) = d_sig_bnd2(i)/dtime |
|---|
| 2233 | d_sigmaw2(i) = d_sigmaw2(i)/dtime |
|---|
| 2234 | ! print *,'XXXX9 d_sigmaw2(i), sigmaw(i), dtime ', d_sigmaw2(i), sigmaw(i), dtime |
|---|
| 2235 | ! |
|---|
| 2236 | d_dens_gen2(i) = d_dens_gen2(i)/dtime |
|---|
| 2237 | d_dens_death2(i) = d_dens_death2(i)/dtime |
|---|
| 2238 | d_dens_col2(i) = d_dens_col2(i)/dtime |
|---|
| 2239 | d_dens_bnd2(i) = d_dens_bnd2(i)/dtime |
|---|
| 2240 | d_awdens2(i) = d_awdens2(i)/dtime |
|---|
| 2241 | d_wdens2(i) = d_wdens2(i)/dtime |
|---|
| 2242 | ENDIF |
|---|
| 2243 | ENDDO |
|---|
| 2244 | IF (iflag_wk_pop_dyn == 2) THEN |
|---|
| 2245 | DO i = 1, klon |
|---|
| 2246 | IF (ok_qx_qw(i)) THEN |
|---|
| 2247 | d_adens_death2(i) = d_adens_death2(i)/dtime |
|---|
| 2248 | d_adens_icol2(i) = d_adens_icol2(i)/dtime |
|---|
| 2249 | d_adens_acol2(i) = d_adens_acol2(i)/dtime |
|---|
| 2250 | d_adens_bnd2(i) = d_adens_bnd2(i)/dtime |
|---|
| 2251 | ENDIF |
|---|
| 2252 | ENDDO |
|---|
| 2253 | ENDIF ! (iflag_wk_pop_dyn == 2) |
|---|
| 2254 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
|---|
| 2255 | |
|---|
| 2256 | !>jyg |
|---|
| 2257 | |
|---|
| 2258 | RETURN |
|---|
| 2259 | END SUBROUTINE wake |
|---|
| 2260 | |
|---|
| 2261 | SUBROUTINE wake_vec_modulation(nlon, nl, wk_adv, epsilon_loc, qe, d_qe, deltaqw, & |
|---|
| 2262 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
|---|
| 2263 | ! ------------------------------------------------------ |
|---|
| 2264 | ! Dtermination du coefficient alpha tel que les tendances |
|---|
| 2265 | ! corriges alpha*d_G, pour toutes les grandeurs G, correspondent |
|---|
| 2266 | ! a une humidite positive dans la zone (x) et dans la zone (w). |
|---|
| 2267 | ! ------------------------------------------------------ |
|---|
| 2268 | IMPLICIT NONE |
|---|
| 2269 | |
|---|
| 2270 | ! Input |
|---|
| 2271 | REAL qe(nlon, nl), d_qe(nlon, nl) |
|---|
| 2272 | REAL deltaqw(nlon, nl), d_deltaqw(nlon, nl) |
|---|
| 2273 | REAL sigmaw(nlon), d_sigmaw(nlon) |
|---|
| 2274 | LOGICAL wk_adv(nlon) |
|---|
| 2275 | INTEGER nl, nlon |
|---|
| 2276 | ! Output |
|---|
| 2277 | REAL alpha(nlon) |
|---|
| 2278 | ! Internal variables |
|---|
| 2279 | REAL zeta(nlon, nl) |
|---|
| 2280 | REAL alpha1(nlon) |
|---|
| 2281 | REAL x, a, b, c, discrim |
|---|
| 2282 | REAL epsilon_loc |
|---|
| 2283 | INTEGER i,k |
|---|
| 2284 | |
|---|
| 2285 | DO k = 1, nl |
|---|
| 2286 | DO i = 1, nlon |
|---|
| 2287 | IF (wk_adv(i)) THEN |
|---|
| 2288 | IF ((deltaqw(i,k)+d_deltaqw(i,k))>=0.) THEN |
|---|
| 2289 | zeta(i, k) = 0. |
|---|
| 2290 | ELSE |
|---|
| 2291 | zeta(i, k) = 1. |
|---|
| 2292 | END IF |
|---|
| 2293 | END IF |
|---|
| 2294 | END DO |
|---|
| 2295 | DO i = 1, nlon |
|---|
| 2296 | IF (wk_adv(i)) THEN |
|---|
| 2297 | x = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + d_qe(i, k) + & |
