1 | ! |
---|
2 | MODULE stdlevvar_mod |
---|
3 | ! |
---|
4 | ! This module contains main procedures for calculation |
---|
5 | ! of temperature, specific humidity and wind at a reference level |
---|
6 | ! |
---|
7 | USE cdrag_mod |
---|
8 | USE screenp_mod |
---|
9 | USE screenc_mod |
---|
10 | IMPLICIT NONE |
---|
11 | |
---|
12 | CONTAINS |
---|
13 | ! |
---|
14 | !**************************************************************************************** |
---|
15 | ! |
---|
16 | !r original routine svn3623 |
---|
17 | ! |
---|
18 | SUBROUTINE stdlevvar(klon, knon, nsrf, zxli, & |
---|
19 | u1, v1, t1, q1, z1, & |
---|
20 | ts1, qsurf, z0m, z0h, psol, pat1, & |
---|
21 | t_2m, q_2m, t_10m, q_10m, u_10m, ustar) |
---|
22 | IMPLICIT NONE |
---|
23 | !------------------------------------------------------------------------- |
---|
24 | ! |
---|
25 | ! Objet : calcul de la temperature et l'humidite relative a 2m et du |
---|
26 | ! module du vent a 10m a partir des relations de Dyer-Businger et |
---|
27 | ! des equations de Louis. |
---|
28 | ! |
---|
29 | ! Reference : Hess, Colman et McAvaney (1995) |
---|
30 | ! |
---|
31 | ! I. Musat, 01.07.2002 |
---|
32 | ! |
---|
33 | !AM On rajoute en sortie t et q a 10m pr le calcule d'hbtm2 dans clmain |
---|
34 | ! |
---|
35 | !------------------------------------------------------------------------- |
---|
36 | ! |
---|
37 | ! klon----input-I- dimension de la grille physique (= nb_pts_latitude X nb_pts_longitude) |
---|
38 | ! knon----input-I- nombre de points pour un type de surface |
---|
39 | ! nsrf----input-I- indice pour le type de surface; voir indice_sol_mod.F90 |
---|
40 | ! zxli----input-L- TRUE si calcul des cdrags selon Laurent Li |
---|
41 | ! u1------input-R- vent zonal au 1er niveau du modele |
---|
42 | ! v1------input-R- vent meridien au 1er niveau du modele |
---|
43 | ! t1------input-R- temperature de l'air au 1er niveau du modele |
---|
44 | ! q1------input-R- humidite relative au 1er niveau du modele |
---|
45 | ! z1------input-R- geopotentiel au 1er niveau du modele |
---|
46 | ! ts1-----input-R- temperature de l'air a la surface |
---|
47 | ! qsurf---input-R- humidite relative a la surface |
---|
48 | ! z0m, z0h---input-R- rugosite |
---|
49 | ! psol----input-R- pression au sol |
---|
50 | ! pat1----input-R- pression au 1er niveau du modele |
---|
51 | ! |
---|
52 | ! t_2m---output-R- temperature de l'air a 2m |
---|
53 | ! q_2m---output-R- humidite relative a 2m |
---|
54 | ! u_10m--output-R- vitesse du vent a 10m |
---|
55 | !AM |
---|
56 | ! t_10m--output-R- temperature de l'air a 10m |
---|
57 | ! q_10m--output-R- humidite specifique a 10m |
---|
58 | ! ustar--output-R- u* |
---|
59 | ! |
---|
60 | INTEGER, intent(in) :: klon, knon, nsrf |
---|
61 | LOGICAL, intent(in) :: zxli |
---|
62 | REAL, dimension(klon), intent(in) :: u1, v1, t1, q1, z1, ts1 |
---|
63 | REAL, dimension(klon), intent(in) :: qsurf, z0m, z0h |
---|
64 | REAL, dimension(klon), intent(in) :: psol, pat1 |
---|
65 | ! |
---|
66 | REAL, dimension(klon), intent(out) :: t_2m, q_2m, ustar |
---|
67 | REAL, dimension(klon), intent(out) :: u_10m, t_10m, q_10m |
---|
68 | !------------------------------------------------------------------------- |
---|
69 | include "flux_arp.h" |
---|
70 | include "YOMCST.h" |
---|
71 | !IM PLUS |
---|
72 | include "YOETHF.h" |
---|
73 | ! |
---|
74 | ! Quelques constantes et options: |
---|
75 | ! |
---|
76 | ! RKAR : constante de von Karman |
---|
77 | REAL, PARAMETER :: RKAR=0.40 |
---|
78 | ! niter : nombre iterations calcul "corrector" |
---|
79 | ! INTEGER, parameter :: niter=6, ncon=niter-1 |
---|
80 | INTEGER, parameter :: niter=2, ncon=niter-1 |
---|
81 | ! |
---|
82 | ! Variables locales |
---|
83 | INTEGER :: i, n |
---|
84 | REAL :: zref |
---|
85 | REAL, dimension(klon) :: speed |
---|
