1 | subroutine INLANDSIS(SnoMod,BloMod,jjtime) |
---|
2 | |
---|
3 | USE dimphy |
---|
4 | |
---|
5 | !--------------------------------------------------------------------------+ |
---|
6 | ! INLANDSIS module | |
---|
7 | ! Simplified SISVAT module, containing ice and snow processes for | |
---|
8 | ! ice-covered surfaces | |
---|
9 | ! version MARv3, november 2020 | |
---|
10 | ! SubRoutine INLANDSIS contains the fortran 77 code of the | |
---|
11 | ! Soil/Ice Snow Vegetation Atmosphere Transfer Scheme | |
---|
12 | ! | |
---|
13 | !--------------------------------------------------------------------------+ |
---|
14 | ! PARAMETERS: klonv: Total Number of columns = | |
---|
15 | ! ^^^^^^^^^^ = Total Number of continental grid boxes | |
---|
16 | ! X Number of Mosaic Cell per grid box | |
---|
17 | ! | |
---|
18 | ! INPUT: daHost : Date Host Model | |
---|
19 | ! ^^^^^ | |
---|
20 | ! | |
---|
21 | ! INPUT: LSmask : 1: Land MASK | |
---|
22 | ! ^^^^^ 0: Sea MASK | |
---|
23 | ! isotSV = 0,...,12: Soil Type | |
---|
24 | ! 0: Water, Liquid (Sea, Lake) | |
---|
25 | ! 12: Water, Solid (Ice) | |
---|
26 | ! | |
---|
27 | ! INPUT: coszSV : Cosine of the Sun Zenithal Distance [-] | |
---|
28 | ! ^^^^^ sol_SV : Surface Downward Solar Radiation [W/m2] | |
---|
29 | ! IRd_SV : Surface Downward Longwave Radiation [W/m2] | |
---|
30 | ! drr_SV : Rain Intensity [kg/m2/s] | |
---|
31 | ! dsn_SV : Snow Intensity [mm w.e./s] | |
---|
32 | ! dsnbSV : Snow Intensity, Drift Fraction [-] | |
---|
33 | ! dbs_SV : Drift Amount [mm w.e.] | |
---|
34 | ! za__SV : Surface Boundary Layer (SBL) Height [m] | |
---|
35 | ! VV__SV :(SBL Top) Wind Velocity [m/s] | |
---|
36 | ! TaT_SV : SBL Top Temperature [K] | |
---|
37 | ! rhT_SV : SBL Top Air Density [kg/m3] | |
---|
38 | ! QaT_SV : SBL Top Specific Humidity [kg/kg] | |
---|
39 | ! qsnoSV : SBL Mean Snow Content [kg/kg] | |
---|
40 | ! alb0SV : Soil Basic Albedo [-] | |
---|
41 | ! slopSV : Surface Slope [-] | |
---|
42 | ! dt__SV : Time Step [s] | |
---|
43 | ! | |
---|
44 | ! INPUT / isnoSV = total Nb of Ice/Snow Layers | |
---|
45 | ! OUTPUT: ispiSV = 0,...,nsno: Uppermost Superimposed Ice Layer | |
---|
46 | ! ^^^^^^ iiceSV = total Nb of Ice Layers | |
---|
47 | ! istoSV = 0,...,5 : Snow History (see istdSV data) | |
---|
48 | ! | |
---|
49 | ! INPUT / alb_SV : Surface Albedo [-] | |
---|
50 | ! OUTPUT: emi_SV : Surface Emissivity [-] | |
---|
51 | ! ^^^^^^ IRs_SV : Soil IR Flux (negative) [W/m2] | |
---|
52 | ! LMO_SV : Monin-Obukhov Scale [m] | |
---|
53 | ! us__SV : Friction Velocity [m/s] | |
---|
54 | ! uts_SV : Temperature Turbulent Scale [m/s] | |
---|
55 | ! uqs_SV : Specific Humidity Velocity [m/s] | |
---|
56 | ! uss_SV : Blowing Snow Turbulent Scale [m/s] | |
---|
57 | ! usthSV : Blowing Snow Erosion Threshold [m/s] | |
---|
58 | ! Z0m_SV : Momentum Roughness Length [m] | |
---|
59 | ! Z0mmSV : Momentum Roughness Length (time mean) [m] | |
---|
60 | ! Z0mnSV : Momentum Roughness Length (instantaneous)[m] | |
---|
61 | ! Z0SaSV : Sastrugi Roughness Length [m] | |
---|
62 | ! Z0e_SV : Erosion Snow Roughness Length [m] | |
---|
63 | ! Z0emSV : Erosion Snow Roughness Length (time mean) [m] | |
---|
64 | ! Z0enSV : Erosion Snow Roughness Length (instantaneous)[m] | |
---|
65 | ! Z0roSV : Subgrid Topo Roughness Length [m] | |
---|
66 | ! Z0h_SV : Heat Roughness Length [m] | |
---|
67 | ! TsisSV : Soil/Ice Temperatures (layers -nsol,-nsol+1,..,0)| |
---|
68 | ! & Snow Temperatures (layers 1,2,...,nsno) [K] | |
---|
69 | ! ro__SV : Soil/Snow Volumic Mass [kg/m3] | |
---|
70 | ! eta_SV : Soil/Snow Water Content [m3/m3] | |
---|
71 | ! G1snSV : snow dendricity/sphericity | |
---|
72 | ! G2snSV : snow sphericity/grain size | |
---|
73 | ! dzsnSV : Snow Layer Thickness [m] | |
---|
74 | ! agsnSV : Snow Age [day] | |
---|
75 | ! BufsSV : Snow Buffer Layer [kg/m2] .OR. [mm] | |
---|
76 | ! BrosSV : Snow Buffer Layer Density [kg/m3] | |
---|
77 | ! BG1sSV : Snow Buffer Layer Dendricity / Sphericity [-] | |
---|
78 | ! BG2sSV : Snow Buffer Layer Sphericity / Size [-] [0.1 mm] | |
---|
79 | ! rusnSV : Surficial Water [kg/m2] .OR. [mm] | |
---|
80 | ! | |
---|
81 | ! OUTPUT: no__SV : OUTPUT file Unit Number [-] | |
---|
82 | ! ^^^^^^ i___SV : OUTPUT point i Coordinate [-] | |
---|
83 | ! j___SV : OUTPUT point j Coordinate [-] | |
---|
84 | ! n___SV : OUTPUT point n Coordinate [-] | |
---|
85 | ! lwriSV : OUTPUT point vec Index [-] | |
---|
86 | ! | |
---|
87 | ! OUTPUT: IRu_SV : Upward IR Flux (+, upw., effective) [K] | |
---|
88 | ! ^^^^^^ hSalSV : Saltating Layer Height [m] | |
---|
89 | ! qSalSV : Saltating Snow Concentration [kg/kg] | |
---|
90 | ! RnofSV : RunOFF Intensity [kg/m2/s] | |
---|
91 | ! | |
---|
92 | ! Internal Variables: | |
---|
93 | ! ^^^^^^^^^^^^^^^^^^ | |
---|
94 | ! NLaysv = New Snow Layer Switch [-] | |
---|
95 | ! albisv : Snow/Ice/Water/Soil Integrated Albedo [-] | |
---|
96 | ! SoSosv : Absorbed Solar Radiation by Surfac.(Normaliz)[-] | |
---|
97 | ! TBr_sv : Brightness Temperature [K] | |
---|
98 | ! IRupsv : Upward IR Flux (-, upw.) [W/m2] | |
---|
99 | ! ram_sv : Aerodynamic Resistance for Momentum [s/m] | |
---|
100 | ! rah_sv : Aerodynamic Resistance for Heat [s/m] | |
---|
101 | ! Evp_sv : Evaporation [kg/m2] | |
---|
102 | ! EvT_sv : Evapotranspiration [kg/m2] | |
---|
103 | ! HSs_sv : Surface Sensible Heat Flux + => absorb.[W/m2] | |
---|
104 | ! HLs_sv : Surface Latent Heat Flux + => absorb.[W/m2] | |
---|
105 | ! Lx_H2O : Latent Heat of Vaporization/Sublimation [J/kg] | |
---|
106 | ! Tsrfsv : Surface Temperature [K] | |
---|
107 | ! sEX_sv : Verticaly Integrated Extinction Coefficient [-] | |
---|
108 | ! LSdzsv : Vertical Discretization Factor [-] | |
---|
109 | ! = 1. Soil | |
---|
110 | ! = 1000. Ocean | |
---|
111 | ! z_snsv : Snow Pack Thickness [m] | |
---|
112 | ! zzsnsv : Snow Pack Thickness [m] | |
---|
113 | ! albssv : Soil Albedo [-] | |
---|
114 | ! Eso_sv : Soil+Snow Emissivity [-] | |
---|
115 | ! Khydsv : Soil Hydraulic Conductivity [m/s] | |
---|
116 | ! | |
---|
117 | ! ETSo_0 : Snow/Soil Energy Power, before Forcing [W/m2] | |
---|
118 | ! ETSo_1 : Snow/Soil Energy Power, after Forcing [W/m2] | |
---|
119 | ! ETSo_d : Snow/Soil Energy Power Forcing [W/m2] | |
---|
120 | ! EqSn_0 : Snow Energy, before Phase Change [J/m2] | |
---|
121 | ! EqSn_1 : Snow Energy, after Phase Change [J/m2] | |
---|
122 | ! EqSn_d : Snow Energy, net Forcing [J/m2] | |
---|
123 | ! Enrsvd : SVAT Energy Power Forcing [W/m2] | |
---|
