1 | ! |
---|
2 | ! $Id: integrd_p.F 2603 2016-07-25 09:31:56Z dcugnet $ |
---|
3 | ! |
---|
4 | SUBROUTINE integrd_p |
---|
5 | $ ( nq,vcovm1,ucovm1,tetam1,psm1,massem1, |
---|
6 | $ dv,du,dteta,dq,dp,vcov,ucov,teta,q,ps0,masse,phis) !,finvmaold) |
---|
7 | USE parallel_lmdz |
---|
8 | USE control_mod, only : planet_type |
---|
9 | USE comconst_mod, ONLY: pi |
---|
10 | USE logic_mod, ONLY: leapf |
---|
11 | USE comvert_mod, ONLY: ap, bp |
---|
12 | USE temps_mod, ONLY: dt |
---|
13 | |
---|
14 | IMPLICIT NONE |
---|
15 | |
---|
16 | |
---|
17 | c======================================================================= |
---|
18 | c |
---|
19 | c Auteur: P. Le Van |
---|
20 | c ------- |
---|
21 | c |
---|
22 | c objet: |
---|
23 | c ------ |
---|
24 | c |
---|
25 | c Incrementation des tendances dynamiques |
---|
26 | c |
---|
27 | c======================================================================= |
---|
28 | c----------------------------------------------------------------------- |
---|
29 | c Declarations: |
---|
30 | c ------------- |
---|
31 | |
---|
32 | #include "dimensions.h" |
---|
33 | #include "paramet.h" |
---|
34 | #include "comgeom.h" |
---|
35 | #include "iniprint.h" |
---|
36 | |
---|
37 | c Arguments: |
---|
38 | c ---------- |
---|
39 | |
---|
40 | integer,intent(in) :: nq ! number of tracers to handle in this routine |
---|
41 | real,intent(inout) :: vcov(ip1jm,llm) ! covariant meridional wind |
---|
42 | real,intent(inout) :: ucov(ip1jmp1,llm) ! covariant zonal wind |
---|
43 | real,intent(inout) :: teta(ip1jmp1,llm) ! potential temperature |
---|
44 | real,intent(inout) :: q(ip1jmp1,llm,nq) ! advected tracers |
---|
45 | real,intent(inout) :: ps0(ip1jmp1) ! surface pressure |
---|
46 | real,intent(inout) :: masse(ip1jmp1,llm) ! atmospheric mass |
---|
47 | real,intent(in) :: phis(ip1jmp1) ! ground geopotential !!! unused |
---|
48 | ! values at previous time step |
---|
49 | real,intent(inout) :: vcovm1(ip1jm,llm) |
---|
50 | real,intent(inout) :: ucovm1(ip1jmp1,llm) |
---|
51 | real,intent(inout) :: tetam1(ip1jmp1,llm) |
---|
52 | real,intent(inout) :: psm1(ip1jmp1) |
---|
53 | real,intent(inout) :: massem1(ip1jmp1,llm) |
---|
54 | ! the tendencies to add |
---|
55 | real,intent(in) :: dv(ip1jm,llm) |
---|
56 | real,intent(in) :: du(ip1jmp1,llm) |
---|
57 | real,intent(in) :: dteta(ip1jmp1,llm) |
---|
58 | real,intent(in) :: dp(ip1jmp1) |
---|
59 | real,intent(in) :: dq(ip1jmp1,llm,nq) !!! unused |
---|
60 | ! real,intent(out) :: finvmaold(ip1jmp1,llm) !!! unused |
---|
61 | |
---|
62 | c Local: |
---|
63 | c ------ |
---|
64 | |
---|
65 | REAL vscr( ip1jm ),uscr( ip1jmp1 ),hscr( ip1jmp1 ),pscr(ip1jmp1) |
---|
66 | REAL massescr( ip1jmp1,llm ) |
---|
67 | ! REAL finvmasse(ip1jmp1,llm) |
---|
68 | REAL,SAVE :: p(ip1jmp1,llmp1) |
---|
69 | REAL tpn,tps,tppn(iim),tpps(iim) |
---|
70 | REAL qpn,qps,qppn(iim),qpps(iim) |
---|
71 | REAL,SAVE :: deltap( ip1jmp1,llm ) |
---|
72 | |
---|
73 | INTEGER l,ij,iq,i,j |
---|
74 | |
---|
75 | REAL SSUM |
---|
76 | EXTERNAL SSUM |
---|
77 | INTEGER ijb,ije,jjb,jje |
---|
78 | REAL,SAVE :: ps(ip1jmp1) |
---|
79 | LOGICAL :: checksum |
---|
80 | INTEGER :: stop_it |
