| 1 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|---|
| 2 | ! Copyright (c) 2009, Centre National de la Recherche Scientifique |
|---|
| 3 | ! All rights reserved. |
|---|
| 4 | ! |
|---|
| 5 | ! Redistribution and use in source and binary forms, with or without modification, are |
|---|
| 6 | ! permitted provided that the following conditions are met: |
|---|
| 7 | ! |
|---|
| 8 | ! 1. Redistributions of source code must retain the above copyright notice, this list of |
|---|
| 9 | ! conditions and the following disclaimer. |
|---|
| 10 | ! |
|---|
| 11 | ! 2. Redistributions in binary form must reproduce the above copyright notice, this list |
|---|
| 12 | ! of conditions and the following disclaimer in the documentation and/or other |
|---|
| 13 | ! materials provided with the distribution. |
|---|
| 14 | ! |
|---|
| 15 | ! 3. Neither the name of the copyright holder nor the names of its contributors may be |
|---|
| 16 | ! used to endorse or promote products derived from this software without specific prior |
|---|
| 17 | ! written permission. |
|---|
| 18 | ! |
|---|
| 19 | ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY |
|---|
| 20 | ! EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
|---|
| 21 | ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
|---|
| 22 | ! THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|---|
| 23 | ! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
|---|
| 24 | ! OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|---|
| 25 | ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|---|
| 26 | ! LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|---|
| 27 | ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|---|
| 28 | ! |
|---|
| 29 | ! History |
|---|
| 30 | ! May 2007: ActSim code of M. Chiriaco and H. Chepfer rewritten by S. Bony |
|---|
| 31 | ! |
|---|
| 32 | ! May 2008, H. Chepfer: |
|---|
| 33 | ! - Units of pressure inputs: Pa |
|---|
| 34 | ! - Non Spherical particles : LS Ice NS coefficients, CONV Ice NS coefficients |
|---|
| 35 | ! - New input: ice_type (0=ice-spheres ; 1=ice-non-spherical) |
|---|
| 36 | ! |
|---|
| 37 | ! June 2008, A. Bodas-Salcedo: |
|---|
| 38 | ! - Ported to Fortran 90 and optimisation changes |
|---|
| 39 | ! |
|---|
| 40 | ! August 2008, J-L Dufresne: |
|---|
| 41 | ! - Optimisation changes (sum instructions suppressed) |
|---|
| 42 | ! |
|---|
| 43 | ! October 2008, S. Bony, H. Chepfer and J-L. Dufresne : |
|---|
| 44 | ! - Interface with COSP v2.0: |
|---|
| 45 | ! cloud fraction removed from inputs |
|---|
| 46 | ! in-cloud condensed water now in input (instead of grid-averaged value) |
|---|
| 47 | ! depolarisation diagnostic removed |
|---|
| 48 | ! parasol (polder) reflectances (for 5 different solar zenith angles) added |
|---|
| 49 | ! |
|---|
| 50 | ! December 2008, S. Bony, H. Chepfer and J-L. Dufresne : |
|---|
| 51 | ! - Modification of the integration of the lidar equation. |
|---|
| 52 | ! - change the cloud detection threshold |
|---|
| 53 | ! |
|---|
| 54 | ! April 2008, A. Bodas-Salcedo: |
|---|
| 55 | ! - Bug fix in computation of pmol and pnorm of upper layer |
|---|
| 56 | ! |
|---|
| 57 | ! April 2008, J-L. Dufresne |
|---|
| 58 | ! - Bug fix in computation of pmol and pnorm, thanks to Masaki Satoh: a factor 2 |
|---|
| 59 | ! was missing. This affects the ATB values but not the cloud fraction. |
|---|
| 60 | ! |
|---|
| 61 | ! January 2013, G. Cesana and H. Chepfer: |
|---|
| 62 | ! - Add the perpendicular component of the backscattered signal (pnorm_perp_tot) in the arguments |
|---|
| 63 | ! - Add the temperature for each levels (temp) in the arguments |
|---|
| 64 | ! - Add the computation of the perpendicular component of the backscattered lidar signal |
|---|
| 65 | ! Reference: Cesana G. and H. Chepfer (2013): Evaluation of the cloud water phase |
|---|
| 66 | ! in a climate model using CALIPSO-GOCCP, J. Geophys. Res., doi: 10.1002/jgrd.50376 |
|---|
| 67 | ! |
|---|
| 68 | ! May 2015 - D. Swales - Modified for COSPv2.0 |
|---|
| 69 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|---|
| 70 | module mod_lidar_simulator |
|---|
| 71 | USE COSP_KINDS, ONLY: wp |
|---|
| 72 | USE MOD_COSP_CONFIG, ONLY: SR_BINS,S_CLD,S_ATT,S_CLD_ATT,R_UNDEF,calipso_histBsct, & |
|---|
| 73 | use_vgrid,vgrid_zl,vgrid_zu |
|---|
| 74 | USE MOD_COSP_STATS, ONLY: COSP_CHANGE_VERTICAL_GRID,hist1d |
|---|
| 75 | implicit none |
|---|
| 76 | |
|---|
| 77 | ! Polynomial coefficients (Alpha, Beta, Gamma) which allow to compute the |
|---|
| 78 | ! ATBperpendicular as a function of the ATB for ice or liquid cloud particles |
|---|
| 79 | ! derived from CALIPSO-GOCCP observations at 120m vertical grid |
|---|
| 80 | ! (Cesana and Chepfer, JGR, 2013). |
|---|
| 81 | ! |
|---|
| 82 | ! Relationship between ATBice and ATBperp,ice for ice particles: |
|---|
| 83 | ! ATBperp,ice = Alpha*ATBice |
|---|
| 84 | ! Relationship between ATBice and ATBperp,ice for liquid particles: |
|---|
| 85 | ! ATBperp,ice = Beta*ATBice^2 + Gamma*ATBice |
|---|
| 86 | real(wp) :: & |
|---|
| 87 | alpha,beta,gamma |
|---|
| 88 | |
|---|
| 89 | contains |
|---|
| 90 | ! ###################################################################################### |
|---|
| 91 | ! SUBROUTINE lidar_subcolumn |
|---|
| 92 | ! Inputs with a vertical dimensions (nlev) should ordered in along the vertical |
|---|
| 93 | ! dimension from TOA-2-SFC, for example: varIN(nlev) is varIN @ SFC. |
|---|
| 94 | ! ###################################################################################### |
|---|
| 95 | subroutine lidar_subcolumn(npoints,ncolumns,nlev,beta_mol,tau_mol,betatot,tautot, & |
|---|
| 96 | betatot_ice,tautot_ice,betatot_liq,tautot_liq, & |
|---|
| 97 | pmol,pnorm,pnorm_perp_tot) |
|---|
| 98 | |
|---|
| 99 | ! INPUTS |
|---|
| 100 | INTEGER,intent(in) :: & |
|---|
| 101 | npoints, & ! Number of gridpoints |
|---|
| 102 | ncolumns, & ! Number of subcolumns |
|---|
| 103 | nlev ! Number of levels |
|---|
| 104 | REAL(WP),intent(in),dimension(npoints,nlev) :: & |
|---|
| 105 | beta_mol, & ! Molecular backscatter coefficient |
|---|
| 106 | tau_mol ! Molecular optical depth |
|---|
| 107 | |
|---|
| 108 | REAL(WP),intent(in),dimension(npoints,ncolumns,nlev) :: & |
|---|
| 109 | betatot, & ! |
|---|
| 110 | tautot, & ! Optical thickess integrated from top |
|---|
| 111 | betatot_ice, & ! Backscatter coefficient for ice particles |
|---|
| 112 | betatot_liq, & ! Backscatter coefficient for liquid particles |
|---|
| 113 | tautot_ice, & ! Total optical thickness of ice |
