1 | ! $Id: newmicro.F90 3281 2018-03-16 18:26:14Z abarral $ |
---|
2 | |
---|
3 | SUBROUTINE newmicro(flag_aerosol, ok_cdnc, bl95_b0, bl95_b1, paprs, pplay, t, pqlwp, pclc, & |
---|
4 | pcltau, pclemi, pch, pcl, pcm, pct, pctlwp, xflwp, xfiwp, xflwc, xfiwc, & |
---|
5 | mass_solu_aero, mass_solu_aero_pi, pcldtaupi, re, fl, reliq, reice, & |
---|
6 | reliq_pi, reice_pi) |
---|
7 | |
---|
8 | USE dimphy |
---|
9 | USE phys_local_var_mod, ONLY: scdnc, cldncl, reffclwtop, lcc, reffclws, & |
---|
10 | reffclwc, cldnvi, lcc3d, lcc3dcon, lcc3dstra, icc3dcon, icc3dstra, & |
---|
11 | zfice, dNovrN |
---|
12 | USE phys_state_var_mod, ONLY: rnebcon, clwcon |
---|
13 | USE icefrac_lsc_mod ! computes ice fraction (JBM 3/14) |
---|
14 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
15 | USE print_control_mod, ONLY: lunout |
---|
16 | |
---|
17 | |
---|
18 | IMPLICIT NONE |
---|
19 | ! ====================================================================== |
---|
20 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
21 | ! O. Boucher (LMD/CNRS) mise a jour en 201212 |
---|
22 | ! I. Musat (LMD/CNRS) : prise en compte de la meme hypothese de recouvrement |
---|
23 | ! pour les nuages que pour le rayonnement rrtm via |
---|
24 | ! le parametre novlp de radopt.h : 20160721 |
---|
25 | ! Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
26 | ! ====================================================================== |
---|
27 | ! Arguments: |
---|
28 | ! ok_cdnc-input-L-flag pour calculer les rayons a partir des aerosols |
---|
29 | |
---|
30 | ! t-------input-R-temperature |
---|
31 | ! pqlwp---input-R-eau liquide nuageuse dans l'atmosphere dans la partie |
---|
32 | ! nuageuse (kg/kg) |
---|
33 | ! pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
34 | ! mass_solu_aero-----input-R-total mass concentration for all soluble |
---|
35 | ! aerosols[ug/m^3] |
---|
36 | ! mass_solu_aero_pi--input-R-ditto, pre-industrial value |
---|
37 | |
---|
38 | ! bl95_b0-input-R-a PARAMETER, may be varied for tests (s-sea, l-land) |
---|
39 | ! bl95_b1-input-R-a PARAMETER, may be varied for tests ( -"- ) |
---|
40 | |
---|
41 | ! re------output-R-Cloud droplet effective radius multiplied by fl [um] |
---|
42 | ! fl------output-R-Denominator to re, introduced to avoid problems in |
---|
43 | ! the averaging of the output. fl is the fraction of liquid |
---|
44 | ! water clouds within a grid cell |
---|
45 | |
---|
46 | ! pcltau--output-R-epaisseur optique des nuages |
---|
47 | ! pclemi--output-R-emissivite des nuages (0 a 1) |
---|
48 | ! pcldtaupi-output-R-pre-industrial value of cloud optical thickness, |
---|
49 | |
---|
50 | ! pcl-output-R-2D low-level cloud cover |
---|
51 | ! pcm-output-R-2D mid-level cloud cover |
---|
52 | ! pch-output-R-2D high-level cloud cover |
---|
53 | ! pct-output-R-2D total cloud cover |
---|
54 | ! ====================================================================== |
---|
55 | |
---|
56 | include "YOMCST.h" |
---|
57 | include "nuage.h" |
---|
58 | include "radepsi.h" |
---|
59 | include "radopt.h" |
---|
60 | |
---|
61 | ! choix de l'hypothese de recouvrement nuageuse via radopt.h (IM, 19.07.2016) |
---|
62 | ! !novlp=1: max-random |
---|
63 | ! !novlp=2: maximum |
---|
64 | ! !novlp=3: random |
---|
65 | ! LOGICAL random, maximum_random, maximum |
---|
66 | ! PARAMETER (random=.FALSE., maximum_random=.TRUE., maximum=.FALSE.) |
---|
67 | |
---|
68 | LOGICAL, SAVE :: first = .TRUE. |
---|
69 | !$OMP THREADPRIVATE(FIRST) |
---|
70 | INTEGER flag_max |
