[4664] | 1 | MODULE lmdz_lscp |
---|
[3999] | 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
| 7 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4380] | 8 | SUBROUTINE lscp(klon,klev,dtime,missing_val, & |
---|
[4686] | 9 | paprs,pplay,temp,qt,ptconv,ratqs, & |
---|
[4380] | 10 | d_t, d_q, d_ql, d_qi, rneb, rneblsvol, rneb_seri, & |
---|
[4530] | 11 | pfraclr,pfracld, & |
---|
| 12 | radocond, radicefrac, rain, snow, & |
---|
[3999] | 13 | frac_impa, frac_nucl, beta, & |
---|
| 14 | prfl, psfl, rhcl, zqta, fraca, & |
---|
| 15 | ztv, zpspsk, ztla, zthl, iflag_cld_th, & |
---|
[4380] | 16 | iflag_ice_thermo, ok_ice_sursat, qsatl, qsats, & |
---|
[4639] | 17 | distcltop,temp_cltop, & |
---|
[4380] | 18 | qclr, qcld, qss, qvc, rnebclr, rnebss, gamma_ss, & |
---|
[4651] | 19 | Tcontr, qcontr, qcontr2, fcontrN, fcontrP, & |
---|
| 20 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[3999] | 21 | |
---|
| 22 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 23 | ! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD) |
---|
| 24 | ! A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD) |
---|
| 25 | !-------------------------------------------------------------------------------- |
---|
| 26 | ! Date: 01/2021 |
---|
| 27 | !-------------------------------------------------------------------------------- |
---|
| 28 | ! Aim: Large Scale Clouds and Precipitation (LSCP) |
---|
[4226] | 29 | ! |
---|
[3999] | 30 | ! This code is a new version of the fisrtilp.F90 routine, which is itself a |
---|
[4072] | 31 | ! merge of 'first' (superrsaturation physics, P. LeVan K. Laval) |
---|
[3999] | 32 | ! and 'ilp' (il pleut, L. Li) |
---|
| 33 | ! |
---|
[4380] | 34 | ! Compared to the original fisrtilp code, lscp |
---|
[3999] | 35 | ! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.) |
---|
| 36 | ! -> consider always precipitation thermalisation (fl_cor_ebil>0) |
---|
| 37 | ! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T) |
---|
| 38 | ! -> option "oldbug" by JYG has been removed |
---|
| 39 | ! -> iflag_t_glace >0 always |
---|
| 40 | ! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always) |
---|
| 41 | ! -> rectangular distribution from L. Li no longer available |
---|
| 42 | ! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt) |
---|
| 43 | !-------------------------------------------------------------------------------- |
---|
| 44 | ! References: |
---|
| 45 | ! |
---|
[4412] | 46 | ! - Bony, S., & Emanuel, K. A. 2001, JAS, doi: 10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2 |
---|
[3999] | 47 | ! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y |
---|
| 48 | ! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3 |
---|
[4412] | 49 | ! - Jouhaud, et al. 2018. JAMES, doi:10.1029/2018MS001379 |
---|
[3999] | 50 | ! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046 |
---|
[4412] | 51 | ! - Touzze-Peifert Ludo, PhD thesis, p117-124 |
---|
[3999] | 52 | ! ------------------------------------------------------------------------------- |
---|
| 53 | ! Code structure: |
---|
| 54 | ! |
---|
[4226] | 55 | ! P0> Thermalization of the precipitation coming from the overlying layer |
---|
[3999] | 56 | ! P1> Evaporation of the precipitation (falling from the k+1 level) |
---|
| 57 | ! P2> Cloud formation (at the k level) |
---|
[4412] | 58 | ! P2.A.1> With the PDFs, calculation of cloud properties using the inital |
---|
[3999] | 59 | ! values of T and Q |
---|
| 60 | ! P2.A.2> Coupling between condensed water and temperature |
---|
| 61 | ! P2.A.3> Calculation of final quantities associated with cloud formation |
---|
[4412] | 62 | ! P2.B> Release of Latent heat after cloud formation |
---|
[3999] | 63 | ! P3> Autoconversion to precipitation (k-level) |
---|
| 64 | ! P4> Wet scavenging |
---|
| 65 | !------------------------------------------------------------------------------ |
---|
| 66 | ! Some preliminary comments (JBM) : |
---|
| 67 | ! |
---|
| 68 | ! The cloud water that the radiation scheme sees is not the same that the cloud |
---|
| 69 | ! water used in the physics and the dynamics |
---|
| 70 | ! |
---|
[4412] | 71 | ! During the autoconversion to precipitation (P3 step), radocond (cloud water used |
---|
[3999] | 72 | ! by the radiation scheme) is calculated as an average of the water that remains |
---|
| 73 | ! in the cloud during the precipitation and not the water remaining at the end |
---|
| 74 | ! of the time step. The latter is used in the rest of the physics and advected |
---|
| 75 | ! by the dynamics. |
---|
| 76 | ! |
---|
| 77 | ! In summary: |
---|
| 78 | ! |
---|
| 79 | ! Radiation: |
---|
| 80 | ! xflwc(newmicro)+xfiwc(newmicro) = |
---|
[4412] | 81 | ! radocond=lwcon(nc)+iwcon(nc) |
---|
[3999] | 82 | ! |
---|
| 83 | ! Notetheless, be aware of: |
---|
| 84 | ! |
---|
[4412] | 85 | ! radocond .NE. ocond(nc) |
---|
[3999] | 86 | ! i.e.: |
---|
| 87 | ! lwcon(nc)+iwcon(nc) .NE. ocond(nc) |
---|
[4412] | 88 | ! but oliq+(ocond-oliq) .EQ. ocond |
---|
[3999] | 89 | ! (which is not trivial) |
---|
| 90 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4226] | 91 | ! |
---|
[4654] | 92 | |
---|
| 93 | ! USE de modules contenant des fonctions. |
---|
[4651] | 94 | USE lmdz_cloudth, ONLY : cloudth, cloudth_v3, cloudth_v6, cloudth_mpc |
---|
[4664] | 95 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf, icefrac_lscp, calc_gammasat |
---|
| 96 | USE lmdz_lscp_tools, ONLY : fallice_velocity, distance_to_cloud_top |
---|
[4380] | 97 | USE ice_sursat_mod, ONLY : ice_sursat |
---|
[3999] | 98 | |
---|
[4664] | 99 | ! Use du module lmdz_lscp_ini contenant les constantes |
---|
[4666] | 100 | USE lmdz_lscp_ini, ONLY : prt_level, lunout |
---|
[4664] | 101 | USE lmdz_lscp_ini, ONLY : seuil_neb, niter_lscp, iflag_evap_prec, t_coup, DDT0, ztfondue, rain_int_min |
---|
| 102 | USE lmdz_lscp_ini, ONLY : iflag_mpc_bl, ok_radocond_snow, a_tr_sca, cld_expo_con, cld_expo_lsc |
---|
| 103 | USE lmdz_lscp_ini, ONLY : iflag_cloudth_vert, iflag_rain_incloud_vol, iflag_t_glace, t_glace_min |
---|
| 104 | USE lmdz_lscp_ini, ONLY : coef_eva, coef_eva_i,cld_tau_lsc, cld_tau_con, cld_lc_lsc, cld_lc_con |
---|
| 105 | USE lmdz_lscp_ini, ONLY : iflag_bergeron, iflag_fisrtilp_qsat, iflag_vice, cice_velo, dice_velo |
---|
| 106 | USE lmdz_lscp_ini, ONLY : iflag_autoconversion, ffallv_con, ffallv_lsc |
---|
| 107 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG |
---|
[4380] | 108 | |
---|
[3999] | 109 | IMPLICIT NONE |
---|
| 110 | |
---|
| 111 | !=============================================================================== |
---|
[4380] | 112 | ! VARIABLES DECLARATION |
---|
[3999] | 113 | !=============================================================================== |
---|
| 114 | |
---|
| 115 | ! INPUT VARIABLES: |
---|
| 116 | !----------------- |
---|
| 117 | |
---|
[4380] | 118 | INTEGER, INTENT(IN) :: klon,klev ! number of horizontal grid points and vertical levels |
---|
[3999] | 119 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
[4380] | 120 | REAL, INTENT(IN) :: missing_val ! missing value for output |
---|
[4059] | 121 | |
---|
[3999] | 122 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! inter-layer pressure [Pa] |
---|
| 123 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! mid-layer pressure [Pa] |
---|
[4654] | 124 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! temperature (K) |
---|
[4686] | 125 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qt ! total specific humidity (in vapor phase in input) [kg/kg] |
---|
[3999] | 126 | INTEGER, INTENT(IN) :: iflag_cld_th ! flag that determines the distribution of convective clouds |
---|
| 127 | INTEGER, INTENT(IN) :: iflag_ice_thermo! flag to activate the ice thermodynamics |
---|
[4226] | 128 | ! CR: if iflag_ice_thermo=2, only convection is active |
---|
[4072] | 129 | LOGICAL, INTENT(IN) :: ok_ice_sursat ! flag to determine if ice sursaturation is activated |
---|
[4059] | 130 | |
---|
[3999] | 131 | LOGICAL, DIMENSION(klon,klev), INTENT(IN) :: ptconv ! grid points where deep convection scheme is active |
---|
| 132 | |
---|
| 133 | !Inputs associated with thermal plumes |
---|
[4226] | 134 | |
---|
[3999] | 135 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ztv ! virtual potential temperature [K] |
---|
| 136 | REAL, DIMENSION(klon,klev), INTENT(IN) :: zqta ! specific humidity within thermals [kg/kg] |
