1 | |
---|
2 | ! $Header$ |
---|
3 | |
---|
4 | SUBROUTINE cv_driver(len, nd, ndp1, ntra, iflag_con, t1, q1, qs1, u1, v1, & |
---|
5 | tra1, p1, ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, vprecip1, & |
---|
6 | cbmf1, sig1, w01, icb1, inb1, delt, ma1, upwd1, dnwd1, dnwd01, qcondc1, & |
---|
7 | wd1, cape1, da1, phi1, mp1, phi21, d1a1, dam1, sij1, clw1, elij1, & ! |
---|
8 | ! RomP |
---|
9 | evap1, ep1, epmlmmm1, eplamm1, & ! RomP |
---|
10 | wdtraina1, wdtrainm1, & ! RomP |
---|
11 | epmax_diag1) ! epmax_cape |
---|
12 | |
---|
13 | USE dimphy |
---|
14 | IMPLICIT NONE |
---|
15 | |
---|
16 | ! .............................START PROLOGUE............................ |
---|
17 | |
---|
18 | |
---|
19 | ! All argument names (except len,nd,ntra,nloc,delt and the flags) have a |
---|
20 | ! "1" appended. |
---|
21 | ! The "1" is removed for the corresponding compressed (local) variables. |
---|
22 | |
---|
23 | ! PARAMETERS: |
---|
24 | ! Name Type Usage Description |
---|
25 | ! ---------- ---------- ------- ---------------------------- |
---|
26 | |
---|
27 | ! len Integer Input first (i) dimension |
---|
28 | ! nd Integer Input vertical (k) dimension |
---|
29 | ! ndp1 Integer Input nd + 1 |
---|
30 | ! ntra Integer Input number of tracors |
---|
31 | ! iflag_con Integer Input version of convect (3/4) |
---|
32 | ! t1 Real Input temperature |
---|
33 | ! q1 Real Input specific hum |
---|
34 | ! qs1 Real Input sat specific hum |
---|
35 | ! u1 Real Input u-wind |
---|
36 | ! v1 Real Input v-wind |
---|
37 | ! tra1 Real Input tracors |
---|
38 | ! p1 Real Input full level pressure |
---|
39 | ! ph1 Real Input half level pressure |
---|
40 | ! iflag1 Integer Output flag for Emanuel conditions |
---|
41 | ! ft1 Real Output temp tend |
---|
42 | ! fq1 Real Output spec hum tend |
---|
43 | ! fu1 Real Output u-wind tend |
---|
44 | ! fv1 Real Output v-wind tend |
---|
45 | ! ftra1 Real Output tracor tend |
---|
46 | ! precip1 Real Output precipitation |
---|
47 | ! VPrecip1 Real Output vertical profile of |
---|
48 | ! precipitations |
---|
49 | ! cbmf1 Real Output cloud base mass flux |
---|
50 | ! sig1 Real In/Out section adiabatic updraft |
---|
51 | ! w01 Real In/Out vertical velocity within adiab |
---|
52 | ! updraft |
---|
53 | ! delt Real Input time step |
---|
54 | ! Ma1 Real Output mass flux adiabatic updraft |
---|
55 | ! upwd1 Real Output total upward mass flux |
---|
56 | ! (adiab+mixed) |
---|
57 | ! dnwd1 Real Output saturated downward mass flux |
---|
58 | ! (mixed) |
---|
59 | ! dnwd01 Real Output unsaturated downward mass flux |
---|
60 | ! qcondc1 Real Output in-cld mixing ratio of |
---|
61 | ! condensed water |
---|
62 | ! wd1 Real Output downdraft velocity scale for |
---|
63 | ! sfc fluxes |
---|
64 | ! cape1 Real Output CAPE |
---|
65 | |
---|
66 | ! wdtrainA1 Real Output precipitation detrained from |
---|
67 | ! adiabatic draught; |
---|
68 | ! used in tracer transport (cvltr) |
---|
69 | ! wdtrainM1 Real Output precipitation detrained from mixed |
---|
70 | ! draughts; |
---|
71 | ! used in tracer transport (cvltr) |
---|
72 | ! da1 Real Output used in tracer transport (cvltr) |
---|
73 | ! phi1 Real Output used in tracer transport (cvltr) |
---|
74 | ! mp1 Real Output used in tracer transport (cvltr) |
---|
75 | |
---|
76 | ! phi21 Real Output used in tracer transport (cvltr) |
---|
77 | |
---|
78 | ! d1a1 Real Output used in tracer transport (cvltr) |
---|
79 | ! dam1 Real Output used in tracer transport (cvltr) |
---|
80 | |
---|
81 | ! evap1 Real Output |
---|
82 | ! ep1 Real Output |
---|
83 | ! sij1 Real Output |
---|
84 | ! elij1 Real Output |
---|
85 | |
---|
86 | ! S. Bony, Mar 2002: |
---|
87 | ! * Several modules corresponding to different physical processes |
---|
88 | ! * Several versions of convect may be used: |
---|
89 | ! - iflag_con=3: version lmd (previously named convect3) |
---|
90 | ! - iflag_con=4: version 4.3b (vect. version, previously convect1/2) |
---|
91 | ! + tard: - iflag_con=5: version lmd with ice (previously named convectg) |
---|
92 | ! S. Bony, Oct 2002: |
---|
93 | ! * Vectorization of convect3 (ie version lmd) |