|---|
| 2298 | (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - d_sigmaw(i) * & |
|---|
| 2299 | (deltaqw(i,k)+d_deltaqw(i,k)) |
|---|
| 2300 | a = -d_sigmaw(i)*d_deltaqw(i, k) |
|---|
| 2301 | b = d_qe(i, k) + (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - & |
|---|
| 2302 | deltaqw(i, k)*d_sigmaw(i) |
|---|
| 2303 | c = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + epsilon_loc |
|---|
| 2304 | discrim = b*b - 4.*a*c |
|---|
| 2305 | ! print*, 'x, a, b, c, discrim', x, a, b, c, discrim |
|---|
| 2306 | IF (a+b>=0.) THEN !! Condition suffisante pour la positivite de ovap |
|---|
| 2307 | alpha1(i) = 1. |
|---|
| 2308 | ELSE |
|---|
| 2309 | IF (x>=0.) THEN |
|---|
| 2310 | alpha1(i) = 1. |
|---|
| 2311 | ELSE |
|---|
| 2312 | IF (a>0.) THEN |
|---|
| 2313 | alpha1(i) = 0.9*min( (2.*c)/(-b+sqrt(discrim)), & |
|---|
| 2314 | (-b+sqrt(discrim))/(2.*a) ) |
|---|
| 2315 | ELSE IF (a==0.) THEN |
|---|
| 2316 | alpha1(i) = 0.9*(-c/b) |
|---|
| 2317 | ELSE |
|---|
| 2318 | ! print*,'a,b,c discrim',a,b,c discrim |
|---|
| 2319 | alpha1(i) = 0.9*max( (2.*c)/(-b+sqrt(discrim)), & |
|---|
| 2320 | (-b+sqrt(discrim))/(2.*a)) |
|---|
| 2321 | END IF |
|---|
| 2322 | END IF |
|---|
| 2323 | END IF |
|---|
| 2324 | alpha(i) = min(alpha(i), alpha1(i)) |
|---|
| 2325 | END IF |
|---|
| 2326 | END DO |
|---|
| 2327 | END DO |
|---|
| 2328 | |
|---|
| 2329 | RETURN |
|---|
| 2330 | END SUBROUTINE wake_vec_modulation |
|---|
| 2331 | |
|---|
| 2332 | |
|---|
| 2333 | |
|---|
| 2334 | SUBROUTINE pkupper (klon, klev, ptop, ph, pupper, kupper) |
|---|
| 2335 | |
|---|
| 2336 | USE lmdz_wake_ini , ONLY : wk_pupper |
|---|
| 2337 | IMPLICIT NONE |
|---|
| 2338 | |
|---|
| 2339 | INTEGER, INTENT(IN) :: klon,klev |
|---|
| 2340 | REAL, INTENT(IN), DIMENSION (klon,klev+1) :: ph |
|---|
| 2341 | REAL, INTENT(IN), DIMENSION (klon) :: ptop |
|---|
| 2342 | REAL, INTENT(OUT), DIMENSION (klon) :: pupper |
|---|
| 2343 | INTEGER, INTENT(OUT), DIMENSION (klon) :: kupper |
|---|
| 2344 | INTEGER :: i,k |
|---|
| 2345 | |
|---|
| 2346 | |
|---|
| 2347 | kupper = 0 |
|---|
| 2348 | |
|---|
| 2349 | IF (wk_pupper<1.) THEN |
|---|
| 2350 | ! Choose an integration bound well above wake top |
|---|
| 2351 | ! ----------------------------------------------------------------- |
|---|
| 2352 | |
|---|
| 2353 | ! Pupper = 50000. ! melting level |
|---|
| 2354 | ! Pupper = 60000. |
|---|
| 2355 | ! Pupper = 80000. ! essais pour case_e |
|---|
| 2356 | DO i = 1, klon |
|---|
| 2357 | ! pupper(i) = 0.6*ph(i, 1) |
|---|
| 2358 | pupper(i) = wk_pupper*ph(i, 1) |
|---|
| 2359 | pupper(i) = max(pupper(i), 45000.) |
|---|
| 2360 | ! cc Pupper(i) = 60000. |
|---|
| 2361 | END DO |
|---|
| 2362 | |
|---|
| 2363 | ELSE |
|---|
| 2364 | |
|---|
| 2365 | DO i=1, klon |
