source: LMDZ6/branches/IPSLCM6.0.15/libf/phylmd/physiq_mod.F90 @ 3582

Last change on this file since 3582 was 3525, checked in by Laurent Fairhead, 5 years ago

Modifs necessaires à la version 6.0.10
OB

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 172.4 KB
RevLine 
[2418]1!
[1279]2! $Id: physiq_mod.F90 3525 2019-05-28 12:52:20Z musat $
[2418]3!
[1862]4!#define IO_DEBUG
[2418]5MODULE physiq_mod
[766]6
[2469]7  IMPLICIT NONE
[2418]8
9CONTAINS
10
[2469]11  SUBROUTINE physiq (nlon,nlev, &
12       debut,lafin,pdtphys_, &
13       paprs,pplay,pphi,pphis,presnivs, &
14       u,v,rot,t,qx, &
15       flxmass_w, &
16       d_u, d_v, d_t, d_qx, d_ps)
[524]17
[2769]18    use assert_m, only: assert
[2469]19    USE ioipsl, only: histbeg, histvert, histdef, histend, histsync, &
20         histwrite, ju2ymds, ymds2ju, getin
21    USE geometry_mod, ONLY: cell_area, latitude_deg, longitude_deg
22    USE phys_cal_mod, only: year_len, mth_len, days_elapsed, jh_1jan, &
[2783]23         year_cur, mth_cur,jD_cur, jH_cur, jD_ref, day_cur, hour
[2469]24    USE write_field_phy
25    USE dimphy
26    USE infotrac_phy, ONLY: nqtot, nbtr, nqo, type_trac
27    USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat, nbp_lev, klon_glo
28    USE mod_phys_lmdz_para
29    USE iophy
30    USE print_control_mod, ONLY: mydebug=>debug , lunout, prt_level
31    USE phystokenc_mod, ONLY: offline, phystokenc
[2783]32    USE time_phylmdz_mod, only: raz_date, day_step_phy, update_time,current_time
[2469]33    USE vampir
34    USE pbl_surface_mod, ONLY : pbl_surface
35    USE change_srf_frac_mod
36    USE surface_data,     ONLY : type_ocean, ok_veget, ok_snow
[2788]37    USE tropopause_m,     ONLY: dyn_tropopause
[2630]38#ifdef CPP_Dust
39    USE phytracr_spl_mod, ONLY: phytracr_spl
40#endif
[3521]41#ifdef CPP_StratAer
42    USE strataer_mod, ONLY: strataer_init
43#endif
[2606]44    USE phys_local_var_mod, ONLY: phys_local_var_init, phys_local_var_end, &
45       ! [Variables internes non sauvegardees de la physique]
46       ! Variables locales pour effectuer les appels en serie
47       t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,tr_seri, &
48       ! Dynamic tendencies (diagnostics)
49       d_t_dyn,d_q_dyn,d_ql_dyn,d_qs_dyn,d_u_dyn,d_v_dyn,d_tr_dyn, &
50       d_q_dyn2d,d_ql_dyn2d,d_qs_dyn2d, &
51       ! Physic tendencies
52       d_t_con,d_q_con,d_u_con,d_v_con, &
53       d_tr, &                              !! to be removed?? (jyg)
54       d_t_wake,d_q_wake, &
55       d_t_lwr,d_t_lw0,d_t_swr,d_t_sw0, &
56       d_t_ajsb,d_q_ajsb, &
57       d_t_ajs,d_q_ajs,d_u_ajs,d_v_ajs, &
58       d_t_ajs_w,d_q_ajs_w, &
59       d_t_ajs_x,d_q_ajs_x, &
60       !
[2705]61       d_t_eva,d_q_eva,d_ql_eva,d_qi_eva, &
[2606]62       d_t_lsc,d_q_lsc,d_ql_lsc,d_qi_lsc, &
63       d_t_lscst,d_q_lscst, &
64       d_t_lscth,d_q_lscth, &
65       plul_st,plul_th, &
66       !