---|
71 | |
---|
72 | ! threshold PARAMETERs |
---|
73 | REAL thres_tau, thres_neb |
---|
74 | PARAMETER (thres_tau=0.3, thres_neb=0.001) |
---|
75 | |
---|
76 | REAL phase3d(klon, klev) |
---|
77 | REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) |
---|
78 | |
---|
79 | REAL paprs(klon, klev+1) |
---|
80 | REAL pplay(klon, klev) |
---|
81 | REAL t(klon, klev) |
---|
82 | REAL pclc(klon, klev) |
---|
83 | REAL pqlwp(klon, klev) |
---|
84 | REAL pcltau(klon, klev) |
---|
85 | REAL pclemi(klon, klev) |
---|
86 | REAL pcldtaupi(klon, klev) |
---|
87 | |
---|
88 | REAL pct(klon) |
---|
89 | REAL pcl(klon) |
---|
90 | REAL pcm(klon) |
---|
91 | REAL pch(klon) |
---|
92 | REAL pctlwp(klon) |
---|
93 | |
---|
94 | LOGICAL lo |
---|
95 | |
---|
96 | ! !Abderr modif JL mail du 19.01.2011 18:31 |
---|
97 | ! REAL cetahb, cetamb |
---|
98 | ! PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
99 | ! Remplacer |
---|
100 | ! cetahb*paprs(i,1) par prmhc |
---|
101 | ! cetamb*paprs(i,1) par prlmc |
---|
102 | REAL prmhc ! Pressure between medium and high level cloud in Pa |
---|
103 | REAL prlmc ! Pressure between low and medium level cloud in Pa |
---|
104 | PARAMETER (prmhc=440.*100., prlmc=680.*100.) |
---|
105 | |
---|
106 | INTEGER i, k |
---|
107 | REAL xflwp(klon), xfiwp(klon) |
---|
108 | REAL xflwc(klon, klev), xfiwc(klon, klev) |
---|
109 | |
---|
110 | REAL radius |
---|
111 | |
---|
112 | REAL coef_froi, coef_chau |
---|
113 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
114 | |
---|
115 | REAL seuil_neb |
---|
116 | PARAMETER (seuil_neb=0.001) |
---|
117 | |
---|
118 | ! JBM (3/14) nexpo is replaced by exposant_glace |
---|
119 | ! INTEGER nexpo ! exponentiel pour glace/eau |
---|
120 | ! PARAMETER (nexpo=6) |
---|
121 | ! PARAMETER (nexpo=1) |
---|
122 | ! if iflag_t_glace=0, the old values are used: |
---|
123 | REAL, PARAMETER :: t_glace_min_old = 258. |
---|
124 | REAL, PARAMETER :: t_glace_max_old = 273.13 |
---|
125 | |
---|
126 | REAL rel, tc, rei |
---|
127 | REAL k_ice0, k_ice, df |
---|
128 | PARAMETER (k_ice0=0.005) ! units=m2/g |
---|
129 | PARAMETER (df=1.66) ! diffusivity factor |
---|
130 | |
---|
131 | ! jq for the aerosol indirect effect |
---|
132 | ! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
133 | ! jq |
---|
134 | REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] |
---|
135 | REAL mass_solu_aero_pi(klon, klev) ! - " - (pre-industrial value) |
---|
136 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
137 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
---|
138 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
139 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
140 | |
---|
141 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds |
---|
142 | ! within the grid cell) |
---|
143 | |
---|
144 | INTEGER flag_aerosol |
---|
145 | LOGICAL ok_cdnc |
---|
146 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
---|
147 | |
---|
148 | ! jq-end |
---|
149 | ! IM cf. CR:parametres supplementaires |
---|
150 | REAL zclear(klon) |
---|
151 | REAL zcloud(klon) |
---|
152 | REAL zcloudh(klon) |
---|
153 | REAL zcloudm(klon) |
---|
154 | REAL zcloudl(klon) |
---|
155 | REAL rhodz(klon, klev) !--rho*dz pour la couche |
---|
156 | REAL zrho(klon, klev) !--rho pour la couche |
---|
157 | REAL dh(klon, klev) !--dz pour la couche |
---|
158 | REAL rad_chaud(klon, klev) !--rayon pour les nuages chauds |
---|
159 | REAL rad_chaud_pi(klon, klev) !--rayon pour les nuages chauds pre-industriels |
---|