|---|
| 2366 | ! pupper(i) = wk_pupper*ptop(i)+(1.-wk_pupper)*ph(i, 1) |
|---|
| 2367 | pupper(i) = min( wk_pupper*ptop(i)+(1.-wk_pupper)*ph(i, 1) , ptop(i)-5000.) |
|---|
| 2368 | END DO |
|---|
| 2369 | END IF |
|---|
| 2370 | |
|---|
| 2371 | ! -5/ Determination de kupper |
|---|
| 2372 | |
|---|
| 2373 | DO k = klev, 1, -1 |
|---|
| 2374 | DO i = 1, klon |
|---|
| 2375 | IF (ph(i,k+1)<pupper(i)) kupper(i) = k |
|---|
| 2376 | END DO |
|---|
| 2377 | END DO |
|---|
| 2378 | |
|---|
| 2379 | ! On evite kupper = 1 et kupper = klev |
|---|
| 2380 | DO i = 1, klon |
|---|
| 2381 | kupper(i) = max(kupper(i), 2) |
|---|
| 2382 | kupper(i) = min(kupper(i), klev-1) |
|---|
| 2383 | END DO |
|---|
| 2384 | RETURN |
|---|
| 2385 | END SUBROUTINE pkupper |
|---|
| 2386 | |
|---|
| 2387 | |
|---|
| 2388 | SUBROUTINE wake_popdyn_1(klon, klev, dtime, cstar, tau_wk_inv, wgen, wdens, awdens, sigmaw, & |
|---|
| 2389 | dtimesub, gfl, rad_wk, f_shear, drdt_pos, & |
|---|
| 2390 | d_awdens, d_wdens, d_sigmaw, & |
|---|
| 2391 | iflag_wk_act, wk_adv, cin, wape, & |
|---|
| 2392 | drdt, & |
|---|
| 2393 | d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd, & |
|---|
| 2394 | d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd, & |
|---|
| 2395 | d_wdens_targ, d_sigmaw_targ) |
|---|
| 2396 | |
|---|
| 2397 | |
|---|
| 2398 | USE lmdz_wake_ini , ONLY : wake_ini |
|---|
| 2399 | USE lmdz_wake_ini , ONLY : prt_level,RG |
|---|
| 2400 | USE lmdz_wake_ini , ONLY : stark, wdens_ref |
|---|
| 2401 | USE lmdz_wake_ini , ONLY : tau_cv, rzero, aa0 |
|---|
| 2402 | USE lmdz_wake_ini , ONLY : iflag_wk_pop_dyn, wdensmin |
|---|
| 2403 | USE lmdz_wake_ini , ONLY : sigmad, cstart, sigmaw_max |
|---|
| 2404 | |
|---|
| 2405 | IMPLICIT NONE |
|---|
| 2406 | |
|---|
| 2407 | INTEGER, INTENT(IN) :: klon,klev |
|---|
| 2408 | LOGICAL, DIMENSION (klon), INTENT(IN) :: wk_adv |
|---|
| 2409 | REAL, INTENT(IN) :: dtime |
|---|
| 2410 | REAL, INTENT(IN) :: dtimesub |
|---|
| 2411 | REAL, DIMENSION (klon), INTENT(IN) :: wgen |
|---|
| 2412 | REAL, DIMENSION (klon), INTENT(IN) :: wdens |
|---|
| 2413 | REAL, DIMENSION (klon), INTENT(IN) :: awdens |
|---|
| 2414 | REAL, DIMENSION (klon), INTENT(IN) :: sigmaw |
|---|
| 2415 | REAL, DIMENSION (klon), INTENT(IN) :: gfl, cstar |
|---|
| 2416 | REAL, DIMENSION (klon), INTENT(IN) :: cin, wape |
|---|
| 2417 | REAL, DIMENSION (klon), INTENT(IN) :: rad_wk |
|---|
| 2418 | REAL, DIMENSION (klon), INTENT(IN) :: f_shear |
|---|
| 2419 | INTEGER, INTENT(IN) :: iflag_wk_act |
|---|
| 2420 | |
|---|
| 2421 | |
|---|
| 2422 | ! |
|---|
| 2423 | |
|---|
| 2424 | ! Tendencies of state variables (2 is appended to the names of fields which are the cumul of fields |
|---|
| 2425 | ! computed at each sub-timestep; e.g. d_wdens2 is the cumul of d_wdens) |
|---|