67       d_t_vdf,d_q_vdf,d_u_vdf,d_v_vdf,d_t_diss, &
68       d_t_vdf_w,d_q_vdf_w, &
69       d_t_vdf_x,d_q_vdf_x, &
70       d_ts, &
71       !
72       d_t_oli,d_u_oli,d_v_oli, &
73       d_t_oro,d_u_oro,d_v_oro, &
[2897]74       d_t_oro_gw,d_u_oro_gw,d_v_oro_gw, &
[2606]75       d_t_lif,d_u_lif,d_v_lif, &
76       d_t_ec, &
77       !
78       du_gwd_hines,dv_gwd_hines,d_t_hin, &
79       dv_gwd_rando,dv_gwd_front, &
80       east_gwstress,west_gwstress, &
81       d_q_ch4, &
82       !  Special RRTM
83       ZLWFT0_i,ZSWFT0_i,ZFLDN0,  &
84       ZFLUP0,ZFSDN0,ZFSUP0,      &
85       !
86       topswad_aero,solswad_aero,   &
87       topswai_aero,solswai_aero,   &
88       topswad0_aero,solswad0_aero, &
89       !LW additional
90       toplwad_aero,sollwad_aero,   &
91       toplwai_aero,sollwai_aero,   &
92       toplwad0_aero,sollwad0_aero, &
93       !
94       topsw_aero,solsw_aero,       &
95       topsw0_aero,solsw0_aero,     &
96       topswcf_aero,solswcf_aero,   &
97       tausum_aero,tau3d_aero,      &
[2854]98       drytausum_aero,              &
[2606]99       !
100       !variables CFMIP2/CMIP5
101       topswad_aerop, solswad_aerop,   &
102       topswai_aerop, solswai_aerop,   &
103       topswad0_aerop, solswad0_aerop, &
104       topsw_aerop, topsw0_aerop,      &
105       solsw_aerop, solsw0_aerop,      &
106       topswcf_aerop, solswcf_aerop,   &
107       !LW diagnostics
108       toplwad_aerop, sollwad_aerop,   &
109       toplwai_aerop, sollwai_aerop,   &
110       toplwad0_aerop, sollwad0_aerop, &
111       !
112       ptstar, pt0, slp, &
113       !
114       bils, &
115       !
116       cldh, cldl,cldm, cldq, cldt,      &
117       JrNt,                             &
118       dthmin, evap, fder, plcl, plfc,   &
119       prw, prlw, prsw,                  &
120       s_lcl, s_pblh, s_pblt, s_therm,   &
121       cdragm, cdragh,                   &
122       zustar, zu10m, zv10m, rh2m, qsat2m, &
123       zq2m, zt2m, weak_inversion, &
[3400]124       zq2m_cor,zt2m_cor,zu10m_cor,zv10m_cor, & ! pour corriger d'un bug
[2606]125       zt2m_min_mon, zt2m_max_mon,   &         ! pour calcul_divers.h
126       t2m_min_mon, t2m_max_mon,  &            ! pour calcul_divers.h
127       !
128       s_pblh_x, s_pblh_w, &
129       s_lcl_x, s_lcl_w,   &
130       !
131       slab_wfbils, tpot, tpote,               &
132       ue, uq, ve, vq, zxffonte,               &
[3250]133       uwat, vwat,                             &
[2606]134       zxfqcalving, zxfluxlat,                 &
135       zxrunofflic,                            &
136       zxtsol, snow_lsc, zxfqfonte, zxqsurf,   &
137       rain_lsc, rain_num,                     &
138       !
139       sens_x, sens_w, &
140       zxfluxlat_x, zxfluxlat_w, &
141       !
142       dtvdf_x, dtvdf_w, &
143       dqvdf_x, dqvdf_w, &
144       pbl_tke_input, &
145       t_therm, q_therm, u_therm, v_therm, &
146       cdragh_x, cdragh_w, &
147       cdragm_x, cdragm_w, &
148       kh, kh_x, kh_w, &
149       !
