1 | !> |
---|
2 | !! |
---|
3 | !! @brief Module MO_SIMPLE_PLUMES: provides anthropogenic aerosol optical properties as a function of lat, lon |
---|
4 | !! height, time, and wavelength |
---|
5 | !! |
---|
6 | !! @remarks |
---|
7 | !! |
---|
8 | !! @author Bjorn Stevens, Stephanie Fiedler and Karsten Peters MPI-Met, Hamburg (v1 release 2016-11-10) |
---|
9 | !! |
---|
10 | !! @change-log: |
---|
11 | !! - 2016-12-05: beta release (BS, SF and KP, MPI-Met) |
---|
12 | !! - 2016-09-28: revised representation of Twomey effect (SF, MPI-Met) |
---|
13 | !! - 2015-09-28: bug fixes (SF, MPI-Met) |
---|
14 | !! - 2016-10-12: revised maximum longitudinal extent of European plume (KP, SF, MPI-Met) |
---|
15 | !! $ID: n/a$ |
---|
16 | !! |
---|
17 | !! @par Origin |
---|
18 | !! Based on code originally developed at the MPI-Met by Karsten Peters, Bjorn Stevens, Stephanie Fiedler |
---|
19 | !! and Stefan Kinne with input from Thorsten Mauritsen and Robert Pincus |
---|
20 | !! |
---|
21 | !! @par Copyright |
---|
22 | !! |
---|
23 | ! |
---|
24 | MODULE MO_SIMPLE_PLUMES |
---|
25 | |
---|
26 | USE netcdf |
---|
27 | |
---|
28 | IMPLICIT NONE |
---|
29 | |
---|
30 | INTEGER, PARAMETER :: & |
---|
31 | nplumes = 9 ,& !< Number of plumes |
---|
32 | nfeatures = 2 ,& !< Number of features per plume |
---|
33 | ntimes = 52 ,& !< Number of times resolved per year (52 => weekly resolution) |
---|
34 | nyears = 251 !< Number of years of available forcing |
---|
35 | |
---|
36 | LOGICAL, SAVE :: & |
---|
37 | sp_initialized = .FALSE. !< parameter determining whether input needs to be read |
---|
38 | !$OMP THREADPRIVATE(sp_initialized) |
---|
39 | |
---|
40 | REAL :: & |
---|
41 | plume_lat (nplumes) ,& !< latitude of plume center (AOD maximum) |
---|
42 | plume_lon (nplumes) ,& !< longitude of plume center (AOD maximum) |
---|
43 | beta_a (nplumes) ,& !< parameter a for beta function vertical profile |
---|
44 | beta_b (nplumes) ,& !< parameter b for beta function vertical profile |
---|
45 | aod_spmx (nplumes) ,& !< anthropogenic AOD maximum at 550 for plumes |
---|
46 | aod_fmbg (nplumes) ,& !< anthropogenic AOD at 550 for fine-mode natural background (idealized to mimic Twomey effect) |
---|
47 | asy550 (nplumes) ,& !< asymmetry parameter at 550nm for plume |
---|
48 | ssa550 (nplumes) ,& !< single scattering albedo at 550nm for plume |
---|
49 | angstrom (nplumes) ,& !< Angstrom parameter for plume |
---|
50 | sig_lon_E (nfeatures,nplumes) ,& !< Eastward extent of plume feature |
---|
51 | sig_lon_W (nfeatures,nplumes) ,& !< Westward extent of plume feature |
---|
52 | sig_lat_E (nfeatures,nplumes) ,& !< Southward extent of plume feature |
---|
53 | sig_lat_W (nfeatures,nplumes) ,& !< Northward extent of plume feature |
---|
54 | theta (nfeatures,nplumes) ,& !< Rotation angle of plume feature |
---|
55 | ftr_weight (nfeatures,nplumes) ,& !< Feature weights |
---|
56 | time_weight (nfeatures,nplumes) ,& !< Time weights |
---|
57 | time_weight_bg (nfeatures,nplumes) ,& !< as time_weight but for natural background in Twomey effect |
---|
58 | year_weight (nyears,nplumes) ,& !< Yearly weight for plume |
---|