124 | ! Enrbal : SVAT Energy Balance [W/m2] | |
---|
125 | ! Wats_0 : Soil Water, before Forcing [mm] | |
---|
126 | ! Wats_1 : Soil Water, after Forcing [mm] | |
---|
127 | ! Wats_d : Soil Water Forcing [mm] | |
---|
128 | ! SIWm_0 : Snow initial Mass [mm w.e.] | |
---|
129 | ! SIWm_1 : Snow final Mass [mm w.e.] | |
---|
130 | ! SIWa_i : Snow Atmos. initial Forcing [mm w.e.] | |
---|
131 | ! SIWa_f : Snow Atmos. final Forcing(noConsumed)[mm w.e.] | |
---|
132 | ! SIWe_i : SnowErosion initial Forcing [mm w.e.] | |
---|
133 | ! SIWe_f : SnowErosion final Forcing(noConsumed)[mm w.e.] | |
---|
134 | ! SIsubl : Snow sublimed/deposed Mass [mm w.e.] | |
---|
135 | ! SImelt : Snow Melted Mass [mm w.e.] | |
---|
136 | ! SIrnof : Surficial Water + Run OFF Change [mm w.e.] | |
---|
137 | ! SIvAcr : Sea-Ice vertical Acretion [mm w.e.] | |
---|
138 | ! Watsvd : SVAT Water Forcing [mm] | |
---|
139 | ! Watbal : SVAT Water Balance [W/m2] | |
---|
140 | ! | |
---|
141 | ! vk2 : Square of Von Karman Constant [-] | |
---|
142 | ! sqrCm0 : Factor of Neutral Drag Coeffic.Momentum [s/m] | |
---|
143 | ! sqrCh0 : Factor of Neutral Drag Coeffic.Heat [s/m] | |
---|
144 | ! EmiSol : Soil Emissivity [-] | |
---|
145 | ! EmiSno : Snow Emissivity [-] | |
---|
146 | ! EmiWat : Water Emissivity [-] | |
---|
147 | ! Z0mLnd : Land Roughness Length [m] | |
---|
148 | ! sqrrZ0 : u*t/u* | |
---|
149 | ! f_eff : Marticorena & B. 1995 JGR (20) | |
---|
150 | ! A_Fact : Fundamental * Roughness | |
---|
151 | ! Z0mBSn : BSnow Roughness Length [m] | |
---|
152 | ! Z0mBS0 : Mimimum BSnow Roughness Length (blown* ) [m] | |
---|
153 | ! Z0m_Sn : Snow Roughness Length (surface) [m] | |
---|
154 | ! Z0m_S0 : Mimimum Snow Roughness Length [m] | |
---|
155 | ! Z0m_S1 : Maximum Snow Roughness Length [m] | |
---|
156 | ! Z0_GIM : Minimum GIMEX Roughness Length [m] | |
---|
157 | ! Z0_ICE : Sea Ice ISW Roughness Length [m] | |
---|
158 | ! | |
---|
159 | ! | |
---|
160 | !--------------------------------------------------------------------------+ |
---|
161 | |
---|
162 | |
---|
163 | |
---|
164 | ! Global Variables |
---|
165 | ! ================ |
---|
166 | |
---|
167 | |
---|
168 | USE VARphy |
---|
169 | USE VAR_SV |
---|
170 | USE VARdSV |
---|
171 | USE VAR0SV |
---|
172 | USE VARxSV |
---|
173 | USE VARySV |
---|
174 | USE VARtSV |
---|
175 | USE surface_data, only: iflag_tsurf_inlandsis |
---|
176 | |
---|
177 | |
---|
178 | IMPLICIT NONE |
---|
179 | |
---|
180 | logical SnoMod |
---|
181 | logical BloMod |
---|
182 | integer jjtime |
---|
183 | |
---|
184 | |
---|
185 | ! Internal Variables |
---|
186 | ! ================== |
---|
187 | |
---|
188 | ! Non Local |
---|
189 | ! --------- |
---|
190 | |
---|
191 | real TBr_sv(klonv) ! Brightness Temperature |
---|
192 | real IRdwsv(klonv) ! DOWNward IR Flux |
---|
193 | real IRupsv(klonv) ! UPward IR Flux |
---|
194 | real d_Bufs,Bufs_N ! Buffer Snow Layer Increment |
---|
195 | real Buf_ro,Bros_N ! Buffer Snow Layer Density |
---|
196 | real BufPro ! Buffer Snow Layer Density |
---|
197 | real Buf_G1,BG1__N ! Buffer Snow Layer Dendr/Sphe[-] |
---|
198 | real Buf_G2,BG2__N ! Buffer Snow Layer Spher/Size[-] |
---|
199 | real Bdzssv(klonv) ! Buffer Snow Layer Thickness |
---|
200 | real z_snsv(klonv) ! Snow-Ice, current Thickness |
---|
201 | |
---|
202 | |
---|
203 | |
---|
204 | ! Local |
---|
205 | ! ----- |
---|
206 | |
---|
207 | integer iwr |
---|
208 | integer ikl ,isn ,isl ,ist ! |
---|
209 | integer ist__s,ist__w ! Soil/Water Body Identifier |
---|
210 | integer growth ! Seasonal Mask |
---|
211 | integer LISmsk ! Land+Ice / Open Sea Mask |
---|
212 | integer LSnMsk ! Snow-Ice / No Snow-Ice Mask |
---|
213 | integer IceMsk,IcIndx(klonv) ! Ice / No Ice Mask |
---|
214 | integer SnoMsk ! Snow / No Snow Mask |
---|
215 | |
---|
216 | real roSMin,roSMax,roSn_1,roSn_2,roSn_3 ! Fallen Snow Density (PAHAUT) |
---|
217 | real Dendr1,Dendr2,Dendr3 ! Fallen Snow Dendric.(GIRAUD) |
---|
218 | real Spher1,Spher2,Spher3,Spher4 ! Fallen Snow Spheric.(GIRAUD) |
---|
219 | real Polair ! Polar Snow Switch |
---|
220 | real PorSno,Por_BS,Salt_f,PorRef ! |
---|
221 | c #sw real PorVol,rWater ! |
---|
222 | c #sw real rusNEW,rdzNEW,etaNEW ! |
---|
223 | real ro_new ! |
---|
224 | real TaPole ! Maximum Polar Temperature |
---|
225 | real T__Min ! Minimum realistic Temperature |
---|
226 | real EmiSol ! Emissivity of Soil |
---|
227 | real EmiSno ! Emissivity of Snow |
---|
228 | real EmiWat ! Emissivity of a Water Area |
---|
229 | real vk2 ! Square of Von Karman Constant |
---|
230 | real u2star !(u*)**2 |
---|
231 | real Z0mLnd ! Land Roughness Length |
---|
232 | c #ZN real sqrrZ0 ! u*t/u* |
---|
233 | real f_eff ! Marticorena & B. 1995 JGR (20) |
---|
234 | real A_Fact ! Fundamental * Roughness |
---|
235 | real Z0m_nu ! Smooth R Snow Roughness Length |
---|
236 | real Z0mBSn ! BSnow Roughness Length |
---|
237 | real Z0mBS0 ! Mimimum BSnow Roughness Length |
---|
238 | real Z0m_S0 ! Mimimum Snow Roughness Length |
---|
239 | real Z0m_S1 ! Maximum Snow Roughness Length |
---|
240 | c #SZ real Z0Sa_N ! Regime Snow Roughness Length |
---|
241 | c #SZ real Z0SaSi ! 1.IF Rgm Snow Roughness Length |
---|
242 | c #GL real Z0_GIM ! Mimimum GIMEX Roughness Length |
---|
243 | real Z0_ICE ! Ice ISW Roughness Length |
---|
244 | real Z0m_Sn,Z0m_90 ! Snow Surface Roughness Length |
---|
245 | real SnoWat ! Snow Layer Switch |
---|
246 | c #RN real rstar,alors ! |
---|
247 | c #RN real rstar0,rstar1,rstar2 ! |
---|
248 | real SameOK ! 1. => Same Type of Grains |
---|
249 | real G1same ! Averaged G1, same Grains |
---|
250 | real G2same ! Averaged G2, same Grains |
---|
251 | real typ__1 ! 1. => Lay1 Type: Dendritic |
---|
252 | real zroNEW ! dz X ro, if fresh Snow |
---|
253 | real G1_NEW ! G1, if fresh Snow |
---|
254 | real G2_NEW ! G2, if fresh Snow |
---|
255 | real zroOLD ! dz X ro, if old Snow |
---|
256 | real G1_OLD ! G1, if old Snow |
---|
257 | real G2_OLD ! G2, if old Snow |
---|
258 | real SizNEW ! Size, if fresh Snow |
---|
259 | real SphNEW ! Spheric.,if fresh Snow |
---|
260 | real SizOLD ! Size, if old Snow |
---|
261 | real SphOLD ! Spheric.,if old Snow |
---|
262 | real Siz_av ! Averaged Grain Size |
---|
263 | real Sph_av ! Averaged Grain Spher. |
---|
264 | real Den_av ! Averaged Grain Dendr. |
---|
265 | real DendOK ! 1. => Average is Dendr. |
---|
266 | real G1diff ! Averaged G1, diff. Grains |
---|
267 | real G2diff ! Averaged G2, diff. Grains |
---|
268 | real G1 ! Averaged G1 |