[2730]150       wake_k, &
[3080]151       alp_wake, &
[2635]152       wake_h, wake_omg, &
153                       ! tendencies of delta T and delta q:
154       d_deltat_wk, d_deltaq_wk, &         ! due to wakes
155       d_deltat_wk_gw, d_deltaq_wk_gw, &   ! due to wake induced gravity waves
156       d_deltat_vdf, d_deltaq_vdf, &       ! due to vertical diffusion
157       d_deltat_the, d_deltaq_the, &       ! due to thermals
158       d_deltat_ajs_cv, d_deltaq_ajs_cv, & ! due to dry adjustment of (w) before convection
159                       ! tendencies of wake fractional area and wake number per unit area:
160       d_s_wk,  d_dens_wk, &             ! due to wakes
161!!!       d_s_vdf, d_dens_vdf, &            ! due to vertical diffusion
162!!!       d_s_the, d_dens_the, &            ! due to thermals
163       !                                 
[3148]164       ptconv, ratqsc, &
[2824]165       wbeff, convoccur, zmax_th, &
[2606]166       sens, flwp, fiwp,  &
[3080]167       alp_bl_conv,alp_bl_det,  &
[2606]168       alp_bl_fluct_m,alp_bl_fluct_tke,  &
169       alp_bl_stat, n2, s2,  &
170       proba_notrig, random_notrig,  &
171       !
[3134]172       dnwd0,  &
173       omega,  &
[2606]174       epmax_diag,  &
[3134]175
176       !    Deep convective variables used in phytrac
177       pmflxr, pmflxs,  &
178       wdtrainA, wdtrainM,  &
179       upwd, dnwd, &
[2606]180       ep,  &
[3134]181       da, mp, &
182       phi, &
183       wght_cvfd, &
184       phi2, &
185       d1a, dam, &
186       ev, &
187       elij, &
188       clw, &
189       epmlmMm, eplaMm, &
190       sij, &
191
[2606]192       cldemi,  &
193       cldfra, cldtau, fiwc,  &
194       fl, re, flwc,  &
195       ref_liq, ref_ice, theta,  &
196       ref_liq_pi, ref_ice_pi,  &
[2635]197       zphi, zx_rh,  &
[2606]198       pmfd, pmfu,  &
199       !
200       t2m, fluxlat,  &
201       fsollw, evap_pot,  &
202       fsolsw, wfbils, wfbilo,  &
[2670]203       wfevap, wfrain, wfsnow,  & 
[3134]204       prfl, psfl, fraca, Vprecip,  &
[2606]205       zw2,  &
206       
207       fluxu, fluxv,  &
208       fluxt,  &
209
210       uwriteSTD, vwriteSTD, &                !pour calcul_STDlev.h
211       wwriteSTD, phiwriteSTD, &              !pour calcul_STDlev.h
212       qwriteSTD, twriteSTD, rhwriteSTD, &    !pour calcul_STDlev.h
213       
214       beta_prec,  &
215       rneb,  &
[2968]216       zxsnow,snowhgt,qsnow,to_ice,sissnow,runoff,albsol3_lic
[2606]217       !