---|
| 137 | REAL, DIMENSION(klon,klev), INTENT(IN) :: fraca ! fraction of thermals within the mesh [-] |
---|
| 138 | REAL, DIMENSION(klon,klev), INTENT(IN) :: zpspsk ! exner potential (p/100000)**(R/cp) |
---|
| 139 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ztla ! liquid temperature within thermals [K] |
---|
| 140 | |
---|
| 141 | ! INPUT/OUTPUT variables |
---|
| 142 | !------------------------ |
---|
[4562] | 143 | |
---|
| 144 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: zthl ! liquid potential temperature [K] |
---|
[4686] | 145 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: ratqs ! function of pressure that sets the large-scale |
---|
[4059] | 146 | |
---|
[4380] | 147 | |
---|
[4059] | 148 | ! Input sursaturation en glace |
---|
| 149 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: rneb_seri ! fraction nuageuse en memoire |
---|
[3999] | 150 | |
---|
| 151 | ! OUTPUT variables |
---|
| 152 | !----------------- |
---|
| 153 | |
---|
| 154 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t ! temperature increment [K] |
---|
| 155 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_q ! specific humidity increment [kg/kg] |
---|
| 156 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_ql ! liquid water increment [kg/kg] |
---|
| 157 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_qi ! cloud ice mass increment [kg/kg] |
---|
| 158 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneb ! cloud fraction [-] |
---|
[4380] | 159 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneblsvol ! cloud fraction per unit volume [-] |
---|
[4530] | 160 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfraclr ! precip fraction clear-sky part [-] |
---|
| 161 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfracld ! precip fraction cloudy part [-] |
---|
[4412] | 162 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radocond ! condensed water used in the radiation scheme [kg/kg] |
---|
[3999] | 163 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radicefrac ! ice fraction of condensed water for radiation scheme |
---|
| 164 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rhcl ! clear-sky relative humidity [-] |
---|
[4412] | 165 | REAL, DIMENSION(klon), INTENT(OUT) :: rain ! surface large-scale rainfall [kg/s/m2] |
---|
| 166 | REAL, DIMENSION(klon), INTENT(OUT) :: snow ! surface large-scale snowfall [kg/s/m2] |
---|
[4380] | 167 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsatl ! saturation specific humidity wrt liquid [kg/kg] |
---|
| 168 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsats ! saturation specific humidity wrt ice [kg/kg] |
---|
[3999] | 169 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: prfl ! large-scale rainfall flux in the column [kg/s/m2] |
---|
| 170 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: psfl ! large-scale snowfall flux in the column [kg/s/m2] |
---|
[4562] | 171 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: distcltop ! distance to cloud top [m] |
---|
[4639] | 172 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: temp_cltop ! temperature of cloud top [K] |
---|
[4686] | 173 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: beta ! conversion rate of condensed water |
---|
| 174 | |
---|
[3999] | 175 | ! fraction of aerosol scavenging through impaction and nucleation (for on-line) |
---|
| 176 | |
---|
| 177 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_impa ! scavenging fraction due tu impaction [-] |
---|
| 178 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_nucl ! scavenging fraction due tu nucleation [-] |
---|
| 179 | |
---|
[4380] | 180 | ! for supersaturation and contrails parameterisation |
---|
[3999] | 181 | |
---|
[4380] | 182 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qclr ! specific total water content in clear sky region [kg/kg] |
---|
| 183 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcld ! specific total water content in cloudy region [kg/kg] |
---|
| 184 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qss ! specific total water content in supersat region [kg/kg] |
---|
| 185 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qvc ! specific vapor content in clouds [kg/kg] |
---|
| 186 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rnebclr ! mesh fraction of clear sky [-] |
---|
| 187 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rnebss ! mesh fraction of ISSR [-] |
---|
| 188 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: gamma_ss ! coefficient governing the ice nucleation RHi threshold [-] |
---|
[4425] | 189 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Tcontr ! threshold temperature for contrail formation [K] |
---|
| 190 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcontr ! threshold humidity for contrail formation [kg/kg] |
---|
| 191 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcontr2 ! // (2nd expression more consistent with LMDZ expression of q) |
---|
| 192 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: fcontrN ! fraction of grid favourable to non-persistent contrails |
---|
| 193 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: fcontrP ! fraction of grid favourable to persistent contrails |
---|
[4686] | 194 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sth ! mean saturation deficit in thermals |
---|
| 195 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_senv ! mean saturation deficit in environment |
---|
| 196 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmath ! std of saturation deficit in thermals |
---|
| 197 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmaenv ! std of saturation deficit in environment |
---|
[3999] | 198 | |
---|
[4686] | 199 | |
---|
| 200 | |
---|
[3999] | 201 | ! LOCAL VARIABLES: |
---|
| 202 | !---------------- |
---|
| 203 | |
---|
[4654] | 204 | REAL,DIMENSION(klon) :: qsl, qsi |
---|
| 205 | REAL :: zct, zcl,zexpo |
---|
| 206 | REAL, DIMENSION(klon,klev) :: ctot |
---|
| 207 | REAL, DIMENSION(klon,klev) :: ctot_vol |
---|
| 208 | REAL, DIMENSION(klon) :: zqs, zdqs |
---|
| 209 | REAL :: zdelta, zcor, zcvm5 |
---|
| 210 | REAL, DIMENSION(klon) :: zdqsdT_raw |
---|
| 211 | REAL, DIMENSION(klon) :: gammasat,dgammasatdt ! coefficient to make cold condensation at the correct RH and derivative wrt T |
---|
| 212 | REAL, DIMENSION(klon) :: Tbef,qlbef,DT |
---|
| 213 | REAL :: num,denom |
---|
| 214 | REAL :: cste |
---|
| 215 | REAL, DIMENSION(klon) :: zpdf_sig,zpdf_k,zpdf_delta |
---|
| 216 | REAL, DIMENSION(klon) :: Zpdf_a,zpdf_b,zpdf_e1,zpdf_e2 |
---|
| 217 | REAL :: erf |
---|
| 218 | REAL, DIMENSION(klon,klev) :: icefrac_mpc |
---|
| 219 | REAL, DIMENSION(klon) :: qcloud, qincloud_mpc |
---|
| 220 | REAL, DIMENSION(klon) :: zrfl, zrfln |
---|
| 221 | REAL :: zqev, zqevt |
---|
| 222 | REAL, DIMENSION(klon) :: zifl, zifln, ziflprev |
---|
| 223 | REAL :: zqev0,zqevi, zqevti |
---|
| 224 | REAL, DIMENSION(klon) :: zoliq, zcond, zq, zqn |
---|
| 225 | REAL, DIMENSION(klon) :: zoliql, zoliqi |
---|
| 226 | REAL, DIMENSION(klon) :: zt |
---|
| 227 | REAL, DIMENSION(klon,klev) :: zrho |
---|
| 228 | REAL, DIMENSION(klon) :: zdz,iwc |
---|
| 229 | REAL :: zchau,zfroi |
---|
| 230 | REAL, DIMENSION(klon) :: zfice,zneb,znebprecip |
---|
| 231 | REAL :: zmelt,zrain,zsnow,zprecip |
---|
| 232 | REAL, DIMENSION(klon) :: dzfice |
---|
| 233 | REAL :: zsolid |
---|
| 234 | REAL, DIMENSION(klon) :: qtot, qzero |
---|
| 235 | REAL, DIMENSION(klon) :: dqsl,dqsi |
---|
| 236 | REAL :: smallestreal |
---|
[3999] | 237 | ! Variables for Bergeron process |
---|
[4654] | 238 | REAL :: zcp, coef1, DeltaT, Deltaq, Deltaqprecl |
---|
| 239 | REAL, DIMENSION(klon) :: zqpreci, zqprecl |
---|
[3999] | 240 | ! Variables precipitation energy conservation |
---|
[4654] | 241 | REAL, DIMENSION(klon) :: zmqc |
---|
| 242 | REAL :: zalpha_tr |
---|
| 243 | REAL :: zfrac_lessi |
---|
| 244 | REAL, DIMENSION(klon) :: zprec_cond |
---|
| 245 | REAL, DIMENSION(klon) :: zmair |
---|
| 246 | REAL :: zcpair, zcpeau |
---|
| 247 | REAL, DIMENSION(klon) :: zlh_solid |
---|
| 248 | REAL :: zm_solid ! for liquid -> solid conversion |
---|
| 249 | REAL, DIMENSION(klon) :: zrflclr, zrflcld |
---|
| 250 | REAL, DIMENSION(klon) :: d_zrfl_clr_cld, d_zifl_clr_cld |
---|
| 251 | REAL, DIMENSION(klon) :: d_zrfl_cld_clr, d_zifl_cld_clr |