| 2426 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw, d_awdens, d_wdens |
|---|
| 2427 | REAL, DIMENSION (klon), INTENT(OUT) :: drdt |
|---|
| 2428 | ! Some components of the tendencies of state variables |
|---|
| 2429 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sig_gen, d_sig_death, d_sig_col, d_sig_bnd |
|---|
| 2430 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sig_spread |
|---|
| 2431 | REAL, DIMENSION (klon), INTENT(OUT) :: d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd |
|---|
| 2432 | REAL, INTENT(OUT) :: d_wdens_targ, d_sigmaw_targ |
|---|
| 2433 | |
|---|
| 2434 | |
|---|
| 2435 | REAL :: delta_t_min |
|---|
| 2436 | INTEGER :: nsub |
|---|
| 2437 | INTEGER :: i, k |
|---|
| 2438 | REAL :: wdens0 |
|---|
| 2439 | ! IM 080208 |
|---|
| 2440 | LOGICAL, DIMENSION (klon) :: gwake |
|---|
| 2441 | |
|---|
| 2442 | ! Variables liees a la dynamique de population |
|---|
| 2443 | REAL, DIMENSION(klon) :: act |
|---|
| 2444 | REAL, DIMENSION(klon) :: tau_wk_inv |
|---|
| 2445 | REAL, DIMENSION(klon) :: wape1_act, wape2_act |
|---|
| 2446 | LOGICAL, DIMENSION (klon) :: kill_wake |
|---|
| 2447 | REAL :: drdt_pos |
|---|
| 2448 | REAL :: tau_wk_inv_min |
|---|
| 2449 | |
|---|
| 2450 | |
|---|
| 2451 | |
|---|
| 2452 | IF (iflag_wk_act == 0) THEN |
|---|
| 2453 | act(:) = 0. |
|---|
| 2454 | ELSEIF (iflag_wk_act == 1) THEN |
|---|
| 2455 | act(:) = 1. |
|---|
| 2456 | ELSEIF (iflag_wk_act ==2) THEN |
|---|
| 2457 | DO i = 1, klon |
|---|
| 2458 | IF (wk_adv(i)) THEN |
|---|
| 2459 | wape1_act(i) = abs(cin(i)) |
|---|
| 2460 | wape2_act(i) = 2.*wape1_act(i) + 1. |
|---|
| 2461 | act(i) = min(1., max(0., (wape(i)-wape1_act(i)) / (wape2_act(i)-wape1_act(i)) )) |
|---|
| 2462 | ENDIF ! (wk_adv(i)) |
|---|
| 2463 | ENDDO |
|---|
| 2464 | ENDIF ! (iflag_wk_act ==2) |
|---|
| 2465 | |
|---|
| 2466 | |
|---|
| 2467 | DO i = 1, klon |
|---|
| 2468 | ! print*, 'XXX wk_adv(i)', wk_adv(i) |
|---|
| 2469 | IF (wk_adv(i)) THEN |
|---|
| 2470 | !! tau_wk(i) = max(rad_wk(i)/(3.*cstar(i))*((cstar(i)/cstart)**1.5 - 1), 100.) |
|---|
| 2471 | tau_wk_inv(i) = max( (3.*cstar(i))/(rad_wk(i)*((cstar(i)/cstart)**1.5 - 1)), 0.) |
|---|
| 2472 | tau_wk_inv_min = min(tau_wk_inv(i), 1./dtimesub) |
|---|
| 2473 | drdt(i) = (cstar(i) - wgen(i)*(sigmaw(i)/wdens(i)-aa0)/gfl(i)) / & |
|---|
| 2474 | (1 + 2*f_shear(i)*(2.*sigmaw(i)-aa0*wdens(i)) - 2.*sigmaw(i)) |
|---|
| 2475 | !! (1 - 2*sigmaw(i)*(1.-f_shear(i))) |
|---|
| 2476 | drdt_pos=max(drdt(i),0.) |
|---|
| 2477 | |
|---|
| 2478 | !! d_wdens(i) = ( wgen(i)*(1.+2.*(sigmaw(i)-sigmad)) & |
|---|
| 2479 | !! - wdens(i)*tau_wk_inv_min & |
|---|
| 2480 | !! - 2.*gfl(i)*wdens(i)*Cstar(i) )*dtimesub |
|---|
| 2481 | !jyg+mlt< |
|---|
| 2482 | d_awdens(i) = ( wgen(i) - (1./tau_cv)*(awdens(i) - act(i)*wdens(i)) )*dtimesub |