[2469]218    USE phys_state_var_mod ! Variables sauvegardees de la physique
[2630]219#ifdef CPP_Dust
220  USE phys_output_write_spl_mod
221#else
[2469]222    USE phys_output_var_mod ! Variables pour les ecritures des sorties
[2630]223#endif
224
[2469]225    USE phys_output_write_mod
226    USE fonte_neige_mod, ONLY  : fonte_neige_get_vars
227    USE phys_output_mod
228    USE phys_output_ctrlout_mod
229    use open_climoz_m, only: open_climoz ! ozone climatology from a file
[2788]230    use regr_pr_time_av_m, only: regr_pr_time_av
[2469]231    use netcdf95, only: nf95_close
232    !IM for NMC files
233    !     use netcdf, only: nf90_fill_real
[2997]234    use netcdf, only: nf90_fill_real
[2469]235    use mod_phys_lmdz_mpi_data, only: is_mpi_root
236    USE aero_mod
237    use ozonecm_m, only: ozonecm ! ozone of J.-F. Royer
238    use conf_phys_m, only: conf_phys
239    use radlwsw_m, only: radlwsw
240    use phyaqua_mod, only: zenang_an
241    USE time_phylmdz_mod, only: day_step_phy, annee_ref, day_ref, itau_phy, &
242         start_time, pdtphys, day_ini
243    USE tracinca_mod, ONLY: config_inca
[2271]244#ifdef CPP_XIOS
[2469]245    USE wxios, ONLY: missing_val, missing_val_omp
[2679]246    USE xios, ONLY: xios_get_field_attr, xios_field_is_active
[2271]247#endif
[1565]248#ifdef REPROBUS
[2469]249    USE CHEM_REP, ONLY : Init_chem_rep_xjour
[1565]250#endif
[2469]251    USE indice_sol_mod
252    USE phytrac_mod, ONLY : phytrac
[782]253
[2009]254#ifdef CPP_RRTM
[2517]255    USE YOERAD, ONLY : NRADLP
[2524]256    USE YOESW, ONLY : RSUN
[2009]257#endif
[2469]258    USE ioipsl_getin_p_mod, ONLY : getin_p
[2003]259
[2651]260#ifndef CPP_XIOS
[2590]261    USE paramLMDZ_phy_mod
[2651]262#endif
[2294]263
[2611]264    USE cmp_seri_mod
[2902]265    USE add_phys_tend_mod, only : add_pbl_tend, add_phys_tend, diag_phys_tend, prt_enerbil, &
[2799]266  &      fl_ebil, fl_cor_ebil
[2611]267
[2469]268    !IM stations CFMIP
269    USE CFMIP_point_locations
270    use FLOTT_GWD_rando_m, only: FLOTT_GWD_rando
271    use ACAMA_GWD_rando_m, only: ACAMA_GWD_rando
[2832]272    USE VERTICAL_LAYERS_MOD, ONLY: aps,bps
[1938]273
[2832]274
[2469]275    IMPLICIT none
276    !>======================================================================
277    !!
278    !! Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818
279    !!
280    !! Objet: Moniteur general de la physique du modele
281    !!AA      Modifications quant aux traceurs :
282    !!AA                  -  uniformisation des parametrisations ds phytrac
283    !!AA                  -  stockage des moyennes des champs necessaires
284    !!AA                     en mode traceur off-line
285    !!======================================================================
286    !!   CLEFS CPP POUR LES IO
287    !!   =====================
[1352]288#define histNMC
[2469]289    !!======================================================================
290    !!    modif   ( P. Le Van ,  12/10/98 )
291    !!
292    !!  Arguments:
293    !!