|---|
| 114 | tautot_liq ! Total optical thickness of liq |
|---|
| 115 | |
|---|
| 116 | ! OUTPUTS |
|---|
| 117 | REAL(WP),intent(out),dimension(npoints,nlev) :: & |
|---|
| 118 | pmol ! Molecular attenuated backscatter lidar signal power(m^-1.sr^-1) |
|---|
| 119 | REAL(WP),intent(out),dimension(npoints,ncolumns,nlev) :: & |
|---|
| 120 | pnorm, & ! Molecular backscatter signal power (m^-1.sr^-1) |
|---|
| 121 | pnorm_perp_tot ! Perpendicular lidar backscattered signal power |
|---|
| 122 | |
|---|
| 123 | ! LOCAL VARIABLES |
|---|
| 124 | INTEGER :: k,icol |
|---|
| 125 | REAL(WP),dimension(npoints) :: & |
|---|
| 126 | tautot_lay ! |
|---|
| 127 | REAL(WP),dimension(npoints,ncolumns,nlev) :: & |
|---|
| 128 | pnorm_liq, & ! Lidar backscattered signal power for liquid |
|---|
| 129 | pnorm_ice, & ! Lidar backscattered signal power for ice |
|---|
| 130 | pnorm_perp_ice, & ! Perpendicular lidar backscattered signal power for ice |
|---|
| 131 | pnorm_perp_liq, & ! Perpendicular lidar backscattered signal power for liq |
|---|
| 132 | beta_perp_ice, & ! Perpendicular backscatter coefficient for ice |
|---|
| 133 | beta_perp_liq ! Perpendicular backscatter coefficient for liquid |
|---|
| 134 | |
|---|
| 135 | ! #################################################################################### |
|---|
| 136 | ! *) Molecular signal |
|---|
| 137 | ! #################################################################################### |
|---|
| 138 | call cmp_backsignal(nlev,npoints,beta_mol(1:npoints,1:nlev),& |
|---|
| 139 | tau_mol(1:npoints,1:nlev),pmol(1:npoints,1:nlev)) |
|---|
| 140 | |
|---|
| 141 | ! #################################################################################### |
|---|
| 142 | ! PLANE PARRALLEL FIELDS |
|---|
| 143 | ! #################################################################################### |
|---|
| 144 | do icol=1,ncolumns |
|---|
| 145 | ! ################################################################################# |
|---|
| 146 | ! *) Total Backscatter signal |
|---|
| 147 | ! ################################################################################# |
|---|
| 148 | call cmp_backsignal(nlev,npoints,betatot(1:npoints,icol,1:nlev),& |
|---|
| 149 | tautot(1:npoints,icol,1:nlev),pnorm(1:npoints,icol,1:nlev)) |
|---|
| 150 | ! ################################################################################# |
|---|
| 151 | ! *) Ice/Liq Backscatter signal |
|---|
| 152 | ! ################################################################################# |
|---|
| 153 | ! Computation of the ice and liquid lidar backscattered signal (ATBice and ATBliq) |
|---|
| 154 | ! Ice only |
|---|
| 155 | call cmp_backsignal(nlev,npoints,betatot_ice(1:npoints,icol,1:nlev),& |
|---|
| 156 | tautot_ice(1:npoints,icol,1:nlev),& |
|---|
| 157 | pnorm_ice(1:npoints,icol,1:nlev)) |
|---|
| 158 | ! Liquid only |
|---|
| 159 | call cmp_backsignal(nlev,npoints,betatot_liq(1:npoints,icol,1:nlev),& |
|---|
| 160 | tautot_liq(1:npoints,icol,1:nlev),& |
|---|
| 161 | pnorm_liq(1:npoints,icol,1:nlev)) |
|---|
| 162 | enddo |
|---|
| 163 | |
|---|
| 164 | ! #################################################################################### |
|---|
| 165 | ! PERDENDICULAR FIELDS |
|---|
| 166 | ! #################################################################################### |
|---|
| 167 | do icol=1,ncolumns |
|---|
| 168 | |
|---|
| 169 | ! ################################################################################# |
|---|
| 170 | ! *) Ice/Liq Perpendicular Backscatter signal |
|---|
| 171 | ! ################################################################################# |
|---|
| 172 | ! Computation of ATBperp,ice/liq from ATBice/liq including the multiple scattering |
|---|
| 173 | ! contribution (Cesana and Chepfer 2013, JGR) |
|---|
| 174 | do k=1,nlev |
|---|
| 175 | ! Ice particles |
|---|
| 176 | pnorm_perp_ice(1:npoints,icol,k) = Alpha * pnorm_ice(1:npoints,icol,k) |
|---|
| 177 | |
|---|
| 178 | ! Liquid particles |
|---|
| 179 | pnorm_perp_liq(1:npoints,icol,k) = 1000._wp*Beta*pnorm_liq(1:npoints,icol,k)**2+& |
|---|
| 180 | Gamma*pnorm_liq(1:npoints,icol,k) |
|---|
| 181 | enddo |
|---|
| 182 | |
|---|
| 183 | ! ################################################################################# |
|---|
| 184 | ! *) Computation of beta_perp_ice/liq using the lidar equation |
|---|
| 185 | ! ################################################################################# |
|---|
| 186 | ! Ice only |
|---|
| 187 | call cmp_beta(nlev,npoints,pnorm_perp_ice(1:npoints,icol,1:nlev),& |
|---|
| 188 | tautot_ice(1:npoints,icol,1:nlev),beta_perp_ice(1:npoints,icol,1:nlev)) |
|---|
| 189 | |
|---|
| 190 | ! Liquid only |
|---|
| 191 | call cmp_beta(nlev,npoints,pnorm_perp_liq(1:npoints,icol,1:nlev),& |
|---|
| 192 | tautot_liq(1:npoints,icol,1:nlev),beta_perp_liq(1:npoints,icol,1:nlev)) |
|---|
| 193 | |
|---|
| 194 | ! ################################################################################# |
|---|
| 195 | ! *) Perpendicular Backscatter signal |
|---|
| 196 | ! ################################################################################# |
|---|
| 197 | ! Computation of the total perpendicular lidar signal (ATBperp for liq+ice) |
|---|
| 198 | ! Upper layer |
|---|
| 199 | WHERE(tautot(1:npoints,icol,1) .gt. 0) |
|---|
| 200 | pnorm_perp_tot(1:npoints,icol,1) = (beta_perp_ice(1:npoints,icol,1)+ & |
|---|
| 201 | beta_perp_liq(1:npoints,icol,1)- & |
|---|
| 202 | (beta_mol(1:npoints,1)/(1._wp+1._wp/0.0284_wp))) / & |
|---|
| 203 | (2._wp*tautot(1:npoints,icol,1))* & |
|---|
| 204 | (1._wp-exp(-2._wp*tautot(1:npoints,icol,1))) |
|---|
| 205 | ELSEWHERE |
|---|
| 206 | pnorm_perp_tot(1:npoints,icol,1) = 0._wp |
|---|
| 207 | ENDWHERE |
|---|
| 208 | |
|---|
| 209 | ! Other layers |
|---|
| 210 | do k=2,nlev |
|---|
| 211 | ! Optical thickness of layer k |
|---|
| 212 | tautot_lay(1:npoints) = tautot(1:npoints,icol,k)-tautot(1:npoints,icol,k-1) |
|---|
| 213 | |
|---|
| 214 | ! The perpendicular component of the molecular backscattered signal (Betaperp) |
|---|
| 215 | ! has been taken into account two times (once for liquid and once for ice). |
|---|
| 216 | ! We remove one contribution using |
|---|
| 217 | ! Betaperp=beta_mol(:,k)/(1+1/0.0284)) [bodhaine et al. 1999] in the following |
|---|
| 218 | ! equations: |
|---|
| 219 | WHERE (pnorm(1:npoints,icol,k) .eq. 0) |
|---|
| 220 | pnorm_perp_tot(1:npoints,icol,k)=0._wp |
|---|
| 221 | ELSEWHERE |
|---|
| 222 | where(tautot_lay(1:npoints) .gt. 0.) |