|---|
| 2483 | d_dens_gen(i) = wgen(i) |
|---|
| 2484 | d_dens_death(i) = - (wdens(i)-awdens(i))*tau_wk_inv_min |
|---|
| 2485 | d_dens_col(i) = -2.*wdens(i)*gfl(i)*drdt_pos |
|---|
| 2486 | d_dens_gen(i) = d_dens_gen(i)*dtimesub |
|---|
| 2487 | d_dens_death(i) = d_dens_death(i)*dtimesub |
|---|
| 2488 | d_dens_col(i) = d_dens_col(i)*dtimesub |
|---|
| 2489 | |
|---|
| 2490 | d_wdens(i) = d_dens_gen(i)+d_dens_death(i)+d_dens_col(i) |
|---|
| 2491 | !! d_wdens(i) = ( wgen(i) - (wdens(i)-awdens(i))*tau_wk_inv_min - & |
|---|
| 2492 | !! 2.*wdens(i)*gfl(i)*drdt_pos )*dtimesub |
|---|
| 2493 | !>jyg+mlt |
|---|
| 2494 | ! |
|---|
| 2495 | !jyg< |
|---|
| 2496 | d_wdens_targ = max(d_wdens(i), wdensmin-wdens(i)) |
|---|
| 2497 | !! d_dens_bnd(i) = d_dens_bnd(i) + d_wdens_targ - d_wdens(i) |
|---|
| 2498 | d_dens_bnd(i) = d_wdens_targ - d_wdens(i) |
|---|
| 2499 | d_wdens(i) = d_wdens_targ |
|---|
| 2500 | !! d_wdens(i) = max(d_wdens(i), wdensmin-wdens(i)) |
|---|
| 2501 | !>jyg |
|---|
| 2502 | |
|---|
| 2503 | !jyg+mlt< |
|---|
| 2504 | !! d_sigmaw(i) = ( (1.-2*f_shear(i)*sigmaw(i))*(gfl(i)*Cstar(i)+wgen(i)*sigmad/wdens(i)) & |
|---|
| 2505 | !! + 2.*f_shear(i)*wgen(i)*sigmaw(i)**2/wdens(i) & |
|---|
| 2506 | !! - sigmaw(i)*tau_wk_inv_min )*dtimesub |
|---|
| 2507 | d_sig_gen(i) = wgen(i)*aa0 |
|---|
| 2508 | !! print*, 'XXX sigmaw(i), awdens(i), wdens(i), tau_wk_inv_min', & |
|---|
| 2509 | !! sigmaw(i), awdens(i), wdens(i), tau_wk_inv_min |
|---|
| 2510 | d_sig_death(i) = - sigmaw(i)*(1.-awdens(i)/wdens(i))*tau_wk_inv_min |
|---|
| 2511 | !! |
|---|
| 2512 | |
|---|
| 2513 | d_sig_col(i) = - 2*f_shear(i)*sigmaw(i)*gfl(i)*drdt_pos |
|---|
| 2514 | d_sig_col(i) = - 2*f_shear(i)*(2.*sigmaw(i)-wdens(i)*aa0)*gfl(i)*drdt_pos |
|---|
| 2515 | d_sig_spread(i) = gfl(i)*cstar(i) |
|---|
| 2516 | d_sig_gen(i) = d_sig_gen(i)*dtimesub |
|---|
| 2517 | d_sig_death(i) = d_sig_death(i)*dtimesub |
|---|
| 2518 | d_sig_col(i) = d_sig_col(i)*dtimesub |
|---|
| 2519 | d_sig_spread(i) = d_sig_spread(i)*dtimesub |
|---|
| 2520 | d_sigmaw(i) = d_sig_gen(i) + d_sig_death(i) + d_sig_col(i) + d_sig_spread(i) |
|---|
| 2521 | !>jyg+mlt |
|---|
| 2522 | ! |
|---|
| 2523 | !jyg< |
|---|
| 2524 | d_sigmaw_targ = max(d_sigmaw(i), sigmad-sigmaw(i)) |
|---|
| 2525 | !! d_sig_bnd(i) = d_sig_bnd(i) + d_sigmaw_targ - d_sigmaw(i) |
|---|
| 2526 | !! d_sig_bnd_provis(i) = d_sigmaw_targ - d_sigmaw(i) |
|---|
| 2527 | d_sig_bnd(i) = d_sigmaw_targ - d_sigmaw(i) |
|---|
| 2528 | d_sigmaw(i) = d_sigmaw_targ |
|---|
| 2529 | !! d_sigmaw(i) = max(d_sigmaw(i), sigmad-sigmaw(i)) |
|---|
| 2530 | !>jyg |
|---|
| 2531 | ENDIF |
|---|
| 2532 | ENDDO |
|---|
| 2533 | |
|---|
| 2534 | IF (prt_level >= 10) THEN |
|---|
| 2535 | print *,'wake, cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), drdt(1) ', & |