59 | ann_cycle (nfeatures,ntimes,nplumes) !< annual cycle for plume feature |
---|
60 | !$OMP THREADPRIVATE(plume_lat,plume_lon,beta_a,beta_b,aod_spmx,aod_fmbg,asy550,ssa550,angstrom) |
---|
61 | !$OMP THREADPRIVATE(sig_lon_E,sig_lon_W,sig_lat_E,sig_lat_W,theta,ftr_weight,year_weight,ann_cycle) |
---|
62 | |
---|
63 | PUBLIC sp_aop_profile |
---|
64 | |
---|
65 | CONTAINS |
---|
66 | ! |
---|
67 | ! ------------------------------------------------------------------------------------------------------------------------ |
---|
68 | ! SP_SETUP: This subroutine should be called at initialization to read the netcdf data that describes the simple plume |
---|
69 | ! climatology. The information needs to be either read by each processor or distributed to processors. |
---|
70 | ! |
---|
71 | SUBROUTINE sp_setup |
---|
72 | ! |
---|
73 | USE mod_phys_lmdz_mpi_data, ONLY: is_mpi_root |
---|
74 | USE mod_phys_lmdz_omp_data, ONLY: is_omp_root |
---|
75 | USE mod_phys_lmdz_transfert_para, ONLY: bcast |
---|
76 | ! |
---|
77 | ! ---------- |
---|
78 | ! |
---|
79 | INTEGER :: iret, ncid, DimID, VarID, xdmy |
---|
80 | ! |
---|
81 | ! ---------- |
---|
82 | !--only one processor reads the input data |
---|
83 | IF (is_mpi_root.AND.is_omp_root) THEN |
---|
84 | ! |
---|
85 | iret = nf90_open("MACv2.0-SP_v1.nc", NF90_NOWRITE, ncid) |
---|
86 | IF (iret /= NF90_NOERR) STOP 'NetCDF File not opened' |
---|
87 | ! |
---|
88 | ! read dimensions and make sure file conforms to expected size |
---|
89 | ! |
---|
90 | iret = nf90_inq_dimid(ncid, "plume_number" , DimId) |
---|
91 | iret = nf90_inquire_dimension(ncid, DimId, len = xdmy) |
---|
92 | IF (xdmy /= nplumes) STOP 'NetCDF improperly dimensioned -- plume_number' |
---|
93 | ! |
---|
94 | iret = nf90_inq_dimid(ncid, "plume_feature", DimId) |
---|
95 | iret = nf90_inquire_dimension(ncid, DimId, len = xdmy) |
---|
96 | IF (xdmy /= nfeatures) STOP 'NetCDF improperly dimensioned -- plume_feature' |
---|
97 | ! |
---|
98 | iret = nf90_inq_dimid(ncid, "year_fr" , DimId) |
---|
99 | iret = nf90_inquire_dimension(ncid, DimID, len = xdmy) |
---|
100 | IF (xdmy /= ntimes) STOP 'NetCDF improperly dimensioned -- year_fr' |
---|
101 | ! |
---|
102 | iret = nf90_inq_dimid(ncid, "years" , DimId) |
---|
103 | iret = nf90_inquire_dimension(ncid, DimID, len = xdmy) |
---|
104 | IF (xdmy /= nyears) STOP 'NetCDF improperly dimensioned -- years' |
---|
105 | ! |
---|
106 | ! read variables that define the simple plume climatology |
---|
107 | ! |
---|
108 | iret = nf90_inq_varid(ncid, "plume_lat", VarId) |
---|
109 | iret = nf90_get_var(ncid, VarID, plume_lat(:), start=(/1/),count=(/nplumes/)) |
---|
110 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading plume_lat' |
---|
111 | iret = nf90_inq_varid(ncid, "plume_lon", VarId) |
---|
112 | iret = nf90_get_var(ncid, VarID, plume_lon(:), start=(/1/),count=(/nplumes/)) |
---|
113 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading plume_lon' |
---|
114 | iret = nf90_inq_varid(ncid, "beta_a" , VarId) |
---|
115 | iret = nf90_get_var(ncid, VarID, beta_a(:) , start=(/1/),count=(/nplumes/)) |
---|
116 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading beta_a' |