---|
94 | |
---|
95 | ! ..............................END PROLOGUE............................. |
---|
96 | |
---|
97 | |
---|
98 | ! Input |
---|
99 | INTEGER len |
---|
100 | INTEGER nd |
---|
101 | INTEGER ndp1 |
---|
102 | INTEGER noff |
---|
103 | INTEGER iflag_con |
---|
104 | INTEGER ntra |
---|
105 | REAL delt |
---|
106 | REAL t1(len, nd) |
---|
107 | REAL q1(len, nd) |
---|
108 | REAL qs1(len, nd) |
---|
109 | REAL u1(len, nd) |
---|
110 | REAL v1(len, nd) |
---|
111 | REAL tra1(len, nd, ntra) |
---|
112 | REAL p1(len, nd) |
---|
113 | REAL ph1(len, ndp1) |
---|
114 | |
---|
115 | ! Output |
---|
116 | INTEGER iflag1(len) |
---|
117 | REAL ft1(len, nd) |
---|
118 | REAL fq1(len, nd) |
---|
119 | REAL fu1(len, nd) |
---|
120 | REAL fv1(len, nd) |
---|
121 | REAL ftra1(len, nd, ntra) |
---|
122 | REAL precip1(len) |
---|
123 | REAL cbmf1(len) |
---|
124 | REAL sig1(klon, klev) |
---|
125 | REAL w01(klon, klev) |
---|
126 | REAL vprecip1(len, nd+1) |
---|
127 | REAL evap1(len, nd) !RomP |
---|
128 | REAL ep1(len, nd) !RomP |
---|
129 | REAL ma1(len, nd) |
---|
130 | REAL upwd1(len, nd) |
---|
131 | REAL dnwd1(len, nd) |
---|
132 | REAL dnwd01(len, nd) |
---|
133 | |
---|
134 | REAL qcondc1(len, nd) ! cld |
---|
135 | REAL wd1(len) ! gust |
---|
136 | REAL cape1(len) |
---|
137 | |
---|
138 | ! RomP >>> |
---|
139 | REAL wdtraina1(len, nd), wdtrainm1(len, nd) |
---|
140 | REAL sij1(len, nd, nd), elij1(len, nd, nd) |
---|
141 | REAL da1(len, nd), phi1(len, nd, nd), mp1(len, nd) |
---|
142 | |
---|
143 | REAL phi21(len, nd, nd) |
---|
144 | REAL d1a1(len, nd), dam1(len, nd) |
---|
145 | REAL epmlmmm1(len, nd, nd), eplamm1(len, nd) |
---|
146 | ! RomP <<< |
---|
147 | REAL epmax_diag1 (len) ! epmax_cape |
---|
148 | |
---|
149 | ! ------------------------------------------------------------------- |
---|
150 | ! Original Prologue by Kerry Emanuel. |
---|
151 | ! ------------------------------------------------------------------- |
---|
152 | ! --- ARGUMENTS |
---|
153 | ! ------------------------------------------------------------------- |
---|
154 | ! --- On input: |
---|
155 | |
---|
156 | ! t: Array of absolute temperature (K) of dimension ND, with first |
---|
157 | ! index corresponding to lowest model level. Note that this array |
---|
158 | ! will be altered by the subroutine if dry convective adjustment |
---|
159 | ! occurs and if IPBL is not equal to 0. |
---|
160 | |
---|
161 | ! q: Array of specific humidity (gm/gm) of dimension ND, with first |
---|
162 | ! index corresponding to lowest model level. Must be defined |
---|
163 | ! at same grid levels as T. Note that this array will be altered |
---|
164 | ! if dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
165 | |
---|
166 | ! qs: Array of saturation specific humidity of dimension ND, with first |
---|
167 | ! index corresponding to lowest model level. Must be defined |
---|
168 | ! at same grid levels as T. Note that this array will be altered |
---|
169 | ! if dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
170 | |
---|
171 | ! u: Array of zonal wind velocity (m/s) of dimension ND, witth first |
---|
172 | ! index corresponding with the lowest model level. Defined at |
---|
173 | ! same levels as T. Note that this array will be altered if |
---|
174 | ! dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
175 | |
---|
176 | ! v: Same as u but for meridional velocity. |
---|
177 | |
---|
178 | ! tra: Array of passive tracer mixing ratio, of dimensions (ND,NTRA), |
---|
179 | ! where NTRA is the number of different tracers. If no |
---|
180 | ! convective tracer transport is needed, define a dummy |
---|
181 | ! input array of dimension (ND,1). Tracers are defined at |
---|
182 | ! same vertical levels as T. Note that this array will be altered |
---|
183 | ! if dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
184 | |
---|
185 | ! p: Array of pressure (mb) of dimension ND, with first |
---|
186 | ! index corresponding to lowest model level. Must be defined |
---|
187 | ! at same grid levels as T. |
---|
188 | |
---|
