source: LMDZ6/branches/LMDZ-QUEST/libf/phylmd/rrtm/eq_regions_mod.F90 @ 5429

Last change on this file since 5429 was 2010, checked in by Laurent Fairhead, 11 years ago

Modifications pour OpenMP


OpenMP modifications

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
File size: 12.0 KB
Line 
1module eq_regions_mod
2!
3!     Purpose.
4!     --------
5!           eq_regions_mod provides the code to perform a high level
6!           partitioning of the surface of a sphere into regions of
7!           equal area and small diameter.
8!           the type.
9!
10!     Background.
11!     -----------
12!     This Fortran version of eq_regions is a much cut down version of the
13!     "Recursive Zonal Equal Area (EQ) Sphere Partitioning Toolbox" of the
14!     same name developed by Paul Leopardi at the University of New South Wales.
15!     This version has been coded specifically for the case of partitioning the
16!     surface of a sphere or S^dim (where dim=2) as denoted in the original code.
17!     Only a subset of the original eq_regions package has been coded to determine
18!     the high level distribution of regions on a sphere, as the detailed
19!     distribution of grid points to each region is left to IFS software.
20!     This is required to take into account the spatial distribution of grid
21!     points in an IFS gaussian grid and provide an optimal (i.e. exact)
22!     distribution of grid points over regions.
23!
24!     The following copyright notice for the eq_regions package is included from
25!     the original MatLab release.
26!
27!     +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28!     + Release 1.10 2005-06-26                                                 +
29!     +                                                                         +
30!     + Copyright (c) 2004, 2005, University of New South Wales                 +
31!     +                                                                         +
32!     + Permission is hereby granted, free of charge, to any person obtaining   +
33!     + a copy of this software and associated documentation files (the         +
34!     + "Software"), to deal in the Software without restriction, including     +
35!     + without limitation the rights to use, copy, modify, merge, publish,     +
36!     + distribute, sublicense, and/or sell copies of the Software, and to      +
37!     + permit persons to whom the Software is furnished to do so, subject to   +
38!     + the following conditions:                                               +
39!     +                                                                         +
40!     + The above copyright notice and this permission notice shall be included +
41!     + in all copies or substantial portions of the Software.                  +
42!     +                                                                         +
43!     + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,         +
44!     + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF      +
45!     + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  +
46!     + IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY    +
47!     + CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,    +
48!     + TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE       +
49!     + SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                  +
50!     +                                                                         +
51!     +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52!
53!     Author.
54!     -------
55!        George Mozdzynski *ECMWF*
56!
57!     Modifications.
58!     --------------
59!        Original : 2006-04-15
60!
61!--------------------------------------------------------------------------------
62
63USE PARKIND1  ,ONLY : JPIM     ,JPRB
64
65IMPLICIT NONE
66
67SAVE
68
69PRIVATE
70
71PUBLIC eq_regions,l_regions_debug,n_regions_ns,n_regions_ew,n_regions,my_region_ns,my_region_ew
72
73real(kind=jprb) pi
74logical :: l_regions_debug=.false.
75integer(kind=jpim) :: n_regions_ns
76integer(kind=jpim) :: n_regions_ew
77integer(kind=jpim) :: my_region_ns
78integer(kind=jpim) :: my_region_ew
79integer(kind=jpim),allocatable :: n_regions(:)
80
81
82!$OMP THREADPRIVATE(l_regions_debug,my_region_ew,my_region_ns,n_regions_ew,n_regions_ns,pi,n_regions)
83
84CONTAINS
85
86subroutine eq_regions(N)
87!
88! eq_regions uses the zonal equal area sphere partitioning algorithm to partition
89! the surface of a sphere into N regions of equal area and small diameter.
90!
91integer(kind=jpim),intent(in) :: N
92integer(kind=jpim) :: n_collars,j
93real(kind=jprb),allocatable :: r_regions(:)
94real(kind=jprb) :: c_polar
95
96pi=2.0_jprb*asin(1.0_jprb)
97
98n_regions(:)=0
99
100if( N == 1 )then
101
102  !
103  ! We have only one region, which must be the whole sphere.
104  !
105  n_regions(1)=1
106  n_regions_ns=1
107
108else
109
110  !
111  ! Given N, determine c_polar
112  ! the colatitude of the North polar spherical cap.
113  !
114  c_polar = polar_colat(N)
115  !
116  ! Given N, determine the ideal angle for spherical collars.
117  ! Based on N, this ideal angle, and c_polar,
118  ! determine n_collars, the number of collars between the polar caps.
119  !
120  n_collars = num_collars(N,c_polar,ideal_collar_angle(N))
121  n_regions_ns=n_collars+2
122  !
123  ! Given N, c_polar and n_collars, determine r_regions,
124  ! a list of the ideal real number of regions in each collar,
125  ! plus the polar caps.
126  ! The number of elements is n_collars+2.
127  ! r_regions[1] is 1.