160 | REAL zflwp_var, zfiwp_var |
---|
161 | REAL d_rei_dt |
---|
162 | |
---|
163 | ! Abderrahmane oct 2009 |
---|
164 | REAL reliq(klon, klev), reice(klon, klev) |
---|
165 | REAL reliq_pi(klon, klev), reice_pi(klon, klev) |
---|
166 | |
---|
167 | REAL,SAVE :: cdnc_min=-1. |
---|
168 | REAL,SAVE :: cdnc_min_m3 |
---|
169 | !$OMP THREADPRIVATE(cdnc_min,cdnc_min_m3) |
---|
170 | REAL,SAVE :: cdnc_max=-1. |
---|
171 | REAL,SAVE :: cdnc_max_m3 |
---|
172 | !$OMP THREADPRIVATE(cdnc_max,cdnc_max_m3) |
---|
173 | |
---|
174 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
175 | ! FH : 2011/05/24 |
---|
176 | |
---|
177 | ! rei = ( rei_max - rei_min ) * T(°C) / 81.4 + rei_max |
---|
178 | ! to be used for a temperature in celcius T(°C) < 0 |
---|
179 | ! rei=rei_min for T(°C) < -81.4 |
---|
180 | |
---|
181 | ! Calcul de la pente de la relation entre rayon effective des cristaux |
---|
182 | ! et la température. |
---|
183 | ! Pour retrouver les résultats numériques de la version d'origine, |
---|
184 | ! on impose 0.71 quand on est proche de 0.71 |
---|
185 | |
---|
186 | if (first) THEN |
---|
187 | call getin_p('cdnc_min',cdnc_min) |
---|
188 | cdnc_min_m3=cdnc_min*1.E6 |
---|
189 | IF (cdnc_min_m3<0.) cdnc_min_m3=20.E6 ! astuce pour retrocompatibilite |
---|
190 | write(lunout,*)'cdnc_min=', cdnc_min_m3/1.E6 |
---|
191 | call getin_p('cdnc_max',cdnc_max) |
---|
192 | cdnc_max_m3=cdnc_max*1.E6 |
---|
193 | IF (cdnc_max_m3<0.) cdnc_max_m3=1000.E6 ! astuce pour retrocompatibilite |
---|
194 | write(lunout,*)'cdnc_max=', cdnc_max_m3/1.E6 |
---|
195 | ENDIF |
---|
196 | |
---|
197 | d_rei_dt = (rei_max-rei_min)/81.4 |
---|
198 | IF (abs(d_rei_dt-0.71)<1.E-4) d_rei_dt = 0.71 |
---|
199 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
200 | |
---|
201 | ! Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
202 | ! IM inversion des DO |
---|
203 | |
---|
204 | xflwp = 0.D0 |
---|
205 | xfiwp = 0.D0 |
---|
206 | xflwc = 0.D0 |
---|
207 | xfiwc = 0.D0 |
---|
208 | |
---|
209 | reliq = 0. |
---|
210 | reice = 0. |
---|
211 | reliq_pi = 0. |
---|
212 | reice_pi = 0. |
---|
213 | |
---|
214 | IF (iflag_t_glace.EQ.0) THEN |
---|
215 | DO k = 1, klev |
---|
216 | DO i = 1, klon |
---|
217 | ! -layer calculation |
---|
218 | rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 |
---|
219 | zrho(i, k) = pplay(i, k)/t(i, k)/rd ! kg/m3 |
---|
220 | dh(i, k) = rhodz(i, k)/zrho(i, k) ! m |
---|
221 | ! -Fraction of ice in cloud using a linear transition |
---|
222 | zfice(i, k) = 1.0 - (t(i,k)-t_glace_min_old)/(t_glace_max_old-t_glace_min_old) |
---|
223 | zfice(i, k) = min(max(zfice(i,k),0.0), 1.0) |
---|
224 | ! -IM Total Liquid/Ice water content |
---|
225 | xflwc(i, k) = (1.-zfice(i,k))*pqlwp(i, k) |
---|
226 | xfiwc(i, k) = zfice(i, k)*pqlwp(i, k) |
---|
227 | ENDDO |
---|
228 | ENDDO |
---|
229 | ELSE ! of IF (iflag_t_glace.EQ.0) |
---|
230 | DO k = 1, klev |
---|
231 | CALL icefrac_lsc(klon,t(:,k),pplay(:,k)/paprs(:,1),zfice(:,k)) |
---|
232 | |
---|
233 | |
---|
234 | ! JBM: icefrac_lsc is now contained icefrac_lsc_mod |
---|
235 | ! zfice(i, k) = icefrac_lsc(t(i,k), t_glace_min, & |
---|
236 | ! t_glace_max, exposant_glace) |
---|
237 | DO i = 1, klon |
---|
238 | ! -layer calculation |
---|
239 | rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 |
---|
240 | zrho(i, k) = pplay(i, k)/t(i, k)/rd ! kg/m3 |
---|
241 | dh(i, k) = rhodz(i, k)/zrho(i, k) ! m |
---|
242 | ! -IM Total Liquid/Ice water content |
---|
243 | xflwc(i, k) = (1.-zfice(i,k))*pqlwp(i, k) |
---|
