1 | ! radiation_tripleclouds_lw.F90 - Longwave "Tripleclouds" solver |
---|
2 | ! |
---|
3 | ! (C) Copyright 2016- ECMWF. |
---|
4 | ! |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | ! |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | ! |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! |
---|
15 | ! Modifications |
---|
16 | ! 2017-04-28 R. Hogan Receive emission/albedo rather than planck/emissivity |
---|
17 | ! 2017-04-22 R. Hogan Store surface fluxes at all g-points |
---|
18 | ! 2017-10-23 R. Hogan Renamed single-character variables |
---|
19 | ! 2018-10-08 R. Hogan Call calc_region_properties |
---|
20 | |
---|
21 | module radiation_tripleclouds_lw |
---|
22 | |
---|
23 | public |
---|
24 | |
---|
25 | contains |
---|
26 | ! Small routine for scaling cloud optical depth in the cloudy |
---|
27 | ! regions |
---|
28 | #include "radiation_optical_depth_scaling.h" |
---|
29 | |
---|
30 | ! This module contains just one subroutine, the longwave |
---|
31 | ! "Tripleclouds" solver in which cloud inhomogeneity is treated by |
---|
32 | ! dividing each model level into three regions, one clear and two |
---|
33 | ! cloudy (with differing optical depth). This approach was described |
---|
34 | ! by Shonk and Hogan (2008). |
---|
35 | |
---|
36 | subroutine solver_tripleclouds_lw(nlev,istartcol,iendcol, & |
---|
37 | & config, cloud, & |
---|
38 | & od, ssa, g, od_cloud, ssa_cloud, g_cloud, planck_hl, & |
---|
39 | & emission, albedo, & |
---|
40 | & flux) |
---|
41 | |
---|
42 | use parkind1, only : jprb |
---|
43 | use yomhook, only : lhook, dr_hook |
---|
44 | |
---|
45 | ! use radiation_io, only : nulout |
---|
46 | use radiation_config, only : config_type, IPdfShapeGamma |
---|
47 | use radiation_cloud, only : cloud_type |
---|
48 | use radiation_regions, only : calc_region_properties |
---|
49 | use radiation_overlap, only : calc_overlap_matrices |
---|
50 | use radiation_flux, only : flux_type, & |
---|
51 | & indexed_sum, add_indexed_sum |
---|
52 | use radiation_matrix, only : singlemat_x_vec |
---|
53 | use radiation_two_stream, only : calc_two_stream_gammas_lw, & |
---|
54 | & calc_reflectance_transmittance_lw, & |
---|
55 | & calc_no_scattering_transmittance_lw |
---|
56 | use radiation_lw_derivatives, only : calc_lw_derivatives_region |
---|
57 | |
---|
58 | implicit none |
---|
59 | |
---|
60 | ! Inputs |
---|
61 | integer, intent(in) :: nlev ! number of model levels |
---|
62 | integer, intent(in) :: istartcol, iendcol ! range of columns to process |
---|
63 | type(config_type), intent(in) :: config |
---|
64 | type(cloud_type), intent(in) :: cloud |
---|
65 | |
---|
66 | ! Gas and aerosol optical depth of each layer at each longwave |
---|
67 | ! g-point |
---|
68 | real(jprb), intent(in), dimension(config%n_g_lw,nlev,istartcol:iendcol) :: od |
---|
69 | |
---|
70 | ! Gas and aerosol single-scattering albedo and asymmetry factor, |
---|
71 | ! only if longwave scattering by aerosols is to be represented |
---|
72 | real(jprb), intent(in), & |
---|
73 | & dimension(config%n_g_lw_if_scattering,nlev,istartcol:iendcol) :: ssa, g |
---|
74 | |
---|
75 | ! Cloud and precipitation optical depth of each layer in each |