|---|
| 2536 | cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), drdt(1) |
|---|
| 2537 | print *,'wake, wdens(1), awdens(1), act(1), d_awdens(1) ', & |
|---|
| 2538 | wdens(1), awdens(1), act(1), d_awdens(1) |
|---|
| 2539 | print *,'wake, wgen, -(wdens-awdens)*tau_wk_inv, -2.*wdens*gfl*drdt_pos, d_wdens ', & |
|---|
| 2540 | wgen(1), -(wdens(1)-awdens(1))*tau_wk_inv(1), -2.*wdens(1)*gfl(1)*drdt_pos, d_wdens(1) |
|---|
| 2541 | print *,'wake, d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) ', & |
|---|
| 2542 | d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) |
|---|
| 2543 | ENDIF |
|---|
| 2544 | |
|---|
| 2545 | RETURN |
|---|
| 2546 | END SUBROUTINE wake_popdyn_1 |
|---|
| 2547 | |
|---|
| 2548 | SUBROUTINE wake_popdyn_2 ( klon, klev, wk_adv, dtimesub, wgen, & |
|---|
| 2549 | sigmaw, wdens, awdens, & !! states variables |
|---|
| 2550 | gfl, cstar, cin, wape, rad_wk, & |
|---|
| 2551 | d_sigmaw, d_wdens, d_awdens, & !! tendences |
|---|
| 2552 | cont_fact, & |
|---|
| 2553 | d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd, & |
|---|
| 2554 | d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd, & |
|---|
| 2555 | d_adens_death, d_adens_icol, d_adens_acol, d_adens_bnd ) |
|---|
| 2556 | |
|---|
| 2557 | |
|---|
| 2558 | |
|---|
| 2559 | USE lmdz_wake_ini , ONLY : wake_ini |
|---|
| 2560 | USE lmdz_wake_ini , ONLY : prt_level,RG |
|---|
| 2561 | USE lmdz_wake_ini , ONLY : stark, wdens_ref |
|---|
| 2562 | USE lmdz_wake_ini , ONLY : tau_cv, rzero, aa0 |
|---|
| 2563 | USE lmdz_wake_ini , ONLY : iflag_wk_pop_dyn, wdensmin |
|---|
| 2564 | USE lmdz_wake_ini , ONLY : sigmad, cstart, sigmaw_max |
|---|
| 2565 | |
|---|
| 2566 | IMPLICIT NONE |
|---|
| 2567 | |
|---|
| 2568 | INTEGER, INTENT(IN) :: klon,klev |
|---|
| 2569 | LOGICAL, DIMENSION (klon), INTENT(IN) :: wk_adv |
|---|
| 2570 | REAL, INTENT(IN) :: dtimesub |
|---|
| 2571 | REAL, DIMENSION (klon), INTENT(IN) :: wgen !! B = birth rate of wakes |
|---|
| 2572 | REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw !! sigma = fractional area of wakes |
|---|
| 2573 | REAL, DIMENSION (klon), INTENT(INOUT) :: wdens !! D = number of wakes per unit area |
|---|
| 2574 | REAL, DIMENSION (klon), INTENT(INOUT) :: awdens !! A = number of active wakes per unit area |
|---|
| 2575 | REAL, DIMENSION (klon), INTENT(IN) :: gfl !! Lg = gust front lenght per unit area |
|---|
| 2576 | REAL, DIMENSION (klon), INTENT(IN) :: cstar !! C* = spreading velocity of wakes |
|---|
| 2577 | REAL, DIMENSION (klon), INTENT(IN) :: cin, wape ! RM : A Faire disparaitre |
|---|
| 2578 | REAL, DIMENSION (klon), INTENT(IN) :: rad_wk !! r = wake radius |
|---|
| 2579 | |
|---|
| 2580 | ! |
|---|
| 2581 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw, d_wdens, d_awdens |
|---|
