1 | SUBROUTINE COS_SZA(KSTART,KEND,KCOL,PGEMU,PGELAM,LDRADIATIONTIMESTEP,PMU0) |
---|
2 | |
---|
3 | !**** *COS_SZA* |
---|
4 | ! |
---|
5 | ! (C) Copyright 2015- ECMWF. |
---|
6 | ! |
---|
7 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
8 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
9 | ! |
---|
10 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
11 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
12 | ! nor does it submit to any jurisdiction. |
---|
13 | ! |
---|
14 | ! Purpose. |
---|
15 | ! -------- |
---|
16 | ! Compute the cosine of the solar zenith angle. Note that this |
---|
17 | ! is needed for three different things: (1) as input to the |
---|
18 | ! radiation scheme in which it is used to compute the path |
---|
19 | ! length of the direct solar beam through the atmosphere, (2) |
---|
20 | ! every timestep to scale the solar fluxes by the incoming |
---|
21 | ! solar radiation at top-of-atmosphere, and (3) to compute the |
---|
22 | ! albedo of the ocean. For (1) we ideally want an average |
---|
23 | ! value for the duration of a radiation timestep while for (2) |
---|
24 | ! we want an average value for the duration of a model |
---|
25 | ! timestep. |
---|
26 | |
---|
27 | !** Interface. |
---|
28 | ! ---------- |
---|
29 | ! *CALL* *COS_SZA(...) |
---|
30 | |
---|
31 | ! Explicit arguments : |
---|
32 | ! ------------------ |
---|
33 | ! PGEMU - Sine of latitude |
---|
34 | ! PGELAM - Geographic longitude in radians |
---|
35 | ! LDRadiationTimestep - Is this for a radiation timestep? |
---|
36 | ! PMU0 - Output cosine of solar zenith angle |
---|
37 | |
---|
38 | ! Implicit arguments : |
---|
39 | ! -------------------- |
---|
40 | ! YRRIP%RWSOVR, RWSOVRM - Solar time for model/radiation timesteps |
---|
41 | ! RCODECM, RSIDECM - Sine/cosine of solar declination |
---|
42 | ! YRERAD%LAverageSZA - Average solar zenith angle in time interval? |
---|
43 | ! YRRIP%TSTEP - Model timestep in seconds |
---|
44 | ! YRERAD%NRADFR - Radiation frequency in timesteps |
---|
45 | |
---|
46 | ! Method. |
---|
47 | ! ------- |
---|
48 | ! Compute cosine of the solar zenith angle, mu0, from lat, lon |
---|
49 | ! and solar time using standard formula. If |
---|
50 | ! YRERAD%LAverageSZA=FALSE then this is done at a single time, |
---|
51 | ! which is assumed to be the mid-point of either the model or |
---|
52 | ! the radiation timestep. If YRERAD%LAverageSZA=TRUE then we |
---|
53 | ! compute the average over the model timestep exactly by first |
---|
54 | ! computing sunrise/sunset times. For radiation timesteps, mu0 |
---|
55 | ! is to be used to compute the path length of the direct solar |
---|
56 | ! beam through the atmosphere, and the fluxes are subsequently |
---|
57 | ! weighted by mu0. Therefore night-time values are not used, |
---|
58 | ! so we average mu0 only when the sun is above the horizon. |
---|
59 | |
---|
60 | ! Externals. |
---|
61 | ! ---------- |
---|
62 | |
---|
63 | ! Reference. |
---|
64 | ! ---------- |
---|
65 | ! ECMWF Research Department documentation of the IFS |
---|
66 | ! |
---|