244 | xfiwc(i, k) = zfice(i, k)*pqlwp(i, k) |
---|
245 | ENDDO |
---|
246 | ENDDO |
---|
247 | ENDIF |
---|
248 | |
---|
249 | IF (ok_cdnc) THEN |
---|
250 | |
---|
251 | ! --we compute cloud properties as a function of the aerosol load |
---|
252 | |
---|
253 | DO k = 1, klev |
---|
254 | DO i = 1, klon |
---|
255 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
256 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
257 | ! to be within [20, 1000 cm^3] |
---|
258 | |
---|
259 | ! --pre-industrial case |
---|
260 | cdnc_pi(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero_pi(i,k), & |
---|
261 | 1.E-4))/log(10.))*1.E6 !-m-3 |
---|
262 | cdnc_pi(i, k) = min(cdnc_max_m3, max(cdnc_min_m3,cdnc_pi(i,k))) |
---|
263 | |
---|
264 | ENDDO |
---|
265 | ENDDO |
---|
266 | |
---|
267 | !--flag_aerosol=7 => MACv2SP climatology |
---|
268 | !--in this case there is an enhancement factor |
---|
269 | IF (flag_aerosol .EQ. 7) THEN |
---|
270 | |
---|
271 | !--present-day |
---|
272 | DO k = 1, klev |
---|
273 | DO i = 1, klon |
---|
274 | cdnc(i, k) = cdnc_pi(i,k)*dNovrN(i) |
---|
275 | ENDDO |
---|
276 | ENDDO |
---|
277 | |
---|
278 | !--standard case |
---|
279 | ELSE |
---|
280 | |
---|
281 | DO k = 1, klev |
---|
282 | DO i = 1, klon |
---|
283 | |
---|
284 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
285 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
286 | ! to be within [20, 1000 cm^3] |
---|
287 | |
---|
288 | ! --present-day case |
---|
289 | cdnc(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero(i,k), & |
---|
290 | 1.E-4))/log(10.))*1.E6 !-m-3 |
---|
291 | cdnc(i, k) = min(cdnc_max_m3, max(cdnc_min_m3,cdnc(i,k))) |
---|
292 | |
---|
293 | ENDDO |
---|
294 | ENDDO |
---|
295 | |
---|
296 | ENDIF !--flag_aerosol |
---|
297 | |
---|
298 | !--computing cloud droplet size |
---|
299 | DO k = 1, klev |
---|
300 | DO i = 1, klon |
---|
301 | |
---|
302 | ! --present-day case |
---|
303 | rad_chaud(i, k) = 1.1*((pqlwp(i,k)*pplay(i, & |
---|
304 | k)/(rd*t(i,k)))/(4./3*rpi*1000.*cdnc(i,k)))**(1./3.) |
---|
305 | rad_chaud(i, k) = max(rad_chaud(i,k)*1.E6, 5.) |
---|
306 | |
---|
307 | ! --pre-industrial case |
---|
308 | rad_chaud_pi(i, k) = 1.1*((pqlwp(i,k)*pplay(i, & |
---|
309 | k)/(rd*t(i,k)))/(4./3.*rpi*1000.*cdnc_pi(i,k)))**(1./3.) |
---|
310 | rad_chaud_pi(i, k) = max(rad_chaud_pi(i,k)*1.E6, 5.) |
---|
311 | |
---|
312 | ! --pre-industrial case |
---|
313 | ! --liquid/ice cloud water paths: |
---|
314 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
315 | |
---|
316 | pcldtaupi(i, k) = 0.0 |
---|
317 | |
---|
318 | ELSE |
---|
319 | |
---|
320 | zflwp_var = 1000.*(1.-zfice(i,k))*pqlwp(i, k)/pclc(i, k)* & |
---|
321 | rhodz(i, k) |
---|
322 | zfiwp_var = 1000.*zfice(i, k)*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) |
---|
323 | tc = t(i, k) - 273.15 |
---|
324 | rei = d_rei_dt*tc + rei_max |
---|
325 | IF (tc<=-81.4) rei = rei_min |
---|
326 | |
---|
327 | ! -- cloud optical thickness : |
---|
328 | ! [for liquid clouds, traditional formula, |
---|
329 | ! for ice clouds, Ebert & Curry (1992)] |
---|
330 | |
---|
331 | IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. |
---|
332 | pcldtaupi(i, k) = 3.0/2.0*zflwp_var/rad_chaud_pi(i, k) + & |
---|
333 | zfiwp_var*(3.448E-03+2.431/rei) |
---|
334 | |
---|
335 | ENDIF |
---|
336 | |
---|
337 | ENDDO |
---|
338 | ENDDO |
---|
339 | |
---|
340 | ELSE !--not ok_cdnc |
---|
341 | |
---|
342 | ! -prescribed cloud droplet radius |
---|
343 | |
---|
344 | DO k = 1, min(3, klev) |