86 | ! tpot : temperature potentielle |
---|
87 | REAL, dimension(klon) :: tpot |
---|
88 | REAL, dimension(klon) :: zri1, cdran |
---|
89 | REAL, dimension(klon) :: cdram, cdrah |
---|
90 | ! ri1 : nb. de Richardson entre la surface --> la 1ere couche |
---|
91 | REAL, dimension(klon) :: ri1 |
---|
92 | REAL, dimension(klon) :: testar, qstar |
---|
93 | REAL, dimension(klon) :: zdte, zdq |
---|
94 | ! lmon : longueur de Monin-Obukhov selon Hess, Colman and McAvaney |
---|
95 | DOUBLE PRECISION, dimension(klon) :: lmon |
---|
96 | DOUBLE PRECISION, parameter :: eps=1.0D-20 |
---|
97 | REAL, dimension(klon) :: delu, delte, delq |
---|
98 | REAL, dimension(klon) :: u_zref, te_zref, q_zref |
---|
99 | REAL, dimension(klon) :: temp, pref |
---|
100 | LOGICAL :: okri |
---|
101 | REAL, dimension(klon) :: u_zref_p, te_zref_p, temp_p, q_zref_p |
---|
102 | !convertgence |
---|
103 | REAL, dimension(klon) :: te_zref_con, q_zref_con |
---|
104 | REAL, dimension(klon) :: u_zref_c, te_zref_c, temp_c, q_zref_c |
---|
105 | REAL, dimension(klon) :: ok_pred, ok_corr |
---|
106 | ! REAL, dimension(klon) :: conv_te, conv_q |
---|
107 | !------------------------------------------------------------------------- |
---|
108 | DO i=1, knon |
---|
109 | speed(i)=SQRT(u1(i)**2+v1(i)**2) |
---|
110 | ri1(i) = 0.0 |
---|
111 | ENDDO |
---|
112 | ! |
---|
113 | okri=.FALSE. |
---|
114 | ! CALL coefcdrag(klon, knon, nsrf, zxli, & |
---|
115 | ! & speed, t1, q1, z1, psol, & |
---|
116 | ! & ts1, qsurf, rugos, okri, ri1, & |
---|
117 | ! & cdram, cdrah, cdran, zri1, pref) |
---|
118 | ! Fuxing WANG, 04/03/2015, replace the coefcdrag by the merged version: cdrag |
---|
119 | |
---|
120 | CALL cdrag(knon, nsrf, & |
---|
121 | & speed, t1, q1, z1, & |
---|
122 | & psol, ts1, qsurf, z0m, z0h, & |
---|
123 | & cdram, cdrah, zri1, pref) |
---|
124 | |
---|
125 | ! --- special Dice: on force cdragm ( a defaut de forcer ustar) MPL 05082013 |
---|
126 | IF (ok_prescr_ust) then |
---|
127 | DO i = 1, knon |
---|
128 | print *,'cdram avant=',cdram(i) |
---|
129 | cdram(i) = ust*ust/speed(i)/speed(i) |
---|
130 | print *,'cdram ust speed apres=',cdram(i),ust,speed |
---|
131 | ENDDO |
---|
132 | ENDIF |
---|
133 | ! |
---|
134 | !---------Star variables---------------------------------------------------- |
---|
135 | ! |
---|
136 | DO i = 1, knon |
---|
137 | ri1(i) = zri1(i) |
---|
138 | tpot(i) = t1(i)* (psol(i)/pat1(i))**RKAPPA |
---|
139 | ustar(i) = sqrt(cdram(i) * speed(i) * speed(i)) |
---|
140 | zdte(i) = tpot(i) - ts1(i) |
---|
141 | zdq(i) = max(q1(i),0.0) - max(qsurf(i),0.0) |
---|
142 | ! |
---|
143 | ! |
---|
144 | !IM BUG BUG BUG zdte(i) = max(zdte(i),1.e-10) |
---|
145 | zdte(i) = sign(max(abs(zdte(i)),1.e-10),zdte(i)) |
---|
146 | ! |
---|
147 | testar(i) = (cdrah(i) * zdte(i) * speed(i))/ustar(i) |
---|
148 | qstar(i) = (cdrah(i) * zdq(i) * speed(i))/ustar(i) |
---|
149 | lmon(i) = (ustar(i) * ustar(i) * tpot(i))/ & |
---|
150 | & (RKAR * RG * testar(i)) |
---|
151 | ENDDO |
---|
152 | ! |
---|
153 | !----------First aproximation of variables at zref -------------------------- |
---|
154 | zref = 2.0 |
---|
155 | CALL screenp(klon, knon, nsrf, speed, tpot, q1, & |
---|
156 | & ts1, qsurf, z0m, lmon, & |
---|
157 | & ustar, testar, qstar, zref, & |
---|
158 | & delu, delte, delq) |
---|
159 | ! |
---|
160 | DO i = 1, knon |
---|
161 | u_zref(i) = delu(i) |
---|
162 | q_zref(i) = max(qsurf(i),0.0) + delq(i) |
---|
163 | te_zref(i) = ts1(i) + delte(i) |
---|
164 | temp(i) = te_zref(i) * (psol(i)/pat1(i))**(-RKAPPA) |
---|
165 | q_zref_p(i) = q_zref(i) |
---|
166 | ! te_zref_p(i) = te_zref(i) |
---|
167 | temp_p(i) = temp(i) |
---|
168 | ENDDO |
---|
169 | ! |
---|
170 | ! Iteration of the variables at the reference level zref : corrector calculation ; see Hess & McAvaney, 1995 |
---|
171 | ! |
---|