294    !! nlon----input-I-nombre de points horizontaux
295    !! nlev----input-I-nombre de couches verticales, doit etre egale a klev
296    !! debut---input-L-variable logique indiquant le premier passage
297    !! lafin---input-L-variable logique indiquant le dernier passage
298    !! jD_cur       -R-jour courant a l'appel de la physique (jour julien)
299    !! jH_cur       -R-heure courante a l'appel de la physique (jour julien)
300    !! pdtphys-input-R-pas d'integration pour la physique (seconde)
301    !! paprs---input-R-pression pour chaque inter-couche (en Pa)
302    !! pplay---input-R-pression pour le mileu de chaque couche (en Pa)
303    !! pphi----input-R-geopotentiel de chaque couche (g z) (reference sol)
304    !! pphis---input-R-geopotentiel du sol
305    !! presnivs-input_R_pressions approximat. des milieux couches ( en PA)
306    !! u-------input-R-vitesse dans la direction X (de O a E) en m/s
307    !! v-------input-R-vitesse Y (de S a N) en m/s
308    !! t-------input-R-temperature (K)
309    !! qx------input-R-humidite specifique (kg/kg) et d'autres traceurs
310    !! d_t_dyn-input-R-tendance dynamique pour "t" (K/s)
311    !! d_q_dyn-input-R-tendance dynamique pour "q" (kg/kg/s)
[2496]312    !! d_ql_dyn-input-R-tendance dynamique pour "ql" (kg/kg/s)
313    !! d_qs_dyn-input-R-tendance dynamique pour "qs" (kg/kg/s)
[2469]314    !! flxmass_w -input-R- flux de masse verticale
315    !! d_u-----output-R-tendance physique de "u" (m/s/s)
316    !! d_v-----output-R-tendance physique de "v" (m/s/s)
317    !! d_t-----output-R-tendance physique de "t" (K/s)
318    !! d_qx----output-R-tendance physique de "qx" (kg/kg/s)
319    !! d_ps----output-R-tendance physique de la pression au sol
320    !!======================================================================
321    integer jjmp1
322    !  parameter (jjmp1=jjm+1-1/jjm) ! => (jjmp1=nbp_lat-1/(nbp_lat-1))
323    !  integer iip1
324    !  parameter (iip1=iim+1)
[782]325
[2469]326    include "regdim.h"
327    include "dimsoil.h"
328    include "clesphys.h"
329    include "thermcell.h"
[3011]330    include "dimpft.h"
[2469]331    !======================================================================
[3408]332    LOGICAL, SAVE :: ok_volcan ! pour activer les diagnostics volcaniques
[2469]333    LOGICAL ok_cvl  ! pour activer le nouveau driver pour convection KE
334    PARAMETER (ok_cvl=.TRUE.)
335    LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface
336    PARAMETER (ok_gust=.FALSE.)
337    integer iflag_radia     ! active ou non le rayonnement (MPL)
338    save iflag_radia
339    !$OMP THREADPRIVATE(iflag_radia)
340    !======================================================================
341    LOGICAL check ! Verifier la conservation du modele en eau
342    PARAMETER (check=.FALSE.)
343    LOGICAL ok_stratus ! Ajouter artificiellement les stratus
344    PARAMETER (ok_stratus=.FALSE.)
345    !======================================================================
346    REAL amn, amx
347    INTEGER igout
348    !======================================================================
[3328]349    ! Clef iflag_cycle_diurne controlant l'activation du cycle diurne:
[2469]350    ! en attente du codage des cles par Fred
[3328]351    ! iflag_cycle_diurne est initialise par conf_phys et se trouve
352    ! dans clesphys.h (IM)
[2469]353    !======================================================================
354    ! Modele thermique du sol, a activer pour le cycle diurne:
355    !cc      LOGICAL soil_model
356    !cc      PARAMETER (soil_model=.FALSE.)
357    !======================================================================
358    ! Dans les versions precedentes, l'eau liquide nuageuse utilisee dans
359    ! le calcul du rayonnement est celle apres la precipitation des nuages.
360    ! Si cette cle new_oliq est activee, ce sera une valeur moyenne entre
361    ! la condensation et la precipitation. Cette cle augmente les impacts
362    ! radiatifs des nuages.
363    !cc      LOGICAL new_oliq
364    !cc      PARAMETER (new_oliq=.FALSE.)
365    !======================================================================
366    ! Clefs controlant deux parametrisations de l'orographie:
367    !c      LOGICAL ok_orodr
368    !cc      PARAMETER (ok_orodr=.FALSE.)
369    !cc      LOGICAL ok_orolf
370    !cc      PARAMETER (ok_orolf=.FALSE.)
371    !======================================================================
372    LOGICAL ok_journe ! sortir le fichier journalier
373    save ok_journe
374    !$OMP THREADPRIVATE(ok_journe)
375    !
376    LOGICAL ok_mensuel ! sortir le fichier mensuel
377    save ok_mensuel
378    !$OMP THREADPRIVATE(ok_mensuel)
379    !