---|
345 | DO i = 1, klon |
---|
346 | rad_chaud(i, k) = rad_chau2 |
---|
347 | rad_chaud_pi(i, k) = rad_chau2 |
---|
348 | ENDDO |
---|
349 | ENDDO |
---|
350 | DO k = min(3, klev) + 1, klev |
---|
351 | DO i = 1, klon |
---|
352 | rad_chaud(i, k) = rad_chau1 |
---|
353 | rad_chaud_pi(i, k) = rad_chau1 |
---|
354 | ENDDO |
---|
355 | ENDDO |
---|
356 | |
---|
357 | ENDIF !--ok_cdnc |
---|
358 | |
---|
359 | ! --computation of cloud optical depth and emissivity |
---|
360 | ! --in the general case |
---|
361 | |
---|
362 | DO k = 1, klev |
---|
363 | DO i = 1, klon |
---|
364 | |
---|
365 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
366 | |
---|
367 | ! effective cloud droplet radius (microns) for liquid water clouds: |
---|
368 | ! For output diagnostics cloud droplet effective radius [um] |
---|
369 | ! we multiply here with f * xl (fraction of liquid water |
---|
370 | ! clouds in the grid cell) to avoid problems in the averaging of the |
---|
371 | ! output. |
---|
372 | ! In the output of IOIPSL, derive the REAL cloud droplet |
---|
373 | ! effective radius as re/fl |
---|
374 | |
---|
375 | fl(i, k) = seuil_neb*(1.-zfice(i,k)) |
---|
376 | re(i, k) = rad_chaud(i, k)*fl(i, k) |
---|
377 | rel = 0. |
---|
378 | rei = 0. |
---|
379 | pclc(i, k) = 0.0 |
---|
380 | pcltau(i, k) = 0.0 |
---|
381 | pclemi(i, k) = 0.0 |
---|
382 | |
---|
383 | ELSE |
---|
384 | |
---|
385 | ! -- liquid/ice cloud water paths: |
---|
386 | |
---|
387 | zflwp_var = 1000.*(1.-zfice(i,k))*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) |
---|
388 | zfiwp_var = 1000.*zfice(i, k)*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) |
---|
389 | |
---|
390 | ! effective cloud droplet radius (microns) for liquid water clouds: |
---|
391 | ! For output diagnostics cloud droplet effective radius [um] |
---|
392 | ! we multiply here with f * xl (fraction of liquid water |
---|
393 | ! clouds in the grid cell) to avoid problems in the averaging of the |
---|
394 | ! output. |
---|
395 | ! In the output of IOIPSL, derive the REAL cloud droplet |
---|
396 | ! effective radius as re/fl |
---|
397 | |
---|
398 | fl(i, k) = pclc(i, k)*(1.-zfice(i,k)) |
---|
399 | re(i, k) = rad_chaud(i, k)*fl(i, k) |
---|
400 | |
---|
401 | rel = rad_chaud(i, k) |
---|
402 | |
---|
403 | ! for ice clouds: as a function of the ambiant temperature |
---|
404 | ! [formula used by Iacobellis and Somerville (2000), with an |
---|
405 | ! asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
406 | ! consistent with observations of Heymsfield et al. 1986]: |
---|
407 | ! 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as |
---|
408 | ! rei_max=61.29 |
---|
409 | |
---|
410 | tc = t(i, k) - 273.15 |
---|
411 | rei = d_rei_dt*tc + rei_max |
---|
412 | IF (tc<=-81.4) rei = rei_min |
---|
413 | |
---|
414 | ! -- cloud optical thickness : |
---|
415 | ! [for liquid clouds, traditional formula, |
---|
416 | ! for ice clouds, Ebert & Curry (1992)] |
---|
417 | |
---|
418 | IF (zflwp_var==0.) rel = 1. |
---|
419 | IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. |
---|
420 | pcltau(i, k) = 3.0/2.0*(zflwp_var/rel) + zfiwp_var*(3.448E-03+2.431/ & |
---|
421 | rei) |
---|
422 | |
---|
423 | ! -- cloud infrared emissivity: |
---|
424 | ! [the broadband infrared absorption coefficient is PARAMETERized |
---|
425 | ! as a function of the effective cld droplet radius] |
---|
426 | ! Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
427 | |
---|
428 | k_ice = k_ice0 + 1.0/rei |
---|
429 | |
---|