---|
117 | iret = nf90_inq_varid(ncid, "beta_b" , VarId) |
---|
118 | iret = nf90_get_var(ncid, VarID, beta_b(:) , start=(/1/),count=(/nplumes/)) |
---|
119 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading beta_b' |
---|
120 | iret = nf90_inq_varid(ncid, "aod_spmx" , VarId) |
---|
121 | iret = nf90_get_var(ncid, VarID, aod_spmx(:) , start=(/1/),count=(/nplumes/)) |
---|
122 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading aod_spmx' |
---|
123 | iret = nf90_inq_varid(ncid, "aod_fmbg" , VarId) |
---|
124 | iret = nf90_get_var(ncid, VarID, aod_fmbg(:) , start=(/1/),count=(/nplumes/)) |
---|
125 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading aod_fmbg' |
---|
126 | iret = nf90_inq_varid(ncid, "ssa550" , VarId) |
---|
127 | iret = nf90_get_var(ncid, VarID, ssa550(:) , start=(/1/),count=(/nplumes/)) |
---|
128 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading ssa550' |
---|
129 | iret = nf90_inq_varid(ncid, "asy550" , VarId) |
---|
130 | iret = nf90_get_var(ncid, VarID, asy550(:) , start=(/1/),count=(/nplumes/)) |
---|
131 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading asy550' |
---|
132 | iret = nf90_inq_varid(ncid, "angstrom" , VarId) |
---|
133 | iret = nf90_get_var(ncid, VarID, angstrom(:), start=(/1/),count=(/nplumes/)) |
---|
134 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading angstrom' |
---|
135 | ! |
---|
136 | iret = nf90_inq_varid(ncid, "sig_lat_W" , VarId) |
---|
137 | iret = nf90_get_var(ncid, VarID, sig_lat_W(:,:) , start=(/1,1/),count=(/nfeatures,nplumes/)) |
---|
138 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading sig_lat_W' |
---|
139 | iret = nf90_inq_varid(ncid, "sig_lat_E" , VarId) |
---|
140 | iret = nf90_get_var(ncid, VarID, sig_lat_E(:,:) , start=(/1,1/),count=(/nfeatures,nplumes/)) |
---|
141 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading sig_lat_E' |
---|
142 | iret = nf90_inq_varid(ncid, "sig_lon_E" , VarId) |
---|
143 | iret = nf90_get_var(ncid, VarID, sig_lon_E(:,:) , start=(/1,1/),count=(/nfeatures,nplumes/)) |
---|
144 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading sig_lon_E' |
---|
145 | iret = nf90_inq_varid(ncid, "sig_lon_W" , VarId) |
---|
146 | iret = nf90_get_var(ncid, VarID, sig_lon_W(:,:) , start=(/1,1/),count=(/nfeatures,nplumes/)) |
---|
147 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading sig_lon_W' |
---|
148 | iret = nf90_inq_varid(ncid, "theta" , VarId) |
---|
149 | iret = nf90_get_var(ncid, VarID, theta(:,:) , start=(/1,1/),count=(/nfeatures,nplumes/)) |
---|
150 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading theta' |
---|
151 | iret = nf90_inq_varid(ncid, "ftr_weight" , VarId) |
---|
152 | iret = nf90_get_var(ncid, VarID, ftr_weight(:,:) , start=(/1,1/),count=(/nfeatures,nplumes/)) |
---|
153 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading plume_lat' |
---|
154 | iret = nf90_inq_varid(ncid, "year_weight" , VarId) |
---|
155 | iret = nf90_get_var(ncid, VarID, year_weight(:,:) , start=(/1,1/),count=(/nyears,nplumes /)) |
---|
156 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading year_weight' |
---|