---|
76 | ! longwave band |
---|
77 | real(jprb), intent(in) :: od_cloud(config%n_bands_lw,nlev,istartcol:iendcol) |
---|
78 | |
---|
79 | ! Cloud and precipitation single-scattering albedo and asymmetry |
---|
80 | ! factor, only if longwave scattering by clouds is to be |
---|
81 | ! represented |
---|
82 | real(jprb), intent(in), dimension(config%n_bands_lw_if_scattering, & |
---|
83 | & nlev,istartcol:iendcol) :: ssa_cloud, g_cloud |
---|
84 | |
---|
85 | ! Planck function (emitted flux from a black body) at half levels |
---|
86 | ! and at the surface at each longwave g-point |
---|
87 | real(jprb), intent(in), dimension(config%n_g_lw,nlev+1,istartcol:iendcol) :: planck_hl |
---|
88 | |
---|
89 | ! Emission (Planck*emissivity) and albedo (1-emissivity) at the |
---|
90 | ! surface at each longwave g-point |
---|
91 | real(jprb), intent(in), dimension(config%n_g_lw, istartcol:iendcol) :: emission, albedo |
---|
92 | |
---|
93 | ! Optical depth, single scattering albedo and asymmetry factor in |
---|
94 | ! each g-point including gas, aerosol and clouds |
---|
95 | real(jprb), dimension(config%n_g_lw) :: od_total, ssa_total, g_total |
---|
96 | |
---|
97 | ! Modified optical depth after Tripleclouds scaling to represent |
---|
98 | ! cloud inhomogeneity |
---|
99 | real(jprb), dimension(config%n_g_lw) :: od_cloud_new |
---|
100 | |
---|
101 | ! Output |
---|
102 | type(flux_type), intent(inout):: flux |
---|
103 | |
---|
104 | ! Local constants |
---|
105 | integer, parameter :: nregions = 3 |
---|
106 | |
---|
107 | ! In a clear-sky layer this will be 1, otherwise equal to nregions |
---|
108 | integer :: nreg |
---|
109 | |
---|
110 | ! Local variables |
---|
111 | |
---|
112 | ! The area fractions of each region |
---|
113 | real(jprb) :: region_fracs(1:nregions,nlev,istartcol:iendcol) |
---|
114 | |
---|
115 | ! The scaling used for the optical depth in the cloudy regions |
---|
116 | real(jprb) :: od_scaling(2:nregions,nlev,istartcol:iendcol) |
---|
117 | |
---|
118 | ! Directional overlap matrices defined at all layer interfaces |
---|
119 | ! including top-of-atmosphere and the surface |
---|
120 | real(jprb), dimension(nregions,nregions,nlev+1, & |
---|
121 | & istartcol:iendcol) :: u_matrix, v_matrix |
---|
122 | |
---|
123 | ! Two-stream variables |
---|
124 | real(jprb), dimension(config%n_g_lw) :: gamma1, gamma2 |
---|
125 | |
---|
126 | ! Diffuse reflection and transmission matrices of each layer |
---|
127 | real(jprb), dimension(config%n_g_lw, nregions, nlev) :: reflectance, transmittance |
---|
128 | |
---|
129 | ! Emission by a layer into the upwelling or downwelling diffuse |
---|
130 | ! streams |
---|
131 | real(jprb), dimension(config%n_g_lw, nregions, nlev) & |
---|
132 | & :: Sup, Sdn |
---|
133 | |
---|
134 | ! ...clear-sky equivalent |
---|
135 | real(jprb), dimension(config%n_g_lw, nlev) & |
---|
136 | & :: Sup_clear, Sdn_clear |
---|
137 | |
---|
138 | ! Total albedo of the atmosphere/surface just above a layer |
---|
139 | ! interface with respect to downwelling diffuse radiation at that |
---|
140 | ! interface, where level index = 1 corresponds to the |