189 | ! ph: Array of pressure (mb) of dimension ND+1, with first index |
---|
190 | ! corresponding to lowest level. These pressures are defined at |
---|
191 | ! levels intermediate between those of P, T, Q and QS. The first |
---|
192 | ! value of PH should be greater than (i.e. at a lower level than) |
---|
193 | ! the first value of the array P. |
---|
194 | |
---|
195 | ! nl: The maximum number of levels to which convection can penetrate, plus |
---|
196 | ! 1. |
---|
197 | ! NL MUST be less than or equal to ND-1. |
---|
198 | |
---|
199 | ! delt: The model time step (sec) between calls to CONVECT |
---|
200 | |
---|
201 | ! ---------------------------------------------------------------------------- |
---|
202 | ! --- On Output: |
---|
203 | |
---|
204 | ! iflag: An output integer whose value denotes the following: |
---|
205 | ! VALUE INTERPRETATION |
---|
206 | ! ----- -------------- |
---|
207 | ! 0 Moist convection occurs. |
---|
208 | ! 1 Moist convection occurs, but a CFL condition |
---|
209 | ! on the subsidence warming is violated. This |
---|
210 | ! does not cause the scheme to terminate. |
---|
211 | ! 2 Moist convection, but no precip because ep(inb) lt 0.0001 |
---|
212 | ! 3 No moist convection because new cbmf is 0 and old cbmf is 0. |
---|
213 | ! 4 No moist convection; atmosphere is not |
---|
214 | ! unstable |
---|
215 | ! 6 No moist convection because ihmin le minorig. |
---|
216 | ! 7 No moist convection because unreasonable |
---|
217 | ! parcel level temperature or specific humidity. |
---|
218 | ! 8 No moist convection: lifted condensation |
---|
219 | ! level is above the 200 mb level. |
---|
220 | ! 9 No moist convection: cloud base is higher |
---|
221 | ! then the level NL-1. |
---|
222 | |
---|
223 | ! ft: Array of temperature tendency (K/s) of dimension ND, defined at |
---|
224 | ! same |
---|
225 | ! grid levels as T, Q, QS and P. |
---|
226 | |
---|
227 | ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension ND, |
---|
228 | ! defined at same grid levels as T, Q, QS and P. |
---|
229 | |
---|
230 | ! fu: Array of forcing of zonal velocity (m/s^2) of dimension ND, |
---|
231 | ! defined at same grid levels as T. |
---|
232 | |
---|
233 | ! fv: Same as FU, but for forcing of meridional velocity. |
---|
234 | |
---|
235 | ! ftra: Array of forcing of tracer content, in tracer mixing ratio per |
---|
236 | ! second, defined at same levels as T. Dimensioned (ND,NTRA). |
---|
237 | |
---|
238 | ! precip: Scalar convective precipitation rate (mm/day). |
---|
239 | |
---|
240 | ! VPrecip: Vertical profile of convective precipitation (kg/m2/s). |
---|
241 | |
---|
242 | ! wd: A convective downdraft velocity scale. For use in surface |
---|
243 | ! flux parameterizations. See convect.ps file for details. |
---|
244 | |
---|
245 | ! tprime: A convective downdraft temperature perturbation scale (K). |
---|
246 | ! For use in surface flux parameterizations. See convect.ps |
---|
247 | ! file for details. |
---|
248 | |
---|
249 | ! qprime: A convective downdraft specific humidity |
---|
250 | ! perturbation scale (gm/gm). |
---|
251 | ! For use in surface flux parameterizations. See convect.ps |
---|
252 | ! file for details. |
---|
253 | |
---|
254 | ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST |
---|
255 | ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT |
---|
256 | ! ITS NEXT CALL. That is, the value of CBMF must be "remembered" |
---|
257 | ! by the calling program between calls to CONVECT. |
---|
258 | |
---|
259 | ! det: Array of detrainment mass flux of dimension ND. |
---|
260 | |
---|
261 | ! ------------------------------------------------------------------- |
---|
262 | |
---|
263 | ! Local arrays |
---|
264 | |
---|
265 | |
---|
266 | INTEGER i, k, n, il, j |
---|
267 | INTEGER icbmax |
---|
268 | INTEGER nk1(klon) |
---|
269 | INTEGER icb1(klon) |
---|
270 | INTEGER inb1(klon) |
---|
271 | INTEGER icbs1(klon) |
---|
272 | |
---|
273 | REAL plcl1(klon) |
---|
274 | REAL tnk1(klon) |
---|
275 | REAL qnk1(klon) |
---|
276 | REAL gznk1(klon) |
---|
277 | REAL pnk1(klon) |
---|
278 | REAL qsnk1(klon) |
---|
279 | REAL pbase1(klon) |