---|
| 252 | REAL, DIMENSION(klon) :: ziflclr, ziflcld |
---|
| 253 | REAL, DIMENSION(klon) :: znebprecipclr, znebprecipcld |
---|
| 254 | REAL, DIMENSION(klon) :: tot_zneb, tot_znebn, d_tot_zneb |
---|
| 255 | REAL, DIMENSION(klon) :: d_znebprecip_clr_cld, d_znebprecip_cld_clr |
---|
| 256 | REAL, DIMENSION(klon,klev) :: velo |
---|
| 257 | REAL :: vr, ffallv |
---|
| 258 | REAL :: qlmpc, qimpc, rnebmpc |
---|
| 259 | REAL, DIMENSION(klon,klev) :: radocondi, radocondl |
---|
| 260 | REAL :: effective_zneb |
---|
| 261 | REAL, DIMENSION(klon) :: distcltop1D, temp_cltop1D |
---|
[3999] | 262 | |
---|
[4562] | 263 | |
---|
[4654] | 264 | INTEGER i, k, n, kk, iter |
---|
| 265 | INTEGER, DIMENSION(klon) :: n_i |
---|
[4226] | 266 | INTEGER ncoreczq |
---|
[4654] | 267 | INTEGER, DIMENSION(klon,klev) :: mpc_bl_points |
---|
[3999] | 268 | |
---|
[4654] | 269 | LOGICAL, DIMENSION(klon) :: lognormale |
---|
| 270 | LOGICAL, DIMENSION(klon) :: keepgoing |
---|
[3999] | 271 | |
---|
| 272 | CHARACTER (len = 20) :: modname = 'lscp' |
---|
| 273 | CHARACTER (len = 80) :: abort_message |
---|
| 274 | |
---|
| 275 | |
---|
| 276 | !=============================================================================== |
---|
| 277 | ! INITIALISATION |
---|
| 278 | !=============================================================================== |
---|
| 279 | |
---|
[4226] | 280 | ! Few initial checks |
---|
[3999] | 281 | |
---|
[4654] | 282 | |
---|
[3999] | 283 | IF (iflag_fisrtilp_qsat .LT. 0) THEN |
---|
[4226] | 284 | abort_message = 'lscp cannot be used with iflag_fisrtilp<0' |
---|
| 285 | CALL abort_physic(modname,abort_message,1) |
---|
[3999] | 286 | ENDIF |
---|
| 287 | |
---|
| 288 | ! Few initialisations |
---|
| 289 | |
---|
[4226] | 290 | znebprecip(:)=0.0 |
---|
[3999] | 291 | ctot_vol(1:klon,1:klev)=0.0 |
---|
| 292 | rneblsvol(1:klon,1:klev)=0.0 |
---|
[4226] | 293 | smallestreal=1.e-9 |
---|
| 294 | znebprecipclr(:)=0.0 |
---|
| 295 | znebprecipcld(:)=0.0 |
---|
[3999] | 296 | mpc_bl_points(:,:)=0 |
---|
| 297 | |
---|
| 298 | IF (prt_level>9) WRITE(lunout,*) 'NUAGES4 A. JAM' |
---|
| 299 | |
---|
| 300 | ! AA for 'safety' reasons |
---|
| 301 | zalpha_tr = 0. |
---|
| 302 | zfrac_lessi = 0. |
---|
[4380] | 303 | beta(:,:)= 0. |
---|
[3999] | 304 | |
---|
[4380] | 305 | ! Initialisation of variables: |
---|
| 306 | |
---|
[3999] | 307 | prfl(:,:) = 0.0 |
---|
| 308 | psfl(:,:) = 0.0 |
---|
| 309 | d_t(:,:) = 0.0 |
---|
| 310 | d_q(:,:) = 0.0 |
---|
| 311 | d_ql(:,:) = 0.0 |
---|
| 312 | d_qi(:,:) = 0.0 |
---|
| 313 | rneb(:,:) = 0.0 |
---|
[4530] | 314 | pfraclr(:,:)=0.0 |
---|
| 315 | pfracld(:,:)=0.0 |
---|
[4412] | 316 | radocond(:,:) = 0.0 |
---|
[3999] | 317 | radicefrac(:,:) = 0.0 |
---|
[4226] | 318 | frac_nucl(:,:) = 1.0 |
---|
| 319 | frac_impa(:,:) = 1.0 |
---|
[3999] | 320 | rain(:) = 0.0 |
---|
| 321 | snow(:) = 0.0 |
---|
[4114] | 322 | zoliq(:)=0.0 |
---|
| 323 | zfice(:)=0.0 |
---|
| 324 | dzfice(:)=0.0 |
---|
| 325 | zqprecl(:)=0.0 |
---|
| 326 | zqpreci(:)=0.0 |
---|
[3999] | 327 | zrfl(:) = 0.0 |
---|
| 328 | zifl(:) = 0.0 |
---|
[4114] | 329 | ziflprev(:)=0.0 |
---|
[3999] | 330 | zneb(:) = seuil_neb |
---|
[4226] | 331 | zrflclr(:) = 0.0 |
---|
| 332 | ziflclr(:) = 0.0 |
---|
| 333 | zrflcld(:) = 0.0 |
---|
| 334 | ziflcld(:) = 0.0 |
---|
| 335 | tot_zneb(:) = 0.0 |
---|
| 336 | tot_znebn(:) = 0.0 |
---|
| 337 | d_tot_zneb(:) = 0.0 |
---|
| 338 | qzero(:) = 0.0 |
---|
[4562] | 339 | distcltop1D(:)=0.0 |
---|
[4639] | 340 | temp_cltop1D(:) = 0.0 |
---|
[4380] | 341 | !--ice supersaturation |
---|
[4226] | 342 | gamma_ss(:,:) = 1.0 |
---|
| 343 | qss(:,:) = 0.0 |
---|
| 344 | rnebss(:,:) = 0.0 |
---|
[4059] | 345 | Tcontr(:,:) = missing_val |
---|
| 346 | qcontr(:,:) = missing_val |
---|
| 347 | qcontr2(:,:) = missing_val |
---|
| 348 | fcontrN(:,:) = 0.0 |
---|
| 349 | fcontrP(:,:) = 0.0 |
---|
[4654] | 350 | distcltop(:,:)=0. |
---|
| 351 | temp_cltop(:,:)=0. |
---|
[3999] | 352 | |
---|
[4392] | 353 | !c_iso: variable initialisation for iso |
---|
| 354 | |
---|
| 355 | |
---|
[3999] | 356 | !=============================================================================== |
---|
| 357 | ! BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM |
---|
| 358 | !=============================================================================== |
---|
| 359 | |
---|
| 360 | ncoreczq=0 |
---|
| 361 | |
---|
| 362 | DO k = klev, 1, -1 |
---|
| 363 | |
---|
| 364 | ! Initialisation temperature and specific humidity |
---|
| 365 | DO i = 1, klon |
---|
[4654] | 366 | zt(i)=temp(i,k) |
---|
[4686] | 367 | zq(i)=qt(i,k) |
---|
[4392] | 368 | !c_iso init of iso |
---|
[3999] | 369 | ENDDO |
---|
| 370 | |
---|
| 371 | ! -------------------------------------------------------------------- |
---|
| 372 | ! P0> Thermalization of precipitation falling from the overlying layer |
---|
| 373 | ! -------------------------------------------------------------------- |
---|
[4412] | 374 | ! Computes air temperature variation due to enthalpy transported by |
---|
[3999] | 375 | ! precipitation. Precipitation is then thermalized with the air in the |
---|
| 376 | ! layer. |
---|
| 377 | ! The precipitation should remain thermalized throughout the different |
---|
[4412] | 378 | ! thermodynamical transformations. |
---|
| 379 | ! The corresponding water mass should |
---|
[3999] | 380 | ! be added when calculating the layer's enthalpy change with |
---|
| 381 | ! temperature |
---|
[4412] | 382 | ! See lmdzpedia page todoan |
---|
| 383 | ! todoan: check consistency with ice phase |
---|
| 384 | ! todoan: understand why several steps |
---|
[3999] | 385 | ! --------------------------------------------------------------------- |
---|
| 386 | |
---|
[4380] | 387 | IF (k.LE.klev-1) THEN |
---|
[3999] | 388 | |
---|
| 389 | DO i = 1, klon |
---|
| 390 | |
---|
| 391 | zmair(i)=(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 392 | ! no condensed water so cp=cp(vapor+dry air) |
---|
| 393 | ! RVTMP2=rcpv/rcpd-1 |
---|
| 394 | zcpair=RCPD*(1.0+RVTMP2*zq(i)) |
---|
[4226] | 395 | zcpeau=RCPD*RVTMP2 |
---|
| 396 | |
---|
[3999] | 397 | ! zmqc: precipitation mass that has to be thermalized with |
---|
| 398 | ! layer's air so that precipitation at the ground has the |
---|
| 399 | ! same temperature as the lowermost layer |
---|
| 400 | zmqc(i) = (zrfl(i)+zifl(i))*dtime/zmair(i) |
---|
| 401 | ! t(i,k+1)+d_t(i,k+1): new temperature of the overlying layer |
---|
[4654] | 402 | zt(i) = ( (temp(i,k+1)+d_t(i,k+1))*zmqc(i)*zcpeau + zcpair*zt(i) ) & |
---|
[3999] | 403 | / (zcpair + zmqc(i)*zcpeau) |
---|
[4226] | 404 | |
---|
[3999] | 405 | ENDDO |
---|
| 406 | |
---|
[4226] | 407 | ELSE |
---|
[3999] | 408 | |
---|
| 409 | DO i = 1, klon |
---|
| 410 | zmair(i)=(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 411 | zmqc(i) = 0. |
---|
| 412 | ENDDO |
---|
| 413 | |
---|
| 414 | ENDIF |
---|
| 415 | |
---|
| 416 | ! -------------------------------------------------------------------- |
---|
| 417 | ! P1> Precipitation evaporation/sublimation |
---|
| 418 | ! -------------------------------------------------------------------- |
---|
| 419 | ! A part of the precipitation coming from above is evaporated/sublimated. |
---|
| 420 | ! -------------------------------------------------------------------- |
---|
| 421 | |
---|
[4397] | 422 | IF (iflag_evap_prec.GE.1) THEN |
---|
[3999] | 423 | |
---|
[4072] | 424 | ! Calculation of saturation specific humidity |
---|
| 425 | ! depending on temperature: |
---|
[4380] | 426 | CALL calc_qsat_ecmwf(klon,zt(:),qzero(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
---|
[4072] | 427 | ! wrt liquid water |
---|
[4380] | 428 | CALL calc_qsat_ecmwf(klon,zt(:),qzero(:),pplay(:,k),RTT,1,.false.,qsl(:),dqsl(:)) |
---|
[4072] | 429 | ! wrt ice |
---|
[4380] | 430 | CALL calc_qsat_ecmwf(klon,zt(:),qzero(:),pplay(:,k),RTT,2,.false.,qsi(:),dqsi(:)) |
---|
[3999] | 431 | |
---|
| 432 | DO i = 1, klon |
---|
[4226] | 433 | |
---|
[3999] | 434 | ! if precipitation |
---|
| 435 | IF (zrfl(i)+zifl(i).GT.0.) THEN |
---|
[4226] | 436 | |
---|
[4563] | 437 | ! LudoTP: we only account for precipitation evaporation in the clear-sky (iflag_evap_prec>=4). |
---|
[4392] | 438 | ! c_iso: likely important to distinguish cs from neb isotope precipitation |
---|
| 439 | |
---|