|---|
| 223 | pnorm_perp_tot(1:npoints,icol,k) = (beta_perp_ice(1:npoints,icol,k)+ & |
|---|
| 224 | beta_perp_liq(1:npoints,icol,k)-(beta_mol(1:npoints,k)/(1._wp+1._wp/ & |
|---|
| 225 | 0.0284_wp)))*EXP(-2._wp*tautot(1:npoints,icol,k-1))/ & |
|---|
| 226 | (2._wp*tautot_lay(1:npoints))* (1._wp-EXP(-2._wp*tautot_lay(1:npoints))) |
|---|
| 227 | elsewhere |
|---|
| 228 | pnorm_perp_tot(1:npoints,icol,k) = (beta_perp_ice(1:npoints,icol,k)+ & |
|---|
| 229 | beta_perp_liq(1:npoints,icol,k)-(beta_mol(1:npoints,k)/(1._wp+1._wp/ & |
|---|
| 230 | 0.0284_wp)))*EXP(-2._wp*tautot(1:npoints,icol,k-1)) |
|---|
| 231 | endwhere |
|---|
| 232 | ENDWHERE |
|---|
| 233 | END DO |
|---|
| 234 | enddo |
|---|
| 235 | end subroutine lidar_subcolumn |
|---|
| 236 | |
|---|
| 237 | ! ###################################################################################### |
|---|
| 238 | ! SUBROUTINE lidar_column |
|---|
| 239 | ! ###################################################################################### |
|---|
| 240 | subroutine lidar_column(npoints,ncol,nlevels,llm,max_bin,tmp, pnorm, & |
|---|
| 241 | pnorm_perp, pmol, pplay, ok_lidar_cfad, ncat, cfad2, & |
|---|
| 242 | lidarcld, lidarcldphase, cldlayer, zlev, zlev_half, & |
|---|
| 243 | cldlayerphase, lidarcldtmp) |
|---|
| 244 | integer,parameter :: & |
|---|
| 245 | nphase = 6 ! Number of cloud layer phase types |
|---|
| 246 | |
|---|
| 247 | ! Inputs |
|---|
| 248 | integer,intent(in) :: & |
|---|
| 249 | npoints, & ! Number of horizontal grid points |
|---|
| 250 | ncol, & ! Number of subcolumns |
|---|
| 251 | nlevels, & ! Number of vertical layers (OLD grid) |
|---|
| 252 | llm, & ! Number of vertical layers (NEW grid) |
|---|
| 253 | max_bin, & ! Number of bins for SR CFADs |
|---|
| 254 | ncat ! Number of cloud layer types (low,mid,high,total) |
|---|
| 255 | real(wp),intent(in),dimension(npoints,ncol,Nlevels) :: & |
|---|
| 256 | pnorm, & ! Lidar ATB |
|---|
| 257 | pnorm_perp ! Lidar perpendicular ATB |
|---|
| 258 | real(wp),intent(in),dimension(npoints,Nlevels) :: & |
|---|
| 259 | pmol, & ! Molecular ATB |
|---|
| 260 | pplay, & ! Pressure on model levels (Pa) |
|---|
| 261 | tmp ! Temperature at each levels |
|---|
| 262 | logical,intent(in) :: & |
|---|
| 263 | ok_lidar_cfad ! True if lidar CFAD diagnostics need to be computed |
|---|
| 264 | real(wp),intent(in),dimension(npoints,nlevels) :: & |
|---|
| 265 | zlev ! Model full levels |
|---|
| 266 | real(wp),intent(in),dimension(npoints,nlevels+1) :: & |
|---|
| 267 | zlev_half ! Model half levels |
|---|
| 268 | |
|---|
| 269 | ! Outputs |
|---|
| 270 | real(wp),intent(inout),dimension(npoints,llm) :: & |
|---|
| 271 | lidarcld ! 3D "lidar" cloud fraction |
|---|
| 272 | real(wp),intent(inout),dimension(npoints,ncat) :: & |
|---|
| 273 | cldlayer ! "lidar" cloud layer fraction (low, mid, high, total) |
|---|
| 274 | real(wp),intent(inout),dimension(npoints,llm,nphase) :: & |
|---|
| 275 | lidarcldphase ! 3D "lidar" phase cloud fraction |
|---|
| 276 | real(wp),intent(inout),dimension(npoints,40,5) :: & |
|---|
| 277 | lidarcldtmp ! 3D "lidar" phase cloud fraction as a function of temp |
|---|
| 278 | real(wp),intent(inout),dimension(npoints,ncat,nphase) :: & |
|---|
| 279 | cldlayerphase ! "lidar" phase low mid high cloud fraction |
|---|
| 280 | real(wp),intent(inout),dimension(npoints,max_bin,llm) :: & |
|---|
| 281 | cfad2 ! CFADs of SR |
|---|
| 282 | |
|---|
| 283 | ! Local Variables |
|---|
| 284 | integer :: ic,i,j |
|---|
| 285 | real(wp),dimension(npoints,ncol,llm) :: & |
|---|
| 286 | x3d |
|---|
| 287 | real(wp),dimension(npoints,llm) :: & |
|---|
| 288 | x3d_c,pnorm_c |
|---|
| 289 | real(wp) :: & |
|---|
| 290 | xmax |
|---|
| 291 | real(wp),dimension(npoints,1,Nlevels) :: t_in,ph_in,betamol_in |
|---|
| 292 | real(wp),dimension(npoints,ncol,llm) :: pnormFlip,pnorm_perpFlip |
|---|
| 293 | real(wp),dimension(npoints,1,llm) :: tmpFlip,pplayFlip,betamolFlip |
|---|
| 294 | |
|---|
| 295 | ! Vertically regrid input data |
|---|
| 296 | if (use_vgrid) then |
|---|
| 297 | t_in(:,1,:)=tmp(:,nlevels:1:-1) |
|---|
| 298 | call cosp_change_vertical_grid(Npoints,1,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
|---|
| 299 | t_in,llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),tmpFlip(:,1,llm:1:-1)) |
|---|
| 300 | ph_in(:,1,:) = pplay(:,nlevels:1:-1) |
|---|
| 301 | call cosp_change_vertical_grid(Npoints,1,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
|---|
| 302 | ph_in,llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),pplayFlip(:,1,llm:1:-1)) |
|---|
| 303 | betamol_in(:,1,:) = pmol(:,nlevels:1:-1) |
|---|
| 304 | call cosp_change_vertical_grid(Npoints,1,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
|---|
| 305 | betamol_in,llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),betamolFlip(:,1,llm:1:-1)) |
|---|
| 306 | call cosp_change_vertical_grid(Npoints,Ncol,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
|---|
| 307 | pnorm(:,:,nlevels:1:-1),llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),pnormFlip(:,:,llm:1:-1)) |
|---|
| 308 | call cosp_change_vertical_grid(Npoints,Ncol,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
|---|
| 309 | pnorm_perp(:,:,nlevels:1:-1),llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),pnorm_perpFlip(:,:,llm:1:-1)) |
|---|
| 310 | endif |
|---|
| 311 | |
|---|
| 312 | ! Initialization (The histogram bins, are set up during initialization and the |
|---|
| 313 | ! maximum value is used as the upper bounds.) |
|---|
| 314 | xmax = maxval(calipso_histBsct) |
|---|
| 315 | |
|---|
| 316 | ! Compute LIDAR scattering ratio |
|---|
| 317 | if (use_vgrid) then |
|---|
| 318 | do ic = 1, ncol |
|---|
| 319 | pnorm_c = pnormFlip(:,ic,:) |
|---|
| 320 | where ((pnorm_c .lt. xmax) .and. (betamolFlip(:,1,:) .lt. xmax) .and. & |
|---|
| 321 | (betamolFlip(:,1,:) .gt. 0.0 )) |
|---|
| 322 | x3d_c = pnorm_c/betamolFlip(:,1,:) |
|---|
| 323 | elsewhere |
|---|
| 324 | x3d_c = R_UNDEF |
|---|
| 325 | end where |
|---|
| 326 | x3d(:,ic,:) = x3d_c |
|---|
| 327 | enddo |
|---|
| 328 | ! Diagnose cloud fractions for subcolumn lidar scattering ratios |
|---|
| 329 | CALL COSP_CLDFRAC(npoints,ncol,llm,ncat,nphase,tmpFlip,x3d,pnormFlip, & |
|---|
| 330 | pnorm_perpFlip,pplayFlip,S_att,S_cld,S_cld_att,R_UNDEF, & |
|---|
| 331 | lidarcld,cldlayer,lidarcldphase,cldlayerphase,lidarcldtmp) |
|---|
| 332 | else |
|---|
| 333 | do ic = 1, ncol |
|---|
| 334 | pnorm_c = pnorm(:,ic,:) |
|---|
| 335 | where ((pnorm_c.lt.xmax) .and. (pmol.lt.xmax) .and. (pmol.gt. 0.0 )) |