---|
269 | real G2 ! Averaged G2 |
---|
270 | real param ! Polynomial fit z0=f(T) |
---|
271 | real Z0_obs ! Fit Z0_obs=f(T) (m) |
---|
272 | real tamin ! min T of linear fit (K) |
---|
273 | real tamax ! max T of linear fit (K) |
---|
274 | real coefa,coefb,coefc,coefd ! Coefs for z0=f(T) |
---|
275 | real ta1,ta2,ta3 ! Air temperature thresholds |
---|
276 | real z01,z02,z03 ! z0 thresholds |
---|
277 | real tt_c,vv_c ! Critical param. |
---|
278 | real tt_tmp,vv_tmp,vv_virt ! Temporary variables |
---|
279 | logical density_kotlyakov ! .true. if Kotlyakov 1961 |
---|
280 | real e_prad,e1pRad,A_Rad0,absg_V,absgnI,exdRad ! variables for SoSosv calculations |
---|
281 | real zm1, zm2, coefslope ! variables for surface temperature extrapolation |
---|
282 | |
---|
283 | |
---|
284 | |
---|
285 | ! Internal DATA |
---|
286 | ! ============= |
---|
287 | |
---|
288 | data T__Min / 200.00/ ! Minimum realistic Temperature |
---|
289 | data TaPole / 263.15/ ! Maximum Polar Temperature |
---|
290 | data roSMin / 30. / ! Minimum Snow Density |
---|
291 | data roSMax / 400. / ! Max Fresh Snow Density |
---|
292 | data tt_c / -2.0 / ! Critical Temp. (degC) |
---|
293 | data vv_c / 14.3 / ! Critical Wind speed (m/s) |
---|
294 | data roSn_1 / 109. / ! Fall.Sno.Density, Indep. Param. |
---|
295 | data roSn_2 / 6. / ! Fall.Sno.Density, Temper.Param. |
---|
296 | data roSn_3 / 26. / ! Fall.Sno.Density, Wind Param. |
---|
297 | data Dendr1 / 17.12/ ! Fall.Sno.Dendric.,Wind 1/Param. |
---|
298 | data Dendr2 / 128. / ! Fall.Sno.Dendric.,Wind 2/Param. |
---|
299 | data Dendr3 / -20. / ! Fall.Sno.Dendric.,Indep. Param. |
---|
300 | data Spher1 / 7.87/ ! Fall.Sno.Spheric.,Wind 1/Param. |
---|
301 | data Spher2 / 38. / ! Fall.Sno.Spheric.,Wind 2/Param. |
---|
302 | data Spher3 / 50. / ! Fall.Sno.Spheric.,Wind 3/Param. |
---|
303 | data Spher4 / 90. / ! Fall.Sno.Spheric.,Indep. Param. |
---|
304 | data EmiSol / 0.99999999/ ! 0.94Emissivity of Soil |
---|
305 | data EmiWat / 0.99999999/ ! Emissivity of a Water Area |
---|
306 | data EmiSno / 0.99999999/ ! Emissivity of Snow |
---|
307 | |
---|
308 | ! DATA Emissivities ! Pielke, 1984, pp. 383,409 |
---|
309 | |
---|
310 | data Z0mBS0 / 0.5e-6/ ! MINimum Snow Roughness Length |
---|
311 | ! for Momentum if Blowing Snow |
---|
312 | ! Gallee et al. 2001 BLM 99 (19) |
---|
313 | data Z0m_S0/ 0.00005/ ! MINimum Snow Roughness Length |
---|
314 | ! MegaDunes included |
---|
315 | data Z0m_S1/ 0.030 / ! MAXimum Snow Roughness Length |
---|
316 | ! (Sastrugis) |
---|
317 | c #GL data Z0_GIM/ 0.0013/ ! Ice Min Z0 = 0.0013 m (Broeke) |
---|
318 | ! ! Old Ice Z0 = 0.0500 m (Bruce) |
---|
319 | ! ! 0.0500 m (Smeets) |
---|
320 | ! ! 0.1200 m (Broeke) |
---|
321 | data Z0_ICE/ 0.0010/ ! Sea-Ice Z0 = 0.0010 m (Andreas) |
---|
322 | ! ! (Ice Station Weddel -- ISW) |
---|
323 | vk2 = vonKrm * vonKrm ! Square of Von Karman Constant |
---|
324 | |
---|
325 | |
---|
326 | ! BEGIN.main. |
---|
327 | ! =========================== |
---|
328 | |
---|
329 | |
---|
330 | |
---|
331 | |
---|
332 | ! "Soil" Humidity of Water Bodies |
---|
333 | ! =============================== |
---|
334 | |
---|
335 | DO ikl=1,knonv |
---|
336 | |
---|
337 | ist = isotSV(ikl) ! Soil Type |
---|
338 | ist__s = min(ist, 1) ! 1 => Soil |
---|
339 | ist__w = 1 - ist__s ! 1 => Water Body |
---|
340 | DO isl=-nsol,0 |
---|
341 | eta_SV(ikl,isl) = eta_SV(ikl,isl) * ist__s ! Soil |
---|
342 | . + etadSV(ist) * ist__w ! Water Body |
---|
343 | END DO |
---|
344 | |
---|
345 | |
---|
346 | ! Vertical Discretization Factor |
---|
347 | ! ============================== |
---|
348 | |
---|
349 | LSdzsv(ikl) = ist__s ! Soil |
---|
350 | . + OcndSV * ist__w ! Water Body |
---|
351 | END DO |
---|
352 | |
---|
353 | |
---|
354 | ! Blowing Particles Threshold Friction velocity |
---|
355 | ! ============================================= |
---|
356 | |
---|
357 | c #AE usthSV(ikl) = 1.0e+2 |
---|
358 | ! END DO |
---|
359 | !xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx |
---|
360 | |
---|
361 | |
---|
362 | |
---|
363 | |
---|
364 | ! Contribution of Snow to the Surface Snow Pack |
---|
365 | ! ============================================= |
---|
366 | |
---|
367 | IF (SnoMod) THEN |
---|
368 | |
---|
369 | |
---|
370 | |
---|
371 | C +--Blowing Snow |
---|
372 | C + ------------ |
---|
373 | |
---|
374 | IF (BloMod) then |
---|
375 | if (klonv.eq.1) then |
---|
376 | if(isnoSV(1).ge.2 .and. |
---|
377 | . TsisSV(1,max(1,isnoSV(1)))<273. .and. |
---|
378 | . ro__SV(1,max(1,isnoSV(1)))<500. .and. |
---|
379 | . eta_SV(1,max(1,isnoSV(1)))<epsi) then |
---|
380 | C + ********** |
---|
381 | call SISVAT_BSn |
---|
382 | endif |
---|
383 | else |
---|
384 | call SISVAT_BSn |
---|
385 | C + ********** |
---|
386 | endif |
---|
387 | ENDIF |
---|
388 | |
---|
389 | |
---|
390 | |
---|
391 | C +--Buffer Layer |
---|
392 | C + ------------ |
---|
393 | |
---|
394 | DO ikl=1,knonv |
---|
395 | c BufsSV(ikl) [mm w.e.] i.e, i.e., [kg/m2] |
---|
396 | d_Bufs = max(dsn_SV(ikl) *dt__SV,0.) ! |
---|
397 | dsn_SV(ikl) = 0. ! |
---|
398 | Bufs_N = BufsSV(ikl) +d_Bufs ! |
---|
399 | |
---|
400 | |
---|
401 | C +--Snow Density |
---|
402 | C + ^^^^^^^^^^^^ |
---|
403 | Polair = zero |
---|
404 | c #NP Polair = max(zero, ! |
---|
405 | c #NP. sign(unun,TaPole ! |
---|
406 | c #NP. -TaT_SV(ikl))) ! |
---|
407 | Polair = max(zero, ! |
---|
408 | . sign(unun,TaPole ! |
---|
409 | . -TaT_SV(ikl))) ! |
---|
410 | Buf_ro = max( rosMin, ! Fallen Snow Density |
---|
411 | . roSn_1+roSn_2* (TaT_SV(ikl)-TfSnow) ! [kg/m3] |
---|
412 | . +roSn_3*sqrt( VV__SV(ikl))) ! Pahaut (CEN), Etienne: use wind speed at first model level instead of 10m wind |
---|
413 | c #NP BufPro = max( rosMin, ! Fallen Snow Density |
---|
414 | c #NP. 104. *sqrt( max( VV10SV(ikl)-6.0,0.0))) ! Kotlyakov (1961) |
---|
415 | |
---|
416 | density_kotlyakov = .true. |
---|
417 | c #AC density_kotlyakov = .false. !C.Agosta snow densisty as if BS is on b |
---|
418 | c #BS density_kotlyakov = .false. !C.Amory BS 2018 |
---|
419 | C + ... Fallen Snow Density, Adapted for Antarctica |
---|
420 | if (density_kotlyakov) then |
---|
421 | tt_tmp = TaT_SV(ikl)-TfSnow |
---|
422 | !vv_tmp = VV10SV(ikl) |
---|
423 | vv_tmp=VV__SV(ikl) ! Etienne: use wind speed at first model level instead of 10m wind |
---|
424 | C + ... [ A compromise between |
---|
425 | C + ... Kotlyakov (1961) and Lenaerts (2012, JGR, Part1) ] |
---|
426 | if (tt_tmp.ge.-10) then |
---|
427 | BufPro = max( rosMin, |