[4563] | 440 | IF (iflag_evap_prec.GE.4) THEN |
---|
[4226] | 441 | zrfl(i) = zrflclr(i) |
---|
| 442 | zifl(i) = ziflclr(i) |
---|
| 443 | ENDIF |
---|
[3999] | 444 | |
---|
| 445 | IF (iflag_evap_prec.EQ.1) THEN |
---|
| 446 | znebprecip(i)=zneb(i) |
---|
| 447 | ELSE |
---|
| 448 | znebprecip(i)=MAX(zneb(i),znebprecip(i)) |
---|
| 449 | ENDIF |
---|
| 450 | |
---|
[4563] | 451 | IF (iflag_evap_prec.GT.4) THEN |
---|
| 452 | ! Max evaporation not to saturate the clear sky precip fraction |
---|
| 453 | ! i.e. the fraction where evaporation occurs |
---|
| 454 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecipclr(i)) |
---|
| 455 | ELSEIF (iflag_evap_prec .EQ. 4) THEN |
---|
[4226] | 456 | ! Max evaporation not to saturate the whole mesh |
---|
[4563] | 457 | ! Pay attention -> lead to unrealistic and excessive evaporation |
---|
[4226] | 458 | zqev0 = MAX(0.0, zqs(i)-zq(i)) |
---|
| 459 | ELSE |
---|
| 460 | ! Max evap not to saturate the fraction below the cloud |
---|
| 461 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecip(i)) |
---|
| 462 | ENDIF |
---|
[3999] | 463 | |
---|
| 464 | ! Evaporation of liquid precipitation coming from above |
---|
| 465 | ! dP/dz=beta*(1-q/qsat)*sqrt(P) |
---|
| 466 | ! formula from Sundquist 1988, Klemp & Wilhemson 1978 |
---|
[4563] | 467 | ! LTP: evaporation only in the clear sky part (iflag_evap_prec>=4) |
---|
[3999] | 468 | |
---|
| 469 | IF (iflag_evap_prec.EQ.3) THEN |
---|
[4072] | 470 | zqevt = znebprecip(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
---|
[3999] | 471 | *SQRT(zrfl(i)/max(1.e-4,znebprecip(i))) & |
---|
| 472 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
[4563] | 473 | ELSE IF (iflag_evap_prec.GE.4) THEN |
---|
[4072] | 474 | zqevt = znebprecipclr(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
---|
[3999] | 475 | *SQRT(zrfl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
| 476 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 477 | ELSE |
---|
[4072] | 478 | zqevt = 1.*coef_eva*(1.0-zq(i)/qsl(i))*SQRT(zrfl(i)) & |
---|
[3999] | 479 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 480 | ENDIF |
---|
| 481 | |
---|
[4226] | 482 | zqevt = MAX(0.0,MIN(zqevt,zrfl(i))) & |
---|
| 483 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
---|
[3999] | 484 | |
---|
| 485 | ! sublimation of the solid precipitation coming from above |
---|
| 486 | IF (iflag_evap_prec.EQ.3) THEN |
---|
[4072] | 487 | zqevti = znebprecip(i)*coef_eva_i*(1.0-zq(i)/qsi(i)) & |
---|
[3999] | 488 | *SQRT(zifl(i)/max(1.e-4,znebprecip(i))) & |
---|
| 489 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
[4563] | 490 | ELSE IF (iflag_evap_prec.GE.4) THEN |
---|
[4072] | 491 | zqevti = znebprecipclr(i)*coef_eva_i*(1.0-zq(i)/qsi(i)) & |
---|
[3999] | 492 | *SQRT(zifl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
| 493 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 494 | ELSE |
---|
[4072] | 495 | zqevti = 1.*coef_eva_i*(1.0-zq(i)/qsi(i))*SQRT(zifl(i)) & |
---|
[3999] | 496 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 497 | ENDIF |
---|
[4226] | 498 | |
---|
[3999] | 499 | zqevti = MAX(0.0,MIN(zqevti,zifl(i))) & |
---|
[4226] | 500 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
---|
[3999] | 501 | |
---|
| 502 | ! A. JAM |
---|
| 503 | ! Evaporation limit: we ensure that the layer's fraction below |
---|
| 504 | ! the cloud or the whole mesh (depending on iflag_evap_prec) |
---|
| 505 | ! does not reach saturation. In this case, we |
---|
| 506 | ! redistribute zqev0 conserving the ratio liquid/ice |
---|
[4226] | 507 | |
---|
[4412] | 508 | ! todoan: check the consistency of this formula |
---|
[3999] | 509 | IF (zqevt+zqevti.GT.zqev0) THEN |
---|
| 510 | zqev=zqev0*zqevt/(zqevt+zqevti) |
---|
| 511 | zqevi=zqev0*zqevti/(zqevt+zqevti) |
---|
| 512 | ELSE |
---|
| 513 | zqev=zqevt |
---|
| 514 | zqevi=zqevti |
---|
| 515 | ENDIF |
---|
| 516 | |
---|
| 517 | |
---|
[4392] | 518 | ! New solid and liquid precipitation fluxes after evap and sublimation |
---|
[3999] | 519 | zrfln(i) = Max(0.,zrfl(i) - zqev*(paprs(i,k)-paprs(i,k+1)) & |
---|
| 520 | /RG/dtime) |
---|
| 521 | zifln(i) = Max(0.,zifl(i) - zqevi*(paprs(i,k)-paprs(i,k+1)) & |
---|
| 522 | /RG/dtime) |
---|
| 523 | |
---|
[4392] | 524 | |
---|
[3999] | 525 | ! vapor, temperature, precip fluxes update |
---|
| 526 | zq(i) = zq(i) - (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
| 527 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
---|
| 528 | zmqc(i) = zmqc(i) + (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
| 529 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
---|
| 530 | zt(i) = zt(i) + (zrfln(i)-zrfl(i)) & |
---|
| 531 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
---|
| 532 | * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) & |
---|
| 533 | + (zifln(i)-zifl(i)) & |
---|
| 534 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
---|
| 535 | * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
| 536 | |
---|
| 537 | ! New values of liquid and solid precipitation |
---|
| 538 | zrfl(i) = zrfln(i) |
---|
| 539 | zifl(i) = zifln(i) |
---|
| 540 | |
---|
[4392] | 541 | ! c_iso here call_reevap that updates isotopic zrfl, zifl (in inout) |
---|
| 542 | ! due to evap + sublim |
---|
| 543 | |
---|
| 544 | |
---|
[4563] | 545 | IF (iflag_evap_prec.GE.4) THEN |
---|
[4226] | 546 | zrflclr(i) = zrfl(i) |
---|
| 547 | ziflclr(i) = zifl(i) |
---|
| 548 | IF(zrflclr(i) + ziflclr(i).LE.0) THEN |
---|
| 549 | znebprecipclr(i) = 0.0 |
---|
| 550 | ENDIF |
---|
| 551 | zrfl(i) = zrflclr(i) + zrflcld(i) |
---|
| 552 | zifl(i) = ziflclr(i) + ziflcld(i) |
---|
| 553 | ENDIF |
---|
[3999] | 554 | |
---|
[4392] | 555 | ! c_iso duplicate for isotopes or loop on isotopes |
---|
[3999] | 556 | |
---|
[4392] | 557 | ! Melting: |
---|
[4412] | 558 | zmelt = ((zt(i)-RTT)/(ztfondue-RTT)) ! JYG |
---|
[3999] | 559 | ! precip fraction that is melted |
---|
| 560 | zmelt = MIN(MAX(zmelt,0.),1.) |
---|
[4392] | 561 | |
---|
[4412] | 562 | ! update of rainfall and snowfall due to melting |
---|
[4563] | 563 | IF (iflag_evap_prec.GE.4) THEN |
---|
[4226] | 564 | zrflclr(i)=zrflclr(i)+zmelt*ziflclr(i) |
---|
| 565 | zrflcld(i)=zrflcld(i)+zmelt*ziflcld(i) |
---|
| 566 | zrfl(i)=zrflclr(i)+zrflcld(i) |
---|
[4412] | 567 | |
---|
| 568 | ziflclr(i)=ziflclr(i)*(1.-zmelt) |
---|
| 569 | ziflcld(i)=ziflcld(i)*(1.-zmelt) |
---|
| 570 | zifl(i)=ziflclr(i)+ziflcld(i) |
---|
| 571 | |
---|
[4226] | 572 | ELSE |
---|
| 573 | zrfl(i)=zrfl(i)+zmelt*zifl(i) |
---|
[4412] | 574 | |
---|
| 575 | zifl(i)=zifl(i)*(1.-zmelt) |
---|
[4226] | 576 | ENDIF |
---|
[4412] | 577 | |
---|
| 578 | |
---|
[4392] | 579 | ! c_iso: melting of isotopic precipi with zmelt (no fractionation) |
---|
[3999] | 580 | |
---|
| 581 | ! Latent heat of melting with precipitation thermalization |
---|
| 582 | zt(i)=zt(i)-zifl(i)*zmelt*(RG*dtime)/(paprs(i,k)-paprs(i,k+1)) & |
---|
| 583 | *RLMLT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
| 584 | |
---|
| 585 | |
---|
| 586 | ELSE |
---|
| 587 | ! if no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
| 588 | znebprecip(i)=0. |
---|
| 589 | |
---|
| 590 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
---|
| 591 | |
---|
| 592 | ENDDO |
---|
[4226] | 593 | |
---|
[3999] | 594 | ENDIF ! (iflag_evap_prec>=1) |
---|
| 595 | |
---|
| 596 | ! -------------------------------------------------------------------- |
---|
| 597 | ! End precip evaporation |
---|
| 598 | ! -------------------------------------------------------------------- |
---|
| 599 | |
---|
| 600 | ! Calculation of qsat, L/Cp*dqsat/dT and ncoreczq counter |
---|
| 601 | !------------------------------------------------------- |
---|
[4226] | 602 | |
---|
[4072] | 603 | qtot(:)=zq(:)+zmqc(:) |
---|
[4380] | 604 | CALL calc_qsat_ecmwf(klon,zt(:),qtot(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
---|
[4072] | 605 | DO i = 1, klon |
---|
[3999] | 606 | zdelta = MAX(0.,SIGN(1.,RTT-zt(i))) |
---|
[4059] | 607 | zdqsdT_raw(i) = zdqs(i)*RCPD*(1.0+RVTMP2*zq(i)) / (RLVTT*(1.-zdelta) + RLSTT*zdelta) |
---|
[3999] | 608 | IF (zq(i) .LT. 1.e-15) THEN |
---|
| 609 | ncoreczq=ncoreczq+1 |
---|
| 610 | zq(i)=1.e-15 |
---|
| 611 | ENDIF |
---|
[4392] | 612 | ! c_iso: do something similar for isotopes |
---|
[3999] | 613 | |
---|
[4072] | 614 | ENDDO |
---|
[3999] | 615 | |
---|