| 2582 | REAL, DIMENSION (klon), INTENT(OUT) :: cont_fact !! RM facteur de contact = 2 pi * rad * C* |
|---|
| 2583 | ! Some components of the tendencies of state variables |
|---|
| 2584 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd |
|---|
| 2585 | REAL, DIMENSION (klon), INTENT(OUT) :: d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd |
|---|
| 2586 | REAL, DIMENSION (klon), INTENT(OUT) :: d_adens_death, d_adens_icol, d_adens_acol, d_adens_bnd |
|---|
| 2587 | |
|---|
| 2588 | |
|---|
| 2589 | !! internal variables |
|---|
| 2590 | |
|---|
| 2591 | INTEGER :: i, k |
|---|
| 2592 | REAL, DIMENSION (klon) :: tau_wk_inv !! tau = life time of wakes |
|---|
| 2593 | REAL :: tau_wk_inv_min |
|---|
| 2594 | REAL, DIMENSION (klon) :: tau_prime !! tau_prime = life time of actives wakes |
|---|
| 2595 | REAL :: d_wdens_targ, d_sigmaw_targ |
|---|
| 2596 | |
|---|
| 2597 | |
|---|
| 2598 | !! Equations |
|---|
| 2599 | !! dD/dt = B - (D-A)/tau - f D^2 |
|---|
| 2600 | !! dA/dt = B - A/tau_prime + f (D-A)^2 - f A^2 |
|---|
| 2601 | !! dsigma/dt = B a0 - sigma/D (D-A)/tau + Lg C* - f (D-A)^2 (sigma/D-a0) |
|---|
| 2602 | !! |
|---|
| 2603 | !! f = 2 (B (a0-sigma/D) + Lg C*) / (2 (D-A)^2 (2 sigma/D-a0) + D (1-2 sigma)) |
|---|
| 2604 | |
|---|
| 2605 | |
|---|
| 2606 | DO i = 1, klon |
|---|
| 2607 | ! print*, 'XXX wk_adv(i)', wk_adv(i) |
|---|
| 2608 | IF (wk_adv(i)) THEN |
|---|
| 2609 | !! tau_wk(i) = max(rad_wk(i)/(3.*cstar(i))*((cstar(i)/cstart)**1.5 - 1), 100.) |
|---|
| 2610 | tau_wk_inv(i) = max( (3.*cstar(i))/(rad_wk(i)*((cstar(i)/cstart)**1.5 - 1)), 0.) |
|---|
| 2611 | tau_wk_inv_min = min(tau_wk_inv(i), 1./dtimesub) |
|---|
| 2612 | tau_prime(i) = tau_cv |
|---|
| 2613 | !! cont_fact(i) = 2.*(wgen(i)*(aa0-sigmaw(i)/wdens(i)) + gfl(i)*cstar(i)) / & |
|---|
| 2614 | !! (2.*(wdens(i)-awdens(i))**2*(2.*sigmaw(i)/wdens(i) - aa0) + wdens(i)*(1.-2.*sigmaw(i))) |
|---|
| 2615 | !! cont_fact(i) = 2.*3.14*rad_wk(i)*cstar(i) ! bug |
|---|
| 2616 | !! cont_fact(i) = 4.*3.14*rad_wk(i)*cstar(i) |
|---|
| 2617 | cont_fact(i) = 2.*gfl(i)*cstar(i)/wdens(i) |
|---|
| 2618 | |
|---|
| 2619 | d_sig_gen(i) = wgen(i)*aa0 |
|---|
| 2620 | d_sig_death(i) = - sigmaw(i)*(1.-awdens(i)/wdens(i))*tau_wk_inv_min |
|---|
| 2621 | d_sig_col(i) = - cont_fact(i)*(wdens(i)-awdens(i))**2*(2.*sigmaw(i)/wdens(i)-aa0) |
|---|
| 2622 | d_sig_spread(i) = gfl(i)*cstar(i) |
|---|
| 2623 | ! |
|---|
| 2624 | d_sig_gen(i) = d_sig_gen(i)*dtimesub |
|---|
| 2625 | d_sig_death(i) = d_sig_death(i)*dtimesub |
|---|
| 2626 | d_sig_col(i) = d_sig_col(i)*dtimesub |
|---|
| 2627 | d_sig_spread(i) = d_sig_spread(i)*dtimesub |
|---|
| 2628 | d_sigmaw(i) = d_sig_gen(i) + d_sig_death(i) + d_sig_col(i) + d_sig_spread(i) |
|---|
| 2629 | |
|---|
| 2630 | |
|---|
| 2631 | d_sigmaw_targ = max(d_sigmaw(i), sigmad-sigmaw(i)) |
|---|