---|
81 | c----------------------------------------------------------------------- |
---|
82 | c$OMP BARRIER |
---|
83 | if (pole_nord) THEN |
---|
84 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
85 | DO l = 1,llm |
---|
86 | DO ij = 1,iip1 |
---|
87 | ucov( ij , l) = 0. |
---|
88 | uscr( ij ) = 0. |
---|
89 | ENDDO |
---|
90 | ENDDO |
---|
91 | c$OMP END DO NOWAIT |
---|
92 | ENDIF |
---|
93 | |
---|
94 | if (pole_sud) THEN |
---|
95 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
96 | DO l = 1,llm |
---|
97 | DO ij = 1,iip1 |
---|
98 | ucov( ij +ip1jm, l) = 0. |
---|
99 | uscr( ij +ip1jm ) = 0. |
---|
100 | ENDDO |
---|
101 | ENDDO |
---|
102 | c$OMP END DO NOWAIT |
---|
103 | ENDIF |
---|
104 | |
---|
105 | c ............ integration de ps .............. |
---|
106 | |
---|
107 | c CALL SCOPY(ip1jmp1*llm, masse, 1, massescr, 1) |
---|
108 | |
---|
109 | ijb=ij_begin |
---|
110 | ije=ij_end |
---|
111 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
112 | DO l = 1,llm |
---|
113 | massescr(ijb:ije,l)=masse(ijb:ije,l) |
---|
114 | ENDDO |
---|
115 | c$OMP END DO NOWAIT |
---|
116 | |
---|
117 | c$OMP DO SCHEDULE(STATIC) |
---|
118 | DO 2 ij = ijb,ije |
---|
119 | pscr (ij) = ps0(ij) |
---|
120 | ps (ij) = psm1(ij) + dt * dp(ij) |
---|
121 | 2 CONTINUE |
---|
122 | c$OMP END DO |
---|
123 | c$OMP BARRIER |
---|
124 | c --> ici synchro OPENMP pour ps |
---|
125 | |
---|
126 | checksum=.TRUE. |
---|
127 | stop_it=0 |
---|
128 | |
---|
129 | c$OMP DO SCHEDULE(STATIC) |
---|
130 | DO ij = ijb,ije |
---|
131 | IF( ps(ij).LT.0. ) THEN |
---|
132 | IF (checksum) stop_it=ij |
---|
133 | checksum=.FALSE. |
---|
134 | ENDIF |
---|
135 | ENDDO |
---|
136 | c$OMP END DO NOWAIT |
---|
137 | |
---|
138 | IF( .NOT. checksum ) THEN |
---|
139 | write(lunout,*) "integrd: ps = ", ps(stop_it) |
---|
140 | write(lunout,*) " at node ij =", stop_it |
---|
141 | ! since ij=j+(i-1)*jjp1 , we have |
---|
142 | j=modulo(stop_it,jjp1) |
---|
143 | i=1+(stop_it-j)/jjp1 |
---|
144 | write(lunout,*) " lon = ",rlonv(i)*180./pi, " deg", |
---|
145 | & " lat = ",rlatu(j)*180./pi, " deg" |
---|
146 | call abort_gcm("integrd_p", "negative surface pressure", 1) |
---|
147 | ENDIF |
---|
148 | |
---|
149 | c |
---|
150 | C$OMP MASTER |
---|
151 | if (pole_nord) THEN |
---|
152 | |
---|
153 | DO ij = 1, iim |
---|
154 | tppn(ij) = aire( ij ) * ps( ij ) |
---|
155 | ENDDO |
---|
156 | tpn = SSUM(iim,tppn,1)/apoln |
---|
157 | DO ij = 1, iip1 |
---|
158 | ps( ij ) = tpn |
---|
159 | ENDDO |
---|
160 | |
---|
161 | ENDIF |
---|
162 | |
---|
163 | if (pole_sud) THEN |
---|
164 | |
---|
165 | DO ij = 1, iim |
---|
166 | tpps(ij) = aire(ij+ip1jm) * ps(ij+ip1jm) |
---|
167 | ENDDO |
---|
168 | tps = SSUM(iim,tpps,1)/apols |
---|
169 | DO ij = 1, iip1 |
---|
170 | ps(ij+ip1jm) = tps |
---|
171 | ENDDO |
---|
172 | |
---|
173 | ENDIF |
---|
174 | c$OMP END MASTER |
---|
175 | c$OMP BARRIER |
---|
176 | c |
---|
177 | c ... Calcul de la nouvelle masse d'air au dernier temps integre t+1 ... |
---|
178 | c |
---|
179 | |
---|
180 | CALL pression_p ( ip1jmp1, ap, bp, ps, p ) |
---|
181 | c$OMP BARRIER |
---|
182 | CALL massdair_p ( p , masse ) |