128  ! r_regions[n_collars+2] is 1.
129  ! The sum of r_regions is N.
130  allocate(r_regions(n_collars+2))
131  call ideal_region_list(N,c_polar,n_collars,r_regions)
132  !
133  ! Given N and r_regions, determine n_regions, a list of the natural number
134  ! of regions in each collar and the polar caps.
135  ! This list is as close as possible to r_regions.
136  ! The number of elements is n_collars+2.
137  ! n_regions[1] is 1.
138  ! n_regions[n_collars+2] is 1.
139  ! The sum of n_regions is N.
140  !
141  call round_to_naturals(N,n_collars,r_regions)
142  deallocate(r_regions)
143  if( N /= sum(n_regions(:)) )then
144    write(*,'("eq_regions: N=",I10," sum(n_regions(:))=",I10)')N,sum(n_regions(:))
145    call abor1('eq_regions: N /= sum(n_regions)')
146  endif
147
148endif
149
150if( l_regions_debug )then
151  write(*,'("eq_regions: N=",I6," n_regions_ns=",I4)') N,n_regions_ns
152  do j=1,n_regions_ns
153    write(*,'("eq_regions: n_regions(",I4,")=",I4)') j,n_regions(j)
154  enddo
155endif
156n_regions_ew=maxval(n_regions(:))
157
158return
159end subroutine eq_regions
160
161function num_collars(N,c_polar,a_ideal) result(num_c)
162!
163!NUM_COLLARS The number of collars between the polar caps
164!
165! Given N, an ideal angle, and c_polar,
166! determine n_collars, the number of collars between the polar caps.
167!
168integer(kind=jpim),intent(in) :: N
169real(kind=jprb),intent(in) :: a_ideal,c_polar
170integer(kind=jpim) :: num_c
171logical enough
172enough = (N > 2) .and. (a_ideal > 0)
173if( enough )then
174  num_c = max(1,nint((pi-2.*c_polar)/a_ideal))
175else
176  num_c = 0
177endif
178return
179end function num_collars
180
181subroutine ideal_region_list(N,c_polar,n_collars,r_regions)
182!
183!IDEAL_REGION_LIST The ideal real number of regions in each zone
184!
185! List the ideal real number of regions in each collar, plus the polar caps.
186!
187! Given N, c_polar and n_collars, determine r_regions, a list of the ideal real
188! number of regions in each collar, plus the polar caps.
189! The number of elements is n_collars+2.
190! r_regions[1] is 1.
191! r_regions[n_collars+2] is 1.
192! The sum of r_regions is N.
193!
194integer(kind=jpim),intent(in) :: N,n_collars
195real(kind=jprb),intent(in) :: c_polar
196real(kind=jprb),intent(out) :: r_regions(n_collars+2)
197integer(kind=jpim) :: collar_n
198real(kind=jprb) :: ideal_region_area,ideal_collar_area
199real(kind=jprb) :: a_fitting
200r_regions(:)=0.0_jprb
201r_regions(1) = 1.0_jprb
202if( n_collars > 0 )then
203  !
204  ! Based on n_collars and c_polar, determine a_fitting,
205  ! the collar angle such that n_collars collars fit between the polar caps.
206  !
207  a_fitting = (pi-2.0_jprb*c_polar)/float(n_collars)
208  ideal_region_area = area_of_ideal_region(N)
209  do collar_n=1,n_collars
210    ideal_collar_area = area_of_collar(c_polar+(collar_n-1)*a_fitting, &
211     & c_polar+collar_n*a_fitting)
212    r_regions(1+collar_n) = ideal_collar_area / ideal_region_area
213  enddo
214endif
215r_regions(2+n_collars) = 1.
216return
217end subroutine ideal_region_list
218
219function ideal_collar_angle(N) result(ideal)
220!
221! IDEAL_COLLAR_ANGLE The ideal angle for spherical collars of an EQ partition
222!
223! IDEAL_COLLAR_ANGLE(N) sets ANGLE to the ideal angle for the
224! spherical collars of an EQ partition of the unit sphere S^2 into N regions.
225!
226integer(kind=jpim),intent(in) :: N
227real(kind=jprb) :: ideal
228ideal = area_of_ideal_region(N)**(0.5_jprb)
229return
230end function ideal_collar_angle
231
232subroutine round_to_naturals(N,n_collars,r_regions)
233!
234! ROUND_TO_NATURALS Round off a given list of numbers of regions
235!
236! Given N and r_regions, determine n_regions, a list of the natural number
237! of regions in each collar and the polar caps.
238! This list is as close as possible to r_regions, using rounding.
239! The number of elements is n_collars+2.
240! n_regions[1] is 1.
241! n_regions[n_collars+2] is 1.
242! The sum of n_regions is N.
243!