172 | DO n = 1, niter |
---|
173 | ! |
---|
174 | okri=.TRUE. |
---|
175 | CALL screenc(klon, knon, nsrf, zxli, & |
---|
176 | & u_zref, temp, q_zref, zref, & |
---|
177 | & ts1, qsurf, z0m, z0h, psol, & |
---|
178 | & ustar, testar, qstar, okri, ri1, & |
---|
179 | & pref, delu, delte, delq) |
---|
180 | ! |
---|
181 | DO i = 1, knon |
---|
182 | u_zref(i) = delu(i) |
---|
183 | q_zref(i) = delq(i) + max(qsurf(i),0.0) |
---|
184 | te_zref(i) = delte(i) + ts1(i) |
---|
185 | ! |
---|
186 | ! return to normal temperature |
---|
187 | ! |
---|
188 | temp(i) = te_zref(i) * (psol(i)/pref(i))**(-RKAPPA) |
---|
189 | ! temp(i) = te_zref(i) - (zref* RG)/RCPD/ & |
---|
190 | ! (1 + RVTMP2 * max(q_zref(i),0.0)) |
---|
191 | ! |
---|
192 | !IM +++ |
---|
193 | ! IF(temp(i).GT.350.) THEN |
---|
194 | ! WRITE(*,*) 'temp(i) GT 350 K !!',i,nsrf,temp(i) |
---|
195 | ! ENDIF |
---|
196 | !IM --- |
---|
197 | ! |
---|
198 | IF(n.EQ.ncon) THEN |
---|
199 | te_zref_con(i) = te_zref(i) |
---|
200 | q_zref_con(i) = q_zref(i) |
---|
201 | ENDIF |
---|
202 | ! |
---|
203 | ENDDO |
---|
204 | ! |
---|
205 | ENDDO |
---|
206 | ! |
---|
207 | ! verifier le critere de convergence : 0.25% pour te_zref et 5% pour qe_zref |
---|
208 | ! |
---|
209 | ! DO i = 1, knon |
---|
210 | ! conv_te(i) = (te_zref(i) - te_zref_con(i))/te_zref_con(i) |
---|
211 | ! conv_q(i) = (q_zref(i) - q_zref_con(i))/q_zref_con(i) |
---|
212 | !IM +++ |
---|
213 | ! IF(abs(conv_te(i)).GE.0.0025.AND.abs(conv_q(i)).GE.0.05) THEN |
---|
214 | ! PRINT*,'DIV','i=',i,te_zref_con(i),te_zref(i),conv_te(i), & |
---|
215 | ! q_zref_con(i),q_zref(i),conv_q(i) |
---|
216 | ! ENDIF |
---|
217 | !IM --- |
---|
218 | ! ENDDO |
---|
219 | ! |
---|
220 | DO i = 1, knon |
---|
221 | q_zref_c(i) = q_zref(i) |
---|
222 | temp_c(i) = temp(i) |
---|
223 | ! |
---|
224 | ! IF(zri1(i).LT.0.) THEN |
---|
225 | ! IF(nsrf.EQ.1) THEN |
---|
226 | ! ok_pred(i)=1. |
---|
227 | ! ok_corr(i)=0. |
---|
228 | ! ELSE |
---|
229 | ! ok_pred(i)=0. |
---|
230 | ! ok_corr(i)=1. |
---|
231 | ! ENDIF |
---|
232 | ! ELSE |
---|
233 | ! ok_pred(i)=0. |
---|
234 | ! ok_corr(i)=1. |
---|
235 | ! ENDIF |
---|
236 | ! |
---|
237 | ok_pred(i)=0. |
---|
238 | ok_corr(i)=1. |
---|
239 | ! |
---|
240 | t_2m(i) = temp_p(i) * ok_pred(i) + temp_c(i) * ok_corr(i) |
---|
241 | q_2m(i) = q_zref_p(i) * ok_pred(i) + q_zref_c(i) * ok_corr(i) |
---|
242 | !IM +++ |
---|
243 | ! IF(n.EQ.niter) THEN |
---|
244 | ! IF(t_2m(i).LT.t1(i).AND.t_2m(i).LT.ts1(i)) THEN |
---|
245 | ! PRINT*,' BAD t2m LT ',i,nsrf,t_2m(i),t1(i),ts1(i) |
---|
246 | ! ELSEIF(t_2m(i).GT.t1(i).AND.t_2m(i).GT.ts1(i)) THEN |
---|
247 | ! PRINT*,' BAD t2m GT ',i,nsrf,t_2m(i),t1(i),ts1(i) |
---|
248 | ! ENDIF |
---|
249 | ! ENDIF |
---|
250 | !IM --- |
---|
251 | ENDDO |
---|
252 | ! |
---|
253 | ! |
---|
254 | !----------First aproximation of variables at zref -------------------------- |
---|
255 | ! |
---|
256 | zref = 10.0 |
---|
257 | CALL screenp(klon, knon, nsrf, speed, tpot, q1, & |
---|
258 | & ts1, qsurf, z0m, lmon, & |
---|
259 | & ustar, testar, qstar, zref, & |
---|
260 | & delu, delte, delq) |
---|
261 | ! |
---|
262 | DO i = 1, knon |
---|
263 | u_zref(i) = delu(i) |
---|
264 | q_zref(i) = max(qsurf(i),0.0) + delq(i) |
---|
265 | te_zref(i) = ts1(i) + delte(i) |
---|
266 | temp(i) = te_zref(i) * (psol(i)/pat1(i))**(-RKAPPA) |
---|
267 | ! temp(i) = te_zref(i) - (zref* RG)/RCPD/ & |
---|
268 | ! (1 + RVTMP2 * max(q_zref(i),0.0)) |
---|
269 | u_zref_p(i) = u_zref(i) |
---|
270 | ENDDO |
---|
271 | ! |
---|
272 | ! Iteration of the variables at the reference level zref : corrector ; see Hess & McAvaney, 1995 |
---|
273 | ! |
---|
274 | DO n = 1, niter |
---|
275 | ! |
---|
276 | okri=.TRUE. |
---|
277 | CALL screenc(klon, knon, nsrf, zxli, & |
---|
278 | & u_zref, temp, q_zref, zref, & |
---|
279 | & ts1, qsurf, z0m, z0h, psol, & |