---|
141 | ! top-of-atmosphere |
---|
142 | real(jprb), dimension(config%n_g_lw, nregions, nlev+1) :: total_albedo |
---|
143 | |
---|
144 | ! Upwelling radiation just above a layer interface due to emission |
---|
145 | ! below that interface, where level index = 1 corresponds to the |
---|
146 | ! top-of-atmosphere |
---|
147 | real(jprb), dimension(config%n_g_lw, nregions, nlev+1) :: total_source |
---|
148 | |
---|
149 | ! ...equivalent values for clear-skies |
---|
150 | real(jprb), dimension(config%n_g_lw, nlev+1) :: total_albedo_clear, total_source_clear |
---|
151 | |
---|
152 | ! Total albedo and source of the atmosphere just below a layer interface |
---|
153 | real(jprb), dimension(config%n_g_lw, nregions) & |
---|
154 | & :: total_albedo_below, total_source_below |
---|
155 | |
---|
156 | ! Downwelling flux below and above an interface between |
---|
157 | ! layers into a plane perpendicular to the direction of the sun |
---|
158 | real(jprb), dimension(config%n_g_lw, nregions) & |
---|
159 | & :: flux_dn, flux_dn_below, flux_up |
---|
160 | |
---|
161 | ! ...clear-sky equivalent (no distinction between "above/below") |
---|
162 | real(jprb), dimension(config%n_g_lw) & |
---|
163 | & :: flux_dn_clear, flux_up_clear |
---|
164 | |
---|
165 | ! Clear-sky equivalent, but actually its reciprocal to replace |
---|
166 | ! some divisions by multiplications |
---|
167 | real(jprb), dimension(config%n_g_lw, nregions) :: inv_denom |
---|
168 | |
---|
169 | ! Identify clear-sky layers, with pseudo layers for outer space |
---|
170 | ! and below the ground, both treated as single-region clear skies |
---|
171 | logical :: is_clear_sky_layer(0:nlev+1) |
---|
172 | |
---|
173 | integer :: jcol, jlev, jg, jreg, jreg2, ng |
---|
174 | |
---|
175 | real(jprb) :: hook_handle |
---|
176 | |
---|
177 | if (lhook) call dr_hook('radiation_tripleclouds_lw:solver_tripleclouds_lw',0,hook_handle) |
---|
178 | |
---|
179 | ! -------------------------------------------------------- |
---|
180 | ! Section 1: Prepare general variables and arrays |
---|
181 | ! -------------------------------------------------------- |
---|
182 | ! Copy array dimensions to local variables for convenience |
---|
183 | ng = config%n_g_lw |
---|
184 | |
---|
185 | ! Compute the wavelength-independent region fractions and |
---|
186 | ! optical-depth scalings |
---|
187 | call calc_region_properties(nlev,nregions,istartcol,iendcol, & |
---|
188 | & config%i_cloud_pdf_shape == IPdfShapeGamma, & |
---|
189 | & cloud%fraction, cloud%fractional_std, region_fracs, & |
---|
190 | & od_scaling, config%cloud_fraction_threshold) |
---|
191 | |
---|
192 | ! Compute wavelength-independent overlap matrices u_matrix and v_matrix |
---|
193 | call calc_overlap_matrices(nlev,nregions,istartcol,iendcol, & |
---|
194 | & region_fracs, cloud%overlap_param, & |
---|
195 | & u_matrix, v_matrix, & |
---|
196 | & decorrelation_scaling=config%cloud_inhom_decorr_scaling, & |
---|
197 | & cloud_fraction_threshold=config%cloud_fraction_threshold, & |
---|
198 | & use_beta_overlap=config%use_beta_overlap, & |
---|
199 | & cloud_cover=flux%cloud_cover_lw) |
---|
200 | |
---|