---|
428 | . 104. *sqrt( max( vv_tmp-6.0,0.0))) ! Kotlyakov (1961) |
---|
429 | else |
---|
430 | vv_virt = (tt_c*vv_tmp+vv_c*(tt_tmp+10)) |
---|
431 | . /(tt_c+tt_tmp+10) |
---|
432 | BufPro = 104. *sqrt( max( vv_virt-6.0,0.0)) |
---|
433 | endif |
---|
434 | else |
---|
435 | C + ... [ density derived from observations of the first 50cm of |
---|
436 | C + ... snow - cf. Rajashree Datta - and multiplied by 0.8 ] |
---|
437 | C + ... C. Agosta, 2016-09 |
---|
438 | cc #SD BufPro = 149.2 + 6.84*VV10SV(ikl) + 0.48*Tsrfsv(ikl) |
---|
439 | cc #SD BufPro = 125 + 14*VV10SV(ikl) + 0.6*Tsrfsv(ikl) !MAJ CK and CAm |
---|
440 | ! BufPro = 200 + 21 * VV10SV(ikl)!CK 29/07/19 |
---|
441 | BufPro = 200 + 21 * VV__SV(ikl)!Etienne: use wind speed at first model level instead of 10m wind |
---|
442 | endif |
---|
443 | |
---|
444 | Bros_N = (1. - Polair) * Buf_ro ! Temperate Snow |
---|
445 | . + Polair * BufPro ! Polar Snow |
---|
446 | |
---|
447 | Bros_N = max( 20.,max(rosMin, Bros_N)) |
---|
448 | Bros_N = min(400.,min(rosMax-1,Bros_N)) ! for dz_min in SISVAT_zSn |
---|
449 | |
---|
450 | |
---|
451 | ! Density of deposited blown snow |
---|
452 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
453 | |
---|
454 | c #BS Bros_N = frsno |
---|
455 | c #BS ro_new = ro__SV(ikl,max(1,isnoSV(ikl))) |
---|
456 | c #BS ro_new = max(Bros_N,min(roBdSV,ro_new)) |
---|
457 | c #BS Fac = 1-((ro__SV(ikl,max(1,isnoSV(ikl))) |
---|
458 | c #BS. -roBdSV)/(500.-roBdSV)) |
---|
459 | c #BS Fac = max(0.,min(1.,Fac)) |
---|
460 | c #BS dsnbSV(ikl) = Fac*dsnbSV(ikl) |
---|
461 | c #BS Bros_N = Bros_N * (1.0-dsnbSV(ikl)) |
---|
462 | c #BS. + ro_new * dsnbSV(ikl) |
---|
463 | |
---|
464 | |
---|
465 | |
---|
466 | ! Time averaged Density of deposited blown Snow |
---|
467 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
468 | |
---|
469 | BrosSV(ikl) =(Bros_N * d_Bufs ! |
---|
470 | . +BrosSV(ikl)* BufsSV(ikl))! |
---|
471 | . / max(epsi,Bufs_N) ! |
---|
472 | |
---|
473 | |
---|
474 | C +-- S.Falling Snow Properties (computed as in SISVAT_zAg) |
---|
475 | C + ^^^^^^^^^^^^^^^^^^^^^^^ |
---|
476 | Buf_G1 = max(-G1_dSV, ! Temperate Snow |
---|
477 | . min(Dendr1*VV__SV(ikl)-Dendr2, ! Dendricity |
---|
478 | . Dendr3 )) ! |
---|
479 | Buf_G2 = min( Spher4, ! Temperate Snow |
---|
480 | . max(Spher1*VV__SV(ikl)+Spher2, ! Sphericity |
---|
481 | . Spher3 )) ! |
---|
482 | Buf_G1 = (1. - Polair) * Buf_G1 ! Temperate Snow |
---|
483 | . + Polair * G1_dSV ! Polar Snow |
---|
484 | Buf_G2 = (1. - Polair) * Buf_G2 ! Temperate Snow |
---|
485 | . + Polair * ADSdSV ! Polar Snow |
---|
486 | G1 = Buf_G1 ! NO Blown Snow |
---|
487 | G2 = Buf_G2 ! NO Blown Snow |
---|
488 | |
---|
489 | |
---|
490 | ! S.1. Meme Type de Neige / same Grain Type |
---|
491 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
492 | c #BS SameOK = max(zero, |
---|
493 | c #BS. sign(unun, Buf_G1 *G1_dSV |
---|
494 | c #BS. - eps_21 )) |
---|
495 | c #BS G1same = ((1.0-dsnbSV(ikl))*Buf_G1+dsnbSV(ikl) *G1_dSV) |
---|
496 | c #BS G2same = ((1.0-dsnbSV(ikl))*Buf_G2+dsnbSV(ikl) *ADSdSV) |
---|
497 | ! Blowing Snow Properties: G1_dSV, ADSdSV |
---|
498 | |
---|
499 | ! S.2. Types differents / differents Types |
---|
500 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
501 | c #BS typ__1 = max(zero,sign(unun,epsi-Buf_G1)) ! =1.=> Dendritic |
---|
502 | c #BS zroNEW = typ__1 *(1.0-dsnbSV(ikl)) ! fract.Dendr.Lay. |
---|
503 | c #BS. + (1.-typ__1) * dsnbSV(ikl) ! |
---|
504 | c #BS G1_NEW = typ__1 *Buf_G1 ! G1 of Dendr.Lay. |
---|
505 | c #BS. + (1.-typ__1) *G1_dSV ! |
---|
506 | c #BS G2_NEW = typ__1 *Buf_G2 ! G2 of Dendr.Lay. |
---|
507 | c #BS. + (1.-typ__1) *ADSdSV ! |
---|
508 | c #BS zroOLD = (1.-typ__1) *(1.0-dsnbSV(ikl)) ! fract.Spher.Lay. |
---|
509 | c #BS. + typ__1 * dsnbSV(ikl) ! |
---|
510 | c #BS G1_OLD = (1.-typ__1) *Buf_G1 ! G1 of Spher.Lay. |
---|
511 | c #BS. + typ__1 *G1_dSV ! |
---|
512 | c #BS G2_OLD = (1.-typ__1) *Buf_G2 ! G2 of Spher.Lay. |
---|
513 | c #BS. + typ__1 *ADSdSV ! |
---|
514 | c #BS SizNEW = -G1_NEW *DDcdSV/G1_dSV ! Size Dendr.Lay. |
---|
515 | c #BS. +(1.+G1_NEW /G1_dSV) ! |
---|
516 | c #BS. *(G2_NEW *DScdSV/G1_dSV ! |
---|
517 | c #BS. +(1.-G2_NEW /G1_dSV)*DFcdSV) ! |
---|
518 | c #BS SphNEW = G2_NEW /G1_dSV ! Spher.Dendr.Lay. |
---|
519 | c #BS SizOLD = G2_OLD ! Size Spher.Lay. |
---|
520 | c #BS SphOLD = G1_OLD /G1_dSV ! Spher.Spher.Lay. |
---|
521 | c #BS Siz_av = (zroNEW*SizNEW+zroOLD*SizOLD) ! Averaged Size |
---|
522 | c #BS Sph_av = min( zroNEW*SphNEW+zroOLD*SphOLD ! |
---|
523 | c #BS. , unun) ! Averaged Sphericity |
---|
524 | c #BS Den_av = min((Siz_av -( Sph_av *DScdSV ! |
---|
525 | c #BS. +(1.-Sph_av)*DFcdSV)) ! |
---|
526 | c #BS. / (DDcdSV -( Sph_av *DScdSV ! |
---|
527 | c #BS. +(1.-Sph_av)*DFcdSV)) ! |
---|
528 | c #BS. , unun) ! |
---|
529 | c #BS DendOK = max(zero, ! |
---|
530 | c #BS. sign(unun, Sph_av *DScdSV ! Small Grains |
---|
531 | c #BS. +(1.-Sph_av)*DFcdSV ! Faceted Grains |
---|
532 | c #BS. - Siz_av )) ! |
---|
533 | C +... REMARQUE: le type moyen (dendritique ou non) depend |
---|
534 | C + ^^^^^^^^ de la comparaison avec le diametre optique |
---|
535 | C + d'une neige recente de dendricite nulle |
---|
536 | C +... REMARK: the mean type (dendritic or not) depends |
---|
537 | C + ^^^^^^ on the comparaison with the optical diameter |
---|
538 | C + of a recent snow having zero dendricity |
---|
539 | |
---|
540 | c #BS G1diff =( -DendOK *Den_av |
---|
541 | c #BS. +(1.-DendOK)*Sph_av) *G1_dSV |
---|
542 | c #BS G2diff = DendOK *Sph_av *G1_dSV |
---|
543 | c #BS. +(1.-DendOK)*Siz_av |
---|
544 | c #BS G1 = SameOK *G1same |
---|
545 | c #BS. +(1.-SameOK)*G1diff |
---|
546 | c #BS G2 = SameOK *G2same |
---|
547 | c #BS. +(1.-SameOK)*G2diff |
---|
548 | |
---|
549 | |
---|
550 | |
---|
551 | ! S.1. Meme Type de Neige / same Grain Type |
---|
552 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
553 | SameOK = max(zero, |
---|
554 | . sign(unun, Buf_G1 *BG1sSV(ikl) |
---|
555 | . - eps_21 )) |
---|
556 | G1same = (d_Bufs*Buf_G1+BufsSV(ikl)*BG1sSV(ikl)) |
---|
557 | . /max(epsi,Bufs_N) |
---|
558 | G2same = (d_Bufs*Buf_G2+BufsSV(ikl)*BG2sSV(ikl)) |
---|
559 | . /max(epsi,Bufs_N) |
---|
560 | |
---|
561 | ! S.2. Types differents / differents Types |
---|
562 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
563 | |
---|
564 | typ__1 = max(zero,sign(unun,epsi-Buf_G1)) ! =1.=> Dendritic |
---|
565 | zroNEW =( typ__1 *d_Bufs ! fract.Dendr.Lay. |
---|
566 | . + (1.-typ__1) *BufsSV(ikl)) ! |