---|
280 | & ustar, testar, qstar, okri, ri1, & |
---|
281 | & pref, delu, delte, delq) |
---|
282 | ! |
---|
283 | DO i = 1, knon |
---|
284 | u_zref(i) = delu(i) |
---|
285 | q_zref(i) = delq(i) + max(qsurf(i),0.0) |
---|
286 | te_zref(i) = delte(i) + ts1(i) |
---|
287 | temp(i) = te_zref(i) * (psol(i)/pref(i))**(-RKAPPA) |
---|
288 | ! temp(i) = te_zref(i) - (zref* RG)/RCPD/ & |
---|
289 | ! (1 + RVTMP2 * max(q_zref(i),0.0)) |
---|
290 | ENDDO |
---|
291 | ! |
---|
292 | ENDDO |
---|
293 | ! |
---|
294 | DO i = 1, knon |
---|
295 | u_zref_c(i) = u_zref(i) |
---|
296 | ! |
---|
297 | u_10m(i) = u_zref_p(i) * ok_pred(i) + u_zref_c(i) * ok_corr(i) |
---|
298 | ! |
---|
299 | !AM |
---|
300 | q_zref_c(i) = q_zref(i) |
---|
301 | temp_c(i) = temp(i) |
---|
302 | t_10m(i) = temp_p(i) * ok_pred(i) + temp_c(i) * ok_corr(i) |
---|
303 | q_10m(i) = q_zref_p(i) * ok_pred(i) + q_zref_c(i) * ok_corr(i) |
---|
304 | !MA |
---|
305 | ENDDO |
---|
306 | ! |
---|
307 | RETURN |
---|
308 | END subroutine stdlevvar |
---|
309 | ! |
---|
310 | SUBROUTINE stdlevvarn(klon, knon, nsrf, zxli, & |
---|
311 | u1, v1, t1, q1, z1, & |
---|
312 | ts1, qsurf, z0m, z0h, psol, pat1, & |
---|
313 | t_2m, q_2m, t_10m, q_10m, u_10m, ustar, & |
---|
314 | n2mout) |
---|
315 | ! |
---|
316 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
317 | IMPLICIT NONE |
---|
318 | !------------------------------------------------------------------------- |
---|
319 | ! |
---|
320 | ! Objet : calcul de la temperature et l'humidite relative a 2m et du |
---|
321 | ! module du vent a 10m a partir des relations de Dyer-Businger et |
---|
322 | ! des equations de Louis. |
---|
323 | ! |
---|
324 | ! Reference : Hess, Colman et McAvaney (1995) |
---|
325 | ! |
---|
326 | ! I. Musat, 01.07.2002 |
---|
327 | ! |
---|
328 | !AM On rajoute en sortie t et q a 10m pr le calcule d'hbtm2 dans clmain |
---|
329 | ! |
---|
330 | !------------------------------------------------------------------------- |
---|
331 | ! |
---|
332 | ! klon----input-I- dimension de la grille physique (= nb_pts_latitude X nb_pts_longitude) |
---|
333 | ! knon----input-I- nombre de points pour un type de surface |
---|
334 | ! nsrf----input-I- indice pour le type de surface; voir indice_sol_mod.F90 |
---|
335 | ! zxli----input-L- TRUE si calcul des cdrags selon Laurent Li |
---|
336 | ! u1------input-R- vent zonal au 1er niveau du modele |
---|
337 | ! v1------input-R- vent meridien au 1er niveau du modele |
---|
338 | ! t1------input-R- temperature de l'air au 1er niveau du modele |
---|
339 | ! q1------input-R- humidite relative au 1er niveau du modele |
---|
340 | ! z1------input-R- geopotentiel au 1er niveau du modele |
---|
341 | ! ts1-----input-R- temperature de l'air a la surface |
---|
342 | ! qsurf---input-R- humidite relative a la surface |
---|
343 | ! z0m, z0h---input-R- rugosite |
---|
344 | ! psol----input-R- pression au sol |
---|
345 | ! pat1----input-R- pression au 1er niveau du modele |
---|
346 | ! |
---|
347 | ! t_2m---output-R- temperature de l'air a 2m |
---|
348 | ! q_2m---output-R- humidite relative a 2m |
---|
349 | ! u_2m--output-R- vitesse du vent a 2m |
---|
350 | ! u_10m--output-R- vitesse du vent a 10m |
---|
351 | ! ustar--output-R- u* |
---|
352 | !AM |
---|
353 | ! t_10m--output-R- temperature de l'air a 10m |
---|
354 | ! q_10m--output-R- humidite specifique a 10m |
---|
355 | ! |
---|
356 | INTEGER, intent(in) :: klon, knon, nsrf |
---|
357 | LOGICAL, intent(in) :: zxli |
---|
358 | REAL, dimension(klon), intent(in) :: u1, v1, t1, q1, z1, ts1 |
---|
359 | REAL, dimension(klon), intent(in) :: qsurf, z0m, z0h |
---|
360 | REAL, dimension(klon), intent(in) :: psol, pat1 |
---|
361 | ! |
---|
362 | REAL, dimension(klon), intent(out) :: t_2m, q_2m, ustar |
---|
363 | REAL, dimension(klon), intent(out) :: u_10m, t_10m, q_10m |