244integer(kind=jpim),intent(in) :: N,n_collars
245real(kind=jprb),intent(in) :: r_regions(n_collars+2)
246integer(kind=jpim) :: zone_n
247real(kind=jprb) :: discrepancy
248n_regions(1:n_collars+2) = r_regions(:)
249discrepancy = 0.0_jprb
250do zone_n = 1,n_collars+2
251    n_regions(zone_n) = nint(r_regions(zone_n)+discrepancy);
252    discrepancy = discrepancy+r_regions(zone_n)-float(n_regions(zone_n));
253enddo
254return
255end subroutine round_to_naturals
256
257function polar_colat(N) result(polar_c)
258!
259! Given N, determine the colatitude of the North polar spherical cap.
260!
261integer(kind=jpim),intent(in) :: N
262real(kind=jprb) :: area
263real(kind=jprb) :: polar_c
264if( N == 1 ) polar_c=pi
265if( N == 2 ) polar_c=pi/2.0_jprb
266if( N > 2 )then
267  area=area_of_ideal_region(N)
268  polar_c=sradius_of_cap(area)
269endif
270return
271end function polar_colat
272
273function area_of_ideal_region(N) result(area)
274!
275! AREA_OF_IDEAL_REGION(N) sets AREA to be the area of one of N equal
276! area regions on S^2, that is 1/N times AREA_OF_SPHERE.
277!
278integer(kind=jpim),intent(in) :: N
279real(kind=jprb) :: area_of_sphere
280real(kind=jprb) :: area
281area_of_sphere = (2.0_jprb*pi**1.5_jprb/gamma(1.5_jprb))
282area = area_of_sphere/float(N)
283return
284end function area_of_ideal_region
285
286function sradius_of_cap(area) result(sradius)
287!
288! SRADIUS_OF_CAP(AREA) returns the spherical radius of
289! an S^2 spherical cap of area AREA.
290!
291real(kind=jprb),intent(in) :: area
292real(kind=jprb) :: sradius
293sradius = 2.0_jprb*asin(sqrt(area/pi)/2.0_jprb)
294return
295end function sradius_of_cap
296
297function area_of_collar(a_top, a_bot) result(area)
298!
299! AREA_OF_COLLAR Area of spherical collar
300!
301! AREA_OF_COLLAR(A_TOP, A_BOT) sets AREA to be the area of an S^2 spherical
302! collar specified by A_TOP, A_BOT, where A_TOP is top (smaller) spherical radius,
303! A_BOT is bottom (larger) spherical radius.
304!
305real(kind=jprb),intent(in) :: a_top,a_bot
306real(kind=jprb) area
307area = area_of_cap(a_bot) - area_of_cap(a_top)
308return
309end function area_of_collar
310
311function area_of_cap(s_cap) result(area)
312!
313! AREA_OF_CAP Area of spherical cap
314!
315! AREA_OF_CAP(S_CAP) sets AREA to be the area of an S^2 spherical
316! cap of spherical radius S_CAP.
317!
318real(kind=jprb),intent(in) :: s_cap
319real(kind=jprb) area
320area = 4.0_jprb*pi * sin(s_cap/2.0_jprb)**2
321return
322end function area_of_cap
323
324function gamma(x) result(gamma_res)
325real(kind=jprb),intent(in) :: x
326real(kind=jprb) :: gamma_res
327real(kind=jprb) :: p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13
328real(kind=jprb) :: w,y
329integer(kind=jpim) :: k,n
330parameter (&
331& p0 =   0.999999999999999990e+00_jprb,&
332& p1 =  -0.422784335098466784e+00_jprb,&
333& p2 =  -0.233093736421782878e+00_jprb,&
334& p3 =   0.191091101387638410e+00_jprb,&
335& p4 =  -0.024552490005641278e+00_jprb,&
336& p5 =  -0.017645244547851414e+00_jprb,&
337& p6 =   0.008023273027855346e+00_jprb)
338parameter (&
339& p7 =  -0.000804329819255744e+00_jprb,&
340& p8 =  -0.000360837876648255e+00_jprb,&
341& p9 =   0.000145596568617526e+00_jprb,&
342& p10 = -0.000017545539395205e+00_jprb,&
343& p11 = -0.000002591225267689e+00_jprb,&
344& p12 =  0.000001337767384067e+00_jprb,&
345& p13 = -0.000000199542863674e+00_jprb)
346n = nint(x - 2)
347w = x - (n + 2)
348y = ((((((((((((p13 * w + p12) * w + p11) * w + p10) *&
349&    w + p9) * w + p8) * w + p7) * w + p6) * w + p5) *&
350&    w + p4) * w + p3) * w + p2) * w + p1) * w + p0
351if (n .gt. 0) then
352  w = x - 1
353  do k = 2, n
354    w = w * (x - k)
355  end do
356else
357  w = 1
358  do k = 0, -n - 1
359    y = y * (x + k)
360  end do
361end if
362gamma_res = w / y
363return
364end function gamma
365
366end module eq_regions_mod
Note: See TracBrowser for help on using the repository browser.