157 | iret = nf90_inq_varid(ncid, "ann_cycle" , VarId) |
---|
158 | iret = nf90_get_var(ncid, VarID, ann_cycle(:,:,:) , start=(/1,1,1/),count=(/nfeatures,ntimes,nplumes/)) |
---|
159 | IF (iret /= NF90_NOERR) STOP 'NetCDF Error reading ann_cycle' |
---|
160 | ! |
---|
161 | iret = nf90_close(ncid) |
---|
162 | ! |
---|
163 | ENDIF !--root processor |
---|
164 | ! |
---|
165 | CALL bcast(plume_lat) |
---|
166 | CALL bcast(plume_lon) |
---|
167 | CALL bcast(beta_a) |
---|
168 | CALL bcast(beta_b) |
---|
169 | CALL bcast(aod_spmx) |
---|
170 | CALL bcast(aod_fmbg) |
---|
171 | CALL bcast(asy550) |
---|
172 | CALL bcast(ssa550) |
---|
173 | CALL bcast(angstrom) |
---|
174 | CALL bcast(sig_lon_E) |
---|
175 | CALL bcast(sig_lon_W) |
---|
176 | CALL bcast(sig_lat_E) |
---|
177 | CALL bcast(sig_lat_W) |
---|
178 | CALL bcast(theta) |
---|
179 | CALL bcast(ftr_weight) |
---|
180 | CALL bcast(year_weight) |
---|
181 | CALL bcast(ann_cycle) |
---|
182 | ! |
---|
183 | sp_initialized = .TRUE. |
---|
184 | ! |
---|
185 | RETURN |
---|
186 | ! |
---|
187 | END SUBROUTINE sp_setup |
---|
188 | ! |
---|
189 | ! ------------------------------------------------------------------------------------------------------------------------ |
---|
190 | ! SET_TIME_WEIGHT: The simple plume model assumes that meteorology constrains plume shape and that only source strength |
---|
191 | ! influences the amplitude of a plume associated with a given source region. This routine retrieves the temporal weights |
---|
192 | ! for the plumes. Each plume feature has its own temporal weights which varies yearly. The annual cycle is indexed by |
---|
193 | ! week in the year and superimposed on the yearly mean value of the weight. |
---|
194 | ! |
---|
195 | SUBROUTINE set_time_weight(year_fr) |
---|
196 | ! |
---|
197 | ! ---------- |
---|
198 | ! |
---|
199 | REAL, INTENT(IN) :: & |
---|
200 | year_fr !< Fractional Year (1850.0 - 2100.99) |
---|
201 | |
---|
202 | INTEGER :: & |
---|
203 | iyear ,& !< Integer year values between 1 and 156 (1850-2100) |
---|
204 | iweek ,& !< Integer index (between 1 and ntimes); for ntimes=52 this corresponds to weeks (roughly) |
---|
205 | iplume ! plume number |
---|
206 | ! |
---|
207 | ! ---------- |
---|
208 | ! |
---|
209 | iyear = FLOOR(year_fr) - 1849 |
---|
210 | iweek = FLOOR((year_fr - FLOOR(year_fr)) * ntimes) + 1 |
---|
211 | |
---|
212 | IF ((iweek > ntimes) .OR. (iweek < 1) .OR. (iyear > nyears) .OR. (iyear < 1)) THEN |
---|
213 | CALL abort_physic('set_time_weight','Time out of bounds') |
---|
214 | ENDIF |
---|
215 | |
---|
216 | DO iplume=1,nplumes |
---|
217 | time_weight(1,iplume) = year_weight(iyear,iplume) * ann_cycle(1,iweek,iplume) |
---|
218 | time_weight(2,iplume) = year_weight(iyear,iplume) * ann_cycle(2,iweek,iplume) |
---|
219 | time_weight_bg(1,iplume) = ann_cycle(1,iweek,iplume) |
---|
220 | time_weight_bg(2,iplume) = ann_cycle(2,iweek,iplume) |
---|
221 | END DO |
---|
222 | |
---|
223 | RETURN |
---|
224 | END SUBROUTINE set_time_weight |
---|
225 | ! |
---|
226 | ! ------------------------------------------------------------------------------------------------------------------------ |
---|