---|
364 | INTEGER, dimension(klon, 6), intent(out) :: n2mout |
---|
365 | ! |
---|
366 | REAL, dimension(klon) :: u_2m |
---|
367 | REAL, dimension(klon) :: cdrm2m, cdrh2m, ri2m |
---|
368 | REAL, dimension(klon) :: cdram, cdrah, zri1 |
---|
369 | REAL, dimension(klon) :: cdmn1, cdhn1, fm1, fh1 |
---|
370 | REAL, dimension(klon) :: cdmn2m, cdhn2m, fm2m, fh2m |
---|
371 | REAL, dimension(klon) :: ri2m_new |
---|
372 | !------------------------------------------------------------------------- |
---|
373 | include "flux_arp.h" |
---|
374 | include "YOMCST.h" |
---|
375 | !IM PLUS |
---|
376 | include "YOETHF.h" |
---|
377 | ! |
---|
378 | ! Quelques constantes et options: |
---|
379 | ! |
---|
380 | ! RKAR : constante de von Karman |
---|
381 | REAL, PARAMETER :: RKAR=0.40 |
---|
382 | ! niter : nombre iterations calcul "corrector" |
---|
383 | ! INTEGER, parameter :: niter=6, ncon=niter-1 |
---|
384 | !IM 071020 INTEGER, parameter :: niter=2, ncon=niter-1 |
---|
385 | INTEGER, parameter :: niter=2, ncon=niter |
---|
386 | ! INTEGER, parameter :: niter=6, ncon=niter |
---|
387 | ! |
---|
388 | ! Variables locales |
---|
389 | INTEGER :: i, n |
---|
390 | REAL :: zref |
---|
391 | REAL, dimension(klon) :: speed |
---|
392 | ! tpot : temperature potentielle |
---|
393 | REAL, dimension(klon) :: tpot |
---|
394 | REAL, dimension(klon) :: cdran |
---|
395 | ! ri1 : nb. de Richardson entre la surface --> la 1ere couche |
---|
396 | REAL, dimension(klon) :: ri1 |
---|
397 | DOUBLE PRECISION, parameter :: eps=1.0D-20 |
---|
398 | REAL, dimension(klon) :: delu, delte, delq |
---|
399 | REAL, dimension(klon) :: delh, delm |
---|
400 | REAL, dimension(klon) :: delh_new, delm_new |
---|
401 | REAL, dimension(klon) :: u_zref, te_zref, q_zref |
---|
402 | REAL, dimension(klon) :: u_zref_pnew, te_zref_pnew, q_zref_pnew |
---|
403 | REAL, dimension(klon) :: temp, pref |
---|
404 | REAL, dimension(klon) :: temp_new, pref_new |
---|
405 | LOGICAL :: okri |
---|
406 | REAL, dimension(klon) :: u_zref_p, te_zref_p, temp_p, q_zref_p |
---|
407 | REAL, dimension(klon) :: u_zref_p_new, te_zref_p_new, temp_p_new, q_zref_p_new |
---|
408 | !convergence |
---|
409 | REAL, dimension(klon) :: te_zref_con, q_zref_con |
---|
410 | REAL, dimension(klon) :: u_zref_c, te_zref_c, temp_c, q_zref_c |
---|
411 | REAL, dimension(klon) :: ok_pred, ok_corr |
---|
412 | ! |
---|
413 | REAL, dimension(klon) :: cdrm10m, cdrh10m, ri10m |
---|
414 | REAL, dimension(klon) :: cdmn10m, cdhn10m, fm10m, fh10m |
---|
415 | REAL, dimension(klon) :: cdn2m, cdn1 |
---|
416 | REAL :: CEPDUE,zdu2 |
---|
417 | INTEGER :: nzref, nz1 |
---|
418 | LOGICAL, dimension(klon) :: ok_t2m_toosmall, ok_t2m_toobig |
---|
419 | LOGICAL, dimension(klon) :: ok_q2m_toosmall, ok_q2m_toobig |
---|
420 | LOGICAL, dimension(klon) :: ok_u2m_toobig |
---|
421 | LOGICAL, dimension(klon) :: ok_t10m_toosmall, ok_t10m_toobig |
---|
422 | LOGICAL, dimension(klon) :: ok_q10m_toosmall, ok_q10m_toobig |
---|
423 | LOGICAL, dimension(klon) :: ok_u10m_toobig |
---|
424 | INTEGER, dimension(klon, 6) :: n10mout |
---|
425 | |
---|
426 | !------------------------------------------------------------------------- |
---|
427 | CEPDUE=0.1 |
---|
428 | ! |
---|
429 | ! n2mout : compteur des pas de temps ou t2m,q2m ou u2m sont en dehors des intervalles |
---|
430 | ! [tsurf, temp], [qsurf, q1] ou [0, speed] |
---|
431 | ! n10mout : compteur des pas de temps ou t10m,q10m ou u10m sont en dehors des intervalles |
---|
432 | ! [tsurf, temp], [qsurf, q1] ou [0, speed] |
---|
433 | ! |
---|
434 | n2mout(:,:)=0 |
---|
435 | n10mout(:,:)=0 |
---|
436 | |
---|
437 | DO i=1, knon |
---|
438 | speed(i)=MAX(SQRT(u1(i)**2+v1(i)**2),CEPDUE) |
---|
439 | ri1(i) = 0.0 |
---|
440 | ENDDO |
---|
441 | ! |
---|
442 | okri=.FALSE. |
---|
443 | CALL cdrag(knon, nsrf, & |