380    LOGICAL ok_instan ! sortir le fichier instantane
381    save ok_instan
382    !$OMP THREADPRIVATE(ok_instan)
383    !
384    LOGICAL ok_LES ! sortir le fichier LES
385    save ok_LES                           
386    !$OMP THREADPRIVATE(ok_LES)                 
387    !
388    LOGICAL callstats ! sortir le fichier stats
389    save callstats                           
390    !$OMP THREADPRIVATE(callstats)                 
391    !
392    LOGICAL ok_region ! sortir le fichier regional
393    PARAMETER (ok_region=.FALSE.)
394    !======================================================================
395    real seuil_inversion
396    save seuil_inversion
397    !$OMP THREADPRIVATE(seuil_inversion)
398    integer iflag_ratqs
399    save iflag_ratqs
400    !$OMP THREADPRIVATE(iflag_ratqs)
401    real facteur
[1507]402
[2469]403    REAL wmax_th(klon)
404    REAL tau_overturning_th(klon)
[878]405
[2469]406    integer lmax_th(klon)
407    integer limbas(klon)
408    real ratqscth(klon,klev)
409    real ratqsdiff(klon,klev)
410    real zqsatth(klon,klev)
[878]411
[2469]412    !======================================================================
413    !
414    INTEGER ivap          ! indice de traceurs pour vapeur d'eau
415    PARAMETER (ivap=1)
416    INTEGER iliq          ! indice de traceurs pour eau liquide
417    PARAMETER (iliq=2)
418    !CR: on ajoute la phase glace
419    INTEGER isol          ! indice de traceurs pour eau glace
420    PARAMETER (isol=3)
421    !
422    !
423    ! Variables argument:
424    !
425    INTEGER nlon
426    INTEGER nlev
427    REAL,INTENT(IN) :: pdtphys_
428    ! NB: pdtphys to be used in physics is in time_phylmdz_mod
429    LOGICAL debut, lafin
430    REAL paprs(klon,klev+1)
431    REAL pplay(klon,klev)
432    REAL pphi(klon,klev)
433    REAL pphis(klon)
434    REAL presnivs(klev)
[2799]435!JLD    REAL znivsig(klev)
436!JLD    real pir
[719]437
[2469]438    REAL u(klon,klev)
439    REAL v(klon,klev)
[2333]440
[2469]441    REAL, intent(in):: rot(klon, klev)
442    ! relative vorticity, in s-1, needed for frontal waves
[2333]443
[2469]444    REAL t(klon,klev),thetal(klon,klev)
445    ! thetal: ligne suivante a decommenter si vous avez les fichiers
446    !     MPL 20130625
447    ! fth_fonctions.F90 et parkind1.F90
448    ! sinon thetal=theta
449    !     REAL fth_thetae,fth_thetav,fth_thetal
450    REAL qx(klon,klev,nqtot)
451    REAL flxmass_w(klon,klev)
452    REAL d_u(klon,klev)
453    REAL d_v(klon,klev)
454    REAL d_t(klon,klev)
455    REAL d_qx(klon,klev,nqtot)
456    REAL d_ps(klon)
[2897]457  ! variables pour tend_to_tke
458    REAL duadd(klon,klev)
459    REAL dvadd(klon,klev)
460    REAL dtadd(klon,klev)
461
[2271]462#ifndef CPP_XIOS
[2997]463    REAL, SAVE :: missing_val=nf90_fill_real
[2271]464#endif
[3134]465!!   Variables moved to phys_local_var_mod
466!!    ! Variables pour le transport convectif
467!!    real da(klon,klev),phi(klon,klev,klev),mp(klon,klev)
468!!    real wght_cvfd(klon,klev)
469!!    ! Variables pour le lessivage convectif
470!!    ! RomP >>>
471!!    real phi2(klon,klev,klev)
472!!    real d1a(klon,klev),dam(klon,klev)
473!!    real ev(klon,klev)
474!!    real clw(klon,klev),elij(klon,klev,klev)
475!!    real epmlmMm(klon,klev,klev),eplaMm(klon,klev)
476!!    ! RomP <<<
[2469]477    !IM definition dynamique o_trac dans phys_output_open
478    !      type(ctrl_out) :: o_trac(nqtot)
[524]479
[2469]480    ! variables a une pression donnee
481    !