67 | ! See also: Zhou, L., M. Zhang, Q. Bao, and Y. Liu (2015), On |
---|
68 | ! the incident solar radiation in CMIP5 |
---|
69 | ! models. Geophys. Res. Lett., 42, 1930–1935. doi: |
---|
70 | ! 10.1002/2015GL063239. |
---|
71 | |
---|
72 | ! Author. |
---|
73 | ! ------- |
---|
74 | ! Robin Hogan, ECMWF, May 2015 |
---|
75 | |
---|
76 | ! Modifications: |
---|
77 | ! -------------- |
---|
78 | |
---|
79 | USE PARKIND1 , ONLY : JPIM, JPRB |
---|
80 | USE YOMHOOK , ONLY : LHOOK, DR_HOOK |
---|
81 | USE YOMCST , ONLY : RPI, RDAY |
---|
82 | USE YOMRIP , ONLY : YRRIP |
---|
83 | USE YOERIP , ONLY : YRERIP |
---|
84 | USE YOERAD , ONLY : YRERAD |
---|
85 | USE YOMLUN , ONLY : NULOUT |
---|
86 | |
---|
87 | ! ------------------------------------------------------------------ |
---|
88 | |
---|
89 | IMPLICIT NONE |
---|
90 | |
---|
91 | INTEGER(KIND=JPIM),INTENT(IN) :: KSTART ! Start column to process |
---|
92 | INTEGER(KIND=JPIM),INTENT(IN) :: KEND ! Last column to process |
---|
93 | INTEGER(KIND=JPIM),INTENT(IN) :: KCOL ! Number of columns in arrays |
---|
94 | REAL(KIND=JPRB), INTENT(IN) :: PGEMU(KCOL) ! Sine of latitude |
---|
95 | REAL(KIND=JPRB), INTENT(IN) :: PGELAM(KCOL)! Longitude in radians |
---|
96 | LOGICAL, INTENT(IN) :: LDRADIATIONTIMESTEP ! Is this for a radiation timestep? |
---|
97 | REAL(KIND=JPRB), INTENT(OUT) :: PMU0(KCOL) ! Cosine of solar zenith angle |
---|
98 | |
---|
99 | ! Solar time at the start and end of the time interval |
---|
100 | REAL(KIND=JPRB) :: ZSOLARTIMESTART, ZSOLARTIMEEND |
---|
101 | |
---|
102 | ! The time of half a model/radiation timestep, in radians |
---|
103 | REAL(KIND=JPRB) :: ZHALFTIMESTEP |
---|
104 | |
---|
105 | ! For efficiency we precompute sin(solar declination)*sin(latitude) |
---|
106 | REAL(KIND=JPRB) :: ZSINDECSINLAT(KSTART:KEND) |
---|
107 | !...and cos(solar declination)*cos(latitude) |
---|
108 | REAL(KIND=JPRB) :: ZCOSDECCOSLAT(KSTART:KEND) |
---|
109 | ! ...and cosine of latitude |
---|
110 | REAL(KIND=JPRB) :: ZCOSLAT(KSTART:KEND) |
---|
111 | |
---|
112 | ! Tangent of solar declination |
---|
113 | REAL(KIND=JPRB) :: ZTANDEC |
---|
114 | |
---|
115 | ! Hour angles (=local solar time in radians plus pi) |
---|
116 | REAL(KIND=JPRB) :: ZHOURANGLESTART, ZHOURANGLEEND |
---|
117 | REAL(KIND=JPRB) :: ZHOURANGLESUNSET, ZCOSHOURANGLESUNSET |
---|
118 | |
---|
119 | INTEGER(KIND=JPIM) :: JCOL ! Column index |
---|
120 | |
---|
121 | REAL(KIND=JPRB) :: ZHOOK_HANDLE |
---|
122 | |
---|
123 | ! ------------------------------------------------------------------ |
---|
124 | IF (LHOOK) CALL DR_HOOK('COS_SZA',0,ZHOOK_HANDLE) |
---|
125 | |
---|
126 | ! An average solar zenith angle can only be computed if the solar time |
---|
127 | ! is centred on the time interval |
---|
128 | IF (YRERAD%LAVERAGESZA .AND. .NOT. YRERAD%LCENTREDTIMESZA) THEN |
---|
129 | WRITE(NULOUT,*) 'ERROR IN COS_SZA: LAverageSZA=TRUE but LCentredTimeSZA=FALSE' |
---|
130 | CALL ABOR1('COS_SZA: ABOR1 CALLED') |
---|
131 | ENDIF |
---|
132 | |
---|
133 | DO JCOL = KSTART,KEND |
---|
134 | ZCOSLAT(JCOL) = SQRT(1.0_JPRB - PGEMU(JCOL)**2) |
---|
135 | ENDDO |
---|
136 | |
---|