---|
444 | & speed, t1, q1, z1, & |
---|
445 | & psol, ts1, qsurf, z0m, z0h, & |
---|
446 | & cdram, cdrah, zri1, pref) |
---|
447 | |
---|
448 | ! |
---|
449 | DO i = 1, knon |
---|
450 | ri1(i) = zri1(i) |
---|
451 | tpot(i) = t1(i)* (psol(i)/pat1(i))**RKAPPA |
---|
452 | zdu2 = MAX(CEPDUE*CEPDUE, speed(i)**2) |
---|
453 | ustar(i) = sqrt(cdram(i) * zdu2) |
---|
454 | ! |
---|
455 | ENDDO |
---|
456 | ! |
---|
457 | !----------First aproximation of variables at zref -------------------------- |
---|
458 | zref = 2.0 |
---|
459 | ! |
---|
460 | ! calcul first-guess en utilisant dans les calculs à 2m |
---|
461 | ! le Richardson de la premiere couche atmospherique |
---|
462 | ! |
---|
463 | CALL screencn(klon, knon, nsrf, zxli, & |
---|
464 | & speed, tpot, q1, zref, & |
---|
465 | & ts1, qsurf, z0m, z0h, psol, & |
---|
466 | & cdram, cdrah, okri, & |
---|
467 | & ri1, 1, & |
---|
468 | & pref_new, delm_new, delh_new, ri2m) |
---|
469 | ! |
---|
470 | DO i = 1, knon |
---|
471 | u_zref(i) = delm_new(i)*speed(i) |
---|
472 | u_zref_p(i) = u_zref(i) |
---|
473 | q_zref(i) = delh_new(i)*max(q1(i),0.0) + & |
---|
474 | & max(qsurf(i),0.0)*(1-delh_new(i)) |
---|
475 | q_zref_p(i) = q_zref(i) |
---|
476 | te_zref(i) = delh_new(i)*tpot(i) + ts1(i)*(1-delh_new(i)) |
---|
477 | te_zref_p(i) = te_zref(i) |
---|
478 | ! |
---|
479 | ! return to normal temperature |
---|
480 | temp(i) = te_zref(i) * (psol(i)/pref_new(i))**(-RKAPPA) |
---|
481 | temp_p(i) = temp(i) |
---|
482 | ! |
---|
483 | ! compteurs ici |
---|
484 | ! |
---|
485 | ok_t2m_toosmall(i)=te_zref(i).LT.tpot(i).AND. & |
---|
486 | & te_zref(i).LT.ts1(i) |
---|
487 | ok_t2m_toobig(i)=te_zref(i).GT.tpot(i).AND. & |
---|
488 | & te_zref(i).GT.ts1(i) |
---|
489 | ok_q2m_toosmall(i)=q_zref(i).LT.q1(i).AND. & |
---|
490 | & q_zref(i).LT.qsurf(i) |
---|
491 | ok_q2m_toobig(i)=q_zref(i).GT.q1(i).AND. & |
---|
492 | & q_zref(i).GT.qsurf(i) |
---|
493 | ok_u2m_toobig(i)=u_zref(i).GT.speed(i) |
---|
494 | ! |
---|
495 | IF(ok_t2m_toosmall(i).OR.ok_t2m_toobig(i)) THEN |
---|
496 | n2mout(i,1)=n2mout(i,1)+1 |
---|
497 | ENDIF |
---|
498 | IF(ok_q2m_toosmall(i).OR.ok_q2m_toobig(i)) THEN |
---|
499 | n2mout(i,3)=n2mout(i,3)+1 |
---|
500 | ENDIF |
---|
501 | IF(ok_u2m_toobig(i)) THEN |
---|
502 | n2mout(i,5)=n2mout(i,5)+1 |
---|
503 | ENDIF |
---|
504 | ! |
---|
505 | IF(ok_t2m_toosmall(i).OR.ok_t2m_toobig(i).OR. & |
---|
506 | & ok_q2m_toosmall(i).OR.ok_q2m_toobig(i).OR. & |
---|
507 | & ok_u2m_toobig(i)) THEN |
---|
508 | delm_new(i)=min(max(delm_new(i),0.),1.) |
---|
509 | delh_new(i)=min(max(delh_new(i),0.),1.) |
---|
510 | u_zref(i) = delm_new(i)*speed(i) |
---|
511 | u_zref_p(i) = u_zref(i) |
---|
512 | q_zref(i) = delh_new(i)*max(q1(i),0.0) + & |
---|
513 | & max(qsurf(i),0.0)*(1-delh_new(i)) |
---|
514 | q_zref_p(i) = q_zref(i) |
---|
515 | te_zref(i) = delh_new(i)*tpot(i) + ts1(i)*(1-delh_new(i)) |
---|
516 | te_zref_p(i) = te_zref(i) |
---|
517 | ! |
---|
518 | ! return to normal temperature |
---|
519 | temp(i) = te_zref(i) * (psol(i)/pref_new(i))**(-RKAPPA) |
---|
520 | temp_p(i) = temp(i) |
---|
521 | ENDIF |
---|
522 | ! |
---|
523 | ENDDO |
---|
524 | ! |
---|
525 | ! Iteration of the variables at the reference level zref : corrector calculation ; see Hess & McAvaney, 1995 |
---|
526 | ! |
---|
527 | DO n = 1, niter |
---|
528 | ! |
---|
529 | okri=.TRUE. |
---|
530 | CALL screencn(klon, knon, nsrf, zxli, & |
---|
531 | & u_zref, temp, q_zref, zref, & |
---|
532 | & ts1, qsurf, z0m, z0h, psol, & |
---|
533 | & cdram, cdrah, okri, & |
---|
534 | & ri1, 0, & |
---|
535 | & pref, delm, delh, ri2m) |
---|
536 | ! |
---|
537 | DO i = 1, knon |
---|
538 | u_zref(i) = delm(i)*speed(i) |
---|
539 | q_zref(i) = delh(i)*max(q1(i),0.0) + & |
---|
540 | & max(qsurf(i),0.0)*(1-delh(i)) |
---|
541 | te_zref(i) = delh(i)*tpot(i) + ts1(i)*(1-delh(i)) |