227 | ! SP_AOP_PROFILE: This subroutine calculates the simple plume aerosol and cloud active optical properties based on the |
---|
228 | ! the simple plume fit to the MPI Aerosol Climatology (Version 2). It sums over nplumes to provide a profile of aerosol |
---|
229 | ! optical properties on a host models vertical grid. |
---|
230 | ! |
---|
231 | SUBROUTINE sp_aop_profile ( & |
---|
232 | nlevels ,ncol ,lambda ,oro ,lon ,lat , & |
---|
233 | year_fr ,z ,dz ,dNovrN ,aod_prof ,ssa_prof , & |
---|
234 | asy_prof ) |
---|
235 | ! |
---|
236 | ! ---------- |
---|
237 | ! |
---|
238 | INTEGER, INTENT(IN) :: & |
---|
239 | nlevels, & !< number of levels |
---|
240 | ncol !< number of columns |
---|
241 | |
---|
242 | REAL, INTENT(IN) :: & |
---|
243 | lambda, & !< wavelength |
---|
244 | year_fr, & !< Fractional Year (1903.0 is the 0Z on the first of January 1903, Gregorian) |
---|
245 | oro(ncol), & !< orographic height (m) |
---|
246 | lon(ncol), & !< longitude |
---|
247 | lat(ncol), & !< latitude |
---|
248 | z (ncol,nlevels), & !< height above sea-level (m) |
---|
249 | dz(ncol,nlevels) !< level thickness (difference between half levels) (m) |
---|
250 | |
---|
251 | REAL, INTENT(OUT) :: & |
---|
252 | dNovrN(ncol) , & !< anthropogenic increase in cloud drop number concentration (factor) |
---|
253 | aod_prof(ncol,nlevels) , & !< profile of aerosol optical depth |
---|
254 | ssa_prof(ncol,nlevels) , & !< profile of single scattering albedo |
---|
255 | asy_prof(ncol,nlevels) !< profile of asymmetry parameter |
---|
256 | |
---|
257 | INTEGER :: iplume, icol, k |
---|
258 | |
---|
259 | REAL :: & |
---|
260 | eta(ncol,nlevels), & !< normalized height (by 15 km) |
---|
261 | z_beta(ncol,nlevels), & !< profile for scaling column optical depth |
---|
262 | prof(ncol,nlevels), & !< scaled profile (by beta function) |
---|
263 | beta_sum(ncol), & !< vertical sum of beta function |
---|
264 | ssa(ncol), & !< single scattering albedo |
---|
265 | asy(ncol), & !< asymmetry parameter |
---|
266 | cw_an(ncol), & !< column weight for simple plume (anthropogenic) AOD at 550 nm |
---|
267 | cw_bg(ncol), & !< column weight for fine-mode natural background AOD at 550 nm |
---|
268 | caod_sp(ncol), & !< column simple plume anthropogenic AOD at 550 nm |
---|
269 | caod_bg(ncol), & !< column fine-mode natural background AOD at 550 nm |
---|
270 | a_plume1, & !< gaussian longitude factor for feature 1 |
---|
271 | a_plume2, & !< gaussian longitude factor for feature 2 |
---|
272 | b_plume1, & !< gaussian latitude factor for feature 1 |
---|
273 | b_plume2, & !< gaussian latitude factor for feature 2 |
---|
274 | delta_lat, & !< latitude offset |
---|
275 | delta_lon, & !< longitude offset |
---|
276 | delta_lon_t, & !< threshold for maximum longitudinal plume extent used in transition from 360 to 0 degrees |
---|
277 | lon1, & !< rotated longitude for feature 1 |
---|
278 | lat1, & !< rotated latitude for feature 2 |
---|
279 | lon2, & !< rotated longitude for feature 1 |
---|
280 | lat2, & !< rotated latitude for feature 2 |
---|
281 | f1, & !< contribution from feature 1 |
---|
282 | f2, & !< contribution from feature 2 |
---|