---|
567 | . /max(epsi,Bufs_N) ! |
---|
568 | G1_NEW = typ__1 *Buf_G1 ! G1 of Dendr.Lay. |
---|
569 | . + (1.-typ__1) *BG1sSV(ikl) ! |
---|
570 | G2_NEW = typ__1 *Buf_G2 ! G2 of Dendr.Lay. |
---|
571 | . + (1.-typ__1) *BG2sSV(ikl) ! |
---|
572 | zroOLD =((1.-typ__1) *d_Bufs ! fract.Spher.Lay. |
---|
573 | . + typ__1 *BufsSV(ikl)) ! |
---|
574 | . /max(epsi,Bufs_N) ! |
---|
575 | G1_OLD = (1.-typ__1) *Buf_G1 ! G1 of Spher.Lay. |
---|
576 | . + typ__1 *BG1sSV(ikl) ! |
---|
577 | G2_OLD = (1.-typ__1) *Buf_G2 ! G2 of Spher.Lay. |
---|
578 | . + typ__1 *BG2sSV(ikl) ! |
---|
579 | SizNEW = -G1_NEW *DDcdSV/G1_dSV ! Size Dendr.Lay. |
---|
580 | . +(1.+G1_NEW /G1_dSV) ! |
---|
581 | . *(G2_NEW *DScdSV/G1_dSV ! |
---|
582 | . +(1.-G2_NEW /G1_dSV)*DFcdSV) ! |
---|
583 | SphNEW = G2_NEW /G1_dSV ! Spher.Dendr.Lay. |
---|
584 | SizOLD = G2_OLD ! Size Spher.Lay. |
---|
585 | SphOLD = G1_OLD /G1_dSV ! Spher.Spher.Lay. |
---|
586 | Siz_av = ( zroNEW *SizNEW+zroOLD*SizOLD) ! Averaged Size |
---|
587 | Sph_av = min( zroNEW *SphNEW+zroOLD*SphOLD ! |
---|
588 | . , unun ) ! Averaged Sphericity |
---|
589 | Den_av = min((Siz_av - ( Sph_av *DScdSV ! |
---|
590 | . +(1.-Sph_av)*DFcdSV)) ! |
---|
591 | . / (DDcdSV - ( Sph_av *DScdSV ! |
---|
592 | . +(1.-Sph_av)*DFcdSV)) ! |
---|
593 | . , unun )! |
---|
594 | DendOK = max(zero, ! |
---|
595 | . sign(unun, Sph_av *DScdSV ! Small Grains |
---|
596 | . +(1.-Sph_av)*DFcdSV ! Faceted Grains |
---|
597 | . - Siz_av )) ! |
---|
598 | C +... REMARQUE: le type moyen (dendritique ou non) depend |
---|
599 | C + ^^^^^^^^ de la comparaison avec le diametre optique |
---|
600 | C + d'une neige recente de dendricite nulle |
---|
601 | C +... REMARK: the mean type (dendritic or not) depends |
---|
602 | C + ^^^^^^ on the comparaison with the optical diameter |
---|
603 | C + of a recent snow having zero dendricity |
---|
604 | |
---|
605 | G1diff =( -DendOK *Den_av |
---|
606 | . +(1.-DendOK)*Sph_av) *G1_dSV |
---|
607 | G2diff = DendOK *Sph_av *G1_dSV |
---|
608 | . +(1.-DendOK)*Siz_av |
---|
609 | G1 = SameOK *G1same |
---|
610 | . +(1.-SameOK)*G1diff |
---|
611 | G2 = SameOK *G2same |
---|
612 | . +(1.-SameOK)*G2diff |
---|
613 | |
---|
614 | BG1sSV(ikl) = G1 ! |
---|
615 | . * Bufs_N/max(epsi,Bufs_N) ! |
---|
616 | BG2sSV(ikl) = G2 ! |
---|
617 | . * Bufs_N/max(epsi,Bufs_N) ! |
---|
618 | |
---|
619 | |
---|
620 | C +--Update of Buffer Layer Content & Decision about creating a new snow layer |
---|
621 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
622 | BufsSV(ikl) = Bufs_N ! [mm w.e.] |
---|
623 | NLaysv(ikl) = min(unun, ! |
---|
624 | . max(zero, ! Allows to create |
---|
625 | . sign(unun,BufsSV(ikl) ! a new snow Layer |
---|
626 | . -SMndSV )) ! if Buffer > SMndSV |
---|
627 | . *max(zero, ! Except if * Erosion |
---|
628 | . sign(unun,0.50 ! dominates |
---|
629 | . -dsnbSV(ikl))) ! |
---|
630 | . +max(zero, ! Allows to create |
---|
631 | . sign(unun,BufsSV(ikl) ! a new snow Layer |
---|
632 | . -SMndSV*3.00))) ! is Buffer > SMndSV*3 |
---|
633 | Bdzssv(ikl) = 1.e-3*BufsSV(ikl)*ro_Wat ! [mm w.e.] -> [m w.e.] |
---|
634 | . /max(epsi,BrosSV(ikl))!& [m w.e.] -> [m] |
---|
635 | |
---|
636 | |
---|
637 | |
---|
638 | END DO |
---|
639 | |
---|
640 | |
---|
641 | |
---|
642 | ! Snow Pack Discretization |
---|
643 | ! ======================== |
---|
644 | |
---|
645 | ! ********** |
---|
646 | call SISVAT_zSn |
---|
647 | ! ********** |
---|
648 | |
---|
649 | ! ********** |
---|
650 | ! #ve call SISVAT_wEq('_zSn ',0) |
---|
651 | ! ********** |
---|
652 | |
---|
653 | |
---|
654 | |
---|
655 | ! Add a new Snow Layer |
---|
656 | ! ==================== |
---|
657 | |
---|
658 | DO ikl=1,knonv |
---|
659 | |
---|
660 | isnoSV(ikl) = isnoSV(ikl) +NLaysv(ikl) |
---|
661 | isn = isnoSV(ikl) |
---|
662 | dzsnSV(ikl,isn) = dzsnSV(ikl,isn) * (1-NLaysv(ikl)) |
---|
663 | . + Bdzssv(ikl) * NLaysv(ikl) |
---|
664 | TsisSV(ikl,isn) = TsisSV(ikl,isn) * (1-NLaysv(ikl)) |
---|
665 | . + min(TaT_SV(ikl),Tf_Sno) *NLaysv(ikl) |
---|
666 | |
---|
667 | ro__SV(ikl,isn) = ro__SV(ikl,isn) * (1-NLaysv(ikl)) |
---|
668 | . + Brossv(ikl) * NLaysv(ikl) |
---|
669 | eta_SV(ikl,isn) = eta_SV(ikl,isn) * (1-NLaysv(ikl)) ! + 0. |
---|
670 | agsnSV(ikl,isn) = agsnSV(ikl,isn) * (1-NLaysv(ikl)) ! + 0. |
---|
671 | G1snSV(ikl,isn) = G1snSV(ikl,isn) * (1-NLaysv(ikl)) |
---|
672 | . + BG1ssv(ikl) * NLaysv(ikl) |
---|
673 | G2snSV(ikl,isn) = G2snSV(ikl,isn) * (1-NLaysv(ikl)) |
---|
674 | . + BG2ssv(ikl) * NLaysv(ikl) |
---|
675 | istoSV(ikl,isn) = istoSV(ikl,isn) * (1-NLaysv(ikl)) |
---|
676 | . + max(zer0,sign(un_1,TaT_SV(ikl) |
---|
677 | . -Tf_Sno-eps_21)) * istdSV(2) |
---|
678 | . * NLaysv(ikl) |
---|
679 | BufsSV(ikl) = BufsSV(ikl) * (1-NLaysv(ikl)) |
---|
680 | NLaysv(ikl) = 0 |
---|
681 | |
---|
682 | |
---|
683 | END DO |
---|
684 | |
---|
685 | |
---|
686 | ! Snow Pack Thickness |
---|
687 | ! ------------------- |
---|
688 | |
---|
689 | DO ikl=1,knonv |
---|
690 | z_snsv(ikl) = 0.0 |
---|
691 | END DO |
---|
692 | DO isn=1,nsno |
---|
693 | DO ikl=1,knonv |
---|
694 | z_snsv(ikl) = z_snsv(ikl) + dzsnSV(ikl,isn) |
---|
695 | zzsnsv(ikl,isn) = z_snsv(ikl) |
---|
696 | END DO |
---|
697 | END DO |
---|
698 | |
---|
699 | |
---|
700 | |
---|
701 | END IF |
---|
702 | |
---|
703 | |
---|
704 | |
---|
705 | ! Soil Albedo: Soil Humidity Correction |
---|
706 | ! ========================================== |
---|
707 | |
---|
708 | ! REFERENCE: McCumber and Pielke (1981), Pielke (1984) |
---|
709 | ! ^^^^^^^^^ |
---|
710 | DO ikl=1,knonv |
---|
711 | albssv(ikl) = |
---|
712 | . alb0SV(ikl) *(1.0-min(half,eta_SV( ikl,0) |
---|
713 | . /etadSV(isotSV(ikl)))) |
---|
714 | ! REMARK: Albedo of Water Surfaces (isotSV=0): |
---|
715 | ! ^^^^^^ alb0SV := 2 X effective value, while |
---|
716 | ! eta_SV := etadSV |
---|
717 | END DO |
---|
718 | |
---|
719 | |
---|
720 | ! Snow Pack Optical Properties |
---|
721 | ! ============================ |
---|
722 | |
---|
723 | IF (SnoMod) THEN |
---|
724 | |
---|
725 | ! ****** |
---|
726 | call SnOptP(jjtime) |
---|
727 | ! ****** |
---|
728 | |
---|
729 | ELSE |
---|
730 | DO ikl=1,knonv |
---|
731 | sEX_sv(ikl,1) = 1.0 |
---|
732 | sEX_sv(ikl,0) = 0.0 |
---|
733 | albisv(ikl) = albssv(ikl) |
---|
734 | END DO |
---|
735 | END IF |
---|
736 | |
---|
737 | |
---|
738 | |
---|
739 | ! Soil optical properties |
---|
740 | ! ============================= |
---|
741 | !Etienne: as in inlandis we do not call vgopt, we need to define |
---|