---|
542 | ! |
---|
543 | ! return to normal temperature |
---|
544 | temp(i) = te_zref(i) * (psol(i)/pref(i))**(-RKAPPA) |
---|
545 | ! |
---|
546 | ! compteurs ici |
---|
547 | ! |
---|
548 | ok_t2m_toosmall(i)=te_zref(i).LT.tpot(i).AND. & |
---|
549 | & te_zref(i).LT.ts1(i) |
---|
550 | ok_t2m_toobig(i)=te_zref(i).GT.tpot(i).AND. & |
---|
551 | & te_zref(i).GT.ts1(i) |
---|
552 | ok_q2m_toosmall(i)=q_zref(i).LT.q1(i).AND. & |
---|
553 | & q_zref(i).LT.qsurf(i) |
---|
554 | ok_q2m_toobig(i)=q_zref(i).GT.q1(i).AND. & |
---|
555 | & q_zref(i).GT.qsurf(i) |
---|
556 | ok_u2m_toobig(i)=u_zref(i).GT.speed(i) |
---|
557 | ! |
---|
558 | IF(ok_t2m_toosmall(i).OR.ok_t2m_toobig(i)) THEN |
---|
559 | n2mout(i,2)=n2mout(i,2)+1 |
---|
560 | ENDIF |
---|
561 | IF(ok_q2m_toosmall(i).OR.ok_q2m_toobig(i)) THEN |
---|
562 | n2mout(i,4)=n2mout(i,4)+1 |
---|
563 | ENDIF |
---|
564 | IF(ok_u2m_toobig(i)) THEN |
---|
565 | n2mout(i,6)=n2mout(i,6)+1 |
---|
566 | ENDIF |
---|
567 | ! |
---|
568 | IF(ok_t2m_toosmall(i).OR.ok_t2m_toobig(i).OR. & |
---|
569 | & ok_q2m_toosmall(i).OR.ok_q2m_toobig(i).OR. & |
---|
570 | & ok_u2m_toobig(i)) THEN |
---|
571 | delm(i)=min(max(delm(i),0.),1.) |
---|
572 | delh(i)=min(max(delh(i),0.),1.) |
---|
573 | u_zref(i) = delm(i)*speed(i) |
---|
574 | q_zref(i) = delh(i)*max(q1(i),0.0) + & |
---|
575 | & max(qsurf(i),0.0)*(1-delh(i)) |
---|
576 | te_zref(i) = delh(i)*tpot(i) + ts1(i)*(1-delh(i)) |
---|
577 | temp(i) = te_zref(i) * (psol(i)/pref(i))**(-RKAPPA) |
---|
578 | ENDIF |
---|
579 | ! |
---|
580 | ! |
---|
581 | IF(n.EQ.ncon) THEN |
---|
582 | te_zref_con(i) = te_zref(i) |
---|
583 | q_zref_con(i) = q_zref(i) |
---|
584 | ENDIF |
---|
585 | ! |
---|
586 | ENDDO |
---|
587 | ! |
---|
588 | ENDDO |
---|
589 | ! |
---|
590 | DO i = 1, knon |
---|
591 | q_zref_c(i) = q_zref(i) |
---|
592 | temp_c(i) = temp(i) |
---|
593 | ! |
---|
594 | ok_pred(i)=0. |
---|
595 | ok_corr(i)=1. |
---|
596 | ! |
---|
597 | t_2m(i) = temp_p(i) * ok_pred(i) + temp_c(i) * ok_corr(i) |
---|
598 | q_2m(i) = q_zref_p(i) * ok_pred(i) + q_zref_c(i) * ok_corr(i) |
---|
599 | ! |
---|
600 | u_zref_c(i) = u_zref(i) |
---|
601 | u_2m(i) = u_zref_p(i) * ok_pred(i) + u_zref_c(i) * ok_corr(i) |
---|
602 | ENDDO |
---|
603 | ! |
---|
604 | ! |
---|
605 | !----------First aproximation of variables at zref -------------------------- |
---|
606 | ! |
---|
607 | zref = 10.0 |
---|
608 | ! |
---|
609 | CALL screencn(klon, knon, nsrf, zxli, & |
---|
610 | & speed, tpot, q1, zref, & |
---|
611 | & ts1, qsurf, z0m, z0h, psol, & |
---|
612 | & cdram, cdrah, okri, & |
---|
613 | & ri1, 1, & |
---|
614 | & pref_new, delm_new, delh_new, ri10m) |
---|
615 | ! |
---|
616 | DO i = 1, knon |
---|
617 | u_zref(i) = delm_new(i)*speed(i) |
---|
618 | q_zref(i) = delh_new(i)*max(q1(i),0.0) + & |
---|
619 | & max(qsurf(i),0.0)*(1-delh_new(i)) |
---|
620 | te_zref(i) = delh_new(i)*tpot(i) + ts1(i)*(1-delh_new(i)) |
---|
621 | temp(i) = te_zref(i) * (psol(i)/pref_new(i))**(-RKAPPA) |
---|
622 | u_zref_p(i) = u_zref(i) |
---|
623 | ! |
---|
624 | ! compteurs ici |
---|
625 | ! |
---|
626 | ok_t10m_toosmall(i)=te_zref(i).LT.tpot(i).AND. & |
---|
627 | & te_zref(i).LT.ts1(i) |
---|
628 | ok_t10m_toobig(i)=te_zref(i).GT.tpot(i).AND. & |
---|
629 | & te_zref(i).GT.ts1(i) |
---|
630 | ok_q10m_toosmall(i)=q_zref(i).LT.q1(i).AND. & |
---|
631 | & q_zref(i).LT.qsurf(i) |
---|
632 | ok_q10m_toobig(i)=q_zref(i).GT.q1(i).AND. & |
---|
633 | & q_zref(i).GT.qsurf(i) |
---|
634 | ok_u10m_toobig(i)=u_zref(i).GT.speed(i) |
---|
635 | ! |
---|
636 | IF(ok_t10m_toosmall(i).OR.ok_t10m_toobig(i)) THEN |
---|
637 | n10mout(i,1)=n10mout(i,1)+1 |
---|
638 | ENDIF |
---|
639 | IF(ok_q10m_toosmall(i).OR.ok_q10m_toobig(i)) THEN |
---|
640 | n10mout(i,3)=n10mout(i,3)+1 |
---|
641 | ENDIF |
---|
642 | IF(ok_u10m_toobig(i)) THEN |