482    include "declare_STDlev.h"
483    !
484    !
485    include "radopt.h"
486    !
487    !
488    INTEGER debug
489    INTEGER n
490    !ym      INTEGER npoints
491    !ym      PARAMETER(npoints=klon)
492    !
493    INTEGER nregISCtot
494    PARAMETER(nregISCtot=1)
495    !
496    ! imin_debut, nbpti, jmin_debut, nbptj : parametres pour sorties
497    ! sur 1 region rectangulaire y compris pour 1 point
498    ! imin_debut : indice minimum de i; nbpti : nombre de points en
499    ! direction i (longitude)
500    ! jmin_debut : indice minimum de j; nbptj : nombre de points en
501    ! direction j (latitude)
[2799]502!JLD    INTEGER imin_debut, nbpti
503!JLD    INTEGER jmin_debut, nbptj
[2469]504    !IM: region='3d' <==> sorties en global
505    CHARACTER*3 region
506    PARAMETER(region='3d')
507    logical ok_hf
508    !
509    save ok_hf
510    !$OMP THREADPRIVATE(ok_hf)
[524]511
[2469]512    INTEGER,PARAMETER :: longcles=20
513    REAL,SAVE :: clesphy0(longcles)
514    !$OMP THREADPRIVATE(clesphy0)
515    !
516    ! Variables propres a la physique
517    INTEGER itap
518    SAVE itap                   ! compteur pour la physique
519    !$OMP THREADPRIVATE(itap)
[2235]520
[2469]521    INTEGER, SAVE :: abortphy=0   ! Reprere si on doit arreter en fin de phys
522    !$OMP THREADPRIVATE(abortphy)
523    !
524    REAL,save ::  solarlong0
525    !$OMP THREADPRIVATE(solarlong0)
[987]526
[2469]527    !
528    !  Parametres de l'Orographie a l'Echelle Sous-Maille (OESM):
529    !
530    !IM 141004     REAL zulow(klon),zvlow(klon),zustr(klon), zvstr(klon)
531    REAL zulow(klon),zvlow(klon)
532    !
533    INTEGER igwd,idx(klon),itest(klon)
534    !
535    !      REAL,allocatable,save :: run_off_lic_0(:)
536    ! !$OMP THREADPRIVATE(run_off_lic_0)
537    !ym      SAVE run_off_lic_0
538    !KE43
539    ! Variables liees a la convection de K. Emanuel (sb):
540    !
541    REAL bas, top             ! cloud base and top levels
542    SAVE bas
543    SAVE top
544    !$OMP THREADPRIVATE(bas, top)
545    !------------------------------------------------------------------
546    ! Upmost level reached by deep convection and related variable (jyg)
547    !
548    INTEGER izero
549    INTEGER k_upper_cv
550    !------------------------------------------------------------------
[3153]551    ! Compteur de l'occurence de cvpas=1
552    INTEGER Ncvpaseq1
553    SAVE Ncvpaseq1
554    !$OMP THREADPRIVATE(Ncvpaseq1)
[2469]555    !
556    !==========================================================================
557    !CR04.12.07: on ajoute les nouvelles variables du nouveau schema
558    !de convection avec poches froides
559    ! Variables li\'ees \`a la poche froide (jyg)
[879]560
[2469]561    REAL mip(klon,klev)  ! mass flux shed by the adiab ascent at each level
562    !
563    REAL wape_prescr, fip_prescr
564    INTEGER it_wape_prescr
565    SAVE wape_prescr, fip_prescr, it_wape_prescr
566    !$OMP THREADPRIVATE(wape_prescr, fip_prescr, it_wape_prescr)
567    !