---|
280 | REAL buoybase1(klon) |
---|
281 | |
---|
282 | REAL lv1(klon, klev) |
---|
283 | REAL cpn1(klon, klev) |
---|
284 | REAL tv1(klon, klev) |
---|
285 | REAL gz1(klon, klev) |
---|
286 | REAL hm1(klon, klev) |
---|
287 | REAL h1(klon, klev) |
---|
288 | REAL tp1(klon, klev) |
---|
289 | REAL tvp1(klon, klev) |
---|
290 | REAL clw1(klon, klev) |
---|
291 | REAL th1(klon, klev) |
---|
292 | |
---|
293 | INTEGER ncum |
---|
294 | |
---|
295 | ! (local) compressed fields: |
---|
296 | |
---|
297 | ! ym integer nloc |
---|
298 | ! ym parameter (nloc=klon) ! pour l'instant |
---|
299 | #define nloc klon |
---|
300 | INTEGER idcum(nloc) |
---|
301 | INTEGER iflag(nloc), nk(nloc), icb(nloc) |
---|
302 | INTEGER nent(nloc, klev) |
---|
303 | INTEGER icbs(nloc) |
---|
304 | INTEGER inb(nloc), inbis(nloc) |
---|
305 | |
---|
306 | REAL cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc) |
---|
307 | REAL t(nloc, klev), q(nloc, klev), qs(nloc, klev) |
---|
308 | REAL u(nloc, klev), v(nloc, klev) |
---|
309 | REAL gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev) |
---|
310 | REAL p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev) |
---|
311 | REAL clw(nloc, klev) |
---|
312 | REAL dph(nloc, klev) |
---|
313 | REAL pbase(nloc), buoybase(nloc), th(nloc, klev) |
---|
314 | REAL tvp(nloc, klev) |
---|
315 | REAL sig(nloc, klev), w0(nloc, klev) |
---|
316 | REAL hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev) |
---|
317 | REAL frac(nloc), buoy(nloc, klev) |
---|
318 | REAL cape(nloc) |
---|
319 | REAL m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev) |
---|
320 | REAL uent(nloc, klev, klev), vent(nloc, klev, klev) |
---|
321 | REAL ments(nloc, klev, klev), qents(nloc, klev, klev) |
---|
322 | REAL sij(nloc, klev, klev), elij(nloc, klev, klev) |
---|
323 | REAL qp(nloc, klev), up(nloc, klev), vp(nloc, klev) |
---|
324 | REAL wt(nloc, klev), water(nloc, klev), evap(nloc, klev) |
---|
325 | REAL b(nloc, klev), ft(nloc, klev), fq(nloc, klev) |
---|
326 | REAL fu(nloc, klev), fv(nloc, klev) |
---|
327 | REAL upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev) |
---|
328 | REAL ma(nloc, klev), mike(nloc, klev), tls(nloc, klev) |
---|
329 | REAL tps(nloc, klev), qprime(nloc), tprime(nloc) |
---|
330 | REAL precip(nloc) |
---|
331 | REAL vprecip(nloc, klev+1) |
---|
332 | REAL tra(nloc, klev, ntra), trap(nloc, klev, ntra) |
---|
333 | REAL ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra) |
---|
334 | REAL qcondc(nloc, klev) ! cld |
---|
335 | REAL wd(nloc) ! gust |
---|
336 | |
---|
337 | ! RomP >>> |
---|
338 | REAL da(nloc, klev), phi(nloc, klev, klev), mp(nloc, klev) |
---|
339 | REAL epmlmmm(nloc, klev, klev), eplamm(nloc, klev) |
---|
340 | REAL phi2(nloc, klev, klev) |
---|
341 | REAL d1a(nloc, klev), dam(nloc, klev) |
---|
342 | REAL wdtraina(nloc, klev), wdtrainm(nloc, klev) |
---|
343 | REAL sigd(nloc) |
---|
344 | ! RomP <<< |
---|
345 | REAL epmax_diag(nloc) ! epmax_cape |
---|
346 | |
---|
347 | nent(:, :) = 0 |
---|
348 | ! ------------------------------------------------------------------- |
---|
349 | ! --- SET CONSTANTS AND PARAMETERS |
---|
350 | ! ------------------------------------------------------------------- |
---|
351 | ! print *, '-> cv_driver' !jyg |
---|
352 | ! -- set simulation flags: |
---|
353 | ! (common cvflag) |
---|
354 | |
---|
355 | CALL cv_flag(0) |
---|
356 | |
---|
357 | ! -- set thermodynamical constants: |
---|
358 | ! (common cvthermo) |
---|
359 | |
---|
360 | CALL cv_thermo(iflag_con) |
---|
361 | |
---|
362 | ! -- set convect parameters |
---|
363 | |
---|
364 | ! includes microphysical parameters and parameters that |
---|
365 | ! control the rate of approach to quasi-equilibrium) |
---|
366 | ! (common cvparam) |
---|
367 | |
---|
368 | |
---|
369 | IF (iflag_con==30) THEN |
---|
370 | CALL cv30_param(nd, delt) |
---|
371 | END IF |
---|
372 | |
---|
373 | IF (iflag_con==4) THEN |
---|
374 | CALL cv_param(nd) |
---|
375 | END IF |
---|
376 | |
---|
377 | ! --------------------------------------------------------------------- |
---|
378 | ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS |
---|
379 | ! --------------------------------------------------------------------- |
---|
380 | |
---|
381 | inb(:) = 0.0 |
---|
382 | inb1(:) = 0.0 |
---|
383 | icb1(:) = 0.0 |
---|
384 | |
---|
385 | ft1(:, :) = 0.0 |
---|
386 | fq1(:, :) = 0.0 |
---|
387 | fu1(:, :) = 0.0 |
---|
388 | fv1(:, :) = 0.0 |
---|
389 | tvp1(:, :) = 0.0 |
---|
390 | tp1(:, :) = 0.0 |
---|
391 | clw1(:, :) = 0.0 |
---|
392 | ! ym |
---|
393 | clw(:, :) = 0.0 |
---|
394 | gz1(:, :) = 0. |
---|
395 | vprecip1(:, :) = 0. |
---|
396 | ma1(:, :) = 0.0 |
---|
397 | upwd1(:, :) = 0.0 |
---|
398 | dnwd1(:, :) = 0.0 |
---|
399 | dnwd01(:, :) = 0.0 |
---|
400 | qcondc1(:, :) = 0.0 |
---|
401 | |
---|
402 | ftra1(:, :, :) = 0.0 |
---|
403 | |
---|
404 | elij1(:, :, :) = 0.0 |
---|
405 | sij1(:, :, :) = 0.0 |
---|
406 | |
---|
407 | precip1(:) = 0.0 |
---|
408 | iflag1(:) = 0 |
---|
409 | wd1(:) = 0.0 |
---|
410 | cape1(:) = 0.0 |
---|
411 | epmax_diag1(:) = 0.0 ! epmax_cape |
---|
412 | |
---|
413 | |
---|
414 | IF (iflag_con==30) THEN |
---|
415 | DO il = 1, len |
---|
416 | sig1(il, nd) = sig1(il, nd) + 1. |
---|
417 | sig1(il, nd) = amin1(sig1(il,nd), 12.1) |
---|
418 | END DO |
---|
419 | END IF |
---|
420 | |
---|
421 | ! RomP >>> |
---|
422 | wdtraina1(:, :) = 0. |
---|
423 | wdtrainm1(:, :) = 0. |
---|
424 | da1(:, :) = 0. |
---|
425 | phi1(:, :, :) = 0. |
---|
426 | epmlmmm1(:, :, :) = 0. |
---|
427 | eplamm1(:, :) = 0. |
---|
428 | mp1(:, :) = 0. |
---|
429 | evap1(:, :) = 0. |
---|
430 | ep1(:, :) = 0. |
---|
431 | sij1(:, :, :) = 0. |
---|
432 | elij1(:, :, :) = 0. |
---|
433 | phi21(:, :, :) = 0. |
---|
434 | d1a1(:, :) = 0. |
---|
435 | dam1(:, :) = 0. |
---|
436 | ! RomP <<< |
---|
437 | |
---|
438 | ! -------------------------------------------------------------------- |
---|
439 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
440 | ! -------------------------------------------------------------------- |
---|
441 | |
---|
442 | IF (iflag_con==30) THEN |
---|
443 | |
---|
444 | ! print*,'Emanuel version 30 ' |
---|
445 | CALL cv30_prelim(len, nd, ndp1, t1, q1, p1, ph1 & ! nd->na |
---|
446 | , lv1, cpn1, tv1, gz1, h1, hm1, th1) |
---|
447 | END IF |
---|
448 | |
---|
449 | IF (iflag_con==4) THEN |
---|
450 | CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, h1, & |
---|
451 | hm1) |
---|
452 | END IF |
---|
453 | |
---|
454 | ! -------------------------------------------------------------------- |
---|
455 | ! --- CONVECTIVE FEED |
---|
456 | ! -------------------------------------------------------------------- |
---|
457 | |
---|
458 | IF (iflag_con==30) THEN |
---|
459 | CALL cv30_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1 & ! |
---|
460 | ! nd->na |
---|
461 | , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) |
---|
462 | END IF |
---|
463 | |
---|
464 | IF (iflag_con==4) THEN |
---|
465 | CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1, nk1, icb1, icbmax, & |
---|
466 | iflag1, tnk1, qnk1, gznk1, plcl1) |
---|
467 | END IF |
---|
468 | |
---|
469 | ! -------------------------------------------------------------------- |
---|
470 | ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part |
---|
471 | ! (up through ICB for convect4, up through ICB+1 for convect3) |
---|
472 | ! Calculates the lifted parcel virtual temperature at nk, the |
---|
473 | ! actual temperature, and the adiabatic liquid water content. |
---|
474 | ! -------------------------------------------------------------------- |
---|
475 | |
---|
476 | IF (iflag_con==30) THEN |
---|
477 | CALL cv30_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1 & ! nd->na |
---|
478 | , tp1, tvp1, clw1, icbs1) |
---|
479 | END IF |
---|
480 | |
---|
481 | IF (iflag_con==4) THEN |
---|
482 | CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax, tp1, & |
---|
483 | tvp1, clw1) |
---|
484 | END IF |
---|
485 | |
---|
486 | ! ------------------------------------------------------------------- |
---|
487 | ! --- TRIGGERING |
---|
488 | ! ------------------------------------------------------------------- |
---|
489 | |
---|
490 | IF (iflag_con==30) THEN |