430 | pclemi(i, k) = 1.0 - exp(-coef_chau*zflwp_var-df*k_ice*zfiwp_var) |
---|
431 | |
---|
432 | ENDIF |
---|
433 | |
---|
434 | reice(i, k) = rei |
---|
435 | |
---|
436 | xflwp(i) = xflwp(i) + xflwc(i, k)*rhodz(i, k) |
---|
437 | xfiwp(i) = xfiwp(i) + xfiwc(i, k)*rhodz(i, k) |
---|
438 | |
---|
439 | ENDDO |
---|
440 | ENDDO |
---|
441 | |
---|
442 | ! --if cloud droplet radius is fixed, then pcldtaupi=pcltau |
---|
443 | |
---|
444 | IF (.NOT. ok_cdnc) THEN |
---|
445 | DO k = 1, klev |
---|
446 | DO i = 1, klon |
---|
447 | pcldtaupi(i, k) = pcltau(i, k) |
---|
448 | reice_pi(i, k) = reice(i, k) |
---|
449 | ENDDO |
---|
450 | ENDDO |
---|
451 | ENDIF |
---|
452 | |
---|
453 | DO k = 1, klev |
---|
454 | DO i = 1, klon |
---|
455 | reliq(i, k) = rad_chaud(i, k) |
---|
456 | reliq_pi(i, k) = rad_chaud_pi(i, k) |
---|
457 | reice_pi(i, k) = reice(i, k) |
---|
458 | ENDDO |
---|
459 | ENDDO |
---|
460 | |
---|
461 | ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
462 | ! IM cf. CR:test: calcul prenant ou non en compte le recouvrement |
---|
463 | ! initialisations |
---|
464 | |
---|
465 | DO i = 1, klon |
---|
466 | zclear(i) = 1. |
---|
467 | zcloud(i) = 0. |
---|
468 | zcloudh(i) = 0. |
---|
469 | zcloudm(i) = 0. |
---|
470 | zcloudl(i) = 0. |
---|
471 | pch(i) = 1.0 |
---|
472 | pcm(i) = 1.0 |
---|
473 | pcl(i) = 1.0 |
---|
474 | pctlwp(i) = 0.0 |
---|
475 | ENDDO |
---|
476 | |
---|
477 | ! --calculation of liquid water path |
---|
478 | |
---|
479 | DO k = klev, 1, -1 |
---|
480 | DO i = 1, klon |
---|
481 | pctlwp(i) = pctlwp(i) + pqlwp(i, k)*rhodz(i, k) |
---|
482 | ENDDO |
---|
483 | ENDDO |
---|
484 | |
---|
485 | ! --calculation of cloud properties with cloud overlap |
---|
486 | |
---|
487 | IF (novlp==1) THEN |
---|
488 | DO k = klev, 1, -1 |
---|
489 | DO i = 1, klon |
---|
490 | zclear(i) = zclear(i)*(1.-max(pclc(i,k),zcloud(i)))/(1.-min(real( & |
---|
491 | zcloud(i),kind=8),1.-zepsec)) |
---|
492 | pct(i) = 1. - zclear(i) |
---|
493 | IF (paprs(i,k)<prmhc) THEN |
---|
494 | pch(i) = pch(i)*(1.-max(pclc(i,k),zcloudh(i)))/(1.-min(real(zcloudh & |
---|
495 | (i),kind=8),1.-zepsec)) |
---|
496 | zcloudh(i) = pclc(i, k) |
---|
497 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
498 | pcm(i) = pcm(i)*(1.-max(pclc(i,k),zcloudm(i)))/(1.-min(real(zcloudm & |
---|
499 | (i),kind=8),1.-zepsec)) |
---|
500 | zcloudm(i) = pclc(i, k) |
---|
501 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
502 | pcl(i) = pcl(i)*(1.-max(pclc(i,k),zcloudl(i)))/(1.-min(real(zcloudl & |
---|
503 | (i),kind=8),1.-zepsec)) |
---|
504 | zcloudl(i) = pclc(i, k) |
---|
505 | ENDIF |
---|
506 | zcloud(i) = pclc(i, k) |
---|
507 | ENDDO |
---|
508 | ENDDO |
---|
509 | ELSE IF (novlp==2) THEN |
---|
510 | DO k = klev, 1, -1 |
---|
511 | DO i = 1, klon |
---|
512 | zcloud(i) = max(pclc(i,k), zcloud(i)) |
---|
513 | pct(i) = zcloud(i) |
---|
514 | IF (paprs(i,k)<prmhc) THEN |
---|
515 | pch(i) = min(pclc(i,k), pch(i)) |
---|
516 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
517 | pcm(i) = min(pclc(i,k), pcm(i)) |
---|
518 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
519 | pcl(i) = min(pclc(i,k), pcl(i)) |
---|
520 | ENDIF |
---|
521 | ENDDO |
---|
522 | ENDDO |
---|
523 | ELSE IF (novlp==3) THEN |
---|
524 | DO k = klev, 1, -1 |
---|
525 | DO i = 1, klon |
---|
526 | zclear(i) = zclear(i)*(1.-pclc(i,k)) |
---|
527 | pct(i) = 1 - zclear(i) |
---|
528 | IF (paprs(i,k)<prmhc) THEN |
---|
529 | pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