|---|
| 336 | x3d_c = pnorm_c/pmol |
|---|
| 337 | elsewhere |
|---|
| 338 | x3d_c = R_UNDEF |
|---|
| 339 | end where |
|---|
| 340 | x3d(:,ic,:) = x3d_c |
|---|
| 341 | enddo |
|---|
| 342 | ! Diagnose cloud fractions for subcolumn lidar scattering ratios |
|---|
| 343 | CALL COSP_CLDFRAC(npoints,ncol,nlevels,ncat,nphase,tmp,x3d,pnorm,pnorm_perp,pplay,& |
|---|
| 344 | S_att,S_cld,S_cld_att,R_UNDEF,lidarcld,cldlayer,lidarcldphase, & |
|---|
| 345 | cldlayerphase,lidarcldtmp) |
|---|
| 346 | endif |
|---|
| 347 | |
|---|
| 348 | ! CFADs |
|---|
| 349 | if (ok_lidar_cfad) then |
|---|
| 350 | ! CFADs of subgrid-scale lidar scattering ratios |
|---|
| 351 | do i=1,Npoints |
|---|
| 352 | do j=1,llm |
|---|
| 353 | cfad2(i,:,j) = hist1D(ncol,x3d(i,:,j),SR_BINS,calipso_histBsct) |
|---|
| 354 | enddo |
|---|
| 355 | enddo |
|---|
| 356 | where(cfad2 .ne. R_UNDEF) cfad2=cfad2/ncol |
|---|
| 357 | |
|---|
| 358 | endif |
|---|
| 359 | |
|---|
| 360 | ! Unit conversions |
|---|
| 361 | where(lidarcld /= R_UNDEF) lidarcld = lidarcld*100._wp |
|---|
| 362 | where(cldlayer /= R_UNDEF) cldlayer = cldlayer*100._wp |
|---|
| 363 | where(cldlayerphase /= R_UNDEF) cldlayerphase = cldlayerphase*100._wp |
|---|
| 364 | where(lidarcldphase /= R_UNDEF) lidarcldphase = lidarcldphase*100._wp |
|---|
| 365 | where(lidarcldtmp /= R_UNDEF) lidarcldtmp = lidarcldtmp*100._wp |
|---|
| 366 | |
|---|
| 367 | end subroutine lidar_column |
|---|
| 368 | |
|---|
| 369 | ! ###################################################################################### |
|---|
| 370 | ! The subroutines below compute the attenuated backscatter signal and the lidar |
|---|
| 371 | ! backscatter coefficients using eq (1) from doi:0094-8276/08/2008GL034207 |
|---|
| 372 | ! ###################################################################################### |
|---|
| 373 | subroutine cmp_backsignal(nlev,npoints,beta,tau,pnorm) |
|---|
| 374 | ! INPUTS |
|---|
| 375 | integer, intent(in) :: nlev,npoints |
|---|
| 376 | real(wp),intent(in),dimension(npoints,nlev) :: beta,tau |
|---|
| 377 | |
|---|
| 378 | ! OUTPUTS |
|---|
| 379 | real(wp),intent(out),dimension(npoints,nlev) :: pnorm |
|---|
| 380 | |
|---|
| 381 | ! Internal Variables |
|---|
| 382 | real(wp), dimension(npoints) :: tautot_lay |
|---|
| 383 | integer :: k |
|---|
| 384 | |
|---|
| 385 | ! Uppermost layer |
|---|
| 386 | pnorm(:,1) = beta(:,1) / (2._wp*tau(:,1)) * (1._wp-exp(-2._wp*tau(:,1))) |
|---|
| 387 | |
|---|
| 388 | ! Other layers |
|---|
| 389 | do k=2,nlev |
|---|
| 390 | tautot_lay(:) = tau(:,k)-tau(:,k-1) |
|---|
| 391 | WHERE ( EXP(-2._wp*tau(:,k-1)) .gt. 0. ) |
|---|
| 392 | WHERE (tautot_lay(:) .gt. 0.) |
|---|
| 393 | pnorm(:,k) = beta(:,k)*EXP(-2._wp*tau(:,k-1)) /& |
|---|
| 394 | (2._wp*tautot_lay(:))*(1._wp-EXP(-2._wp*tautot_lay(:))) |
|---|
| 395 | ELSEWHERE |
|---|
| 396 | ! This must never happen, but just in case, to avoid div. by 0 |
|---|
| 397 | pnorm(:,k) = beta(:,k) * EXP(-2._wp*tau(:,k-1)) |
|---|
| 398 | END WHERE |
|---|
| 399 | ELSEWHERE |
|---|
| 400 | pnorm(:,k) = 0._wp!beta(:,k) |
|---|
| 401 | END WHERE |
|---|
| 402 | END DO |
|---|
| 403 | end subroutine cmp_backsignal |
|---|
| 404 | |
|---|
| 405 | subroutine cmp_beta(nlev,npoints,pnorm,tau,beta) |
|---|
| 406 | ! INPUTS |
|---|
| 407 | integer, intent(in) :: nlev,npoints |
|---|
| 408 | real(wp),intent(in),dimension(npoints,nlev) :: pnorm,tau |
|---|
| 409 | |
|---|
| 410 | ! OUTPUTS |
|---|
| 411 | real(wp),intent(out),dimension(npoints,nlev) :: beta |
|---|
| 412 | |
|---|
| 413 | ! Internal Variables |
|---|
| 414 | real(wp), dimension(npoints) :: tautot_lay |
|---|
| 415 | integer :: k |
|---|
| 416 | |
|---|
| 417 | beta(:,1) = pnorm(:,1) * (2._wp*tau(:,1))/(1._wp-exp(-2._wp*tau(:,1))) |
|---|
| 418 | do k=2,nlev |
|---|
| 419 | tautot_lay(:) = tau(:,k)-tau(:,k-1) |
|---|
| 420 | WHERE ( EXP(-2._wp*tau(:,k-1)) .gt. 0. ) |
|---|
| 421 | WHERE (tautot_lay(:) .gt. 0.) |
|---|
| 422 | beta(:,k) = pnorm(:,k)/ EXP(-2._wp*tau(:,k-1))* & |
|---|
| 423 | (2._wp*tautot_lay(:))/(1._wp-exp(-2._wp*tautot_lay(:))) |
|---|
| 424 | ELSEWHERE |
|---|
| 425 | beta(:,k)=pnorm(:,k)/EXP(-2._wp*tau(:,k-1)) |
|---|
| 426 | END WHERE |
|---|
| 427 | ELSEWHERE |
|---|
| 428 | beta(:,k)=pnorm(:,k) |
|---|
| 429 | END WHERE |
|---|
| 430 | ENDDO |
|---|
| 431 | |
|---|
| 432 | end subroutine cmp_beta |
|---|
| 433 | ! #################################################################################### |
|---|
| 434 | ! SUBROUTINE cosp_cldfrac |
|---|
| 435 | ! Conventions: Ncat must be equal to 4 |
|---|
| 436 | ! #################################################################################### |
|---|
| 437 | SUBROUTINE COSP_CLDFRAC(Npoints,Ncolumns,Nlevels,Ncat,Nphase,tmp,x,ATB,ATBperp, & |
|---|
| 438 | pplay,S_att,S_cld,S_cld_att,undef,lidarcld,cldlayer, & |
|---|
| 439 | lidarcldphase,cldlayerphase,lidarcldtemp) |
|---|
| 440 | ! Parameters |
|---|
| 441 | integer,parameter :: Ntemp=40 ! indice of the temperature vector |
|---|
| 442 | real(wp),parameter,dimension(Ntemp+1) :: & |
|---|
| 443 | tempmod = [0.0, 183.15,186.15,189.15,192.15,195.15,198.15,201.15,204.15,207.15, & |
|---|
| 444 | 210.15,213.15,216.15,219.15,222.15,225.15,228.15,231.15,234.15,237.15, & |
|---|
| 445 | 240.15,243.15,246.15,249.15,252.15,255.15,258.15,261.15,264.15,267.15, & |
|---|
| 446 | 270.15,273.15,276.15,279.15,282.15,285.15,288.15,291.15,294.15,297.15, & |
|---|
| 447 | 473.15] |
|---|
| 448 | |
|---|
| 449 | ! Polynomial coefficient of the phase discrimination line used to separate liquid from ice |
|---|
| 450 | ! (Cesana and Chepfer, JGR, 2013) |
|---|
| 451 | ! ATBperp = ATB^5*alpha50 + ATB^4*beta50 + ATB^3*gamma50 + ATB^2*delta50 + ATB*epsilon50 + zeta50 |
|---|
| 452 | real(wp),parameter :: & |
|---|
| 453 | alpha50 = 9.0322e+15_wp, & ! |
|---|
| 454 | beta50 = -2.1358e+12_wp, & ! |
|---|
| 455 | gamma50 = 173.3963e06_wp, & ! |
|---|
| 456 | delta50 = -3.9514e03_wp, & ! |
|---|
| 457 | epsilon50 = 0.2559_wp, & ! |
|---|
| 458 | zeta50 = -9.4776e-07_wp ! |
|---|
| 459 | |
|---|
| 460 | ! Inputs |
|---|
| 461 | integer,intent(in) :: & |
|---|
| 462 | Npoints, & ! Number of gridpoints |
|---|
| 463 | Ncolumns, & ! Number of subcolumns |
|---|
| 464 | Nlevels, & ! Number of vertical levels |
|---|
| 465 | Ncat, & ! Number of cloud layer types |
|---|
| 466 | Nphase ! Number of cloud layer phase types |
|---|
| 467 | ! [ice,liquid,undefined,false ice,false liquid,Percent of ice] |
|---|
| 468 | real(wp),intent(in) :: & |
|---|
| 469 | S_att, & ! |