---|
491 | CALL cv30_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1 & ! |
---|
492 | ! nd->na |
---|
493 | , pbase1, buoybase1, iflag1, sig1, w01) |
---|
494 | END IF |
---|
495 | |
---|
496 | IF (iflag_con==4) THEN |
---|
497 | CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1) |
---|
498 | END IF |
---|
499 | |
---|
500 | ! ===================================================================== |
---|
501 | ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY |
---|
502 | ! ===================================================================== |
---|
503 | |
---|
504 | ncum = 0 |
---|
505 | DO i = 1, len |
---|
506 | IF (iflag1(i)==0) THEN |
---|
507 | ncum = ncum + 1 |
---|
508 | idcum(ncum) = i |
---|
509 | END IF |
---|
510 | END DO |
---|
511 | |
---|
512 | ! print*,'cv_driver : klon, ncum = ',len,ncum |
---|
513 | |
---|
514 | IF (ncum>0) THEN |
---|
515 | |
---|
516 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
517 | ! --- COMPRESS THE FIELDS |
---|
518 | ! (-> vectorization over convective gridpoints) |
---|
519 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
520 | |
---|
521 | IF (iflag_con==30) THEN |
---|
522 | CALL cv30_compress(len, nloc, ncum, nd, ntra, iflag1, nk1, icb1, icbs1, & |
---|
523 | plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, & |
---|
524 | gz1, th1, tra1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, & |
---|
525 | w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, & |
---|
526 | q, qs, u, v, gz, th, tra, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, & |
---|
527 | w0) |
---|
528 | END IF |
---|
529 | |
---|
530 | IF (iflag_con==4) THEN |
---|
531 | CALL cv_compress(len, nloc, ncum, nd, iflag1, nk1, icb1, cbmf1, plcl1, & |
---|
532 | tnk1, qnk1, gznk1, t1, q1, qs1, u1, v1, gz1, h1, lv1, cpn1, p1, ph1, & |
---|
533 | tv1, tp1, tvp1, clw1, iflag, nk, icb, cbmf, plcl, tnk, qnk, gznk, t, & |
---|
534 | q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw, dph) |
---|
535 | END IF |
---|
536 | |
---|
537 | ! ------------------------------------------------------------------- |
---|
538 | ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part : |
---|
539 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
540 | ! --- & |
---|
541 | ! --- COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
542 | ! --- FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
543 | ! --- & |
---|
544 | ! --- FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
545 | ! ------------------------------------------------------------------- |
---|
546 | |
---|
547 | IF (iflag_con==30) THEN |
---|
548 | CALL cv30_undilute2(nloc, ncum, nd, icb, icbs, nk & !na->nd |
---|
549 | , tnk, qnk, gznk, t, q, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, & |
---|
550 | inb, tp, tvp, clw, hp, ep, sigp, buoy) |
---|
551 | END IF |
---|
552 | |
---|
553 | IF (iflag_con==4) THEN |
---|
554 | CALL cv_undilute2(nloc, ncum, nd, icb, nk, tnk, qnk, gznk, t, q, qs, & |
---|
555 | gz, p, dph, h, tv, lv, inb, inbis, tp, tvp, clw, hp, ep, sigp, frac) |
---|
556 | END IF |
---|
557 | |
---|
558 | ! ------------------------------------------------------------------- |
---|
559 | ! --- CLOSURE |
---|
560 | ! ------------------------------------------------------------------- |
---|
561 | |
---|
562 | IF (iflag_con==30) THEN |
---|
563 | CALL cv30_closure(nloc, ncum, nd, icb, inb & ! na->nd |
---|
564 | , pbase, p, ph, tv, buoy, sig, w0, cape, m) |
---|
565 | |
---|
566 | ! epmax_cape |
---|
567 | call cv30_epmax_fn_cape(nloc,ncum,nd & |
---|
568 | ,cape,ep,hp,icb,inb,clw,nk,t,h,lv & |
---|
569 | ,epmax_diag) |
---|
570 | ! on écrase ep et recalcule hp |
---|
571 | END IF |
---|
572 | |
---|
573 | IF (iflag_con==4) THEN |
---|
574 | CALL cv_closure(nloc, ncum, nd, nk, icb, tv, tvp, p, ph, dph, plcl, & |
---|
575 | cpn, iflag, cbmf) |
---|
576 | END IF |
---|
577 | |
---|
578 | |
---|
579 | ! ------------------------------------------------------------------- |
---|
580 | ! --- MIXING |
---|
581 | ! ------------------------------------------------------------------- |
---|
582 | |
---|
583 | IF (iflag_con==30) THEN |