---|
183 | |
---|
184 | ! Ehouarn : we don't use/need finvmaold and finvmasse, |
---|
185 | ! so might as well not compute them |
---|
186 | !c CALL SCOPY( ijp1llm , masse, 1, finvmasse, 1 ) |
---|
187 | ! ijb=ij_begin |
---|
188 | ! ije=ij_end |
---|
189 | ! |
---|
190 | !c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
191 | ! DO l = 1,llm |
---|
192 | ! finvmasse(ijb:ije,l)=masse(ijb:ije,l) |
---|
193 | ! ENDDO |
---|
194 | !c$OMP END DO NOWAIT |
---|
195 | ! |
---|
196 | ! jjb=jj_begin |
---|
197 | ! jje=jj_end |
---|
198 | ! CALL filtreg_p( finvmasse,jjb,jje, jjp1, llm, -2, 2, .TRUE., 1 ) |
---|
199 | c |
---|
200 | |
---|
201 | c ............ integration de ucov, vcov, h .............. |
---|
202 | |
---|
203 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
204 | DO 10 l = 1,llm |
---|
205 | |
---|
206 | ijb=ij_begin |
---|
207 | ije=ij_end |
---|
208 | if (pole_nord) ijb=ij_begin+iip1 |
---|
209 | if (pole_sud) ije=ij_end-iip1 |
---|
210 | |
---|
211 | DO 4 ij = ijb,ije |
---|
212 | uscr( ij ) = ucov( ij,l ) |
---|
213 | ucov( ij,l ) = ucovm1( ij,l ) + dt * du( ij,l ) |
---|
214 | 4 CONTINUE |
---|
215 | |
---|
216 | ijb=ij_begin |
---|
217 | ije=ij_end |
---|
218 | if (pole_sud) ije=ij_end-iip1 |
---|
219 | |
---|
220 | DO 5 ij = ijb,ije |
---|
221 | vscr( ij ) = vcov( ij,l ) |
---|
222 | vcov( ij,l ) = vcovm1( ij,l ) + dt * dv( ij,l ) |
---|
223 | 5 CONTINUE |
---|
224 | |
---|
225 | ijb=ij_begin |
---|
226 | ije=ij_end |
---|
227 | |
---|
228 | DO 6 ij = ijb,ije |
---|
229 | hscr( ij ) = teta(ij,l) |
---|
230 | teta ( ij,l ) = tetam1(ij,l) * massem1(ij,l) / masse(ij,l) |
---|
231 | $ + dt * dteta(ij,l) / masse(ij,l) |
---|
232 | 6 CONTINUE |
---|
233 | |
---|
234 | c .... Calcul de la valeur moyenne, unique aux poles pour teta ...... |
---|
235 | c |
---|
236 | c |
---|
237 | IF (pole_nord) THEN |
---|
238 | |
---|
239 | DO ij = 1, iim |
---|
240 | tppn(ij) = aire( ij ) * teta( ij ,l) |
---|
241 | ENDDO |
---|
242 | tpn = SSUM(iim,tppn,1)/apoln |
---|
243 | |
---|
244 | DO ij = 1, iip1 |
---|
245 | teta( ij ,l) = tpn |
---|
246 | ENDDO |
---|
247 | |
---|
248 | ENDIF |
---|
249 | |
---|
250 | IF (pole_sud) THEN |
---|
251 | |
---|
252 | DO ij = 1, iim |
---|
253 | tpps(ij) = aire(ij+ip1jm) * teta(ij+ip1jm,l) |
---|
254 | ENDDO |
---|
255 | tps = SSUM(iim,tpps,1)/apols |
---|
256 | |
---|
257 | DO ij = 1, iip1 |
---|
258 | teta(ij+ip1jm,l) = tps |
---|
259 | ENDDO |
---|
260 | |
---|
261 | ENDIF |
---|
262 | c |
---|
263 | |
---|
264 | IF(leapf) THEN |
---|
265 | c CALL SCOPY ( ip1jmp1, uscr(1), 1, ucovm1(1, l), 1 ) |
---|
266 | c CALL SCOPY ( ip1jm, vscr(1), 1, vcovm1(1, l), 1 ) |
---|
267 | c CALL SCOPY ( ip1jmp1, hscr(1), 1, tetam1(1, l), 1 ) |
---|
268 | ijb=ij_begin |
---|
269 | ije=ij_end |
---|
270 | ucovm1(ijb:ije,l)=uscr(ijb:ije) |
---|
271 | tetam1(ijb:ije,l)=hscr(ijb:ije) |
---|
272 | if (pole_sud) ije=ij_end-iip1 |
---|
273 | vcovm1(ijb:ije,l)=vscr(ijb:ije) |
---|
274 | |
---|
275 | END IF |
---|
276 | |
---|
277 | 10 CONTINUE |
---|
278 | c$OMP END DO NOWAIT |
---|
279 | |
---|
280 | c |
---|
281 | c ....... integration de q ...... |
---|
282 | c |
---|
283 | ijb=ij_begin |