137 | IF (LDRADIATIONTIMESTEP) THEN |
---|
138 | ! Compute the effective cosine of solar zenith angle for a radiation |
---|
139 | ! timestep |
---|
140 | |
---|
141 | ! Precompute quantities that may be used more than once |
---|
142 | DO JCOL = KSTART,KEND |
---|
143 | ZSINDECSINLAT(JCOL) = YRERIP%RSIDECM * PGEMU(JCOL) |
---|
144 | ZCOSDECCOSLAT(JCOL) = YRERIP%RCODECM * ZCOSLAT(JCOL) |
---|
145 | ENDDO |
---|
146 | |
---|
147 | IF (.NOT. YRERAD%LAVERAGESZA) THEN |
---|
148 | ! Original method: compute the value at the centre of the |
---|
149 | ! radiation timestep (assuming that LCentredTimeSZA=TRUE - see |
---|
150 | ! updtim.F90) |
---|
151 | DO JCOL = KSTART,KEND |
---|
152 | ! It would be more efficient to do it like this... |
---|
153 | ! PMU0(JCOL)=MAX(0.0_JPRB, ZSinDecSinLat(JCOL) & |
---|
154 | ! & - ZCosDecCosLat(JCOL) * COS(YRERIP%RWSOVRM + PGELAM(JCOL))) |
---|
155 | ! ...but for bit reproducibility with previous cycle we do it |
---|
156 | ! like this: |
---|
157 | PMU0(JCOL) = MAX(0.0_JPRB, ZSINDECSINLAT(JCOL) & |
---|
158 | & - YRERIP%RCODECM*COS(YRERIP%RWSOVRM)*ZCOSLAT(JCOL)*COS(PGELAM(JCOL)) & |
---|
159 | & + YRERIP%RCODECM*SIN(YRERIP%RWSOVRM)*ZCOSLAT(JCOL)*SIN(PGELAM(JCOL))) |
---|
160 | ENDDO |
---|
161 | |
---|
162 | ELSE |
---|
163 | ! Compute the average MU0 for the period of the radiation |
---|
164 | ! timestep, excluding times when the sun is below the horizon |
---|
165 | |
---|
166 | ! First compute the sine and cosine of the times of the start and |
---|
167 | ! end of the radiation timestep |
---|
168 | ZHALFTIMESTEP = YRRIP%TSTEP * REAL(YRERAD%NRADFR) * RPI / RDAY |
---|
169 | ZSOLARTIMESTART = YRERIP%RWSOVRM - ZHALFTIMESTEP |
---|
170 | ZSOLARTIMEEND = YRERIP%RWSOVRM + ZHALFTIMESTEP |
---|
171 | |
---|
172 | ! Compute tangent of solar declination, with check in case someone |
---|
173 | ! simulates a planet completely tipped over |
---|
174 | ZTANDEC = YRERIP%RSIDECM / MAX(YRERIP%RCODECM, 1.0E-12) |
---|
175 | |
---|
176 | DO JCOL = KSTART,KEND |
---|
177 | ! Sunrise equation: cos(hour angle at sunset) = |
---|
178 | ! -tan(declination)*tan(latitude) |
---|
179 | ZCOSHOURANGLESUNSET = -ZTANDEC * PGEMU(JCOL) & |
---|
180 | & / MAX(ZCOSLAT(JCOL), 1.0E-12) |
---|
181 | IF (ZCOSHOURANGLESUNSET > 1.0) THEN |
---|
182 | ! Perpetual darkness |
---|
183 | PMU0(JCOL) = 0.0_JPRB |
---|
184 | ELSE |
---|
185 | ! Compute hour angle at start and end of time interval, |
---|
186 | ! ensuring that the hour angle of the centre of the time |
---|
187 | ! window is in the range -PI to +PI (equivalent to ensuring |
---|
188 | ! that local solar time = solar time + longitude is in the |
---|
189 | ! range 0 to 2PI) |
---|
190 | IF (YRERIP%RWSOVRM + PGELAM(JCOL) < 2.0_JPRB*RPI) THEN |
---|
191 | ZHOURANGLESTART = ZSOLARTIMESTART + PGELAM(JCOL) - RPI |
---|
192 | ZHOURANGLEEND = ZSOLARTIMEEND + PGELAM(JCOL) - RPI |
---|
193 | ELSE |
---|
194 | ZHOURANGLESTART = ZSOLARTIMESTART + PGELAM(JCOL) - 3.0_JPRB*RPI |
---|
195 | ZHOURANGLEEND = ZSOLARTIMEEND + PGELAM(JCOL) - 3.0_JPRB*RPI |
---|
196 | ENDIF |
---|
197 | |
---|
198 | IF (ZCOSHOURANGLESUNSET >= -1.0) THEN |
---|