|---|
| 470 | S_cld, & ! |
|---|
| 471 | S_cld_att,& ! New threshold for undefine cloud phase detection |
|---|
| 472 | undef ! Undefined value |
|---|
| 473 | real(wp),intent(in),dimension(Npoints,Ncolumns,Nlevels) :: & |
|---|
| 474 | x, & ! |
|---|
| 475 | ATB, & ! 3D attenuated backscatter |
|---|
| 476 | ATBperp ! 3D attenuated backscatter (perpendicular) |
|---|
| 477 | real(wp),intent(in),dimension(Npoints,Nlevels) :: & |
|---|
| 478 | tmp, & ! Temperature |
|---|
| 479 | pplay ! Pressure |
|---|
| 480 | |
|---|
| 481 | ! Outputs |
|---|
| 482 | real(wp),intent(out),dimension(Npoints,Ntemp,5) :: & |
|---|
| 483 | lidarcldtemp ! 3D Temperature 1=tot,2=ice,3=liq,4=undef,5=ice/ice+liq |
|---|
| 484 | real(wp),intent(out),dimension(Npoints,Nlevels,Nphase) :: & |
|---|
| 485 | lidarcldphase ! 3D cloud phase fraction |
|---|
| 486 | real(wp),intent(out),dimension(Npoints,Nlevels) :: & |
|---|
| 487 | lidarcld ! 3D cloud fraction |
|---|
| 488 | real(wp),intent(out),dimension(Npoints,Ncat) :: & |
|---|
| 489 | cldlayer ! Low, middle, high, total cloud fractions |
|---|
| 490 | real(wp),intent(out),dimension(Npoints,Ncat,Nphase) :: & |
|---|
| 491 | cldlayerphase ! Low, middle, high, total cloud fractions for ice liquid and undefine phase |
|---|
| 492 | |
|---|
| 493 | ! Local variables |
|---|
| 494 | integer :: & |
|---|
| 495 | ip, k, iz, ic, ncol, nlev, i, itemp, toplvlsat |
|---|
| 496 | real(wp) :: & |
|---|
| 497 | p1,checktemp, ATBperp_tmp,checkcldlayerphase, checkcldlayerphase2 |
|---|
| 498 | real(wp),dimension(Npoints,Nlevels) :: & |
|---|
| 499 | nsub,lidarcldphasetmp |
|---|
| 500 | real(wp),dimension(Npoints,Ntemp) :: & |
|---|
| 501 | sumlidarcldtemp,lidarcldtempind |
|---|
| 502 | real(wp),dimension(Npoints,Ncolumns,Ncat) :: & |
|---|
| 503 | cldlay,nsublay |
|---|
| 504 | real(wp),dimension(Npoints,Ncat) :: & |
|---|
| 505 | nsublayer,cldlayerphasetmp,cldlayerphasesum |
|---|
| 506 | real(wp),dimension(Npoints,Ncolumns,Nlevels) :: & |
|---|
| 507 | tmpi, & ! Temperature of ice cld |
|---|
| 508 | tmpl, & ! Temperature of liquid cld |
|---|
| 509 | tmpu, & ! Temperature of undef cld |
|---|
| 510 | cldy, & ! |
|---|
| 511 | srok ! |
|---|
| 512 | real(wp),dimension(Npoints,Ncolumns,Ncat,Nphase) :: & |
|---|
| 513 | cldlayphase ! subgrided low mid high phase cloud fraction |
|---|
| 514 | |
|---|
| 515 | ! #################################################################################### |
|---|
| 516 | ! 1) Initialize |
|---|
| 517 | ! #################################################################################### |
|---|
| 518 | lidarcld = 0._wp |
|---|
| 519 | nsub = 0._wp |
|---|
| 520 | cldlay = 0._wp |
|---|
| 521 | nsublay = 0._wp |
|---|
| 522 | ATBperp_tmp = 0._wp |
|---|
| 523 | lidarcldphase(:,:,:) = 0._wp |
|---|
| 524 | cldlayphase(:,:,:,:) = 0._wp |
|---|
| 525 | cldlayerphase(:,:,:) = 0._wp |
|---|
| 526 | tmpi(:,:,:) = 0._wp |
|---|
| 527 | tmpl(:,:,:) = 0._wp |
|---|
| 528 | tmpu(:,:,:) = 0._wp |
|---|
| 529 | cldlayerphasesum(:,:) = 0._wp |
|---|
| 530 | lidarcldtemp(:,:,:) = 0._wp |
|---|
| 531 | lidarcldtempind(:,:) = 0._wp |
|---|
| 532 | sumlidarcldtemp(:,:) = 0._wp |
|---|
| 533 | lidarcldphasetmp(:,:) = 0._wp |
|---|
| 534 | toplvlsat = 0 |
|---|
| 535 | |
|---|
| 536 | ! #################################################################################### |
|---|
| 537 | ! 2) Cloud detection |
|---|
| 538 | ! #################################################################################### |
|---|
| 539 | do k=1,Nlevels |
|---|
| 540 | ! Cloud detection at subgrid-scale: |
|---|
| 541 | where ((x(:,:,k) .gt. S_cld) .and. (x(:,:,k) .ne. undef) ) |
|---|
| 542 | cldy(:,:,k)=1._wp |
|---|
| 543 | elsewhere |
|---|
| 544 | cldy(:,:,k)=0._wp |
|---|
| 545 | endwhere |
|---|
| 546 | |
|---|
| 547 | ! Number of usefull sub-columns: |
|---|
| 548 | where ((x(:,:,k) .gt. S_att) .and. (x(:,:,k) .ne. undef) ) |
|---|
| 549 | srok(:,:,k)=1._wp |
|---|
| 550 | elsewhere |
|---|
| 551 | srok(:,:,k)=0._wp |
|---|
| 552 | endwhere |
|---|
| 553 | enddo |
|---|
| 554 | |
|---|
| 555 | ! #################################################################################### |
|---|
| 556 | ! 3) Grid-box 3D cloud fraction and layered cloud fractions(ISCCP pressure categories) |
|---|
| 557 | ! #################################################################################### |
|---|
| 558 | lidarcld = 0._wp |
|---|
| 559 | nsub = 0._wp |
|---|
| 560 | cldlay = 0._wp |
|---|
| 561 | nsublay = 0._wp |
|---|
| 562 | do k=1,Nlevels |
|---|
| 563 | do ic = 1, Ncolumns |
|---|
| 564 | do ip = 1, Npoints |
|---|
| 565 | |
|---|
| 566 | ! Computation of the cloud fraction as a function of the temperature instead |
|---|
| 567 | ! of height, for ice,liquid and all clouds |
|---|
| 568 | if(srok(ip,ic,k).gt.0.)then |
|---|
| 569 | do itemp=1,Ntemp |
|---|
| 570 | if( (tmp(ip,k).ge.tempmod(itemp)).and.(tmp(ip,k).lt.tempmod(itemp+1)) )then |
|---|
| 571 | lidarcldtempind(ip,itemp)=lidarcldtempind(ip,itemp)+1._wp |
|---|
| 572 | endif |
|---|
| 573 | enddo |
|---|
| 574 | endif |
|---|
| 575 | |
|---|
| 576 | if(cldy(ip,ic,k).eq.1.)then |
|---|
| 577 | do itemp=1,Ntemp |
|---|
| 578 | if( (tmp(ip,k) .ge. tempmod(itemp)).and.(tmp(ip,k) .lt. tempmod(itemp+1)) )then |
|---|
| 579 | lidarcldtemp(ip,itemp,1)=lidarcldtemp(ip,itemp,1)+1._wp |
|---|
| 580 | endif |
|---|
| 581 | enddo |
|---|
| 582 | endif |
|---|
| 583 | |
|---|
| 584 | iz=1 |
|---|
| 585 | p1 = pplay(ip,k) |
|---|
| 586 | if ( p1.gt.0. .and. p1.lt.(440._wp*100._wp)) then ! high clouds |
|---|
| 587 | iz=3 |
|---|
| 588 | else if(p1.ge.(440._wp*100._wp) .and. p1.lt.(680._wp*100._wp)) then ! mid clouds |
|---|
| 589 | iz=2 |
|---|
| 590 | endif |
|---|
| 591 | |
|---|
| 592 | cldlay(ip,ic,iz) = MAX(cldlay(ip,ic,iz),cldy(ip,ic,k)) |
|---|
| 593 | cldlay(ip,ic,4) = MAX(cldlay(ip,ic,4),cldy(ip,ic,k)) |
|---|
| 594 | lidarcld(ip,k) = lidarcld(ip,k) + cldy(ip,ic,k) |
|---|
| 595 | |
|---|
| 596 | nsublay(ip,ic,iz) = MAX(nsublay(ip,ic,iz),srok(ip,ic,k)) |
|---|
| 597 | nsublay(ip,ic,4) = MAX(nsublay(ip,ic,4),srok(ip,ic,k)) |
|---|
| 598 | nsub(ip,k) = nsub(ip,k) + srok(ip,ic,k) |
|---|
| 599 | |
|---|
| 600 | enddo |
|---|
| 601 | enddo |
|---|
| 602 | enddo |
|---|
| 603 | |
|---|
| 604 | ! Grid-box 3D cloud fraction |
|---|
| 605 | where ( nsub(:,:).gt.0.0 ) |
|---|
| 606 | lidarcld(:,:) = lidarcld(:,:)/nsub(:,:) |
|---|
| 607 | elsewhere |
|---|
| 608 | lidarcld(:,:) = undef |
|---|
| 609 | endwhere |
|---|
| 610 | |
|---|
| 611 | ! Layered cloud fractions |
|---|