283 | f3, & !< contribution from feature 1 in natural background of Twomey effect |
---|
284 | f4, & !< contribution from feature 2 in natural background of Twomey effect |
---|
285 | aod_550, & !< aerosol optical depth at 550nm |
---|
286 | aod_lmd, & !< aerosol optical depth at input wavelength |
---|
287 | lfactor !< factor to compute wavelength dependence of optical properties |
---|
288 | ! |
---|
289 | ! ---------- |
---|
290 | ! |
---|
291 | ! initialize input data (by calling setup at first instance) |
---|
292 | ! |
---|
293 | IF (.NOT.sp_initialized) CALL sp_setup |
---|
294 | ! |
---|
295 | ! get time weights |
---|
296 | ! |
---|
297 | CALL set_time_weight(year_fr) |
---|
298 | ! |
---|
299 | ! initialize variables, including output |
---|
300 | ! |
---|
301 | DO k=1,nlevels |
---|
302 | DO icol=1,ncol |
---|
303 | aod_prof(icol,k) = 0.0 |
---|
304 | ssa_prof(icol,k) = 0.0 |
---|
305 | asy_prof(icol,k) = 0.0 |
---|
306 | z_beta(icol,k) = MERGE(1.0, 0.0, z(icol,k) >= oro(icol)) |
---|
307 | eta(icol,k) = MAX(0.0,MIN(1.0,z(icol,k)/15000.)) |
---|
308 | END DO |
---|
309 | END DO |
---|
310 | DO icol=1,ncol |
---|
311 | dNovrN(icol) = 1.0 |
---|
312 | caod_sp(icol) = 0.0 |
---|
313 | caod_bg(icol) = 0.02 |
---|
314 | END DO |
---|
315 | ! |
---|
316 | ! sum contribution from plumes to construct composite profiles of aerosol optical properties |
---|
317 | ! |
---|
318 | DO iplume=1,nplumes |
---|
319 | ! |
---|
320 | ! calculate vertical distribution function from parameters of beta distribution |
---|
321 | ! |
---|
322 | DO icol=1,ncol |
---|
323 | beta_sum(icol) = 0. |
---|
324 | END DO |
---|
325 | DO k=1,nlevels |
---|
326 | DO icol=1,ncol |
---|
327 | prof(icol,k) = (eta(icol,k)**(beta_a(iplume)-1.) * (1.-eta(icol,k))**(beta_b(iplume)-1.)) * dz(icol,k) |
---|
328 | beta_sum(icol) = beta_sum(icol) + prof(icol,k) |
---|
329 | END DO |
---|
330 | END DO |
---|
331 | DO k=1,nlevels |
---|
332 | DO icol=1,ncol |
---|
333 | prof(icol,k) = ( prof(icol,k) / beta_sum(icol) ) * z_beta(icol,k) |
---|
334 | END DO |
---|
335 | END DO |
---|
336 | ! |
---|
337 | ! calculate plume weights |
---|
338 | ! |
---|
339 | DO icol=1,ncol |
---|
340 | ! |
---|
341 | ! get plume-center relative spatial parameters for specifying amplitude of plume at given lat and lon |
---|
342 | ! |
---|
343 | delta_lat = lat(icol) - plume_lat(iplume) |
---|
344 | delta_lon = lon(icol) - plume_lon(iplume) |
---|
345 | delta_lon_t = MERGE (260., 180., iplume == 1) |
---|
346 | delta_lon = MERGE ( delta_lon-SIGN(360.,delta_lon) , delta_lon , ABS(delta_lon) > delta_lon_t) |
---|
347 | |
---|
348 | a_plume1 = 0.5 / (MERGE(sig_lon_E(1,iplume), sig_lon_W(1,iplume), delta_lon > 0)**2) |
---|
349 | b_plume1 = 0.5 / (MERGE(sig_lat_E(1,iplume), sig_lat_W(1,iplume), delta_lon > 0)**2) |
---|
350 | a_plume2 = 0.5 / (MERGE(sig_lon_E(2,iplume), sig_lon_W(2,iplume), delta_lon > 0)**2) |
---|
351 | b_plume2 = 0.5 / (MERGE(sig_lat_E(2,iplume), sig_lat_W(2,iplume), delta_lon > 0)**2) |
---|
352 | ! |
---|
353 | ! adjust for a plume specific rotation which helps match plume state to climatology. |
---|
354 | ! |
---|