| 2632 | !! d_sig_bnd(i) = d_sig_bnd(i) + d_sigmaw_targ - d_sigmaw(i) |
|---|
| 2633 | !! d_sig_bnd_provis(i) = d_sigmaw_targ - d_sigmaw(i) |
|---|
| 2634 | d_sig_bnd(i) = d_sigmaw_targ - d_sigmaw(i) |
|---|
| 2635 | d_sigmaw(i) = d_sigmaw_targ |
|---|
| 2636 | !! d_sigmaw(i) = max(d_sigmaw(i), sigmad-sigmaw(i)) |
|---|
| 2637 | |
|---|
| 2638 | |
|---|
| 2639 | d_dens_gen(i) = wgen(i) |
|---|
| 2640 | d_dens_death(i) = - (wdens(i)-awdens(i))*tau_wk_inv_min |
|---|
| 2641 | d_dens_col(i) = - cont_fact(i)*wdens(i)**2 |
|---|
| 2642 | ! |
|---|
| 2643 | d_dens_gen(i) = d_dens_gen(i)*dtimesub |
|---|
| 2644 | d_dens_death(i) = d_dens_death(i)*dtimesub |
|---|
| 2645 | d_dens_col(i) = d_dens_col(i)*dtimesub |
|---|
| 2646 | d_wdens(i) = d_dens_gen(i) + d_dens_death(i) + d_dens_col(i) |
|---|
| 2647 | |
|---|
| 2648 | |
|---|
| 2649 | d_adens_death(i) = -awdens(i)/tau_prime(i) |
|---|
| 2650 | d_adens_icol(i) = cont_fact(i)*(wdens(i)-awdens(i))**2 |
|---|
| 2651 | d_adens_acol(i) = - cont_fact(i)*awdens(i)**2 |
|---|
| 2652 | ! |
|---|
| 2653 | d_adens_death(i) = d_adens_death(i)*dtimesub |
|---|
| 2654 | d_adens_icol(i) = d_adens_icol(i)*dtimesub |
|---|
| 2655 | d_adens_acol(i) = d_adens_acol(i)*dtimesub |
|---|
| 2656 | d_awdens(i) = d_dens_gen(i) + d_adens_death(i) + d_adens_icol(i) + d_adens_acol(i) |
|---|
| 2657 | |
|---|
| 2658 | !! |
|---|
| 2659 | d_wdens_targ = max(d_wdens(i), wdensmin-wdens(i)) |
|---|
| 2660 | !! d_dens_bnd(i) = d_dens_bnd(i) + d_wdens_targ - d_wdens(i) |
|---|
| 2661 | d_dens_bnd(i) = d_wdens_targ - d_wdens(i) |
|---|
| 2662 | d_wdens(i) = d_wdens_targ |
|---|
| 2663 | |
|---|
| 2664 | d_wdens_targ = min(max(d_awdens(i),-awdens(i)), wdens(i)-awdens(i)) |
|---|
| 2665 | !! d_dens_bnd(i) = d_dens_bnd(i) + d_wdens_targ - d_wdens(i) |
|---|
| 2666 | d_adens_bnd(i) = d_wdens_targ - d_awdens(i) |
|---|
| 2667 | d_awdens(i) = d_wdens_targ |
|---|
| 2668 | |
|---|
| 2669 | |
|---|
| 2670 | |
|---|
| 2671 | ENDIF |
|---|
| 2672 | ENDDO |
|---|
| 2673 | |
|---|
| 2674 | IF (prt_level >= 10) THEN |
|---|
| 2675 | print *,'wake, cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), cont_fact(1) ', & |
|---|
| 2676 | cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), cont_fact(1) |
|---|
| 2677 | print *,'wake, wdens(1), awdens(1), d_awdens(1) ', & |
|---|
| 2678 | wdens(1), awdens(1), d_awdens(1) |
|---|
| 2679 | print *,'wake, d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) ', & |
|---|
| 2680 | d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) |
|---|
| 2681 | ENDIF |
|---|
| 2682 | sigmaw=sigmaw+d_sigmaw |
|---|
| 2683 | wdens=wdens+d_wdens |
|---|
| 2684 | awdens=awdens+d_awdens |
|---|
| 2685 | |
|---|
| 2686 | RETURN |
|---|
| 2687 | END SUBROUTINE wake_popdyn_2 |
|---|
| 2688 | |
|---|
| 2689 | END MODULE lmdz_wake |
|---|