| 616 | ! -------------------------------------------------------------------- |
---|
| 617 | ! P2> Cloud formation |
---|
| 618 | !--------------------------------------------------------------------- |
---|
| 619 | ! |
---|
| 620 | ! Unlike fisrtilp, we always assume a 'fractional cloud' approach |
---|
| 621 | ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution |
---|
| 622 | ! is prescribed and depends on large scale variables and boundary layer |
---|
| 623 | ! properties) |
---|
| 624 | ! The decrease in condensed part due tu latent heating is taken into |
---|
| 625 | ! account |
---|
| 626 | ! ------------------------------------------------------------------- |
---|
| 627 | |
---|
| 628 | ! P2.1> With the PDFs (log-normal, bigaussian) |
---|
[4424] | 629 | ! cloud properties calculation with the initial values of t and q |
---|
[3999] | 630 | ! ---------------------------------------------------------------- |
---|
| 631 | |
---|
| 632 | ! initialise gammasat and qincloud_mpc |
---|
| 633 | gammasat(:)=1. |
---|
| 634 | qincloud_mpc(:)=0. |
---|
| 635 | |
---|
| 636 | IF (iflag_cld_th.GE.5) THEN |
---|
| 637 | |
---|
| 638 | IF (iflag_mpc_bl .LT. 1) THEN |
---|
| 639 | |
---|
| 640 | IF (iflag_cloudth_vert.LE.2) THEN |
---|
| 641 | |
---|
| 642 | CALL cloudth(klon,klev,k,ztv, & |
---|
| 643 | zq,zqta,fraca, & |
---|
| 644 | qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[4654] | 645 | ratqs,zqs,temp, & |
---|
[4651] | 646 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[3999] | 647 | |
---|
[4651] | 648 | |
---|
| 649 | |
---|
| 650 | |
---|
| 651 | |
---|
[3999] | 652 | ELSEIF (iflag_cloudth_vert.GE.3 .AND. iflag_cloudth_vert.LE.5) THEN |
---|
| 653 | |
---|
| 654 | CALL cloudth_v3(klon,klev,k,ztv, & |
---|
| 655 | zq,zqta,fraca, & |
---|
| 656 | qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[4654] | 657 | ratqs,zqs,temp, & |
---|
[4651] | 658 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[3999] | 659 | |
---|
[4226] | 660 | !Jean Jouhaud's version, Decembre 2018 |
---|
| 661 | !------------------------------------- |
---|
[3999] | 662 | |
---|
| 663 | ELSEIF (iflag_cloudth_vert.EQ.6) THEN |
---|
| 664 | |
---|
| 665 | CALL cloudth_v6(klon,klev,k,ztv, & |
---|
| 666 | zq,zqta,fraca, & |
---|
| 667 | qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[4654] | 668 | ratqs,zqs,temp, & |
---|
[4651] | 669 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[3999] | 670 | |
---|
| 671 | ENDIF |
---|
| 672 | |
---|
| 673 | ELSE |
---|
| 674 | ! cloudth_v3 + cold microphysical considerations |
---|
| 675 | ! + stationary mixed-phase cloud model |
---|
| 676 | |
---|
[4380] | 677 | CALL cloudth_mpc(klon,klev,k,iflag_mpc_bl,mpc_bl_points, & |
---|
[4654] | 678 | temp,ztv,zq,zqta,fraca, zpspsk, & |
---|
[3999] | 679 | paprs,pplay,ztla,zthl,ratqs,zqs,psfl, & |
---|
[4651] | 680 | qcloud,qincloud_mpc,icefrac_mpc,ctot,ctot_vol, & |
---|
| 681 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[3999] | 682 | |
---|
| 683 | ENDIF ! iflag_mpc_bl |
---|
| 684 | |
---|
| 685 | DO i=1,klon |
---|
| 686 | rneb(i,k)=ctot(i,k) |
---|
| 687 | rneblsvol(i,k)=ctot_vol(i,k) |
---|
| 688 | zqn(i)=qcloud(i) |
---|
| 689 | ENDDO |
---|
| 690 | |
---|
| 691 | ENDIF |
---|
| 692 | |
---|
| 693 | IF (iflag_cld_th .LE. 4) THEN |
---|
| 694 | |
---|
| 695 | ! lognormal |
---|
| 696 | lognormale = .TRUE. |
---|
| 697 | |
---|
| 698 | ELSEIF (iflag_cld_th .GE. 6) THEN |
---|
| 699 | |
---|
| 700 | ! lognormal distribution when no thermals |
---|
| 701 | lognormale = fraca(:,k) < 1e-10 |
---|
| 702 | |
---|
| 703 | ELSE |
---|
[4226] | 704 | ! When iflag_cld_th=5, we always assume |
---|
[3999] | 705 | ! bi-gaussian distribution |
---|
| 706 | lognormale = .FALSE. |
---|
| 707 | |
---|
| 708 | ENDIF |
---|
| 709 | |
---|
| 710 | DT(:) = 0. |
---|
| 711 | n_i(:)=0 |
---|
| 712 | Tbef(:)=zt(:) |
---|
| 713 | qlbef(:)=0. |
---|
| 714 | |
---|
| 715 | ! Treatment of non-boundary layer clouds (lognormale) |
---|
| 716 | ! condensation with qsat(T) variation (adaptation) |
---|
[4424] | 717 | ! Iterative resolution to converge towards qsat |
---|
| 718 | ! with update of temperature, ice fraction and qsat at |
---|
| 719 | ! each iteration |
---|
[4226] | 720 | |
---|
[4424] | 721 | ! todoan -> sensitivity to iflag_fisrtilp_qsat |
---|
[3999] | 722 | DO iter=1,iflag_fisrtilp_qsat+1 |
---|
[4226] | 723 | |
---|
[3999] | 724 | DO i=1,klon |
---|
| 725 | |
---|
[4424] | 726 | ! keepgoing = .true. while convergence is not satisfied |
---|
| 727 | keepgoing(i)=ABS(DT(i)).GT.DDT0 |
---|
[4226] | 728 | |
---|
[4424] | 729 | IF ((keepgoing(i) .OR. (n_i(i) .EQ. 0)) .AND. lognormale(i)) THEN |
---|
[4226] | 730 | |
---|
[3999] | 731 | ! if not convergence: |
---|
| 732 | |
---|
| 733 | ! P2.2.1> cloud fraction and condensed water mass calculation |
---|
| 734 | ! Calculated variables: |
---|
| 735 | ! rneb : cloud fraction |
---|
| 736 | ! zqn : total water within the cloud |
---|
| 737 | ! zcond: mean condensed water within the mesh |
---|
| 738 | ! rhcl: clear-sky relative humidity |
---|
| 739 | !--------------------------------------------------------------- |
---|
| 740 | |
---|
[4424] | 741 | ! new temperature that only serves in the iteration process: |
---|
[3999] | 742 | Tbef(i)=Tbef(i)+DT(i) |
---|
| 743 | |
---|
| 744 | ! Rneb, qzn and zcond for lognormal PDFs |
---|
[4072] | 745 | qtot(i)=zq(i)+zmqc(i) |
---|
[4226] | 746 | |
---|
[4072] | 747 | ENDIF |
---|
[3999] | 748 | |
---|
[4072] | 749 | ENDDO |
---|
| 750 | |
---|
[4380] | 751 | ! Calculation of saturation specific humidity and ice fraction |
---|
[4226] | 752 | CALL calc_qsat_ecmwf(klon,Tbef(:),qtot(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
---|
| 753 | CALL calc_gammasat(klon,Tbef(:),qtot(:),pplay(:,k),gammasat(:),dgammasatdt(:)) |
---|
[4072] | 754 | ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs |
---|
| 755 | zdqs(:) = gammasat(:)*zdqs(:)+zqs(:)*dgammasatdt(:) |
---|
[4562] | 756 | ! cloud phase determination |
---|
| 757 | IF (iflag_t_glace.GE.4) THEN |
---|
| 758 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
---|
[4654] | 759 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,distcltop1D,temp_cltop1D) |
---|
[4562] | 760 | ENDIF |
---|
[4639] | 761 | CALL icefrac_lscp(klon, zt(:), iflag_ice_thermo, distcltop1D(:),temp_cltop1D(:),zfice(:),dzfice(:)) |
---|
[4072] | 762 | |
---|
[4424] | 763 | DO i=1,klon !todoan : check if loop in i is needed |
---|
[4072] | 764 | |
---|
[4424] | 765 | IF ((keepgoing(i) .OR. (n_i(i) .EQ. 0)) .AND. lognormale(i)) THEN |
---|
[4072] | 766 | |
---|
[3999] | 767 | zpdf_sig(i)=ratqs(i,k)*zq(i) |
---|
| 768 | zpdf_k(i)=-sqrt(log(1.+(zpdf_sig(i)/zq(i))**2)) |
---|
| 769 | zpdf_delta(i)=log(zq(i)/(gammasat(i)*zqs(i))) |
---|
| 770 | zpdf_a(i)=zpdf_delta(i)/(zpdf_k(i)*sqrt(2.)) |
---|
| 771 | zpdf_b(i)=zpdf_k(i)/(2.*sqrt(2.)) |
---|
| 772 | zpdf_e1(i)=zpdf_a(i)-zpdf_b(i) |
---|
| 773 | zpdf_e1(i)=sign(min(ABS(zpdf_e1(i)),5.),zpdf_e1(i)) |
---|
| 774 | zpdf_e1(i)=1.-erf(zpdf_e1(i)) |
---|
| 775 | zpdf_e2(i)=zpdf_a(i)+zpdf_b(i) |
---|
| 776 | zpdf_e2(i)=sign(min(ABS(zpdf_e2(i)),5.),zpdf_e2(i)) |
---|
| 777 | zpdf_e2(i)=1.-erf(zpdf_e2(i)) |
---|
[4226] | 778 | |
---|
[4062] | 779 | IF ((.NOT.ok_ice_sursat).OR.(Tbef(i).GT.t_glace_min)) THEN |
---|
[4059] | 780 | |
---|
| 781 | IF (zpdf_e1(i).LT.1.e-10) THEN |
---|
| 782 | rneb(i,k)=0. |
---|
| 783 | zqn(i)=gammasat(i)*zqs(i) |
---|
| 784 | ELSE |
---|
| 785 | rneb(i,k)=0.5*zpdf_e1(i) |
---|
| 786 | zqn(i)=zq(i)*zpdf_e2(i)/zpdf_e1(i) |
---|
| 787 | ENDIF |
---|
| 788 | |
---|
[4072] | 789 | rnebss(i,k)=0.0 !--added by OB (needed because of the convergence loop on time) |
---|
[4059] | 790 | fcontrN(i,k)=0.0 !--idem |
---|
| 791 | fcontrP(i,k)=0.0 !--idem |
---|
| 792 | qss(i,k)=0.0 !--idem |
---|
[4226] | 793 | |
---|
[4424] | 794 | ELSE ! in case of ice supersaturation by Audran |
---|
[4226] | 795 | |
---|
[4059] | 796 | !------------------------------------ |
---|
[4072] | 797 | ! ICE SUPERSATURATION |
---|
[4059] | 798 | !------------------------------------ |
---|
[3999] | 799 | |
---|
[4654] | 800 | CALL ice_sursat(pplay(i,k), paprs(i,k)-paprs(i,k+1), dtime, i, k, temp(i,k), zq(i), & |
---|
[4226] | 801 | gamma_ss(i,k), zqs(i), Tbef(i), rneb_seri(i,k), ratqs(i,k), & |
---|
| 802 | rneb(i,k), zqn(i), rnebss(i,k), qss(i,k), & |
---|