742 | !the albedo alb_SV and to calculate the |
---|
743 | !absorbed Solar Radiation by Surfac (Normaliz)[-] SoSosv |
---|
744 | |
---|
745 | |
---|
746 | DO ikl=1,klonv |
---|
747 | |
---|
748 | e_pRad = 2.5 * coszSV(ikl) ! exponential argument, |
---|
749 | ! V/nIR radiation partitioning, |
---|
750 | ! DR97, 2, eqn (2.53) & (2.54) |
---|
751 | e1pRad = 1.-exp(-e_pRad) ! exponential, V/nIR Rad. Part. |
---|
752 | exdRad= 1. |
---|
753 | |
---|
754 | ! Visible Part of the Solar Radiation Spectrum (V, 0.4--0.7mi.m) |
---|
755 | A_Rad0 = 0.25 + 0.697 * e1pRad ! Absorbed Vis. Radiation |
---|
756 | absg_V = (1.-albisv(ikl))*(A_Rad0*exdRad) ! |
---|
757 | |
---|
758 | ! Near-IR Part of the Solar Radiation Spectrum (nIR, 0.7--2.8mi.m) |
---|
759 | |
---|
760 | A_Rad0 = 0.80 + 0.185 * e1pRad ! Absorbed nIR. Radiation |
---|
761 | absgnI = (1.-albisv(ikl))*(A_Rad0*exdRad) ! |
---|
762 | |
---|
763 | SoSosv(ikl) = (absg_V+absgnI)*0.5d0 |
---|
764 | |
---|
765 | alb_SV(ikl) = albisv(ikl) |
---|
766 | |
---|
767 | END DO |
---|
768 | |
---|
769 | ! ********** |
---|
770 | ! #ve call SISVAT_wEq('SnOptP',0) |
---|
771 | ! ********** |
---|
772 | |
---|
773 | |
---|
774 | ! Surface Emissivity (Etienne: simplified calculation for landice) |
---|
775 | ! ============================================================= |
---|
776 | ! |
---|
777 | DO ikl=1,knonv |
---|
778 | LSnMsk = min( 1,isnoSV(ikl)) |
---|
779 | Eso_sv(ikl)= EmiSol*(1-LSnMsk)+EmiSno*LSnMsk ! Sol+Sno Emissivity |
---|
780 | emi_SV(ikl)= EmiSol*(1-LSnMsk) + EmiSno*LSnMsk |
---|
781 | END DO |
---|
782 | |
---|
783 | |
---|
784 | |
---|
785 | |
---|
786 | ! Upward IR (INPUT, from previous time step) |
---|
787 | ! =================================================================== |
---|
788 | |
---|
789 | DO ikl=1,knonv |
---|
790 | ! #e1 Enrsvd(ikl) = - IRs_SV(ikl) |
---|
791 | IRupsv(ikl) = IRs_SV(ikl) |
---|
792 | END DO |
---|
793 | |
---|
794 | |
---|
795 | ! Turbulence |
---|
796 | ! ========== |
---|
797 | |
---|
798 | ! Latent Heat of Vaporization/Sublimation |
---|
799 | ! --------------------------------------- |
---|
800 | |
---|
801 | DO ikl=1,knonv |
---|
802 | SnoWat = min(isnoSV(ikl),0) |
---|
803 | Lx_H2O(ikl) = |
---|
804 | . (1.-SnoWat) * LhvH2O |
---|
805 | . + SnoWat *(LhsH2O * (1.-eta_SV(ikl,isnoSV(ikl))) |
---|
806 | . +LhvH2O * eta_SV(ikl,isnoSV(ikl)) ) |
---|
807 | END DO |
---|
808 | |
---|
809 | |
---|
810 | |
---|
811 | |
---|
812 | ! Aerodynamic Resistance |
---|
813 | ! ^^^^^^^^^^^^^^^^^^^^^^ |
---|
814 | |
---|
815 | |
---|
816 | DO ikl=1,knonv |
---|
817 | ram_sv(ikl) = 1./(cdM_SV(ikl)*max(VV__SV(ikl),eps6)) |
---|
818 | rah_sv(ikl) = 1./(cdH_SV(ikl)*max(VV__SV(ikl),eps6)) |
---|
819 | END DO |
---|
820 | |
---|
821 | |
---|
822 | |
---|
823 | ! Soil Energy Balance |
---|
824 | ! ===================== |
---|
825 | |
---|
826 | |
---|
827 | if (iflag_tsurf_inlandsis .eq. 0) then |
---|
828 | |
---|
829 | call SISVAT_TSo |
---|
830 | |
---|
831 | else |
---|
832 | |
---|
833 | call SISVAT_TS2 |
---|
834 | |
---|
835 | end if |
---|
836 | |
---|
837 | |
---|
838 | ! ********** |
---|
839 | ! #ve call SISVAT_wEq('_TSo ',0) |
---|
840 | ! ********** |
---|
841 | |
---|
842 | |
---|
843 | |
---|
844 | ! Soil Water Potential |
---|
845 | ! ------------------------ |
---|
846 | |
---|
847 | DO isl=-nsol,0 |
---|
848 | DO ikl=1,knonv |
---|
849 | ist = isotSV(ikl) ! Soil Type |
---|
850 | psi_sv(ikl,isl) = psidSV(ist) ! DR97, Eqn.(3.34) |
---|
851 | . *(etadSV(ist) /max(eps6,eta_SV(ikl,isl))) ! |
---|
852 | . **bCHdSV(ist) ! |
---|
853 | |
---|
854 | |
---|
855 | ! Soil Hydraulic Conductivity |
---|
856 | ! --------------------------- |
---|
857 | |
---|
858 | Khydsv(ikl,isl) = s2__SV(ist) ! DR97, Eqn.(3.35) |
---|
859 | . *(eta_SV(ikl,isl)**(2.*bCHdSV(ist)+3.)) ! |
---|
860 | END DO |
---|
861 | END DO |
---|
862 | |
---|
863 | |
---|
864 | ! Melting / Refreezing in the Snow Pack |
---|
865 | ! ===================================== |
---|
866 | |
---|
867 | IF (SnoMod) THEN |
---|
868 | |
---|
869 | ! ********** |
---|
870 | call SISVAT_qSn |
---|
871 | ! ********** |
---|
872 | |
---|
873 | ! ********** |
---|
874 | ! #ve call SISVAT_wEq('_qSn ',0) |
---|
875 | ! ********** |
---|
876 | |
---|
877 | |
---|
878 | ! Snow Pack Thickness |
---|
879 | ! ------------------- |
---|
880 | |
---|
881 | DO ikl=1,knonv |
---|
882 | z_snsv(ikl) = 0.0 |
---|
883 | END DO |
---|
884 | DO isn=1,nsno |
---|
885 | DO ikl=1,knonv |
---|
886 | z_snsv(ikl) = z_snsv(ikl) + dzsnSV(ikl,isn) |
---|
887 | zzsnsv(ikl,isn) = z_snsv(ikl) |
---|
888 | END DO |
---|
889 | END DO |
---|
890 | |
---|
891 | |
---|
892 | ! Energy in Excess is added to the first Soil Layer |
---|
893 | ! ------------------------------------------------- |
---|
894 | DO ikl=1,knonv |
---|
895 | z_snsv(ikl) = max(zer0, |
---|
896 | . sign(un_1,eps6-z_snsv(ikl))) |
---|
897 | TsisSV(ikl,0) = TsisSV(ikl,0) + EExcsv(ikl) |
---|
898 | . /(rocsSV(isotSV(ikl)) |
---|
899 | . +rcwdSV*eta_SV(ikl,0)) |
---|
900 | EExcsv(ikl) = 0. |
---|
901 | END DO |
---|
902 | |
---|
903 | |
---|
904 | END IF |
---|
905 | |
---|
906 | |
---|
907 | ! Soil Water Balance |
---|
908 | ! ===================== |
---|
909 | |
---|
910 | ! ********** |
---|
911 | call SISVAT_qSo |
---|
912 | ! #m0. (Wats_0,Wats_1,Wats_d) |
---|
913 | ! ********** |
---|
914 | |
---|
915 | |
---|
916 | ! Surface Fluxes |
---|
917 | ! ===================== |
---|
918 | |
---|
919 | DO ikl=1,knonv |
---|
920 | IRdwsv(ikl)=IRd_SV(ikl)*Eso_sv(ikl) ! Downward IR |
---|
921 | ! IRdwsv(ikl)=tau_sv(ikl) *IRd_SV(ikl)*Eso_sv(ikl) ! Downward IR |
---|
922 | ! . +(1.0-tau_sv(ikl))*IRd_SV(ikl)*Evg_sv(ikl) ! ! Etienne, remove vegetation component |
---|
923 | IRupsv(ikl) = IRupsv(ikl) ! Upward IR |
---|
924 | IRu_SV(ikl) = -IRupsv(ikl) ! Upward IR |
---|
925 | . +IRd_SV(ikl) ! (effective) |
---|
926 | . -IRdwsv(ikl) ! (positive) |
---|
927 | |
---|
928 | TBr_sv(ikl) =sqrt(sqrt(IRu_SV(ikl)/StefBo)) ! Brightness |
---|
929 | ! ! Temperature |
---|
930 | uts_SV(ikl) = (HSv_sv(ikl) +HSs_sv(ikl)) ! u*T* |
---|
931 | . /(rhT_SV(ikl) *cp) ! |
---|
932 | uqs_SV(ikl) = (HLv_sv(ikl) +HLs_sv(ikl)) ! u*q* |
---|
933 | . /(rhT_SV(ikl) *LhvH2O) ! |
---|
934 | LMO_SV(ikl) = TaT_SV(ikl)*(us__SV(ikl)**3) |
---|
935 | . /gravit/uts_SV(ikl)/vonKrm ! MO length |
---|
936 | |
---|
937 | |
---|
938 | ! Surface Temperature |
---|
939 | ! ^^^^^^^^^^^^^^^^^^^^ |
---|
940 | ! Tsrfsv(ikl) =TsisSV(ikl,isnoSV(ikl)) |
---|
941 | |
---|