199 | ! Not perpetual daylight or perpetual darkness, so we need |
---|
200 | ! to check for sunrise or sunset lying within the time |
---|
201 | ! interval |
---|
202 | ZHOURANGLESUNSET = ACOS(ZCOSHOURANGLESUNSET) |
---|
203 | IF (ZHOURANGLEEND <= -ZHOURANGLESUNSET & |
---|
204 | & .OR. ZHOURANGLESTART >= ZHOURANGLESUNSET) THEN |
---|
205 | ! The time interval is either completely before sunrise or |
---|
206 | ! completely after sunset |
---|
207 | PMU0(JCOL) = 0.0_JPRB |
---|
208 | CYCLE |
---|
209 | ENDIF |
---|
210 | |
---|
211 | ! Bound the start and end hour angles by sunrise and sunset |
---|
212 | ZHOURANGLESTART = MAX(-ZHOURANGLESUNSET, & |
---|
213 | & MIN(ZHOURANGLESTART, ZHOURANGLESUNSET)) |
---|
214 | ZHOURANGLEEND = MAX(-ZHOURANGLESUNSET, & |
---|
215 | & MIN(ZHOURANGLEEND, ZHOURANGLESUNSET)) |
---|
216 | ENDIF |
---|
217 | |
---|
218 | IF (ZHOURANGLEEND - ZHOURANGLESTART > 1.0E-8) THEN |
---|
219 | ! Compute average MU0 in the interval ZHourAngleStart to |
---|
220 | ! ZHourAngleEnd |
---|
221 | PMU0(JCOL) = ZSINDECSINLAT(JCOL) & |
---|
222 | & + (ZCOSDECCOSLAT(JCOL) & |
---|
223 | & * (SIN(ZHOURANGLEEND) - SIN(ZHOURANGLESTART))) & |
---|
224 | & / (ZHOURANGLEEND - ZHOURANGLESTART) |
---|
225 | |
---|
226 | ! Just in case... |
---|
227 | IF (PMU0(JCOL) < 0.0_JPRB) THEN |
---|
228 | PMU0(JCOL) = 0.0_JPRB |
---|
229 | ENDIF |
---|
230 | ELSE |
---|
231 | ! Too close to sunrise/sunset for a reliable calculation |
---|
232 | PMU0(JCOL) = 0.0_JPRB |
---|
233 | ENDIF |
---|
234 | |
---|
235 | ENDIF |
---|
236 | ENDDO |
---|
237 | ENDIF |
---|
238 | |
---|
239 | ELSE |
---|
240 | ! Compute the cosine of solar zenith angle for a model timestep |
---|
241 | |
---|
242 | ! Precompute quantities that may be used more than once |
---|
243 | DO JCOL = KSTART,KEND |
---|
244 | ZSINDECSINLAT(JCOL) = YRRIP%RSIDEC * PGEMU(JCOL) |
---|
245 | ZCOSDECCOSLAT(JCOL) = YRRIP%RCODEC * ZCOSLAT(JCOL) |
---|
246 | ENDDO |
---|
247 | |
---|
248 | IF (.NOT. YRERAD%LAVERAGESZA) THEN |
---|
249 | ! Original method: compute the value at the centre of the |
---|
250 | ! model timestep |
---|
251 | DO JCOL = KSTART,KEND |
---|
252 | ! It would be more efficient to do it like this... |
---|
253 | ! PMU0(JCOL) = MAX(0.0_JPRB, ZSinDecSinLat(JCOL) & |
---|
254 | ! & - ZCosDecCosLat(JCOL)*COS(YRRIP%RWSOVR + PGELAM(JCOL))) |
---|
255 | ! ...but for bit reproducibility with previous cycle we do it |
---|
256 | ! like this: |
---|
257 | PMU0(JCOL) = MAX(0.0_JPRB, ZSINDECSINLAT(JCOL) & |
---|
258 | & - YRRIP%RCODEC*COS(YRRIP%RWSOVR)*ZCOSLAT(JCOL)*COS(PGELAM(JCOL)) & |
---|
259 | & + YRRIP%RCODEC*SIN(YRRIP%RWSOVR)*ZCOSLAT(JCOL)*SIN(PGELAM(JCOL))) |
---|
260 | ENDDO |
---|
261 | |
---|
262 | ELSE |
---|
263 | ! Compute the average MU0 for the period of the model timestep |
---|
264 | |
---|
265 | ! First compute the sine and cosine of the times of the start and |
---|
266 | ! end of the model timestep |
---|
267 | ZHALFTIMESTEP = YRRIP%TSTEP * RPI / RDAY |
---|
268 | ZSOLARTIMESTART = YRRIP%RWSOVR - ZHALFTIMESTEP |
---|
269 | ZSOLARTIMEEND = YRRIP%RWSOVR + ZHALFTIMESTEP |
---|
270 | |
---|