[4059] | 803 | Tcontr(i,k), qcontr(i,k), qcontr2(i,k), fcontrN(i,k), fcontrP(i,k) ) |
---|
| 804 | |
---|
| 805 | ENDIF ! ((flag_ice_sursat.eq.0).or.(Tbef(i).gt.t_glace_min)) |
---|
| 806 | |
---|
[3999] | 807 | ! If vertical heterogeneity, change fraction by volume as well |
---|
| 808 | IF (iflag_cloudth_vert.GE.3) THEN |
---|
| 809 | ctot_vol(i,k)=rneb(i,k) |
---|
| 810 | rneblsvol(i,k)=ctot_vol(i,k) |
---|
| 811 | ENDIF |
---|
| 812 | |
---|
| 813 | |
---|
[4072] | 814 | ! P2.2.2> Approximative calculation of temperature variation DT |
---|
| 815 | ! due to condensation. |
---|
| 816 | ! Calculated variables: |
---|
| 817 | ! dT : temperature change due to condensation |
---|
| 818 | !--------------------------------------------------------------- |
---|
[3999] | 819 | |
---|
| 820 | |
---|
| 821 | IF (zfice(i).LT.1) THEN |
---|
| 822 | cste=RLVTT |
---|
| 823 | ELSE |
---|
| 824 | cste=RLSTT |
---|
| 825 | ENDIF |
---|
| 826 | |
---|
| 827 | qlbef(i)=max(0.,zqn(i)-zqs(i)) |
---|
| 828 | num = -Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT & |
---|
[4226] | 829 | +zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*qlbef(i) |
---|
[3999] | 830 | denom = 1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) & |
---|
| 831 | -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*rneb(i,k) & |
---|
[4226] | 832 | *qlbef(i)*dzfice(i) |
---|
[4424] | 833 | ! here we update a provisory temperature variable that only serves in the iteration |
---|
| 834 | ! process |
---|
[3999] | 835 | DT(i)=num/denom |
---|
| 836 | n_i(i)=n_i(i)+1 |
---|
| 837 | |
---|
[4424] | 838 | ENDIF ! end keepgoing |
---|
[3999] | 839 | |
---|
| 840 | ENDDO ! end loop on i |
---|
| 841 | |
---|
| 842 | ENDDO ! iter=1,iflag_fisrtilp_qsat+1 |
---|
| 843 | |
---|
| 844 | ! P2.3> Final quantities calculation |
---|
| 845 | ! Calculated variables: |
---|
| 846 | ! rneb : cloud fraction |
---|
| 847 | ! zcond: mean condensed water in the mesh |
---|
| 848 | ! zqn : mean water vapor in the mesh |
---|
[4562] | 849 | ! zfice: ice fraction in clouds |
---|
[3999] | 850 | ! zt : temperature |
---|
| 851 | ! rhcl : clear-sky relative humidity |
---|
| 852 | ! ---------------------------------------------------------------- |
---|
| 853 | |
---|
| 854 | |
---|
[4562] | 855 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
---|
| 856 | IF (iflag_t_glace.GE.4) THEN |
---|
[4654] | 857 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,distcltop1D,temp_cltop1D) |
---|
[4562] | 858 | distcltop(:,k)=distcltop1D(:) |
---|
[4639] | 859 | temp_cltop(:,k)=temp_cltop1D(:) |
---|
[4562] | 860 | ENDIF |
---|
| 861 | |
---|
[3999] | 862 | ! Partition function in stratiform clouds (will be overwritten in boundary-layer MPCs) |
---|
[4639] | 863 | CALL icefrac_lscp(klon,zt(:),iflag_ice_thermo,distcltop1D(:),temp_cltop1D(:),zfice(:), dzfice(:)) |
---|
[3999] | 864 | |
---|
[4562] | 865 | |
---|
| 866 | ! Water vapor update, Phase determination and subsequent latent heat exchange |
---|
[3999] | 867 | DO i=1, klon |
---|
| 868 | |
---|
| 869 | IF (mpc_bl_points(i,k) .GT. 0) THEN |
---|
| 870 | zcond(i) = MAX(0.0,qincloud_mpc(i))*rneb(i,k) |
---|
| 871 | ! following line is very strange and probably wrong |
---|
| 872 | rhcl(i,k)= (zqs(i)+zq(i))/2./zqs(i) |
---|
| 873 | ! water vapor update and partition function if thermals |
---|
| 874 | zq(i) = zq(i) - zcond(i) |
---|
| 875 | zfice(i)=icefrac_mpc(i,k) |
---|
| 876 | |
---|
| 877 | ELSE |
---|
| 878 | |
---|
| 879 | ! Checks on rneb, rhcl and zqn |
---|
| 880 | IF (rneb(i,k) .LE. 0.0) THEN |
---|
| 881 | zqn(i) = 0.0 |
---|
| 882 | rneb(i,k) = 0.0 |
---|
| 883 | zcond(i) = 0.0 |
---|
| 884 | rhcl(i,k)=zq(i)/zqs(i) |
---|
| 885 | ELSE IF (rneb(i,k) .GE. 1.0) THEN |
---|
| 886 | zqn(i) = zq(i) |
---|
| 887 | rneb(i,k) = 1.0 |
---|
| 888 | zcond(i) = MAX(0.0,zqn(i)-gammasat(i)*zqs(i)) |
---|
| 889 | rhcl(i,k)=1.0 |
---|
| 890 | ELSE |
---|
| 891 | zcond(i) = MAX(0.0,zqn(i)-gammasat(i)*zqs(i))*rneb(i,k) |
---|
| 892 | ! following line is very strange and probably wrong: |
---|
| 893 | rhcl(i,k)=(zqs(i)+zq(i))/2./zqs(i) |
---|
| 894 | ENDIF |
---|
| 895 | |
---|
[4226] | 896 | ! water vapor update |
---|
| 897 | zq(i) = zq(i) - zcond(i) |
---|
[3999] | 898 | |
---|
| 899 | ENDIF |
---|
| 900 | |
---|
[4392] | 901 | ! c_iso : routine that computes in-cloud supersaturation |
---|
| 902 | ! c_iso condensation of isotopes (zcond, zsursat, zfice, zq in input) |
---|
| 903 | |
---|
[3999] | 904 | ! temperature update due to phase change |
---|
| 905 | zt(i) = zt(i) + (1.-zfice(i))*zcond(i) & |
---|
| 906 | & * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) & |
---|
| 907 | +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
---|
| 908 | ENDDO |
---|
| 909 | |
---|
| 910 | ! If vertical heterogeneity, change volume fraction |
---|
| 911 | IF (iflag_cloudth_vert .GE. 3) THEN |
---|
| 912 | ctot_vol(1:klon,k)=min(max(ctot_vol(1:klon,k),0.),1.) |
---|
| 913 | rneblsvol(1:klon,k)=ctot_vol(1:klon,k) |
---|
| 914 | ENDIF |
---|
| 915 | |
---|
| 916 | ! ---------------------------------------------------------------- |
---|
[4114] | 917 | ! P3> Precipitation formation |
---|
[3999] | 918 | ! ---------------------------------------------------------------- |
---|
[4226] | 919 | |
---|
[3999] | 920 | ! LTP: |
---|
[4563] | 921 | IF (iflag_evap_prec .GE. 4) THEN |
---|
[3999] | 922 | |
---|
| 923 | !Partitionning between precipitation coming from clouds and that coming from CS |
---|
| 924 | |
---|
| 925 | !0) Calculate tot_zneb, total cloud fraction above the cloud |
---|
| 926 | !assuming a maximum-random overlap (voir Jakob and Klein, 2000) |
---|
| 927 | |
---|
| 928 | DO i=1, klon |
---|
[4424] | 929 | tot_znebn(i) = 1. - (1.-tot_zneb(i))*(1 - max(rneb(i,k),zneb(i))) & |
---|
| 930 | /(1.-min(zneb(i),1.-smallestreal)) |
---|
[3999] | 931 | d_tot_zneb(i) = tot_znebn(i) - tot_zneb(i) |
---|
| 932 | tot_zneb(i) = tot_znebn(i) |
---|
| 933 | |
---|
| 934 | |
---|
| 935 | !1) Cloudy to clear air |
---|
| 936 | d_znebprecip_cld_clr(i) = znebprecipcld(i) - min(rneb(i,k),znebprecipcld(i)) |
---|
[4424] | 937 | IF (znebprecipcld(i) .GT. 0.) THEN |
---|
[3999] | 938 | d_zrfl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*zrflcld(i) |
---|
| 939 | d_zifl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*ziflcld(i) |
---|
| 940 | ELSE |
---|
| 941 | d_zrfl_cld_clr(i) = 0. |
---|
| 942 | d_zifl_cld_clr(i) = 0. |
---|
| 943 | ENDIF |
---|
| 944 | |
---|
| 945 | !2) Clear to cloudy air |
---|
[4226] | 946 | d_znebprecip_clr_cld(i) = max(0., min(znebprecipclr(i), rneb(i,k) - d_tot_zneb(i) - zneb(i))) |
---|
[3999] | 947 | IF (znebprecipclr(i) .GT. 0) THEN |
---|
| 948 | d_zrfl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*zrflclr(i) |
---|
| 949 | d_zifl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*ziflclr(i) |
---|
| 950 | ELSE |
---|
| 951 | d_zrfl_clr_cld(i) = 0. |
---|
| 952 | d_zifl_clr_cld(i) = 0. |
---|
| 953 | ENDIF |
---|
| 954 | |
---|
| 955 | !Update variables |
---|
[4226] | 956 | znebprecipcld(i) = znebprecipcld(i) + d_znebprecip_clr_cld(i) - d_znebprecip_cld_clr(i) |
---|
[3999] | 957 | znebprecipclr(i) = znebprecipclr(i) + d_znebprecip_cld_clr(i) - d_znebprecip_clr_cld(i) |
---|
| 958 | zrflcld(i) = zrflcld(i) + d_zrfl_clr_cld(i) - d_zrfl_cld_clr(i) |
---|
| 959 | ziflcld(i) = ziflcld(i) + d_zifl_clr_cld(i) - d_zifl_cld_clr(i) |
---|
| 960 | zrflclr(i) = zrflclr(i) + d_zrfl_cld_clr(i) - d_zrfl_clr_cld(i) |
---|
| 961 | ziflclr(i) = ziflclr(i) + d_zifl_cld_clr(i) - d_zifl_clr_cld(i) |
---|
| 962 | |
---|
[4392] | 963 | ! c_iso do the same thing for isotopes precip |
---|
[3999] | 964 | ENDDO |
---|
| 965 | ENDIF |
---|
| 966 | |
---|
[4559] | 967 | |
---|
| 968 | ! Autoconversion |
---|
| 969 | ! ------------------------------------------------------------------------------- |
---|
| 970 | |
---|
| 971 | |
---|
[4412] | 972 | ! Initialisation of zoliq and radocond variables |
---|
[3999] | 973 | |
---|
| 974 | DO i = 1, klon |
---|
| 975 | zoliq(i) = zcond(i) |
---|
[4072] | 976 | zoliqi(i)= zoliq(i)*zfice(i) |
---|
| 977 | zoliql(i)= zoliq(i)*(1.-zfice(i)) |
---|
[4392] | 978 | ! c_iso : initialisation of zoliq* also for isotopes |
---|
[4114] | 979 | zrho(i,k) = pplay(i,k) / zt(i) / RD |
---|
| 980 | zdz(i) = (paprs(i,k)-paprs(i,k+1)) / (zrho(i,k)*RG) |
---|
[4072] | 981 | iwc(i) = 0. |
---|