942 | ! Etienne: extrapolation from the two uppermost levels: |
---|
943 | |
---|
944 | if (isnoSV(ikl) >=2) then |
---|
945 | zm1=-dzsnSV(ikl,isnoSV(ikl))/2. |
---|
946 | zm2=-(dzsnSV(ikl,isnoSV(ikl)) + dzsnSV(ikl,isnoSV(ikl)-1)/2.) |
---|
947 | else if (isnoSV(ikl) .EQ. 1) then |
---|
948 | zm1=-dzsnSV(ikl,isnoSV(ikl))/2. |
---|
949 | zm2=-(dzsnSV(ikl,isnoSV(ikl))+dz_dSV(0)/2.) |
---|
950 | else |
---|
951 | zm1=-dz_dSV(0)/2. |
---|
952 | zm2=-(dz_dSV(0)+dz_dSV(-1)/2.) |
---|
953 | |
---|
954 | end if |
---|
955 | |
---|
956 | coefslope=(TsisSV(ikl,isnoSV(ikl))-TsisSV(ikl,isnoSV(ikl)-1)) |
---|
957 | . /(zm1-zm2) |
---|
958 | Tsrfsv(ikl)=TsisSV(ikl,isnoSV(ikl))+coefslope*(0. - zm1) |
---|
959 | |
---|
960 | |
---|
961 | END DO |
---|
962 | |
---|
963 | |
---|
964 | ! Snow Pack Properties (sphericity, dendricity, size) |
---|
965 | ! =================================================== |
---|
966 | |
---|
967 | IF (SnoMod) THEN |
---|
968 | |
---|
969 | ! ********** |
---|
970 | call SISVAT_GSn |
---|
971 | ! ********** |
---|
972 | |
---|
973 | ! ********** |
---|
974 | ! #ve call SISVAT_wEq('_GSn ',0) |
---|
975 | ! ********** |
---|
976 | |
---|
977 | |
---|
978 | |
---|
979 | END IF |
---|
980 | |
---|
981 | |
---|
982 | ! Roughness Length for next time step |
---|
983 | !==================================== |
---|
984 | |
---|
985 | ! Note that in INLANDSIS, we treat only ice covered surfaces so calculation |
---|
986 | ! of z0 is much simpler (no subgrid fraction of ocean or land) |
---|
987 | ! old calculations are commented below |
---|
988 | |
---|
989 | |
---|
990 | C +--Roughness Length for Momentum |
---|
991 | C + ----------------------------- |
---|
992 | |
---|
993 | C +--Land+Sea-Ice / Ice-free Sea Mask |
---|
994 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
995 | DO ikl=1,klonv |
---|
996 | IcIndx(ikl) = 0 |
---|
997 | ENDDO |
---|
998 | DO isn=1,nsno |
---|
999 | DO ikl=1,klonv |
---|
1000 | IcIndx(ikl) = max(IcIndx(ikl), |
---|
1001 | . isn*max(0, |
---|
1002 | . sign(1, |
---|
1003 | . int(ro__SV(ikl,isn)-900.)))) |
---|
1004 | ENDDO |
---|
1005 | ENDDO |
---|
1006 | |
---|
1007 | DO ikl=1,klonv |
---|
1008 | LISmsk = 1. ! in inlandsis, land only |
---|
1009 | IceMsk = max(0,sign(1 ,IcIndx(ikl)-1) ) |
---|
1010 | SnoMsk = max(min(isnoSV(ikl)-iiceSV(ikl),1),0) |
---|
1011 | |
---|
1012 | |
---|
1013 | |
---|
1014 | Z0mLnd =max( Z0_ICE , 5.e-5 ) ! Min set := Z0 on * |
---|
1015 | |
---|
1016 | C +--Z0 Smooth Regime over Snow (Andreas 1995, CRREL Report 95-16, p. 8) |
---|
1017 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1018 | Z0m_nu = 5.e-5 ! z0s~(10-d)*exp(-vonkar/sqrt(1.1e-03)) |
---|
1019 | |
---|
1020 | C +--Z0 Saltat.Regime over Snow (Gallee et al., 2001, BLM 99 (19) p.11) |
---|
1021 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1022 | u2star = us__SV(ikl) *us__SV(ikl) |
---|
1023 | Z0mBSn = u2star *0.536e-3 - 61.8e-6 |
---|
1024 | Z0mBSn = max(Z0mBS0 ,Z0mBSn) |
---|
1025 | |
---|
1026 | C +--Z0 Smooth + Saltat. Regime |
---|
1027 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1028 | Z0enSV(ikl) = Z0m_nu |
---|
1029 | . + Z0mBSn |
---|
1030 | |
---|
1031 | C +--Rough Snow Surface Roughness Length (Typical Value) |
---|
1032 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1033 | c #tz Z0m_Sn = 0.250e-3 ! Andreas 1995, CRREL Report 95-16, fig.1&p.2 |
---|
1034 | ! z0r~(10-d)*exp(-vonkar/sqrt(1.5e-03))-5.e-5 |
---|
1035 | Z0m_Sn = 2.000e-3 ! Calibration of MAR |
---|
1036 | c #TZ Z0m_Sn = 1.000e-3 ! Exemple Tuning in RACMO |
---|
1037 | c #TZ Z0m_Sn = 0.500e-3 ! Exemple Tuning in MAR |
---|
1038 | |
---|
1039 | C +--Rough Snow Surface Roughness Length (Variable Sastrugi Height) |
---|
1040 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1041 | A_Fact = 1.0000 ! Andreas et al., 2004, p.4 |
---|
1042 | ! ams.confex.com/ams/pdfpapers/68601.pdf |
---|
1043 | |
---|
1044 | ! Parameterization of z0 dependance on Temperature (C. Amory, 2017) |
---|
1045 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1046 | ! Z0=f(T) deduced from observations, Adelie Land, dec2012-dec2013 |
---|
1047 | coefa = 0.1658 !0.1862 !Ant |
---|
1048 | coefb = -50.3869 !-55.7718 !Ant |
---|
1049 | ta1 = 253.15 !255. Ant |
---|
1050 | ta2 = 273.15 |
---|
1051 | ta3 = 273.15+3 |
---|
1052 | z01 = exp(coefa*ta1 + coefb) !~0.2 ! ~0.25 mm |
---|
1053 | z02 = exp(coefa*ta2 + coefb) !~6 !~7 mm |
---|
1054 | z03 = z01 |
---|
1055 | coefc = log(z03/z02)/(ta3-ta2) |
---|
1056 | coefd = log(z03)-coefc*ta3 |
---|
1057 | if (TaT_SV(ikl) .lt. ta1) then |
---|
1058 | Z0_obs = z01 |
---|
1059 | else if (TaT_SV(ikl).ge.ta1 .and. TaT_SV(ikl).lt.ta2) then |
---|
1060 | Z0_obs = exp(coefa*TaT_SV(ikl) + coefb) |
---|
1061 | else if (TaT_SV(ikl).ge.ta2 .and. TaT_SV(ikl).lt.ta3) then |
---|
1062 | ! if st > 0, melting induce smooth surface |
---|
1063 | Z0_obs = exp(coefc*TaT_SV(ikl) + coefd) |
---|
1064 | else |
---|
1065 | Z0_obs = z03 |
---|
1066 | endif |
---|
1067 | |
---|
1068 | |
---|
1069 | ! pour le moment, on choisit une valeur fixe |
---|
1070 | Z0_obs = 1.000e-3 |
---|
1071 | |
---|
1072 | cCA Snow roughness lenght deduced from observations |
---|
1073 | cCA (parametrization if no Blowing Snow) |
---|
1074 | cCA ----------------------------------- C. Agosta 09-2016 ----- |
---|
1075 | cCA Substract Z0enSV(ikl) because re-added later in Z0mnSV(ikl) |
---|
1076 | Z0m_Sn = Z0_obs - Z0enSV(ikl) |
---|
1077 | cCA ----------------------------------------------------------- |
---|
1078 | |
---|
1079 | param = Z0_obs/1. ! param(s) | 1.(m/s)=TUNING |
---|
1080 | |
---|
1081 | c #SZ Z0Sa_N = (us__SV(ikl) -0.2)*param ! 0.0001=TUNING |
---|
1082 | c #SZ. * max(zero,sign(unun,TfSnow-eps9 |
---|
1083 | c #SZ. -TsisSV(ikl , isnoSV(ikl)))) |
---|
1084 | !!#SZ Z0SaSi = max(zero,sign(unun,Z0Sa_N ))! 1 if erosion |
---|
1085 | c #SZ Z0SaSi = max(zero,sign(unun,zero -eps9 -uss_SV(ikl)))! |
---|
1086 | c #SZ Z0Sa_N = max(zero, Z0Sa_N) |
---|
1087 | c #SZ Z0SaSV(ikl) = |
---|
1088 | c #SZ. max(Z0SaSV(ikl) ,Z0SaSV(ikl) |
---|
1089 | c #SZ. + Z0SaSi*(Z0Sa_N-Z0SaSV(ikl))*exp(-dt__SV/43200.)) |
---|
1090 | c #SZ. - min(dz0_SV(ikl) , Z0SaSV(ikl)) |
---|
1091 | |
---|
1092 | c #SZ A_Fact = Z0SaSV(ikl) * 5.0/0.15 ! A=5 if h~10cm |
---|
1093 | C +... CAUTION: The influence of the sastrugi direction is not yet included |
---|
1094 | |
---|
1095 | c #SZ Z0m_Sn = Z0SaSV(ikl) ! |
---|
1096 | c #SZ. - Z0m_nu ! |
---|
1097 | |
---|
1098 | C +--Z0 Saltat.Regime over Snow (Shao & Lin, 1999, BLM 91 (46) p.222) |
---|