| 612 | cldlayer = 0._wp |
|---|
| 613 | nsublayer = 0._wp |
|---|
| 614 | do iz = 1, Ncat |
|---|
| 615 | do ic = 1, Ncolumns |
|---|
| 616 | cldlayer(:,iz) = cldlayer(:,iz) + cldlay(:,ic,iz) |
|---|
| 617 | nsublayer(:,iz) = nsublayer(:,iz) + nsublay(:,ic,iz) |
|---|
| 618 | enddo |
|---|
| 619 | enddo |
|---|
| 620 | where (nsublayer(:,:) .gt. 0.0) |
|---|
| 621 | cldlayer(:,:) = cldlayer(:,:)/nsublayer(:,:) |
|---|
| 622 | elsewhere |
|---|
| 623 | cldlayer(:,:) = undef |
|---|
| 624 | endwhere |
|---|
| 625 | |
|---|
| 626 | ! #################################################################################### |
|---|
| 627 | ! 4) Grid-box 3D cloud Phase |
|---|
| 628 | ! #################################################################################### |
|---|
| 629 | |
|---|
| 630 | ! #################################################################################### |
|---|
| 631 | ! 4.1) For Cloudy pixels with 8.16km < z < 19.2km |
|---|
| 632 | ! #################################################################################### |
|---|
| 633 | do ncol=1,Ncolumns |
|---|
| 634 | do i=1,Npoints |
|---|
| 635 | do nlev=1,23 ! from 19.2km until 8.16km |
|---|
| 636 | p1 = pplay(1,nlev) |
|---|
| 637 | |
|---|
| 638 | ! Avoid zero values |
|---|
| 639 | if( (cldy(i,ncol,nlev).eq.1.) .and. (ATBperp(i,ncol,nlev).gt.0.) )then |
|---|
| 640 | ! Computation of the ATBperp along the phase discrimination line |
|---|
| 641 | ATBperp_tmp = (ATB(i,ncol,nlev)**5)*alpha50 + (ATB(i,ncol,nlev)**4)*beta50 + & |
|---|
| 642 | (ATB(i,ncol,nlev)**3)*gamma50 + (ATB(i,ncol,nlev)**2)*delta50 + & |
|---|
| 643 | ATB(i,ncol,nlev)*epsilon50 + zeta50 |
|---|
| 644 | ! ######################################################################## |
|---|
| 645 | ! 4.1.a) Ice: ATBperp above the phase discrimination line |
|---|
| 646 | ! ######################################################################## |
|---|
| 647 | if((ATBperp(i,ncol,nlev)-ATBperp_tmp) .ge. 0.)then ! Ice clouds |
|---|
| 648 | |
|---|
| 649 | ! ICE with temperature above 273,15°K = Liquid (false ice) |
|---|
| 650 | if(tmp(i,nlev) .gt. 273.15) then ! Temperature above 273,15 K |
|---|
| 651 | ! Liquid: False ice corrected by the temperature to Liquid |
|---|
| 652 | lidarcldphase(i,nlev,2) = lidarcldphase(i,nlev,2)+1._wp ! False ice detection ==> added to Liquid |
|---|
| 653 | |
|---|
| 654 | tmpl(i,ncol,nlev) = tmp(i,nlev) |
|---|
| 655 | lidarcldphase(i,nlev,5) = lidarcldphase(i,nlev,5)+1._wp ! Keep the information "temperature criterium used" |
|---|
| 656 | ! to classify the phase cloud |
|---|
| 657 | cldlayphase(i,ncol,4,2) = 1. ! tot cloud |
|---|
| 658 | if (p1 .gt. 0. .and. p1.lt.(440._wp*100._wp)) then ! high cloud |
|---|
| 659 | cldlayphase(i,ncol,3,2) = 1._wp |
|---|
| 660 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then ! mid cloud |
|---|
| 661 | cldlayphase(i,ncol,2,2) = 1._wp |
|---|
| 662 | else ! low cloud |
|---|
| 663 | cldlayphase(i,ncol,1,2) = 1._wp |
|---|
| 664 | endif |
|---|
| 665 | cldlayphase(i,ncol,4,5) = 1._wp ! tot cloud |
|---|
| 666 | ! High cloud |
|---|
| 667 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
|---|
| 668 | cldlayphase(i,ncol,3,5) = 1._wp |
|---|
| 669 | ! Middle cloud |
|---|
| 670 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
|---|
| 671 | cldlayphase(i,ncol,2,5) = 1._wp |
|---|
| 672 | ! Low cloud |
|---|
| 673 | else |
|---|
| 674 | cldlayphase(i,ncol,1,5) = 1._wp |
|---|
| 675 | endif |
|---|
| 676 | else |
|---|
| 677 | ! ICE with temperature below 273,15°K |
|---|
| 678 | lidarcldphase(i,nlev,1) = lidarcldphase(i,nlev,1)+1._wp |
|---|
| 679 | tmpi(i,ncol,nlev) = tmp(i,nlev) |
|---|
| 680 | cldlayphase(i,ncol,4,1) = 1._wp ! tot cloud |
|---|
| 681 | ! High cloud |
|---|
| 682 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
|---|
| 683 | cldlayphase(i,ncol,3,1) = 1._wp |
|---|
| 684 | ! Middle cloud |
|---|
| 685 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
|---|
| 686 | cldlayphase(i,ncol,2,1) = 1._wp |
|---|
| 687 | ! Low cloud |
|---|
| 688 | else |
|---|
| 689 | cldlayphase(i,ncol,1,1) = 1._wp |
|---|
| 690 | endif |
|---|
| 691 | endif |
|---|
| 692 | ! ######################################################################## |
|---|
| 693 | ! 4.1.b) Liquid: ATBperp below the phase discrimination line |
|---|
| 694 | ! ######################################################################## |
|---|
| 695 | else |
|---|
| 696 | ! Liquid with temperature above 231,15°K |
|---|
| 697 | if(tmp(i,nlev) .gt. 231.15_wp) then |
|---|
| 698 | lidarcldphase(i,nlev,2) = lidarcldphase(i,nlev,2)+1._wp |
|---|
| 699 | tmpl(i,ncol,nlev) = tmp(i,nlev) |
|---|
| 700 | cldlayphase(i,ncol,4,2) = 1._wp ! tot cloud |
|---|
| 701 | ! High cloud |
|---|
| 702 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
|---|
| 703 | cldlayphase(i,ncol,3,2) = 1._wp |
|---|
| 704 | ! Middle cloud |
|---|
| 705 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
|---|
| 706 | cldlayphase(i,ncol,2,2) = 1._wp |
|---|
| 707 | ! Low cloud |
|---|
| 708 | else |
|---|
| 709 | cldlayphase(i,ncol,1,2) = 1._wp |
|---|
| 710 | endif |
|---|
| 711 | else |
|---|
| 712 | ! Liquid with temperature below 231,15°K = Ice (false liquid) |
|---|
| 713 | tmpi(i,ncol,nlev) = tmp(i,nlev) |
|---|
| 714 | lidarcldphase(i,nlev,1) = lidarcldphase(i,nlev,1)+1._wp ! false liquid detection ==> added to ice |
|---|
| 715 | lidarcldphase(i,nlev,4) = lidarcldphase(i,nlev,4)+1._wp |
|---|
| 716 | cldlayphase(i,ncol,4,4) = 1._wp ! tot cloud |
|---|
| 717 | ! High cloud |
|---|
| 718 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
|---|
| 719 | cldlayphase(i,ncol,3,4) = 1._wp |
|---|
| 720 | ! Middle cloud |
|---|
| 721 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
|---|
| 722 | cldlayphase(i,ncol,2,4) = 1._wp |
|---|
| 723 | ! Low cloud |
|---|
| 724 | else |
|---|
| 725 | cldlayphase(i,ncol,1,4) = 1._wp |
|---|
| 726 | endif |
|---|
| 727 | cldlayphase(i,ncol,4,1) = 1._wp ! tot cloud |
|---|
| 728 | ! High cloud |
|---|
| 729 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
|---|
| 730 | cldlayphase(i,ncol,3,1) = 1._wp |
|---|
| 731 | ! Middle cloud |
|---|
| 732 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
|---|
| 733 | cldlayphase(i,ncol,2,1) = 1._wp |
|---|
| 734 | ! Low cloud |
|---|
| 735 | else |
|---|
| 736 | cldlayphase(i,ncol,1,1) = 1._wp |
|---|
| 737 | endif |
|---|
| 738 | endif |
|---|
| 739 | endif ! end of discrimination condition |
|---|
| 740 | endif ! end of cloud condition |
|---|
| 741 | enddo ! end of altitude loop |