---|
284 | ije=ij_end |
---|
285 | |
---|
286 | if (planet_type.eq."earth") then |
---|
287 | ! Earth-specific treatment of first 2 tracers (water) |
---|
288 | c$OMP BARRIER |
---|
289 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
290 | DO l = 1, llm |
---|
291 | DO ij = ijb, ije |
---|
292 | deltap(ij,l) = p(ij,l) - p(ij,l+1) |
---|
293 | ENDDO |
---|
294 | ENDDO |
---|
295 | c$OMP END DO NOWAIT |
---|
296 | c$OMP BARRIER |
---|
297 | |
---|
298 | CALL qminimum_p( q, nq, deltap ) |
---|
299 | c |
---|
300 | c ..... Calcul de la valeur moyenne, unique aux poles pour q ..... |
---|
301 | c |
---|
302 | c$OMP BARRIER |
---|
303 | IF (pole_nord) THEN |
---|
304 | |
---|
305 | DO iq = 1, nq |
---|
306 | |
---|
307 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
308 | DO l = 1, llm |
---|
309 | |
---|
310 | DO ij = 1, iim |
---|
311 | qppn(ij) = aire( ij ) * q( ij ,l,iq) |
---|
312 | ENDDO |
---|
313 | qpn = SSUM(iim,qppn,1)/apoln |
---|
314 | |
---|
315 | DO ij = 1, iip1 |
---|
316 | q( ij ,l,iq) = qpn |
---|
317 | ENDDO |
---|
318 | |
---|
319 | ENDDO |
---|
320 | c$OMP END DO NOWAIT |
---|
321 | |
---|
322 | ENDDO |
---|
323 | |
---|
324 | ENDIF |
---|
325 | |
---|
326 | IF (pole_sud) THEN |
---|
327 | |
---|
328 | DO iq = 1, nq |
---|
329 | |
---|
330 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
331 | DO l = 1, llm |
---|
332 | |
---|
333 | DO ij = 1, iim |
---|
334 | qpps(ij) = aire(ij+ip1jm) * q(ij+ip1jm,l,iq) |
---|
335 | ENDDO |
---|
336 | qps = SSUM(iim,qpps,1)/apols |
---|
337 | |
---|
338 | DO ij = 1, iip1 |
---|
339 | q(ij+ip1jm,l,iq) = qps |
---|
340 | ENDDO |
---|
341 | |
---|
342 | ENDDO |
---|
343 | c$OMP END DO NOWAIT |
---|
344 | |
---|
345 | ENDDO |
---|
346 | |
---|
347 | ENDIF |
---|
348 | |
---|
349 | ! Ehouarn: forget about finvmaold |
---|
350 | !c CALL SCOPY( ijp1llm , finvmasse, 1, finvmaold, 1 ) |
---|
351 | ! |
---|
352 | !c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
353 | ! DO l = 1, llm |
---|
354 | ! finvmaold(ijb:ije,l)=finvmasse(ijb:ije,l) |
---|
355 | ! ENDDO |
---|
356 | !c$OMP END DO NOWAIT |
---|
357 | |
---|
358 | endif ! of if (planet_type.eq."earth") |
---|
359 | |
---|
360 | c |
---|
361 | c |
---|
362 | c ..... FIN de l'integration de q ....... |
---|
363 | |
---|
364 | 15 continue |
---|
365 | |
---|
366 | c$OMP DO SCHEDULE(STATIC) |
---|
367 | DO ij=ijb,ije |
---|
368 | ps0(ij)=ps(ij) |
---|
369 | ENDDO |
---|
370 | c$OMP END DO NOWAIT |
---|
371 | |
---|
372 | c ................................................................. |
---|
373 | |
---|
374 | |
---|
375 | IF( leapf ) THEN |
---|
376 | c CALL SCOPY ( ip1jmp1 , pscr , 1, psm1 , 1 ) |
---|
377 | c CALL SCOPY ( ip1jmp1*llm, massescr, 1, massem1, 1 ) |
---|
378 | c$OMP DO SCHEDULE(STATIC) |
---|
379 | DO ij=ijb,ije |
---|
380 | psm1(ij)=pscr(ij) |
---|
381 | ENDDO |
---|
382 | c$OMP END DO NOWAIT |
---|
383 | |
---|
384 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
385 | DO l = 1, llm |
---|
386 | massem1(ijb:ije,l)=massescr(ijb:ije,l) |
---|
387 | ENDDO |
---|
388 | c$OMP END DO NOWAIT |
---|
389 | END IF |
---|
390 | c$OMP BARRIER |
---|
391 | RETURN |
---|
392 | END |
---|