201 | ! Main loop over columns |
---|
202 | do jcol = istartcol, iendcol |
---|
203 | ! -------------------------------------------------------- |
---|
204 | ! Section 2: Prepare column-specific variables and arrays |
---|
205 | ! -------------------------------------------------------- |
---|
206 | |
---|
207 | ! Define which layers contain cloud; assume that |
---|
208 | ! cloud%crop_cloud_fraction has already been called |
---|
209 | is_clear_sky_layer = .true. |
---|
210 | do jlev = 1,nlev |
---|
211 | if (cloud%fraction(jcol,jlev) > 0.0_jprb) then |
---|
212 | is_clear_sky_layer(jlev) = .false. |
---|
213 | end if |
---|
214 | end do |
---|
215 | |
---|
216 | ! -------------------------------------------------------- |
---|
217 | ! Section 3: Loop over layers to compute reflectance and transmittance |
---|
218 | ! -------------------------------------------------------- |
---|
219 | ! In this section the reflectance, transmittance and sources |
---|
220 | ! are computed for each layer |
---|
221 | do jlev = 1,nlev ! Start at top-of-atmosphere |
---|
222 | |
---|
223 | ! Array-wise assignments |
---|
224 | gamma1 = 0.0_jprb |
---|
225 | gamma2 = 0.0_jprb |
---|
226 | |
---|
227 | nreg = nregions |
---|
228 | if (is_clear_sky_layer(jlev)) then |
---|
229 | nreg = 1 |
---|
230 | reflectance(:,2:,jlev) = 0.0_jprb |
---|
231 | transmittance(:,2:,jlev) = 0.0_jprb |
---|
232 | Sup(:,2:,jlev) = 0.0_jprb |
---|
233 | Sdn(:,2:,jlev) = 0.0_jprb |
---|
234 | end if |
---|
235 | do jreg = 1,nreg |
---|
236 | if (jreg == 1) then |
---|
237 | ! Clear-sky calculation |
---|
238 | if (.not. config%do_lw_aerosol_scattering) then |
---|
239 | call calc_no_scattering_transmittance_lw(ng, od(:,jlev,jcol), & |
---|
240 | & planck_hl(:,jlev,jcol), planck_hl(:,jlev+1, jcol), & |
---|
241 | & transmittance(:,1,jlev), Sup(:,1,jlev), Sdn(:,1,jlev)) |
---|
242 | reflectance(:,1,jlev) = 0.0_jprb |
---|
243 | else |
---|
244 | call calc_two_stream_gammas_lw(ng, & |
---|
245 | & ssa(:,jlev,jcol), g(:,jlev,jcol), gamma1, gamma2) |
---|
246 | call calc_reflectance_transmittance_lw(ng, & |
---|
247 | & od(:,jlev,jcol), gamma1, gamma2, & |
---|
248 | & planck_hl(:,jlev,jcol), planck_hl(:,jlev+1,jcol), & |
---|
249 | & reflectance(:,1,jlev), transmittance(:,1,jlev), & |
---|
250 | & Sup(:,1,jlev), Sdn(:,1,jlev)) |
---|
251 | end if |
---|
252 | else |
---|
253 | ! Cloudy sky |
---|
254 | ! Add scaled cloud optical depth to clear-sky value |
---|
255 | od_cloud_new = od_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
---|
256 | & * od_scaling(jreg,jlev,jcol) |
---|
257 | od_total = od(:,jlev,jcol) + od_cloud_new |
---|
258 | |
---|
259 | if (config%do_lw_cloud_scattering) then |
---|
260 | ssa_total = 0.0_jprb |
---|
261 | g_total = 0.0_jprb |
---|
262 | if (config%do_lw_aerosol_scattering) then |
---|
263 | where (od_total > 0.0_jprb) |
---|
264 | ssa_total = (ssa(:,jlev,jcol)*od(:,jlev,jcol) & |
---|
265 | & + ssa_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
---|
266 | & * od_cloud_new) & |
---|
267 | & / od_total |
---|
268 | end where |
---|
269 | where (ssa_total > 0.0_jprb .and. od_total > 0.0_jprb) |
---|