---|
584 | CALL cv30_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb & ! |
---|
585 | ! na->nd |
---|
586 | , ph, t, q, qs, u, v, tra, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, & |
---|
587 | ment, qent, uent, vent, sij, elij, ments, qents, traent) |
---|
588 | END IF |
---|
589 | |
---|
590 | IF (iflag_con==4) THEN |
---|
591 | CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis, ph, t, q, qs, u, v, & |
---|
592 | h, lv, qnk, hp, tv, tvp, ep, clw, cbmf, m, ment, qent, uent, vent, & |
---|
593 | nent, sij, elij) |
---|
594 | END IF |
---|
595 | |
---|
596 | ! ------------------------------------------------------------------- |
---|
597 | ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS |
---|
598 | ! ------------------------------------------------------------------- |
---|
599 | |
---|
600 | IF (iflag_con==30) THEN |
---|
601 | ! RomP >>> |
---|
602 | CALL cv30_unsat(nloc, ncum, nd, nd, ntra, icb, inb & ! na->nd |
---|
603 | , t, q, qs, gz, u, v, tra, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, & |
---|
604 | ment, elij, delt, plcl, mp, qp, up, vp, trap, wt, water, evap, b, & |
---|
605 | wdtraina, wdtrainm) |
---|
606 | ! RomP <<< |
---|
607 | END IF |
---|
608 | |
---|
609 | IF (iflag_con==4) THEN |
---|
610 | CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph, h, lv, & |
---|
611 | ep, sigp, clw, m, ment, elij, iflag, mp, qp, up, vp, wt, water, evap) |
---|
612 | END IF |
---|
613 | |
---|
614 | ! ------------------------------------------------------------------- |
---|
615 | ! --- YIELD |
---|
616 | ! (tendencies, precipitation, variables of interface with other |
---|
617 | ! processes, etc) |
---|
618 | ! ------------------------------------------------------------------- |
---|
619 | |
---|
620 | IF (iflag_con==30) THEN |
---|
621 | CALL cv30_yield(nloc, ncum, nd, nd, ntra & ! na->nd |
---|
622 | , icb, inb, delt, t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th, ep, & |
---|
623 | clw, m, tp, mp, qp, up, vp, trap, wt, water, evap, b, ment, qent, & |
---|
624 | uent, vent, nent, elij, traent, sig, tv, tvp, iflag, precip, vprecip, & |
---|
625 | ft, fq, fu, fv, ftra, upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, & |
---|
626 | wd) |
---|
627 | END IF |
---|
628 | |
---|
629 | IF (iflag_con==4) THEN |
---|
630 | CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt, t, q, u, v, gz, p, & |
---|
631 | ph, h, hp, lv, cpn, ep, clw, frac, m, mp, qp, up, vp, wt, water, & |
---|
632 | evap, ment, qent, uent, vent, nent, elij, tv, tvp, iflag, wd, qprime, & |
---|
633 | tprime, precip, cbmf, ft, fq, fu, fv, ma, qcondc) |
---|
634 | END IF |
---|
635 | |
---|
636 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
637 | ! --- passive tracers |
---|
638 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
639 | |
---|
640 | IF (iflag_con==30) THEN |
---|
641 | ! RomP >>> |
---|
642 | CALL cv30_tracer(nloc, len, ncum, nd, nd, ment, sij, da, phi, phi2, & |
---|
643 | d1a, dam, ep, vprecip, elij, clw, epmlmmm, eplamm, icb, inb) |
---|
644 | ! RomP <<< |
---|
645 | END IF |
---|
646 | |
---|
647 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
648 | ! --- UNCOMPRESS THE FIELDS |
---|
649 | ! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
650 | ! set iflag1 =42 for non convective points |
---|
651 | DO i = 1, len |
---|
652 | iflag1(i) = 42 |
---|
653 | END DO |
---|
654 | |
---|
655 | IF (iflag_con==30) THEN |
---|
656 | CALL cv30_uncompress(nloc, len, ncum, nd, ntra, idcum, iflag, precip, & |
---|
657 | vprecip, evap, ep, sig, w0 & !RomP |
---|
658 | , ft, fq, fu, fv, ftra, inb, ma, upwd, dnwd, dnwd0, qcondc, wd, cape, & |
---|
659 | da, phi, mp, phi2, d1a, dam, sij & !RomP |
---|
660 | , elij, clw, epmlmmm, eplamm & !RomP |
---|
661 | , wdtraina, wdtrainm,epmax_diag & !RomP |
---|
662 | , iflag1, precip1, vprecip1, evap1, ep1, sig1, w01 & !RomP |
---|
663 | , ft1, fq1, fu1, fv1, ftra1, inb1, ma1, upwd1, dnwd1, dnwd01, & |
---|
664 | qcondc1, wd1, cape1, da1, phi1, mp1, phi21, d1a1, dam1, sij1 & !RomP |
---|
665 | , elij1, clw1, epmlmmm1, eplamm1 & !RomP |
---|