1099 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1100 | c #ZN sqrrZ0 = usthSV(ikl)/max( us__SV(ikl),0.001) |
---|
1101 | c #ZN sqrrZ0 = min( sqrrZ0 ,0.999) |
---|
1102 | c #ZN Z0mBSn = 0.55 *0.55 *exp(-sqrrZ0 *sqrrZ0) |
---|
1103 | c #ZN. *us__SV(ikl)* us__SV(ikl)*grvinv*0.5 |
---|
1104 | |
---|
1105 | C +--Z0 Smooth + Saltat. Regime (Shao & Lin, 1999, BLM 91 (46) p.222) |
---|
1106 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1107 | c #ZN Z0enSV(ikl) = (Z0m_nu ** sqrrZ0 ) |
---|
1108 | c #ZN. * (Z0mBSn **(1.-sqrrZ0)) |
---|
1109 | c #ZN Z0enSV(ikl) = max(Z0enSV(ikl), Z0m_nu) |
---|
1110 | |
---|
1111 | C +--Z0 Smooth Regime over Snow (Andreas etAl., 2004 |
---|
1112 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^ ams.confex.com/ams/pdfpapers/68601.pdf) |
---|
1113 | c #ZA Z0m_nu = 0.135*akmol / max(us__SV(ikl) , epsi) |
---|
1114 | |
---|
1115 | C +--Z0 Saltat.Regime over Snow (Andreas etAl., 2004 |
---|
1116 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^ ams.confex.com/ams/pdfpapers/68601.pdf) |
---|
1117 | c #ZA Z0mBSn = 0.035*u2star *grvinv |
---|
1118 | |
---|
1119 | C +--Z0 Smooth + Saltat. Regime (Andreas etAl., 2004 |
---|
1120 | ! ( used by Erosion) ams.confex.com/ams/pdfpapers/68601.pdf) |
---|
1121 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1122 | c #ZA Z0enSV(ikl) = Z0m_nu |
---|
1123 | c #ZA. + Z0mBSn |
---|
1124 | |
---|
1125 | C +--Z0 Rough Regime over Snow (Andreas etAl., 2004 |
---|
1126 | C + (.NOT. used by Erosion) ams.confex.com/ams/pdfpapers/68601.pdf) |
---|
1127 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1128 | !!#ZA u2star = (us__SV(ikl) -0.1800) / 0.1 |
---|
1129 | !!#ZA Z0m_Sn =A_Fact*Z0mBSn *exp(-u2star*u2star) |
---|
1130 | c #ZA Z0m_90 =(10.-0.025*VVs_SV(ikl)/5.) |
---|
1131 | c #ZA. *exp(-0.4/sqrt(.00275+.00001*max(0.,VVs_SV(ikl)-5.))) |
---|
1132 | c #ZA Z0m_Sn = DDs_SV(ikl)* Z0m_90 / 45. |
---|
1133 | c #ZA. - DDs_SV(ikl)*DDs_SV(ikl)* Z0m_90 /(90.*90.) |
---|
1134 | |
---|
1135 | C +--Z0 (Erosion) over Snow (instantaneous or time average) |
---|
1136 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1137 | Z0e_SV(ikl) = Z0enSV(ikl) |
---|
1138 | Z0e_SV(ikl) = Z0emSV(ikl) |
---|
1139 | |
---|
1140 | C +--Momentum Roughness Length |
---|
1141 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^ ! Contribution of |
---|
1142 | Z0mnSV(ikl) = Z0mLnd ! land Form |
---|
1143 | . + (Z0m_Sn ! Sastrugi Form |
---|
1144 | . + Z0enSV(ikl)) *SnoMsk ! Snow Erosion |
---|
1145 | |
---|
1146 | |
---|
1147 | C +--GIS Roughness Length |
---|
1148 | C + ^^^^^^^^^^^^^^^^^^^^^ |
---|
1149 | c #GL Z0mnSV(ikl) = |
---|
1150 | c #GL. (1-LSmask(ikl)) * Z0mnSV(ikl) |
---|
1151 | c #GL. + LSmask(ikl) * max(Z0mnSV(ikl),max(Z0_GIM, |
---|
1152 | c #GL. Z0_GIM+ |
---|
1153 | c #GL. (0.0032-Z0_GIM)*(ro__SV(ikl,isnoSV(ikl))-600.) ! |
---|
1154 | c #GL. /(920.00 -600.))) ! |
---|
1155 | |
---|
1156 | C +--Mom. Roughness Length, Instantaneous OR Box Moving Average in Time |
---|
1157 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
1158 | Z0m_SV(ikl) = Z0mnSV(ikl) ! Z0mnSV instant. |
---|
1159 | ! Z0m_SV(ikl) = Z0mmSV(ikl) ! Z0mnSV Average |
---|
1160 | |
---|
1161 | C +--Corrected Threshold Friction Velocity before Erosion ! Marticorena and |
---|
1162 | C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ! Bergametti 1995 |
---|
1163 | ! not used anymore since Marticorena and Bergametti disabled !CK 18/07/2018 |
---|
1164 | cc #BS Z0e_SV(ikl) = min(Z0m_SV(ikl),Z0e_SV(ikl)) ! |
---|
1165 | cc #MB f_eff= log(0.35*(0.1 /Z0e_SV(ikl))**0.8) ! JGR 100 |
---|
1166 | cc #MB f_eff=1.-(log( Z0m_SV(ikl)/Z0e_SV(ikl) ))! (20) p. 16420 |
---|
1167 | cc #MB. /(max( f_eff ,epsi ))! p.16426 2nd ? |
---|
1168 | cc #MB f_eff= max( f_eff ,epsi )! CONTROL |
---|
1169 | cc #MB f_eff=1.0 -(1.0 - f_eff) /5.00 ! TUNING |
---|
1170 | cc #MB f_eff= min( f_eff ,1.00 )! |
---|
1171 | cc #MB usthSV(ikl) = usthSV(ikl)/f_eff ! |
---|
1172 | |
---|
1173 | |
---|
1174 | |
---|
1175 | C +--Roughness Length for Scalars |
---|
1176 | C + ---------------------------- |
---|
1177 | |
---|
1178 | Z0hnSV(ikl) = Z0mnSV(ikl)/ 7.4 |
---|
1179 | c #SH Z0hnSV(ikl) = Z0mnSV(ikl)/100.0 |
---|
1180 | C + Z0h = Z0m /100.0 over the Sahel |
---|
1181 | C + (Taylor & Clark, QJRMS 127,p864) |
---|
1182 | |
---|
1183 | c #RN rstar = Z0mnSV(ikl) * us__SV(ikl) / akmol |
---|
1184 | c #RN rstar = max(epsi,min(rstar,thous)) |
---|
1185 | c #RN alors = log(rstar) |
---|
1186 | c #RN rstar0 = 1.250e0 * max(zero,sign(unun,0.135e0 - rstar)) |
---|
1187 | c #RN. +(1. - max(zero,sign(unun,0.135e0 - rstar))) |
---|
1188 | c #RN. *(0.149e0 * max(zero,sign(unun,2.500e0 - rstar)) |
---|
1189 | c #RN. + 0.317e0 |
---|
1190 | c #RN. *(1. - max(zero,sign(unun,2.500e0 - rstar)))) |
---|
1191 | c #RN rstar1 = 0. * max(zero,sign(unun,0.135e0 - rstar)) |
---|
1192 | c #RN. +(1. - max(zero,sign(unun,0.135e0 - rstar))) |
---|
1193 | c #RN. *(-0.55e0 * max(zero,sign(unun,2.500e0 - rstar)) |
---|
1194 | c #RN. - 0.565 |
---|
1195 | c #RN. *(1. - max(zero,sign(unun,2.500e0 - rstar)))) |
---|
1196 | c #RN rstar2 = 0. * max(zero,sign(unun,0.135e0 - rstar)) |
---|
1197 | c #RN. +(1. - max(zero,sign(unun,0.135e0 - rstar))) |
---|
1198 | c #RN. *(0. * max(zero,sign(unun,2.500e0 - rstar)) |
---|
1199 | c #RN. - 0.183 |
---|
1200 | c #RN. *(unun - max(zero,sign(unun,2.500e0 - rstar)))) |
---|
1201 | |
---|
1202 | cXF #RN does not work over bare ice |
---|
1203 | cXF MAR is then too warm and not enough melt |
---|
1204 | |
---|
1205 | c #RN if(ro__SV(ikl,isnoSV(ikl))>50 |
---|
1206 | c #RN. .and.ro__SV(ikl,isnoSV(ikl))<roSdSV)then |
---|
1207 | |
---|
1208 | c #RN Z0hnSV(ikl) = max(zero |
---|
1209 | c #RN. , sign(unun,zzsnsv(ikl,isnoSV(ikl))-epsi)) |
---|
1210 | c #RN. * exp(rstar0+rstar1*alors+rstar2*alors*alors) |
---|
1211 | c #RN. * 0.001e0 + Z0hnSV(ikl) * ( 1. - max(zero |
---|
1212 | c #RN. , sign(unun,zzsnsv(ikl,isnoSV(ikl))-epsi))) |
---|
1213 | |
---|
1214 | c #RN endif |
---|
1215 | |
---|
1216 | Z0h_SV(ikl) = Z0hnSV(ikl) |
---|
1217 | ! Z0h_SV(ikl) = Z0hmSV(ikl) |
---|
1218 | |
---|
1219 | |
---|
1220 | c #MT Z0m_SV(ikl) = max(2.0e-6 ,Z0m_SV(ikl)) ! Min Z0_m (Garrat Scheme) |
---|
1221 | ! Z0m_SV(ikl) = min(Z0m_SV(ikl),za__SV(ikl)*0.3333) |
---|
1222 | |
---|
1223 | |
---|
1224 | END DO |
---|
1225 | |
---|
1226 | |
---|
1227 | return |
---|
1228 | end |
---|
1229 | |
---|
1230 | |
---|
1231 | |
---|
1232 | |
---|
1233 | |
---|
1234 | |
---|
1235 | |
---|
1236 | |
---|
1237 | |
---|
1238 | |
---|
1239 | |
---|