270 | g_total = (g(:,jlev,jcol)*ssa(:,jlev,jcol)*od(:,jlev,jcol) & |
---|
271 | & + g_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
---|
272 | & * ssa_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
---|
273 | & * od_cloud_new) & |
---|
274 | & / (ssa_total*od_total) |
---|
275 | end where |
---|
276 | else |
---|
277 | where (od_total > 0.0_jprb) |
---|
278 | ssa_total = ssa_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
---|
279 | & * od_cloud_new / od_total |
---|
280 | end where |
---|
281 | where (ssa_total > 0.0_jprb .and. od_total > 0.0_jprb) |
---|
282 | g_total = g_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
---|
283 | & * ssa_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
---|
284 | & * od_cloud_new / (ssa_total*od_total) |
---|
285 | end where |
---|
286 | end if |
---|
287 | call calc_two_stream_gammas_lw(ng, & |
---|
288 | & ssa_total, g_total, gamma1, gamma2) |
---|
289 | call calc_reflectance_transmittance_lw(ng, & |
---|
290 | & od_total, gamma1, gamma2, & |
---|
291 | & planck_hl(:,jlev,jcol), planck_hl(:,jlev+1,jcol), & |
---|
292 | & reflectance(:,jreg,jlev), transmittance(:,jreg,jlev), & |
---|
293 | & Sup(:,jreg,jlev), Sdn(:,jreg,jlev)) |
---|
294 | else |
---|
295 | ! No-scattering case: use simpler functions for |
---|
296 | ! transmission and emission |
---|
297 | call calc_no_scattering_transmittance_lw(ng, od_total, & |
---|
298 | & planck_hl(:,jlev,jcol), planck_hl(:,jlev+1, jcol), & |
---|
299 | & transmittance(:,jreg,jlev), Sup(:,jreg,jlev), Sdn(:,jreg,jlev)) |
---|
300 | reflectance(:,jreg,jlev) = 0.0_jprb |
---|
301 | end if |
---|
302 | end if |
---|
303 | end do |
---|
304 | |
---|
305 | ! Copy over the clear-sky emission |
---|
306 | Sup_clear(:,jlev) = Sup(:,1,jlev) |
---|
307 | Sdn_clear(:,jlev) = Sdn(:,1,jlev) |
---|
308 | if (.not. is_clear_sky_layer(jlev)) then |
---|
309 | ! Emission is scaled by the size of each region |
---|
310 | do jreg = 1,nregions |
---|
311 | Sup(:,jreg,jlev) = region_fracs(jreg,jlev,jcol) * Sup(:,jreg,jlev) |
---|
312 | Sdn(:,jreg,jlev) = region_fracs(jreg,jlev,jcol) * Sdn(:,jreg,jlev) |
---|
313 | end do |
---|
314 | end if |
---|
315 | |
---|
316 | end do ! Loop over levels |
---|
317 | |
---|
318 | ! -------------------------------------------------------- |
---|
319 | ! Section 4: Compute total sources albedos |
---|
320 | ! -------------------------------------------------------- |
---|
321 | |
---|
322 | total_albedo(:,:,:) = 0.0_jprb |
---|
323 | total_source(:,:,:) = 0.0_jprb |
---|
324 | |
---|
325 | ! Calculate the upwelling radiation emitted by the surface, and |
---|
326 | ! copy the surface albedo into total_albedo |
---|
327 | do jreg = 1,nregions |
---|
328 | do jg = 1,ng |
---|
329 | ! region_fracs(jreg,nlev,jcol) is the fraction of each region in the |
---|
330 | ! lowest model level |
---|
331 | total_source(jg,jreg,nlev+1) = region_fracs(jreg,nlev,jcol)*emission(jg,jcol) |
---|
332 | total_albedo(jg,jreg,nlev+1) = albedo(jg,jcol) |
---|
333 | end do |
---|
334 | end do |
---|
335 | ! Equivalent surface values for computing clear-sky fluxes |
---|
336 | if (config%do_clear) then |
---|
337 | do jg = 1,ng |
---|