271 | ! Compute tangent of solar declination, with check in case someone |
---|
272 | ! simulates a planet completely tipped over |
---|
273 | ZTANDEC = YRRIP%RSIDEC / MAX(YRRIP%RCODEC, 1.0E-12) |
---|
274 | |
---|
275 | DO JCOL = KSTART,KEND |
---|
276 | ! Sunrise equation: cos(hour angle at sunset) = |
---|
277 | ! -tan(declination)*tan(latitude) |
---|
278 | ZCOSHOURANGLESUNSET = -ZTANDEC * PGEMU(JCOL) & |
---|
279 | & / MAX(ZCOSLAT(JCOL), 1.0E-12) |
---|
280 | IF (ZCOSHOURANGLESUNSET > 1.0) THEN |
---|
281 | ! Perpetual darkness |
---|
282 | PMU0(JCOL) = 0.0_JPRB |
---|
283 | ELSE |
---|
284 | ! Compute hour angle at start and end of time interval, |
---|
285 | ! ensuring that the hour angle of the centre of the time |
---|
286 | ! window is in the range -PI to +PI (equivalent to ensuring |
---|
287 | ! that local solar time = solar time + longitude is in the |
---|
288 | ! range 0 to 2PI) |
---|
289 | IF (YRRIP%RWSOVR + PGELAM(JCOL) < 2.0_JPRB*RPI) THEN |
---|
290 | ZHOURANGLESTART = ZSOLARTIMESTART + PGELAM(JCOL) - RPI |
---|
291 | ZHOURANGLEEND = ZSOLARTIMEEND + PGELAM(JCOL) - RPI |
---|
292 | ELSE |
---|
293 | ZHOURANGLESTART = ZSOLARTIMESTART + PGELAM(JCOL) - 3.0_JPRB*RPI |
---|
294 | ZHOURANGLEEND = ZSOLARTIMEEND + PGELAM(JCOL) - 3.0_JPRB*RPI |
---|
295 | ENDIF |
---|
296 | |
---|
297 | IF (ZCOSHOURANGLESUNSET >= -1.0) THEN |
---|
298 | ! Not perpetual daylight or perpetual darkness, so we need |
---|
299 | ! to check for sunrise or sunset lying within the time |
---|
300 | ! interval |
---|
301 | ZHOURANGLESUNSET = ACOS(ZCOSHOURANGLESUNSET) |
---|
302 | IF (ZHOURANGLEEND <= -ZHOURANGLESUNSET & |
---|
303 | & .OR. ZHOURANGLESTART >= ZHOURANGLESUNSET) THEN |
---|
304 | ! The time interval is either completely before sunrise or |
---|
305 | ! completely after sunset |
---|
306 | PMU0(JCOL) = 0.0_JPRB |
---|
307 | CYCLE |
---|
308 | ENDIF |
---|
309 | |
---|
310 | ! Bound the start and end hour angles by sunrise and sunset |
---|
311 | ZHOURANGLESTART = MAX(-ZHOURANGLESUNSET, & |
---|
312 | & MIN(ZHOURANGLESTART, ZHOURANGLESUNSET)) |
---|
313 | ZHOURANGLEEND = MAX(-ZHOURANGLESUNSET, & |
---|
314 | & MIN(ZHOURANGLEEND, ZHOURANGLESUNSET)) |
---|
315 | ENDIF |
---|
316 | |
---|
317 | ! Compute average MU0 in the model timestep, although the |
---|
318 | ! numerator considers only the time from ZHourAngleStart to |
---|
319 | ! ZHourAngleEnd that the sun is above the horizon |
---|
320 | PMU0(JCOL) = (ZSINDECSINLAT(JCOL) * (ZHOURANGLEEND-ZHOURANGLESTART) & |
---|
321 | & + ZCOSDECCOSLAT(JCOL)*(SIN(ZHOURANGLEEND)-SIN(ZHOURANGLESTART))) & |
---|
322 | & / (2.0_JPRB * ZHALFTIMESTEP) |
---|
323 | |
---|
324 | ! This shouldn't ever result in negative values, but just in |
---|
325 | ! case |
---|
326 | IF (PMU0(JCOL) < 0.0_JPRB) THEN |
---|
327 | PMU0(JCOL) = 0.0_JPRB |
---|
328 | ENDIF |
---|
329 | |
---|
330 | ENDIF |
---|
331 | ENDDO |
---|
332 | ENDIF |
---|
333 | |
---|
334 | ENDIF |
---|
335 | |
---|
336 | |
---|
337 | ! ------------------------------------------------------------------ |
---|
338 | IF (LHOOK) CALL DR_HOOK('COS_SZA',1,ZHOOK_HANDLE) |
---|
339 | END SUBROUTINE COS_SZA |
---|