530 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
531 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
532 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
533 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
534 | ENDIF |
---|
535 | ENDDO |
---|
536 | ENDDO |
---|
537 | ENDIF |
---|
538 | |
---|
539 | DO i = 1, klon |
---|
540 | pch(i) = 1. - pch(i) |
---|
541 | pcm(i) = 1. - pcm(i) |
---|
542 | pcl(i) = 1. - pcl(i) |
---|
543 | ENDDO |
---|
544 | |
---|
545 | ! ======================================================== |
---|
546 | ! DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL |
---|
547 | ! ======================================================== |
---|
548 | ! change by Nicolas Yan (LSCE) |
---|
549 | ! Cloud Droplet Number Concentration (CDNC) : 3D variable |
---|
550 | ! Fractionnal cover by liquid water cloud (LCC3D) : 3D variable |
---|
551 | ! Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable |
---|
552 | ! Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable |
---|
553 | ! Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable |
---|
554 | |
---|
555 | IF (ok_cdnc) THEN |
---|
556 | |
---|
557 | DO k = 1, klev |
---|
558 | DO i = 1, klon |
---|
559 | phase3d(i, k) = 1 - zfice(i, k) |
---|
560 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
561 | lcc3d(i, k) = seuil_neb*phase3d(i, k) |
---|
562 | ELSE |
---|
563 | lcc3d(i, k) = pclc(i, k)*phase3d(i, k) |
---|
564 | ENDIF |
---|
565 | scdnc(i, k) = lcc3d(i, k)*cdnc(i, k) ! m-3 |
---|
566 | ENDDO |
---|
567 | ENDDO |
---|
568 | |
---|
569 | DO i = 1, klon |
---|
570 | lcc(i) = 0. |
---|
571 | reffclwtop(i) = 0. |
---|
572 | cldncl(i) = 0. |
---|
573 | IF (novlp.EQ.3 .OR. novlp.EQ.1) tcc(i) = 1. |
---|
574 | IF (novlp.EQ.2) tcc(i) = 0. |
---|
575 | ENDDO |
---|
576 | |
---|
577 | DO i = 1, klon |
---|
578 | DO k = klev - 1, 1, -1 !From TOA down |
---|
579 | |
---|
580 | ! Test, if the cloud optical depth exceeds the necessary |
---|
581 | ! threshold: |
---|
582 | |
---|
583 | IF (pcltau(i,k)>thres_tau .AND. pclc(i,k)>thres_neb) THEN |
---|
584 | |
---|
585 | IF (novlp.EQ.2) THEN |
---|
586 | IF (first) THEN |
---|
587 | WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM' |
---|
588 | first = .FALSE. |
---|
589 | ENDIF |
---|
590 | flag_max = -1. |
---|
591 | ftmp(i) = max(tcc(i), pclc(i,k)) |
---|
592 | ENDIF |
---|
593 | |
---|
594 | IF (novlp.EQ.3) THEN |
---|
595 | IF (first) THEN |
---|
596 | WRITE (*, *) 'Hypothese de recouvrement: RANDOM' |
---|
597 | first = .FALSE. |
---|
598 | ENDIF |
---|
599 | flag_max = 1. |
---|
600 | ftmp(i) = tcc(i)*(1-pclc(i,k)) |
---|
601 | ENDIF |
---|
602 | |
---|
603 | IF (novlp.EQ.1) THEN |
---|
604 | IF (first) THEN |
---|
605 | WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM_ & |
---|
606 | & & |
---|
607 | & RANDOM' |
---|
608 | first = .FALSE. |
---|
609 | ENDIF |
---|
610 | flag_max = 1. |
---|
611 | ftmp(i) = tcc(i)*(1.-max(pclc(i,k),pclc(i,k+1)))/(1.-min(pclc(i, & |
---|
612 | k+1),1.-thres_neb)) |
---|
613 | ENDIF |
---|
614 | ! Effective radius of cloud droplet at top of cloud (m) |
---|
615 | reffclwtop(i) = reffclwtop(i) + rad_chaud(i, k)*1.0E-06*phase3d(i, & |
---|
616 | k)*(tcc(i)-ftmp(i))*flag_max |
---|
617 | ! CDNC at top of cloud (m-3) |
---|
618 | cldncl(i) = cldncl(i) + cdnc(i, k)*phase3d(i, k)*(tcc(i)-ftmp(i))* & |
---|
619 | flag_max |
---|
620 | ! Liquid Cloud Content at top of cloud |
---|
621 | lcc(i) = lcc(i) + phase3d(i, k)*(tcc(i)-ftmp(i))*flag_max |
---|
622 | ! Total Cloud Content at top of cloud |