338 | total_source_clear(jg,nlev+1) = emission(jg,jcol) |
---|
339 | end do |
---|
340 | ! In the case of surface albedo there is no dependence on |
---|
341 | ! cloud fraction so we can copy the all-sky value |
---|
342 | total_albedo_clear(1:ng,nlev+1) = total_albedo(1:ng,1,nlev+1) |
---|
343 | end if |
---|
344 | |
---|
345 | ! Work up from the surface computing the total albedo of the |
---|
346 | ! atmosphere and the total upwelling due to emission below each |
---|
347 | ! level below using the adding method |
---|
348 | do jlev = nlev,1,-1 |
---|
349 | |
---|
350 | total_albedo_below = 0.0_jprb |
---|
351 | |
---|
352 | if (config%do_clear) then |
---|
353 | ! For clear-skies there is no need to consider "above" and |
---|
354 | ! "below" quantities since with no cloud overlap to worry |
---|
355 | ! about, these are the same |
---|
356 | inv_denom(:,1) = 1.0_jprb & |
---|
357 | & / (1.0_jprb - total_albedo_clear(:,jlev+1)*reflectance(:,1,jlev)) |
---|
358 | total_albedo_clear(:,jlev) = reflectance(:,1,jlev) & |
---|
359 | & + transmittance(:,1,jlev)*transmittance(:,1,jlev)*total_albedo_clear(:,jlev+1) & |
---|
360 | & * inv_denom(:,1) |
---|
361 | total_source_clear(:,jlev) = Sup_clear(:,jlev) & |
---|
362 | & + transmittance(:,1,jlev)*(total_source_clear(:,jlev+1) & |
---|
363 | & + total_albedo_clear(:,jlev+1)*Sdn_clear(:,jlev)) & |
---|
364 | & * inv_denom(:,1) |
---|
365 | end if |
---|
366 | |
---|
367 | if (is_clear_sky_layer(jlev)) then |
---|
368 | inv_denom(:,1) = 1.0_jprb & |
---|
369 | & / (1.0_jprb - total_albedo(:,1,jlev+1)*reflectance(:,1,jlev)) |
---|
370 | total_albedo_below = 0.0_jprb |
---|
371 | total_albedo_below(:,1) = reflectance(:,1,jlev) & |
---|
372 | & + transmittance(:,1,jlev)*transmittance(:,1,jlev)*total_albedo(:,1,jlev+1) & |
---|
373 | & * inv_denom(:,1) |
---|
374 | total_source_below = 0.0_jprb |
---|
375 | total_source_below(:,1) = Sup(:,1,jlev) & |
---|
376 | & + transmittance(:,1,jlev)*(total_source(:,1,jlev+1) & |
---|
377 | & + total_albedo(:,1,jlev+1)*Sdn(:,1,jlev)) & |
---|
378 | & * inv_denom(:,1) |
---|
379 | else |
---|
380 | inv_denom = 1.0_jprb / (1.0_jprb - total_albedo(:,:,jlev+1)*reflectance(:,:,jlev)) |
---|
381 | total_albedo_below = reflectance(:,:,jlev) & |
---|
382 | & + transmittance(:,:,jlev)*transmittance(:,:,jlev)*total_albedo(:,:,jlev+1) & |
---|
383 | & * inv_denom |
---|
384 | total_source_below = Sup(:,:,jlev) & |
---|
385 | & + transmittance(:,:,jlev)*(total_source(:,:,jlev+1) & |
---|
386 | & + total_albedo(:,:,jlev+1)*Sdn(:,:,jlev)) & |
---|
387 | & * inv_denom |
---|
388 | end if |
---|
389 | |
---|
390 | ! Account for cloud overlap when converting albedo below a |
---|
391 | ! layer interface to the equivalent values just above |
---|
392 | if (is_clear_sky_layer(jlev) .and. is_clear_sky_layer(jlev-1)) then |
---|
393 | total_albedo(:,:,jlev) = total_albedo_below(:,:) |
---|
394 | total_source(:,:,jlev) = total_source_below(:,:) |
---|
395 | else |
---|
396 | total_source(:,:,jlev) = singlemat_x_vec(ng,ng,nregions,& |
---|
397 | & u_matrix(:,:,jlev,jcol), total_source_below) |
---|
398 | ! Use overlap matrix and exclude "anomalous" horizontal |