---|
643 | n10mout(i,5)=n10mout(i,5)+1 |
---|
644 | ENDIF |
---|
645 | ! |
---|
646 | IF(ok_t10m_toosmall(i).OR.ok_t10m_toobig(i).OR. & |
---|
647 | & ok_q10m_toosmall(i).OR.ok_q10m_toobig(i).OR. & |
---|
648 | & ok_u10m_toobig(i)) THEN |
---|
649 | delm_new(i)=min(max(delm_new(i),0.),1.) |
---|
650 | delh_new(i)=min(max(delh_new(i),0.),1.) |
---|
651 | u_zref(i) = delm_new(i)*speed(i) |
---|
652 | u_zref_p(i) = u_zref(i) |
---|
653 | q_zref(i) = delh_new(i)*max(q1(i),0.0) + & |
---|
654 | & max(qsurf(i),0.0)*(1-delh_new(i)) |
---|
655 | te_zref(i) = delh_new(i)*tpot(i) + ts1(i)*(1-delh_new(i)) |
---|
656 | temp(i) = te_zref(i) * (psol(i)/pref_new(i))**(-RKAPPA) |
---|
657 | ENDIF |
---|
658 | ! |
---|
659 | ENDDO |
---|
660 | ! |
---|
661 | ! Iteration of the variables at the reference level zref : corrector calculation ; see Hess & McAvaney, 1995 |
---|
662 | ! |
---|
663 | DO n = 1, niter |
---|
664 | ! |
---|
665 | okri=.TRUE. |
---|
666 | CALL screencn(klon, knon, nsrf, zxli, & |
---|
667 | & u_zref, temp, q_zref, zref, & |
---|
668 | & ts1, qsurf, z0m, z0h, psol, & |
---|
669 | & cdram, cdrah, okri, & |
---|
670 | & ri1, 0, & |
---|
671 | & pref, delm, delh, ri10m) |
---|
672 | ! |
---|
673 | DO i = 1, knon |
---|
674 | u_zref(i) = delm(i)*speed(i) |
---|
675 | q_zref(i) = delh(i)*max(q1(i),0.0) + & |
---|
676 | & max(qsurf(i),0.0)*(1-delh(i)) |
---|
677 | te_zref(i) = delh(i)*tpot(i) + ts1(i)*(1-delh(i)) |
---|
678 | ! |
---|
679 | ! return to normal temperature |
---|
680 | temp(i) = te_zref(i) * (psol(i)/pref(i))**(-RKAPPA) |
---|
681 | ! |
---|
682 | ! compteurs ici |
---|
683 | ! |
---|
684 | ok_t10m_toosmall(i)=te_zref(i).LT.tpot(i).AND. & |
---|
685 | & te_zref(i).LT.ts1(i) |
---|
686 | ok_t10m_toobig(i)=te_zref(i).GT.tpot(i).AND. & |
---|
687 | & te_zref(i).GT.ts1(i) |
---|
688 | ok_q10m_toosmall(i)=q_zref(i).LT.q1(i).AND. & |
---|
689 | & q_zref(i).LT.qsurf(i) |
---|
690 | ok_q10m_toobig(i)=q_zref(i).GT.q1(i).AND. & |
---|
691 | & q_zref(i).GT.qsurf(i) |
---|
692 | ok_u10m_toobig(i)=u_zref(i).GT.speed(i) |
---|
693 | ! |
---|
694 | IF(ok_t10m_toosmall(i).OR.ok_t10m_toobig(i)) THEN |
---|
695 | n10mout(i,2)=n10mout(i,2)+1 |
---|
696 | ENDIF |
---|
697 | IF(ok_q10m_toosmall(i).OR.ok_q10m_toobig(i)) THEN |
---|
698 | n10mout(i,4)=n10mout(i,4)+1 |
---|
699 | ENDIF |
---|
700 | IF(ok_u10m_toobig(i)) THEN |
---|
701 | n10mout(i,6)=n10mout(i,6)+1 |
---|
702 | ENDIF |
---|
703 | ! |
---|
704 | IF(ok_t10m_toosmall(i).OR.ok_t10m_toobig(i).OR. & |
---|
705 | & ok_q10m_toosmall(i).OR.ok_q10m_toobig(i).OR. & |
---|
706 | & ok_u10m_toobig(i)) THEN |
---|
707 | delm(i)=min(max(delm(i),0.),1.) |
---|
708 | delh(i)=min(max(delh(i),0.),1.) |
---|
709 | u_zref(i) = delm(i)*speed(i) |
---|
710 | q_zref(i) = delh(i)*max(q1(i),0.0) + & |
---|
711 | & max(qsurf(i),0.0)*(1-delh(i)) |
---|
712 | te_zref(i) = delh(i)*tpot(i) + ts1(i)*(1-delh(i)) |
---|
713 | temp(i) = te_zref(i) * (psol(i)/pref(i))**(-RKAPPA) |
---|
714 | ENDIF |
---|
715 | ! |
---|
716 | ! |
---|
717 | IF(n.EQ.ncon) THEN |
---|
718 | te_zref_con(i) = te_zref(i) |
---|
719 | q_zref_con(i) = q_zref(i) |
---|
720 | ENDIF |
---|
721 | ! |
---|
722 | ENDDO |
---|
723 | ! |
---|
724 | ENDDO |
---|
725 | ! |
---|
726 | DO i = 1, knon |
---|
727 | q_zref_c(i) = q_zref(i) |
---|
728 | temp_c(i) = temp(i) |
---|
729 | ! |
---|
730 | ok_pred(i)=0. |
---|
731 | ok_corr(i)=1. |
---|
732 | ! |
---|
733 | t_10m(i) = temp_p(i) * ok_pred(i) + temp_c(i) * ok_corr(i) |
---|
734 | q_10m(i) = q_zref_p(i) * ok_pred(i) + q_zref_c(i) * ok_corr(i) |
---|
735 | ! |
---|
736 | u_zref_c(i) = u_zref(i) |
---|
737 | u_10m(i) = u_zref_p(i) * ok_pred(i) + u_zref_c(i) * ok_corr(i) |
---|
738 | ENDDO |
---|
739 | ! |
---|
740 | RETURN |
---|
741 | END subroutine stdlevvarn |
---|
742 | |
---|
743 | END MODULE stdlevvar_mod |
---|