355 | lon1 = COS(theta(1,iplume))*(delta_lon) + SIN(theta(1,iplume))*(delta_lat) |
---|
356 | lat1 = - SIN(theta(1,iplume))*(delta_lon) + COS(theta(1,iplume))*(delta_lat) |
---|
357 | lon2 = COS(theta(2,iplume))*(delta_lon) + SIN(theta(2,iplume))*(delta_lat) |
---|
358 | lat2 = - SIN(theta(2,iplume))*(delta_lon) + COS(theta(2,iplume))*(delta_lat) |
---|
359 | ! |
---|
360 | ! calculate contribution to plume from its different features, to get a column weight for the anthropogenic |
---|
361 | ! (cw_an) and the fine-mode natural background aerosol (cw_bg) |
---|
362 | ! |
---|
363 | f1 = time_weight(1,iplume) * ftr_weight(1,iplume) * EXP(-1.* (a_plume1 * ((lon1)**2) + (b_plume1 * ((lat1)**2)))) |
---|
364 | f2 = time_weight(2,iplume) * ftr_weight(2,iplume) * EXP(-1.* (a_plume2 * ((lon2)**2) + (b_plume2 * ((lat2)**2)))) |
---|
365 | f3 = time_weight_bg(1,iplume) * ftr_weight(1,iplume) * EXP(-1.* (a_plume1 * ((lon1)**2) + (b_plume1 * ((lat1)**2)))) |
---|
366 | f4 = time_weight_bg(2,iplume) * ftr_weight(2,iplume) * EXP(-1.* (a_plume2 * ((lon2)**2) + (b_plume2 * ((lat2)**2)))) |
---|
367 | |
---|
368 | cw_an(icol) = f1 * aod_spmx(iplume) + f2 * aod_spmx(iplume) |
---|
369 | cw_bg(icol) = f3 * aod_fmbg(iplume) + f4 * aod_fmbg(iplume) |
---|
370 | ! |
---|
371 | ! calculate wavelength-dependent scattering properties |
---|
372 | ! |
---|
373 | lfactor = MIN(1.0,700.0/lambda) |
---|
374 | ssa(icol) = (ssa550(iplume) * lfactor**4) / ((ssa550(iplume) * lfactor**4) + ((1-ssa550(iplume)) * lfactor)) |
---|
375 | asy(icol) = asy550(iplume) * SQRT(lfactor) |
---|
376 | END DO |
---|
377 | ! |
---|
378 | ! distribute plume optical properties across its vertical profile weighting by optical depth and scaling for |
---|
379 | ! wavelength using the angstrom parameter. |
---|
380 | ! |
---|
381 | lfactor = EXP(-angstrom(iplume) * LOG(lambda/550.0)) |
---|
382 | DO k=1,nlevels |
---|
383 | DO icol = 1,ncol |
---|
384 | aod_550 = prof(icol,k) * cw_an(icol) |
---|
385 | aod_lmd = aod_550 * lfactor |
---|
386 | caod_sp(icol) = caod_sp(icol) + aod_550 |
---|
387 | caod_bg(icol) = caod_bg(icol) + prof(icol,k) * cw_bg(icol) |
---|
388 | asy_prof(icol,k) = asy_prof(icol,k) + aod_lmd * ssa(icol) * asy(icol) |
---|
389 | ssa_prof(icol,k) = ssa_prof(icol,k) + aod_lmd * ssa(icol) |
---|
390 | aod_prof(icol,k) = aod_prof(icol,k) + aod_lmd |
---|
391 | END DO |
---|
392 | END DO |
---|
393 | END DO |
---|
394 | ! |
---|
395 | ! complete optical depth weighting |
---|
396 | ! |
---|
397 | DO k=1,nlevels |
---|
398 | DO icol = 1,ncol |
---|
399 | asy_prof(icol,k) = MERGE(asy_prof(icol,k)/ssa_prof(icol,k), 0.0, ssa_prof(icol,k) > TINY(1.)) |
---|
400 | ssa_prof(icol,k) = MERGE(ssa_prof(icol,k)/aod_prof(icol,k), 1.0, aod_prof(icol,k) > TINY(1.)) |
---|
401 | END DO |
---|
402 | END DO |
---|
403 | ! |
---|
404 | ! calculate effective radius normalization (divisor) factor |
---|
405 | ! |
---|
406 | DO icol=1,ncol |
---|
407 | dNovrN(icol) = LOG((1000.0 * (caod_sp(icol) + caod_bg(icol))) + 1.0)/LOG((1000.0 * caod_bg(icol)) + 1.0) |
---|
408 | END DO |
---|
409 | |
---|
410 | RETURN |
---|
411 | END SUBROUTINE sp_aop_profile |
---|
412 | |
---|
413 | END MODULE MO_SIMPLE_PLUMES |
---|