---|
399 | ! transport described by Shonk & Hogan (2008). Therefore, |
---|
400 | ! the operation we perform is essentially diag(total_albedo) |
---|
401 | ! = matmul(transpose(v_matrix), diag(total_albedo_below)). |
---|
402 | do jreg = 1,nregions |
---|
403 | do jreg2 = 1,nregions |
---|
404 | total_albedo(:,jreg,jlev) & |
---|
405 | & = total_albedo(:,jreg,jlev) & |
---|
406 | & + total_albedo_below(:,jreg2) & |
---|
407 | & * v_matrix(jreg2,jreg,jlev,jcol) |
---|
408 | |
---|
409 | end do |
---|
410 | end do |
---|
411 | |
---|
412 | end if |
---|
413 | |
---|
414 | end do ! Reverse loop over levels |
---|
415 | |
---|
416 | ! -------------------------------------------------------- |
---|
417 | ! Section 5: Compute fluxes |
---|
418 | ! -------------------------------------------------------- |
---|
419 | |
---|
420 | ! Top-of-atmosphere fluxes into the regions of the top-most |
---|
421 | ! layer, zero since we assume no diffuse downwelling |
---|
422 | flux_dn = 0.0_jprb |
---|
423 | |
---|
424 | if (config%do_clear) then |
---|
425 | flux_dn_clear = 0.0_jprb |
---|
426 | end if |
---|
427 | |
---|
428 | ! Store the TOA broadband fluxes |
---|
429 | flux%lw_up(jcol,1) = sum(total_source(:,:,1)) |
---|
430 | flux%lw_dn(jcol,1) = 0.0_jprb |
---|
431 | if (config%do_clear) then |
---|
432 | flux%lw_up_clear(jcol,1) = sum(total_source_clear(:,1)) |
---|
433 | flux%lw_dn_clear(jcol,1) = 0.0_jprb |
---|
434 | end if |
---|
435 | |
---|
436 | ! Save the spectral fluxes if required |
---|
437 | if (config%do_save_spectral_flux) then |
---|
438 | call indexed_sum(sum(total_source(:,:,1),2), & |
---|
439 | & config%i_spec_from_reordered_g_lw, & |
---|
440 | & flux%lw_up_band(:,jcol,1)) |
---|
441 | flux%lw_dn_band(:,jcol,1) = 0.0_jprb |
---|
442 | if (config%do_clear) then |
---|
443 | call indexed_sum(total_source_clear(:,1), & |
---|
444 | & config%i_spec_from_reordered_g_lw, & |
---|
445 | & flux%lw_up_clear_band(:,jcol,1)) |
---|
446 | flux%lw_dn_clear_band(:,jcol,1) = 0.0_jprb |
---|
447 | end if |
---|
448 | end if |
---|
449 | |
---|
450 | ! Final loop back down through the atmosphere to compute fluxes |
---|
451 | do jlev = 1,nlev |
---|
452 | if (config%do_clear) then |
---|
453 | flux_dn_clear = (transmittance(:,1,jlev)*flux_dn_clear & |
---|
454 | & + reflectance(:,1,jlev)*total_source_clear(:,jlev+1) + Sdn_clear(:,jlev) ) & |
---|
455 | & / (1.0_jprb - reflectance(:,1,jlev)*total_albedo_clear(:,jlev+1)) |
---|
456 | flux_up_clear = total_source_clear(:,jlev+1) & |
---|
457 | & + flux_dn_clear*total_albedo_clear(:,jlev+1) |
---|
458 | end if |
---|
459 | |
---|
460 | if (is_clear_sky_layer(jlev)) then |
---|
461 | flux_dn(:,1) = (transmittance(:,1,jlev)*flux_dn(:,1) & |
---|
462 | & + reflectance(:,1,jlev)*total_source(:,1,jlev+1) + Sdn(:,1,jlev) ) & |
---|
463 | & / (1.0_jprb - reflectance(:,1,jlev)*total_albedo(:,1,jlev+1)) |
---|
464 | flux_dn(:,2:) = 0.0_jprb |
---|
465 | flux_up(:,1) = total_source(:,1,jlev+1) + flux_dn(:,1)*total_albedo(:,1,jlev+1) |
---|
466 | flux_up(:,2:) = 0.0_jprb |
---|
467 | else |
---|
468 | flux_dn = (transmittance(:,:,jlev)*flux_dn & |
---|