---|
623 | tcc(i) = ftmp(i) |
---|
624 | |
---|
625 | ENDIF ! is there a visible, not-too-small cloud? |
---|
626 | ENDDO ! loop over k |
---|
627 | |
---|
628 | IF (novlp.EQ.3 .OR. novlp.EQ.1) tcc(i) = 1. - tcc(i) |
---|
629 | |
---|
630 | ENDDO ! loop over i |
---|
631 | |
---|
632 | ! ! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC |
---|
633 | ! REFFCLWS) |
---|
634 | DO i = 1, klon |
---|
635 | DO k = 1, klev |
---|
636 | ! Weight to be used for outputs: eau_liquide*couverture nuageuse |
---|
637 | lcc3dcon(i, k) = rnebcon(i, k)*phase3d(i, k)*clwcon(i, k) ! eau liquide convective |
---|
638 | lcc3dstra(i, k) = pclc(i, k)*pqlwp(i, k)*phase3d(i, k) |
---|
639 | lcc3dstra(i, k) = lcc3dstra(i, k) - lcc3dcon(i, k) ! eau liquide stratiforme |
---|
640 | lcc3dstra(i, k) = max(lcc3dstra(i,k), 0.0) |
---|
641 | !FC pour la glace (CAUSES) |
---|
642 | icc3dcon(i, k) = rnebcon(i, k)*(1-phase3d(i, k))*clwcon(i, k) ! glace convective |
---|
643 | icc3dstra(i, k)= pclc(i, k)*pqlwp(i, k)*(1-phase3d(i, k)) |
---|
644 | icc3dstra(i, k) = icc3dstra(i, k) - icc3dcon(i, k) ! glace stratiforme |
---|
645 | icc3dstra(i, k) = max( icc3dstra(i, k), 0.0) |
---|
646 | !FC (CAUSES) |
---|
647 | |
---|
648 | ! Compute cloud droplet radius as above in meter |
---|
649 | radius = 1.1*((pqlwp(i,k)*pplay(i,k)/(rd*t(i,k)))/(4./3*rpi*1000.* & |
---|
650 | cdnc(i,k)))**(1./3.) |
---|
651 | radius = max(radius, 5.E-6) |
---|
652 | ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D |
---|
653 | reffclwc(i, k) = radius |
---|
654 | reffclwc(i, k) = reffclwc(i, k)*lcc3dcon(i, k) |
---|
655 | ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D |
---|
656 | reffclws(i, k) = radius |
---|
657 | reffclws(i, k) = reffclws(i, k)*lcc3dstra(i, k) |
---|
658 | ENDDO !klev |
---|
659 | ENDDO !klon |
---|
660 | |
---|
661 | ! Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D |
---|
662 | |
---|
663 | DO i = 1, klon |
---|
664 | cldnvi(i) = 0. |
---|
665 | lcc_integrat(i) = 0. |
---|
666 | height(i) = 0. |
---|
667 | DO k = 1, klev |
---|
668 | cldnvi(i) = cldnvi(i) + cdnc(i, k)*lcc3d(i, k)*dh(i, k) |
---|
669 | lcc_integrat(i) = lcc_integrat(i) + lcc3d(i, k)*dh(i, k) |
---|
670 | height(i) = height(i) + dh(i, k) |
---|
671 | ENDDO ! klev |
---|
672 | lcc_integrat(i) = lcc_integrat(i)/height(i) |
---|
673 | IF (lcc_integrat(i)<=1.0E-03) THEN |
---|
674 | cldnvi(i) = cldnvi(i)*lcc(i)/seuil_neb |
---|
675 | ELSE |
---|
676 | cldnvi(i) = cldnvi(i)*lcc(i)/lcc_integrat(i) |
---|
677 | ENDIF |
---|
678 | ENDDO ! klon |
---|
679 | |
---|
680 | DO i = 1, klon |
---|
681 | DO k = 1, klev |
---|
682 | IF (scdnc(i,k)<=0.0) scdnc(i, k) = 0.0 |
---|
683 | IF (reffclws(i,k)<=0.0) reffclws(i, k) = 0.0 |
---|
684 | IF (reffclwc(i,k)<=0.0) reffclwc(i, k) = 0.0 |
---|
685 | IF (lcc3d(i,k)<=0.0) lcc3d(i, k) = 0.0 |
---|
686 | IF (lcc3dcon(i,k)<=0.0) lcc3dcon(i, k) = 0.0 |
---|
687 | IF (lcc3dstra(i,k)<=0.0) lcc3dstra(i, k) = 0.0 |
---|
688 | !FC (CAUSES) |
---|
689 | IF (icc3dcon(i,k)<=0.0) icc3dcon(i, k) = 0.0 |
---|
690 | IF (icc3dstra(i,k)<=0.0) icc3dstra(i, k) = 0.0 |
---|
691 | !FC (CAUSES) |
---|
692 | ENDDO |
---|
693 | IF (reffclwtop(i)<=0.0) reffclwtop(i) = 0.0 |
---|
694 | IF (cldncl(i)<=0.0) cldncl(i) = 0.0 |
---|
695 | IF (cldnvi(i)<=0.0) cldnvi(i) = 0.0 |
---|
696 | IF (lcc(i)<=0.0) lcc(i) = 0.0 |
---|
697 | ENDDO |
---|
698 | |
---|
699 | ENDIF !ok_cdnc |
---|
700 | |
---|
701 | first=.false. !to be sure |
---|
702 | |
---|
703 | RETURN |
---|
704 | |
---|
705 | END SUBROUTINE newmicro |
---|