666 | , wdtraina1, wdtrainm1,epmax_diag1) !RomP |
---|
667 | END IF |
---|
668 | |
---|
669 | IF (iflag_con==4) THEN |
---|
670 | CALL cv_uncompress(nloc, len, ncum, nd, idcum, iflag, precip, cbmf, ft, & |
---|
671 | fq, fu, fv, ma, qcondc, iflag1, precip1, cbmf1, ft1, fq1, fu1, fv1, & |
---|
672 | ma1, qcondc1) |
---|
673 | END IF |
---|
674 | |
---|
675 | END IF ! ncum>0 |
---|
676 | |
---|
677 | ! print *, 'fin cv_driver ->' !jyg |
---|
678 | RETURN |
---|
679 | END SUBROUTINE cv_driver |
---|
680 | |
---|
681 | ! ================================================================== |
---|
682 | SUBROUTINE cv_flag(iflag_ice_thermo) |
---|
683 | |
---|
684 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
685 | |
---|
686 | IMPLICIT NONE |
---|
687 | |
---|
688 | ! Argument : iflag_ice_thermo : ice thermodynamics is taken into account if |
---|
689 | ! iflag_ice_thermo >=1 |
---|
690 | INTEGER iflag_ice_thermo |
---|
691 | |
---|
692 | include "cvflag.h" |
---|
693 | |
---|
694 | ! -- si .TRUE., on rend la gravite plus explicite et eventuellement |
---|
695 | ! differente de 10.0 dans convect3: |
---|
696 | cvflag_grav = .TRUE. |
---|
697 | cvflag_ice = iflag_ice_thermo >= 1 |
---|
698 | ! |
---|
699 | ! si icvflag_Tpa=0, alors la fraction de glace dans l'ascendance adiabatique est |
---|
700 | ! fonction de la temperature de l'environnement et la temperature de l'ascendance est |
---|
701 | ! calculee en deux itérations, une en supposant qu'il n'y a pas de glace et l'autre |
---|
702 | ! en ajoutant la glace (ancien schéma d'Arnaud Jam). |
---|
703 | ! si icvflag_Tpa=1, alors la fraction de glace dans l'ascendance adiabatique est |
---|
704 | ! fonction de la temperature de l'environnement et la temperature de l'ascendance est |
---|
705 | ! calculee en une seule iteration. |
---|
706 | ! si icvflag_Tpa=2, alors la fraction de glace dans l'ascendance adiabatique est |
---|
707 | ! fonction de la temperature de l'ascendance et la temperature de l'ascendance est |
---|
708 | ! calculee en une seule iteration. |
---|
709 | icvflag_Tpa=0 |
---|
710 | call getin_p('icvflag_Tpa', icvflag_Tpa) |
---|
711 | |
---|
712 | RETURN |
---|
713 | END SUBROUTINE cv_flag |
---|
714 | |
---|
715 | ! ================================================================== |
---|
716 | SUBROUTINE cv_thermo(iflag_con) |
---|
717 | IMPLICIT NONE |
---|
718 | |
---|
719 | ! ------------------------------------------------------------- |
---|
720 | ! Set thermodynamical constants for convectL |
---|
721 | ! ------------------------------------------------------------- |
---|
722 | |
---|
723 | include "YOMCST.h" |
---|
724 | include "cvthermo.h" |
---|
725 | |
---|
726 | INTEGER iflag_con |
---|
727 | |
---|
728 | |
---|
729 | ! original set from convect: |
---|
730 | IF (iflag_con==4) THEN |
---|
731 | cpd = 1005.7 |
---|
732 | cpv = 1870.0 |
---|
733 | cl = 4190.0 |
---|
734 | rrv = 461.5 |
---|
735 | rrd = 287.04 |
---|
736 | lv0 = 2.501E6 |
---|
737 | g = 9.8 |
---|
738 | t0 = 273.15 |
---|
739 | grav = g |
---|
740 | ELSE |
---|
741 | |
---|
742 | ! constants consistent with LMDZ: |
---|
743 | cpd = rcpd |
---|
744 | cpv = rcpv |
---|
745 | cl = rcw |
---|
746 | ci = rcs |
---|
747 | rrv = rv |
---|
748 | rrd = rd |
---|
749 | lv0 = rlvtt |
---|
750 | lf0 = rlstt - rlvtt |
---|
751 | g = rg ! not used in convect3 |
---|
752 | ! ori t0 = RTT |
---|
753 | t0 = 273.15 ! convect3 (RTT=273.16) |
---|
754 | ! maf grav= 10. ! implicitely or explicitely used in convect3 |
---|
755 | grav = g ! implicitely or explicitely used in convect3 |
---|
756 | END IF |
---|
757 | |
---|
758 | rowl = 1000.0 !(a quelle variable de YOMCST cela correspond-il?) |
---|
759 | |
---|
760 | clmcpv = cl - cpv |
---|
761 | clmcpd = cl - cpd |
---|
762 | clmci = cl - ci |
---|
763 | cpdmcp = cpd - cpv |
---|
764 | cpvmcpd = cpv - cpd |
---|
765 | cpvmcl = cl - cpv ! for convect3 |
---|
766 | eps = rrd/rrv |
---|
767 | epsi = 1.0/eps |
---|
768 | epsim1 = epsi - 1.0 |
---|
769 | ! ginv=1.0/g |
---|
770 | ginv = 1.0/grav |
---|
771 | hrd = 0.5*rrd |
---|
772 | |
---|
773 | RETURN |
---|
774 | END SUBROUTINE cv_thermo |
---|