|---|
| 742 | |
|---|
| 743 | ! ############################################################################## |
|---|
| 744 | ! 4.2) For Cloudy pixels with 0km < z < 8.16km |
|---|
| 745 | ! ############################################################################## |
|---|
| 746 | toplvlsat = 0 |
|---|
| 747 | do nlev=24,Nlevels! from 8.16km until 0km |
|---|
| 748 | p1 = pplay(i,nlev) |
|---|
| 749 | |
|---|
| 750 | if((cldy(i,ncol,nlev) .eq. 1.) .and. (ATBperp(i,ncol,nlev) .gt. 0.) )then |
|---|
| 751 | ! Computation of the ATBperp of the phase discrimination line |
|---|
| 752 | ATBperp_tmp = (ATB(i,ncol,nlev)**5)*alpha50 + (ATB(i,ncol,nlev)**4)*beta50 + & |
|---|
| 753 | (ATB(i,ncol,nlev)**3)*gamma50 + (ATB(i,ncol,nlev)**2)*delta50 + & |
|---|
| 754 | ATB(i,ncol,nlev)*epsilon50 + zeta50 |
|---|
| 755 | ! ######################################################################## |
|---|
| 756 | ! 4.2.a) Ice: ATBperp above the phase discrimination line |
|---|
| 757 | ! ######################################################################## |
|---|
| 758 | ! ICE with temperature above 273,15°K = Liquid (false ice) |
|---|
| 759 | if((ATBperp(i,ncol,nlev)-ATBperp_tmp) .ge. 0.)then ! Ice clouds |
|---|
| 760 | if(tmp(i,nlev) .gt. 273.15)then |
|---|
| 761 | lidarcldphase(i,nlev,2) = lidarcldphase(i,nlev,2)+1._wp ! false ice ==> liq |
|---|
| 762 | tmpl(i,ncol,nlev) = tmp(i,nlev) |
|---|
| 763 | lidarcldphase(i,nlev,5) = lidarcldphase(i,nlev,5)+1._wp |
|---|
| 764 | cldlayphase(i,ncol,4,2) = 1._wp ! tot cloud |
|---|
| 765 | ! High cloud |
|---|
| 766 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
|---|
| 767 | cldlayphase(i,ncol,3,2) = 1._wp |
|---|
| 768 | ! Middle cloud |
|---|
| 769 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
|---|
| 770 | cldlayphase(i,ncol,2,2) = 1._wp |
|---|
| 771 | ! Low cloud |
|---|
| 772 | else |
|---|
| 773 | cldlayphase(i,ncol,1,2) = 1._wp |
|---|
| 774 | endif |
|---|
| 775 | |
|---|
| 776 | cldlayphase(i,ncol,4,5) = 1. ! tot cloud |
|---|
| 777 | ! High cloud |
|---|
| 778 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
|---|
| 779 | cldlayphase(i,ncol,3,5) = 1._wp |
|---|
| 780 | ! Middle cloud |
|---|
| 781 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
|---|
| 782 | cldlayphase(i,ncol,2,5) = 1._wp |
|---|
| 783 | ! Low cloud |
|---|
| 784 | else |
|---|
| 785 | cldlayphase(i,ncol,1,5) = 1._wp |
|---|
| 786 | endif |
|---|
| 787 | else |
|---|
| 788 | ! ICE with temperature below 273,15°K |
|---|
| 789 | lidarcldphase(i,nlev,1) = lidarcldphase(i,nlev,1)+1._wp |
|---|
| 790 | tmpi(i,ncol,nlev) = tmp(i,nlev) |
|---|
| 791 | cldlayphase(i,ncol,4,1) = 1._wp ! tot cloud |
|---|
| 792 | ! High cloud |
|---|
| 793 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
|---|
| 794 | cldlayphase(i,ncol,3,1) = 1._wp |
|---|
| 795 | ! Middle cloud |
|---|
| 796 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt.(680._wp*100._wp)) then |
|---|
| 797 | cldlayphase(i,ncol,2,1) = 1._wp |
|---|
| 798 | ! Low cloud |
|---|
| 799 | else |
|---|
| 800 | cldlayphase(i,ncol,1,1) = 1._wp |
|---|
| 801 | endif |
|---|
| 802 | endif |
|---|
| 803 | |
|---|
| 804 | ! ######################################################################## |
|---|
| 805 | ! 4.2.b) Liquid: ATBperp below the phase discrimination line |
|---|
| 806 | ! ######################################################################## |
|---|
| 807 | else |
|---|
| 808 | ! Liquid with temperature above 231,15°K |
|---|
| 809 | if(tmp(i,nlev) .gt. 231.15)then |
|---|
| 810 | lidarcldphase(i,nlev,2) = lidarcldphase(i,nlev,2)+1._wp |
|---|
| 811 | tmpl(i,ncol,nlev) = tmp(i,nlev) |
|---|
| 812 | cldlayphase(i,ncol,4,2) = 1._wp ! tot cloud |
|---|
| 813 | ! High cloud |
|---|
| 814 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
|---|
| 815 | cldlayphase(i,ncol,3,2) = 1._wp |
|---|
| 816 | ! Middle cloud |
|---|
| 817 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
|---|
| 818 | cldlayphase(i,ncol,2,2) = 1._wp |
|---|
| 819 | ! Low cloud |
|---|
| 820 | else |
|---|
| 821 | cldlayphase(i,ncol,1,2) = 1._wp |
|---|
| 822 | endif |
|---|
| 823 | else |
|---|
| 824 | ! Liquid with temperature below 231,15°K = Ice (false liquid) |
|---|
| 825 | tmpi(i,ncol,nlev) = tmp(i,nlev) |
|---|
| 826 | lidarcldphase(i,nlev,1) = lidarcldphase(i,nlev,1)+1._wp ! false liq ==> ice |
|---|
| 827 | lidarcldphase(i,nlev,4) = lidarcldphase(i,nlev,4)+1._wp ! false liq ==> ice |
|---|
| 828 | cldlayphase(i,ncol,4,4) = 1._wp ! tot cloud |
|---|
| 829 | ! High cloud |
|---|
| 830 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
|---|
| 831 | cldlayphase(i,ncol,3,4) = 1._wp |
|---|
| 832 | ! Middle |
|---|
| 833 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
|---|
| 834 | cldlayphase(i,ncol,2,4) = 1._wp |
|---|
| 835 | ! Low cloud |
|---|
| 836 | else |
|---|
| 837 | cldlayphase(i,ncol,1,4) = 1._wp |
|---|
| 838 | endif |
|---|
| 839 | |
|---|
| 840 | cldlayphase(i,ncol,4,1) = 1._wp ! tot cloud |
|---|
| 841 | ! High cloud |
|---|
| 842 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
|---|
| 843 | cldlayphase(i,ncol,3,1) = 1._wp |
|---|
| 844 | ! Middle cloud |
|---|
| 845 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
|---|
| 846 | cldlayphase(i,ncol,2,1) = 1._wp |
|---|
| 847 | ! Low cloud |
|---|
| 848 | else |
|---|
| 849 | cldlayphase(i,ncol,1,1) = 1._wp |
|---|
| 850 | endif |
|---|
| 851 | endif |
|---|
| 852 | endif ! end of discrimination condition |
|---|
| 853 | |
|---|
| 854 | toplvlsat=0 |
|---|
| 855 | |
|---|
| 856 | ! Find the level of the highest cloud with SR>30 |
|---|
| 857 | if(x(i,ncol,nlev) .gt. S_cld_att) then ! SR > 30. |
|---|
| 858 | toplvlsat = nlev+1 |
|---|
| 859 | goto 99 |
|---|
| 860 | endif |
|---|
| 861 | endif ! end of cloud condition |
|---|
| 862 | enddo ! end of altitude loop |
|---|
| 863 | 99 continue |
|---|
| 864 | |
|---|
| 865 | ! ############################################################################## |
|---|
| 866 | ! Undefined phase: For a cloud located below another cloud with SR>30 |
|---|
| 867 | ! see Cesana and Chepfer 2013 Sect.III.2 |
|---|
| 868 | ! ############################################################################## |
|---|
| 869 | if(toplvlsat.ne.0) then |
|---|
| 870 | do nlev = toplvlsat,Nlevels |
|---|
| 871 | p1 = pplay(i,nlev) |
|---|
| 872 | if(cldy(i,ncol,nlev).eq.1.)then |
|---|
| 873 | lidarcldphase(i,nlev,3) = lidarcldphase(i,nlev,3)+1._wp |
|---|
| 874 | tmpu(i,ncol,nlev) = tmp(i,nlev) |
|---|
| 875 | cldlayphase(i,ncol,4,3) = 1._wp ! tot cloud |