| 982 | zneb(i) = MAX(rneb(i,k),seuil_neb) |
---|
[4559] | 983 | radocond(i,k) = zoliq(i)/REAL(niter_lscp+1) |
---|
[3999] | 984 | radicefrac(i,k) = zfice(i) |
---|
[4559] | 985 | radocondi(i,k)=zoliq(i)*zfice(i)/REAL(niter_lscp+1) |
---|
| 986 | radocondl(i,k)=zoliq(i)*(1.-zfice(i))/REAL(niter_lscp+1) |
---|
[3999] | 987 | ENDDO |
---|
| 988 | |
---|
[4559] | 989 | |
---|
| 990 | DO n = 1, niter_lscp |
---|
[3999] | 991 | |
---|
| 992 | DO i=1,klon |
---|
| 993 | IF (rneb(i,k).GT.0.0) THEN |
---|
[4114] | 994 | iwc(i) = zrho(i,k) * zoliqi(i) / zneb(i) ! in-cloud ice condensate content |
---|
[3999] | 995 | ENDIF |
---|
| 996 | ENDDO |
---|
| 997 | |
---|
[4226] | 998 | CALL fallice_velocity(klon,iwc(:),zt(:),zrho(:,k),pplay(:,k),ptconv(:,k),velo(:,k)) |
---|
[3999] | 999 | |
---|
| 1000 | DO i = 1, klon |
---|
| 1001 | |
---|
| 1002 | IF (rneb(i,k).GT.0.0) THEN |
---|
| 1003 | |
---|
[4072] | 1004 | ! Initialization of zrain, zsnow and zprecip: |
---|
| 1005 | zrain=0. |
---|
| 1006 | zsnow=0. |
---|
| 1007 | zprecip=0. |
---|
[4392] | 1008 | ! c_iso same init for isotopes. Externalisation? |
---|
[3999] | 1009 | |
---|
| 1010 | IF (zneb(i).EQ.seuil_neb) THEN |
---|
[4072] | 1011 | zprecip = 0.0 |
---|
| 1012 | zsnow = 0.0 |
---|
| 1013 | zrain= 0.0 |
---|
[3999] | 1014 | ELSE |
---|
[4420] | 1015 | |
---|
[3999] | 1016 | IF (ptconv(i,k)) THEN ! if convective point |
---|
| 1017 | zcl=cld_lc_con |
---|
| 1018 | zct=1./cld_tau_con |
---|
[4559] | 1019 | zexpo=cld_expo_con |
---|
| 1020 | ffallv=ffallv_con |
---|
[3999] | 1021 | ELSE |
---|
| 1022 | zcl=cld_lc_lsc |
---|
| 1023 | zct=1./cld_tau_lsc |
---|
[4559] | 1024 | zexpo=cld_expo_lsc |
---|
| 1025 | ffallv=ffallv_lsc |
---|
[3999] | 1026 | ENDIF |
---|
| 1027 | |
---|
[4559] | 1028 | |
---|
[3999] | 1029 | ! if vertical heterogeneity is taken into account, we use |
---|
| 1030 | ! the "true" volume fraction instead of a modified |
---|
| 1031 | ! surface fraction (which is larger and artificially |
---|
| 1032 | ! reduces the in-cloud water). |
---|
[4072] | 1033 | |
---|
[4559] | 1034 | ! Liquid water quantity to remove: zchau (Sundqvist, 1978) |
---|
| 1035 | ! dqliq/dt=-qliq/tau*(1-exp(-qcin/clw)**2) |
---|
| 1036 | !......................................................... |
---|
[3999] | 1037 | IF ((iflag_cloudth_vert.GE.3).AND.(iflag_rain_incloud_vol.EQ.1)) THEN |
---|
| 1038 | |
---|
[4420] | 1039 | ! if vertical heterogeneity is taken into account, we use |
---|
| 1040 | ! the "true" volume fraction instead of a modified |
---|
| 1041 | ! surface fraction (which is larger and artificially |
---|
| 1042 | ! reduces the in-cloud water). |
---|
[4559] | 1043 | effective_zneb=ctot_vol(i,k) |
---|
| 1044 | ELSE |
---|
| 1045 | effective_zneb=zneb(i) |
---|
| 1046 | ENDIF |
---|
[4420] | 1047 | |
---|
| 1048 | |
---|
[4559] | 1049 | IF (iflag_autoconversion .EQ. 2) THEN |
---|
| 1050 | ! two-steps resolution with niter_lscp=1 sufficient |
---|
| 1051 | ! we first treat the second term (with exponential) in an explicit way |
---|
| 1052 | ! and then treat the first term (-q/tau) in an exact way |
---|
| 1053 | zchau=zoliql(i)*(1.-exp(-dtime/REAL(niter_lscp)*zct & |
---|
| 1054 | *(1.-exp(-(zoliql(i)/effective_zneb/zcl)**zexpo)))) |
---|
[4420] | 1055 | ELSE |
---|
[4559] | 1056 | ! old explicit resolution with subtimesteps |
---|
| 1057 | zchau = zct*dtime/REAL(niter_lscp)*zoliql(i) & |
---|
| 1058 | *(1.0-EXP(-(zoliql(i)/effective_zneb/zcl)**zexpo)) |
---|
[4420] | 1059 | ENDIF |
---|
| 1060 | |
---|
| 1061 | |
---|
[4559] | 1062 | ! Ice water quantity to remove (Zender & Kiehl, 1997) |
---|
| 1063 | ! dqice/dt=1/rho*d(rho*wice*qice)/dz |
---|
| 1064 | !.................................... |
---|
| 1065 | IF (iflag_autoconversion .EQ. 2) THEN |
---|
| 1066 | ! exact resolution, niter_lscp=1 is sufficient but works only |
---|
| 1067 | ! with iflag_vice=0 |
---|
| 1068 | IF (zoliqi(i) .GT. 0.) THEN |
---|
| 1069 | zfroi=(zoliqi(i)-((zoliqi(i)**(-dice_velo)) & |
---|
| 1070 | +dice_velo*dtime/REAL(niter_lscp)*cice_velo/zdz(i)*ffallv)**(-1./dice_velo)) |
---|
| 1071 | ELSE |
---|
| 1072 | zfroi=0. |
---|
| 1073 | ENDIF |
---|
| 1074 | ELSE |
---|
| 1075 | ! old explicit resolution with subtimesteps |
---|
| 1076 | zfroi = dtime/REAL(niter_lscp)/zdz(i)*zoliqi(i)*velo(i,k) |
---|
| 1077 | ENDIF |
---|
| 1078 | |
---|
[4397] | 1079 | zrain = MIN(MAX(zchau,0.0),zoliql(i)) |
---|
| 1080 | zsnow = MIN(MAX(zfroi,0.0),zoliqi(i)) |
---|
[4072] | 1081 | zprecip = MAX(zrain + zsnow,0.0) |
---|
[3999] | 1082 | |
---|
| 1083 | ENDIF |
---|
[4226] | 1084 | |
---|
[4559] | 1085 | IF (iflag_autoconversion .GE. 1) THEN |
---|
| 1086 | ! debugged version with phase conservation through the autoconversion process |
---|
| 1087 | zoliql(i) = MAX(zoliql(i)-1.*zrain , 0.0) |
---|
| 1088 | zoliqi(i) = MAX(zoliqi(i)-1.*zsnow , 0.0) |
---|
| 1089 | zoliq(i) = MAX(zoliq(i)-zprecip , 0.0) |
---|
| 1090 | ELSE |
---|
| 1091 | ! bugged version with phase resetting |
---|
| 1092 | zoliql(i) = MAX(zoliq(i)*(1.-zfice(i))-1.*zrain , 0.0) |
---|
| 1093 | zoliqi(i) = MAX(zoliq(i)*zfice(i)-1.*zsnow , 0.0) |
---|
| 1094 | zoliq(i) = MAX(zoliq(i)-zprecip , 0.0) |
---|
| 1095 | ENDIF |
---|
[3999] | 1096 | |
---|
[4392] | 1097 | ! c_iso: call isotope_conversion (for readibility) or duplicate |
---|
| 1098 | |
---|
[4559] | 1099 | radocond(i,k) = radocond(i,k) + zoliq(i)/REAL(niter_lscp+1) |
---|
| 1100 | radocondl(i,k) = radocondl(i,k) + zoliql(i)/REAL(niter_lscp+1) |
---|
| 1101 | radocondi(i,k) = radocondi(i,k) + zoliqi(i)/REAL(niter_lscp+1) |
---|
[4226] | 1102 | |
---|
[4072] | 1103 | ENDIF ! rneb >0 |
---|
[3999] | 1104 | |
---|
| 1105 | ENDDO ! i = 1,klon |
---|
| 1106 | |
---|
| 1107 | ENDDO ! n = 1,niter |
---|
| 1108 | |
---|
[4072] | 1109 | ! Precipitation flux calculation |
---|
[3999] | 1110 | |
---|
| 1111 | DO i = 1, klon |
---|
[4380] | 1112 | |
---|
[4563] | 1113 | IF (iflag_evap_prec.GE.4) THEN |
---|
[4380] | 1114 | ziflprev(i)=ziflcld(i) |
---|
| 1115 | ELSE |
---|
| 1116 | ziflprev(i)=zifl(i)*zneb(i) |
---|
| 1117 | ENDIF |
---|
[3999] | 1118 | |
---|
| 1119 | IF (rneb(i,k) .GT. 0.0) THEN |
---|
| 1120 | |
---|
[4072] | 1121 | ! CR&JYG: We account for the Wegener-Findeisen-Bergeron process in the precipitation flux: |
---|
| 1122 | ! If T<0C, liquid precip are converted into ice, which leads to an increase in |
---|
| 1123 | ! temperature DeltaT. The effect of DeltaT on condensates and precipitation is roughly |
---|
| 1124 | ! taken into account through a linearization of the equations and by approximating |
---|
| 1125 | ! the liquid precipitation process with a "threshold" process. We assume that |
---|
| 1126 | ! condensates are not modified during this operation. Liquid precipitation is |
---|
| 1127 | ! removed (in the limit DeltaT<273.15-T). Solid precipitation increases. |
---|
| 1128 | ! Water vapor increases as well |
---|
| 1129 | ! Note that compared to fisrtilp, we always assume iflag_bergeron=2 |
---|
| 1130 | |
---|
| 1131 | zqpreci(i)=(zcond(i)-zoliq(i))*zfice(i) |
---|
| 1132 | zqprecl(i)=(zcond(i)-zoliq(i))*(1.-zfice(i)) |
---|
| 1133 | zcp=RCPD*(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
---|
| 1134 | coef1 = rneb(i,k)*RLSTT/zcp*zdqsdT_raw(i) |
---|
| 1135 | ! Computation of DT if all the liquid precip freezes |
---|
| 1136 | DeltaT = RLMLT*zqprecl(i) / (zcp*(1.+coef1)) |
---|
| 1137 | ! T should not exceed the freezing point |
---|
| 1138 | ! that is Delta > RTT-zt(i) |
---|
| 1139 | DeltaT = max( min( RTT-zt(i), DeltaT) , 0. ) |
---|
| 1140 | zt(i) = zt(i) + DeltaT |
---|
| 1141 | ! water vaporization due to temp. increase |
---|
| 1142 | Deltaq = rneb(i,k)*zdqsdT_raw(i)*DeltaT |
---|
| 1143 | ! we add this vaporized water to the total vapor and we remove it from the precip |
---|
| 1144 | zq(i) = zq(i) + Deltaq |
---|
| 1145 | ! The three "max" lines herebelow protect from rounding errors |
---|
| 1146 | zcond(i) = max( zcond(i)- Deltaq, 0. ) |
---|
| 1147 | ! liquid precipitation converted to ice precip |
---|
| 1148 | Deltaqprecl = -zcp/RLMLT*(1.+coef1)*DeltaT |
---|
| 1149 | zqprecl(i) = max( zqprecl(i) + Deltaqprecl, 0. ) |
---|
| 1150 | ! iced water budget |
---|
| 1151 | zqpreci(i) = max (zqpreci(i) - Deltaqprecl - Deltaq, 0.) |
---|
[4226] | 1152 | |
---|
[4392] | 1153 | ! c_iso : mv here condensation of isotopes + redispatchage en precip |
---|
| 1154 | |
---|