469 | & + reflectance(:,:,jlev)*total_source(:,:,jlev+1) + Sdn(:,:,jlev) ) & |
---|
470 | & / (1.0_jprb - reflectance(:,:,jlev)*total_albedo(:,:,jlev+1)) |
---|
471 | flux_up = total_source(:,:,jlev+1) + flux_dn*total_albedo(:,:,jlev+1) |
---|
472 | end if |
---|
473 | |
---|
474 | if (.not. (is_clear_sky_layer(jlev) & |
---|
475 | & .and. is_clear_sky_layer(jlev+1))) then |
---|
476 | ! Account for overlap rules in translating fluxes just above |
---|
477 | ! a layer interface to the values just below |
---|
478 | flux_dn_below = singlemat_x_vec(ng,ng,nregions, & |
---|
479 | & v_matrix(:,:,jlev+1,jcol), flux_dn) |
---|
480 | flux_dn = flux_dn_below |
---|
481 | end if ! Otherwise the fluxes in each region are the same so |
---|
482 | ! nothing to do |
---|
483 | |
---|
484 | ! Store the broadband fluxes |
---|
485 | flux%lw_up(jcol,jlev+1) = sum(sum(flux_up,1)) |
---|
486 | flux%lw_dn(jcol,jlev+1) = sum(sum(flux_dn,1)) |
---|
487 | if (config%do_clear) then |
---|
488 | flux%lw_up_clear(jcol,jlev+1) = sum(flux_up_clear) |
---|
489 | flux%lw_dn_clear(jcol,jlev+1) = sum(flux_dn_clear) |
---|
490 | end if |
---|
491 | |
---|
492 | ! Save the spectral fluxes if required |
---|
493 | if (config%do_save_spectral_flux) then |
---|
494 | call indexed_sum(sum(flux_up,2), & |
---|
495 | & config%i_spec_from_reordered_g_lw, & |
---|
496 | & flux%lw_up_band(:,jcol,jlev+1)) |
---|
497 | call indexed_sum(sum(flux_dn,2), & |
---|
498 | & config%i_spec_from_reordered_g_lw, & |
---|
499 | & flux%lw_dn_band(:,jcol,jlev+1)) |
---|
500 | if (config%do_clear) then |
---|
501 | call indexed_sum(flux_up_clear, & |
---|
502 | & config%i_spec_from_reordered_g_lw, & |
---|
503 | & flux%lw_up_clear_band(:,jcol,jlev+1)) |
---|
504 | call indexed_sum(flux_dn_clear, & |
---|
505 | & config%i_spec_from_reordered_g_lw, & |
---|
506 | & flux%lw_dn_clear_band(:,jcol,jlev+1)) |
---|
507 | end if |
---|
508 | end if |
---|
509 | |
---|
510 | end do ! Final loop over levels |
---|
511 | |
---|
512 | ! Store surface spectral downwelling fluxes, which at this point |
---|
513 | ! are at the surface |
---|
514 | flux%lw_dn_surf_g(:,jcol) = sum(flux_dn,2) |
---|
515 | if (config%do_clear) then |
---|
516 | flux%lw_dn_surf_clear_g(:,jcol) = flux_dn_clear |
---|
517 | end if |
---|
518 | |
---|
519 | ! Compute the longwave derivatives needed by Hogan and Bozzo |
---|
520 | ! (2015) approximate radiation update scheme |
---|
521 | if (config%do_lw_derivatives) then |
---|
522 | ! Note that at this point flux_up contains the spectral |
---|
523 | ! fluxes into the regions of the lowest layer; we sum over |
---|
524 | ! regions first to provide a simple spectral flux upwelling |
---|
525 | ! from the surface |
---|
526 | call calc_lw_derivatives_region(ng, nlev, nregions, jcol, transmittance, & |
---|
527 | & u_matrix(:,:,:,jcol), sum(flux_up,2), flux%lw_derivatives) |
---|
528 | end if |
---|
529 | |
---|
530 | end do ! Loop over columns |
---|
531 | |
---|
532 | if (lhook) call dr_hook('radiation_tripleclouds_lw:solver_tripleclouds_lw',1,hook_handle) |
---|
533 | |
---|
534 | end subroutine solver_tripleclouds_lw |
---|
535 | |
---|
536 | end module radiation_tripleclouds_lw |
---|