|---|
| 876 | ! High cloud |
|---|
| 877 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
|---|
| 878 | cldlayphase(i,ncol,3,3) = 1._wp |
|---|
| 879 | ! Middle cloud |
|---|
| 880 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
|---|
| 881 | cldlayphase(i,ncol,2,3) = 1._wp |
|---|
| 882 | ! Low cloud |
|---|
| 883 | else |
|---|
| 884 | cldlayphase(i,ncol,1,3) = 1._wp |
|---|
| 885 | endif |
|---|
| 886 | endif |
|---|
| 887 | enddo |
|---|
| 888 | endif |
|---|
| 889 | toplvlsat=0 |
|---|
| 890 | enddo |
|---|
| 891 | enddo |
|---|
| 892 | |
|---|
| 893 | ! #################################################################################### |
|---|
| 894 | ! Computation of final cloud phase diagnosis |
|---|
| 895 | ! #################################################################################### |
|---|
| 896 | |
|---|
| 897 | ! Compute the Ice percentage in cloud = ice/(ice+liq) as a function of the occurrences |
|---|
| 898 | lidarcldphasetmp(:,:) = lidarcldphase(:,:,1)+lidarcldphase(:,:,2); |
|---|
| 899 | WHERE (lidarcldphasetmp(:,:) .gt. 0.) |
|---|
| 900 | lidarcldphase(:,:,6)=lidarcldphase(:,:,1)/lidarcldphasetmp(:,:) |
|---|
| 901 | ELSEWHERE |
|---|
| 902 | lidarcldphase(:,:,6) = undef |
|---|
| 903 | ENDWHERE |
|---|
| 904 | |
|---|
| 905 | ! Compute Phase 3D Cloud Fraction |
|---|
| 906 | !WHERE (nsub(:,Nlevels:1:-1) .gt. 0.0 ) |
|---|
| 907 | WHERE (nsub(:,:) .gt. 0.0 ) |
|---|
| 908 | lidarcldphase(:,:,1)=lidarcldphase(:,:,1)/nsub(:,:) |
|---|
| 909 | lidarcldphase(:,:,2)=lidarcldphase(:,:,2)/nsub(:,:) |
|---|
| 910 | lidarcldphase(:,:,3)=lidarcldphase(:,:,3)/nsub(:,:) |
|---|
| 911 | lidarcldphase(:,:,4)=lidarcldphase(:,:,4)/nsub(:,:) |
|---|
| 912 | lidarcldphase(:,:,5)=lidarcldphase(:,:,5)/nsub(:,:) |
|---|
| 913 | ELSEWHERE |
|---|
| 914 | lidarcldphase(:,:,1) = undef |
|---|
| 915 | lidarcldphase(:,:,2) = undef |
|---|
| 916 | lidarcldphase(:,:,3) = undef |
|---|
| 917 | lidarcldphase(:,:,4) = undef |
|---|
| 918 | lidarcldphase(:,:,5) = undef |
|---|
| 919 | ENDWHERE |
|---|
| 920 | |
|---|
| 921 | ! Compute Phase low mid high cloud fractions |
|---|
| 922 | do iz = 1, Ncat |
|---|
| 923 | do i=1,Nphase-3 |
|---|
| 924 | do ic = 1, Ncolumns |
|---|
| 925 | cldlayerphase(:,iz,i) = cldlayerphase(:,iz,i) + cldlayphase(:,ic,iz,i) |
|---|
| 926 | cldlayerphasesum(:,iz) = cldlayerphasesum(:,iz) + cldlayphase(:,ic,iz,i) |
|---|
| 927 | enddo |
|---|
| 928 | enddo |
|---|
| 929 | enddo |
|---|
| 930 | do iz = 1, Ncat |
|---|
| 931 | do i=4,5 |
|---|
| 932 | do ic = 1, Ncolumns |
|---|
| 933 | cldlayerphase(:,iz,i) = cldlayerphase(:,iz,i) + cldlayphase(:,ic,iz,i) |
|---|
| 934 | enddo |
|---|
| 935 | enddo |
|---|
| 936 | enddo |
|---|
| 937 | |
|---|
| 938 | ! Compute the Ice percentage in cloud = ice/(ice+liq) |
|---|
| 939 | cldlayerphasetmp(:,:)=cldlayerphase(:,:,1)+cldlayerphase(:,:,2) |
|---|
| 940 | WHERE (cldlayerphasetmp(:,:).gt. 0.) |
|---|
| 941 | cldlayerphase(:,:,6)=cldlayerphase(:,:,1)/cldlayerphasetmp(:,:) |
|---|
| 942 | ELSEWHERE |
|---|
| 943 | cldlayerphase(:,:,6) = undef |
|---|
| 944 | ENDWHERE |
|---|
| 945 | |
|---|
| 946 | do i=1,Nphase-1 |
|---|
| 947 | WHERE ( cldlayerphasesum(:,:).gt.0.0 ) |
|---|
| 948 | cldlayerphase(:,:,i) = (cldlayerphase(:,:,i)/cldlayerphasesum(:,:)) * cldlayer(:,:) |
|---|
| 949 | ENDWHERE |
|---|
| 950 | enddo |
|---|
| 951 | |
|---|
| 952 | do i=1,Npoints |
|---|
| 953 | do iz=1,Ncat |
|---|
| 954 | checkcldlayerphase=0. |
|---|
| 955 | checkcldlayerphase2=0. |
|---|
| 956 | if (cldlayerphasesum(i,iz) .gt. 0.0 )then |
|---|
| 957 | do ic=1,Nphase-3 |
|---|
| 958 | checkcldlayerphase = checkcldlayerphase+cldlayerphase(i,iz,ic) |
|---|
| 959 | enddo |
|---|
| 960 | checkcldlayerphase2 = cldlayer(i,iz)-checkcldlayerphase |
|---|
| 961 | if((checkcldlayerphase2 .gt. 0.01) .or. (checkcldlayerphase2 .lt. -0.01) ) print *, checkcldlayerphase,cldlayer(i,iz) |
|---|
| 962 | endif |
|---|
| 963 | enddo |
|---|
| 964 | enddo |
|---|
| 965 | |
|---|
| 966 | do i=1,Nphase-1 |
|---|
| 967 | WHERE (nsublayer(:,:) .eq. 0.0) |
|---|
| 968 | cldlayerphase(:,:,i) = undef |
|---|
| 969 | ENDWHERE |
|---|
| 970 | enddo |
|---|
| 971 | |
|---|
| 972 | ! Compute Phase 3D as a function of temperature |
|---|
| 973 | do nlev=1,Nlevels |
|---|
| 974 | do ncol=1,Ncolumns |
|---|
| 975 | do i=1,Npoints |
|---|
| 976 | do itemp=1,Ntemp |
|---|
| 977 | if(tmpi(i,ncol,nlev).gt.0.)then |
|---|
| 978 | if((tmpi(i,ncol,nlev) .ge. tempmod(itemp)) .and. (tmpi(i,ncol,nlev) .lt. tempmod(itemp+1)) )then |
|---|
| 979 | lidarcldtemp(i,itemp,2)=lidarcldtemp(i,itemp,2)+1._wp |
|---|
| 980 | endif |
|---|
| 981 | elseif(tmpl(i,ncol,nlev) .gt. 0.)then |
|---|
| 982 | if((tmpl(i,ncol,nlev) .ge. tempmod(itemp)) .and. (tmpl(i,ncol,nlev) .lt. tempmod(itemp+1)) )then |
|---|
| 983 | lidarcldtemp(i,itemp,3)=lidarcldtemp(i,itemp,3)+1._wp |
|---|
| 984 | endif |
|---|
| 985 | elseif(tmpu(i,ncol,nlev) .gt. 0.)then |
|---|
| 986 | if((tmpu(i,ncol,nlev) .ge. tempmod(itemp)) .and. (tmpu(i,ncol,nlev) .lt. tempmod(itemp+1)) )then |
|---|
| 987 | lidarcldtemp(i,itemp,4)=lidarcldtemp(i,itemp,4)+1._wp |
|---|
| 988 | endif |
|---|
| 989 | endif |
|---|
| 990 | enddo |
|---|
| 991 | enddo |
|---|
| 992 | enddo |
|---|
| 993 | enddo |
|---|
| 994 | |
|---|
| 995 | ! Check temperature cloud fraction |
|---|
| 996 | do i=1,Npoints |
|---|
| 997 | do itemp=1,Ntemp |
|---|
| 998 | checktemp=lidarcldtemp(i,itemp,2)+lidarcldtemp(i,itemp,3)+lidarcldtemp(i,itemp,4) |
|---|
| 999 | !if(checktemp .NE. lidarcldtemp(i,itemp,1))then |
|---|
| 1000 | ! print *, i,itemp |
|---|
| 1001 | ! print *, lidarcldtemp(i,itemp,1:4) |
|---|
| 1002 | !endif |
|---|
| 1003 | |
|---|
| 1004 | enddo |
|---|
| 1005 | enddo |
|---|
| 1006 | |
|---|
| 1007 | ! Compute the Ice percentage in cloud = ice/(ice+liq) |
|---|
| 1008 | sumlidarcldtemp(:,:)=lidarcldtemp(:,:,2)+lidarcldtemp(:,:,3) |
|---|
| 1009 | WHERE(sumlidarcldtemp(:,:) .gt. 0.) |
|---|
| 1010 | lidarcldtemp(:,:,5)=lidarcldtemp(:,:,2)/sumlidarcldtemp(:,:) |
|---|
| 1011 | ELSEWHERE |
|---|
| 1012 | lidarcldtemp(:,:,5)=undef |
|---|
| 1013 | ENDWHERE |
|---|
| 1014 | |
|---|
| 1015 | do i=1,4 |
|---|
| 1016 | WHERE(lidarcldtempind(:,:) .gt. 0.) |
|---|
| 1017 | lidarcldtemp(:,:,i) = lidarcldtemp(:,:,i)/lidarcldtempind(:,:) |
|---|
| 1018 | ELSEWHERE |
|---|
| 1019 | lidarcldtemp(:,:,i) = undef |
|---|
| 1020 | ENDWHERE |
|---|
| 1021 | enddo |
|---|
| 1022 | |
|---|
| 1023 | RETURN |
|---|
| 1024 | END SUBROUTINE COSP_CLDFRAC |
|---|
| 1025 | |
|---|
| 1026 | end module mod_lidar_simulator |
|---|