[4563] | 1155 | IF (iflag_evap_prec.GE.4) THEN |
---|
[4226] | 1156 | zrflcld(i) = zrflcld(i)+zqprecl(i) & |
---|
| 1157 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
| 1158 | ziflcld(i) = ziflcld(i)+ zqpreci(i) & |
---|
| 1159 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
| 1160 | znebprecipcld(i) = rneb(i,k) |
---|
| 1161 | zrfl(i) = zrflcld(i) + zrflclr(i) |
---|
| 1162 | zifl(i) = ziflcld(i) + ziflclr(i) |
---|
| 1163 | ELSE |
---|
[3999] | 1164 | zrfl(i) = zrfl(i)+ zqprecl(i) & |
---|
| 1165 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
| 1166 | zifl(i) = zifl(i)+ zqpreci(i) & |
---|
[4226] | 1167 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
[3999] | 1168 | ENDIF |
---|
[4392] | 1169 | ! c_iso : same for isotopes |
---|
[3999] | 1170 | |
---|
| 1171 | ENDIF ! rneb>0 |
---|
| 1172 | |
---|
| 1173 | ENDDO |
---|
| 1174 | |
---|
[4226] | 1175 | ! LTP: limit of surface cloud fraction covered by precipitation when the local intensity of the flux is below rain_int_min |
---|
[4563] | 1176 | ! if iflag_evap_prec>=4 |
---|
| 1177 | IF (iflag_evap_prec.GE.4) THEN |
---|
[4114] | 1178 | |
---|
[4226] | 1179 | DO i=1,klon |
---|
[4114] | 1180 | |
---|
[4226] | 1181 | IF ((zrflclr(i) + ziflclr(i)) .GT. 0. ) THEN |
---|
[3999] | 1182 | znebprecipclr(i) = min(znebprecipclr(i),max(zrflclr(i)/ & |
---|
| 1183 | (MAX(znebprecipclr(i),seuil_neb)*rain_int_min), ziflclr(i)/(MAX(znebprecipclr(i),seuil_neb)*rain_int_min))) |
---|
| 1184 | ELSE |
---|
[4226] | 1185 | znebprecipclr(i)=0.0 |
---|
| 1186 | ENDIF |
---|
| 1187 | |
---|
| 1188 | IF ((zrflcld(i) + ziflcld(i)) .GT. 0.) THEN |
---|
[3999] | 1189 | znebprecipcld(i) = min(znebprecipcld(i), max(zrflcld(i)/ & |
---|
| 1190 | (MAX(znebprecipcld(i),seuil_neb)*rain_int_min), ziflcld(i)/(MAX(znebprecipcld(i),seuil_neb)*rain_int_min))) |
---|
[4226] | 1191 | ELSE |
---|
| 1192 | znebprecipcld(i)=0.0 |
---|
| 1193 | ENDIF |
---|
[3999] | 1194 | |
---|
[4226] | 1195 | ENDDO |
---|
[3999] | 1196 | |
---|
[4559] | 1197 | |
---|
[4226] | 1198 | ENDIF |
---|
[3999] | 1199 | |
---|
| 1200 | ! End of precipitation formation |
---|
| 1201 | ! -------------------------------- |
---|
| 1202 | |
---|
| 1203 | ! Outputs: |
---|
| 1204 | ! Precipitation fluxes at layer interfaces |
---|
[4530] | 1205 | ! + precipitation fractions + |
---|
| 1206 | ! temperature and water species tendencies |
---|
[3999] | 1207 | DO i = 1, klon |
---|
| 1208 | psfl(i,k)=zifl(i) |
---|
| 1209 | prfl(i,k)=zrfl(i) |
---|
[4530] | 1210 | pfraclr(i,k)=znebprecipclr(i) |
---|
| 1211 | pfracld(i,k)=znebprecipcld(i) |
---|
[4072] | 1212 | d_ql(i,k) = (1-zfice(i))*zoliq(i) |
---|
| 1213 | d_qi(i,k) = zfice(i)*zoliq(i) |
---|
[4686] | 1214 | d_q(i,k) = zq(i) - qt(i,k) |
---|
[4392] | 1215 | ! c_iso: same for isotopes |
---|
[4654] | 1216 | d_t(i,k) = zt(i) - temp(i,k) |
---|
[3999] | 1217 | ENDDO |
---|
| 1218 | |
---|
[4114] | 1219 | ! Calculation of the concentration of condensates seen by the radiation scheme |
---|
[4412] | 1220 | ! for liquid phase, we take radocondl |
---|
| 1221 | ! for ice phase, we take radocondi if we neglect snowfall, otherwise (ok_radocond_snow=true) |
---|
| 1222 | ! we recaulate radocondi to account for contributions from the precipitation flux |
---|
[3999] | 1223 | |
---|
[4412] | 1224 | IF ((ok_radocond_snow) .AND. (k .LT. klev)) THEN |
---|
[4114] | 1225 | ! for the solid phase (crystals + snowflakes) |
---|
[4412] | 1226 | ! we recalculate radocondi by summing |
---|
[4114] | 1227 | ! the ice content calculated in the mesh |
---|
| 1228 | ! + the contribution of the non-evaporated snowfall |
---|
| 1229 | ! from the overlying layer |
---|
| 1230 | DO i=1,klon |
---|
| 1231 | IF (ziflprev(i) .NE. 0.0) THEN |
---|
[4412] | 1232 | radocondi(i,k)=zoliq(i)*zfice(i)+zqpreci(i)+ziflprev(i)/zrho(i,k+1)/velo(i,k+1) |
---|
[4114] | 1233 | ELSE |
---|
[4412] | 1234 | radocondi(i,k)=zoliq(i)*zfice(i)+zqpreci(i) |
---|
[4114] | 1235 | ENDIF |
---|
[4412] | 1236 | radocond(i,k)=radocondl(i,k)+radocondi(i,k) |
---|
[4114] | 1237 | ENDDO |
---|
| 1238 | ENDIF |
---|
| 1239 | |
---|
[4412] | 1240 | ! caculate the percentage of ice in "radocond" so cloud+precip seen by the radiation scheme |
---|
[4114] | 1241 | DO i=1,klon |
---|
[4412] | 1242 | IF (radocond(i,k) .GT. 0.) THEN |
---|
| 1243 | radicefrac(i,k)=MIN(MAX(radocondi(i,k)/radocond(i,k),0.),1.) |
---|
[4114] | 1244 | ENDIF |
---|
| 1245 | ENDDO |
---|
| 1246 | |
---|
[3999] | 1247 | ! ---------------------------------------------------------------- |
---|
| 1248 | ! P4> Wet scavenging |
---|
| 1249 | ! ---------------------------------------------------------------- |
---|
| 1250 | |
---|
| 1251 | !Scavenging through nucleation in the layer |
---|
| 1252 | |
---|
| 1253 | DO i = 1,klon |
---|
| 1254 | |
---|
| 1255 | IF(zcond(i).GT.zoliq(i)+1.e-10) THEN |
---|
| 1256 | beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime |
---|
| 1257 | ELSE |
---|
| 1258 | beta(i,k) = 0. |
---|
| 1259 | ENDIF |
---|
| 1260 | |
---|
[4059] | 1261 | zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
[3999] | 1262 | |
---|
| 1263 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
---|
| 1264 | |
---|
[4654] | 1265 | IF (temp(i,k) .GE. t_glace_min) THEN |
---|
[3999] | 1266 | zalpha_tr = a_tr_sca(3) |
---|
| 1267 | ELSE |
---|
| 1268 | zalpha_tr = a_tr_sca(4) |
---|
| 1269 | ENDIF |
---|
| 1270 | |
---|
| 1271 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
---|
| 1272 | frac_nucl(i,k)= 1.-zneb(i)*zfrac_lessi |
---|
[4226] | 1273 | |
---|
[3999] | 1274 | ! Nucleation with a factor of -1 instead of -0.5 |
---|
| 1275 | zfrac_lessi = 1. - EXP(-zprec_cond(i)/zneb(i)) |
---|
| 1276 | |
---|
| 1277 | ENDIF |
---|
| 1278 | |
---|
[4226] | 1279 | ENDDO |
---|
| 1280 | |
---|
[3999] | 1281 | ! Scavenging through impaction in the underlying layer |
---|
| 1282 | |
---|
| 1283 | DO kk = k-1, 1, -1 |
---|
| 1284 | |
---|
| 1285 | DO i = 1, klon |
---|
| 1286 | |
---|
| 1287 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
---|
| 1288 | |
---|
[4654] | 1289 | IF (temp(i,kk) .GE. t_glace_min) THEN |
---|
[3999] | 1290 | zalpha_tr = a_tr_sca(1) |
---|
| 1291 | ELSE |
---|
| 1292 | zalpha_tr = a_tr_sca(2) |
---|
| 1293 | ENDIF |
---|
| 1294 | |
---|
| 1295 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
---|
| 1296 | frac_impa(i,kk)= 1.-zneb(i)*zfrac_lessi |
---|
| 1297 | |
---|
| 1298 | ENDIF |
---|
| 1299 | |
---|
| 1300 | ENDDO |
---|
| 1301 | |
---|
| 1302 | ENDDO |
---|
[4226] | 1303 | |
---|
[4072] | 1304 | !--save some variables for ice supersaturation |
---|
[4059] | 1305 | ! |
---|
| 1306 | DO i = 1, klon |
---|
[4072] | 1307 | ! for memory |
---|
[4059] | 1308 | rneb_seri(i,k) = rneb(i,k) |
---|
[3999] | 1309 | |
---|
[4072] | 1310 | ! for diagnostics |
---|
[4059] | 1311 | rnebclr(i,k) = 1.0 - rneb(i,k) - rnebss(i,k) |
---|
[3999] | 1312 | |
---|
[4059] | 1313 | qvc(i,k) = zqs(i) * rneb(i,k) |
---|
[4072] | 1314 | qclr(i,k) = MAX(1.e-10,zq(i) - qvc(i,k) - qss(i,k)) !--added by OB because of pathologic cases with the lognormal |
---|
[4059] | 1315 | qcld(i,k) = qvc(i,k) + zcond(i) |
---|
[4226] | 1316 | ENDDO |
---|
[4072] | 1317 | !q_sat |
---|
[4380] | 1318 | CALL calc_qsat_ecmwf(klon,Tbef(:),qzero(:),pplay(:,k),RTT,1,.false.,qsatl(:,k),zdqs(:)) |
---|
| 1319 | CALL calc_qsat_ecmwf(klon,Tbef(:),qzero(:),pplay(:,k),RTT,2,.false.,qsats(:,k),zdqs(:)) |
---|
[4059] | 1320 | |
---|
[4226] | 1321 | ENDDO |
---|
[4059] | 1322 | |
---|
[3999] | 1323 | !====================================================================== |
---|
| 1324 | ! END OF VERTICAL LOOP |
---|
| 1325 | !====================================================================== |
---|
| 1326 | |
---|
| 1327 | ! Rain or snow at the surface (depending on the first layer temperature) |
---|
| 1328 | DO i = 1, klon |
---|
| 1329 | snow(i) = zifl(i) |
---|
| 1330 | rain(i) = zrfl(i) |
---|
[4392] | 1331 | ! c_iso final output |
---|
[3999] | 1332 | ENDDO |
---|
| 1333 | |
---|
| 1334 | IF (ncoreczq>0) THEN |
---|
| 1335 | WRITE(lunout,*)'WARNING : ZQ in LSCP ',ncoreczq,' val < 1.e-15.' |
---|
| 1336 | ENDIF |
---|
| 1337 | |
---|
[4654] | 1338 | |
---|
| 1339 | RETURN |
---|
| 1340 | |
---|
[4380] | 1341 | END SUBROUTINE lscp |
---|
[3999] | 1342 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 1343 | |
---|
[4664] | 1344 | END MODULE lmdz_lscp |
---|