568    ! variables supplementaires de concvl
569    REAL Tconv(klon,klev)
[3134]570!!    variable moved to phys_local_var_mod
571!!    REAL sij(klon,klev,klev)
[2812]572!!    !
573!!    ! variables pour tester la conservation de l'energie dans concvl
574!!    REAL, DIMENSION(klon,klev)     :: d_t_con_sat
575!!    REAL, DIMENSION(klon,klev)     :: d_q_con_sat
576!!    REAL, DIMENSION(klon,klev)     :: dql_sat
[970]577
[2469]578    real, save :: alp_bl_prescr=0.
579    real, save :: ale_bl_prescr=0.
[979]580
[2469]581    real, save :: wake_s_min_lsp=0.1
[1516]582
[2469]583    !$OMP THREADPRIVATE(alp_bl_prescr,ale_bl_prescr)
584    !$OMP THREADPRIVATE(wake_s_min_lsp)
[970]585
[1516]586
[2469]587    real ok_wk_lsp(klon)
[1516]588
[2469]589    !RC
590    ! Variables li\'ees \`a la poche froide (jyg et rr)
[879]591
[2635]592    INTEGER,  SAVE               :: iflag_wake_tend  ! wake: if =0, then wake state variables are
593                                                     ! updated within calwake
594    !$OMP THREADPRIVATE(iflag_wake_tend)
[3000]595    INTEGER,  SAVE               :: iflag_alp_wk_cond=0 ! wake: if =0, then Alp_wk is the average lifting
596                                                        ! power provided by the wakes; else, Alp_wk is the
597                                                        ! lifting power conditionned on the presence of a
598                                                        ! gust-front in the grid cell.
599    !$OMP THREADPRIVATE(iflag_alp_wk_cond)
[3400]600    INTEGER,  SAVE               :: iflag_bug_t2m_ipslcm61=0 !
601    !$OMP THREADPRIVATE(iflag_bug_t2m_ipslcm61)
602
[2635]603    REAL t_w(klon,klev),q_w(klon,klev) ! temperature and moisture profiles in the wake region
604    REAL t_x(klon,klev),q_x(klon,klev) ! temperature and moisture profiles in the off-wake region
[879]605
[2469]606    REAL wake_dth(klon,klev)        ! wake : temp pot difference
[879]607
[2469]608    REAL wake_omgbdth(klon,klev)    ! Wake : flux of Delta_Theta
609    ! transported by LS omega
610    REAL wake_dp_omgb(klon,klev)    ! Wake : vertical gradient of
611    ! large scale omega
612    REAL wake_dtKE(klon,klev)       ! Wake : differential heating
613    ! (wake - unpertubed) CONV
614    REAL wake_dqKE(klon,klev)       ! Wake : differential moistening
615    ! (wake - unpertubed) CONV
616    REAL wake_dp_deltomg(klon,klev) ! Wake : gradient vertical de wake_omg
617    REAL wake_spread(klon,klev)     ! spreading term in wake_delt
618    !
619    !pourquoi y'a pas de save??
620    !
[2730]621!!!    INTEGER, SAVE, DIMENSION(klon)   :: wake_k
622!!!    !$OMP THREADPRIVATE(wake_k)
[2469]623    !
624    !jyg<
625    !cc      REAL wake_pe(klon)              ! Wake potential energy - WAPE
626    !>jyg
[879]627
[3000]628    REAL wake_fip_0(klon)           ! Average Front Incoming Power (unconditionned)
[2469]629    REAL wake_gfl(klon)             ! Gust Front Length
[2635]630!!!    REAL wake_dens(klon)         ! moved to phys_state_var_mod
[2469]631    !
632    !
633    REAL dt_dwn(klon,klev)
634    REAL dq_dwn(klon,klev)
635    REAL M_dwn(klon,klev)
636    REAL M_up(klon,klev)
637    REAL dt_a(klon,klev)
638    REAL dq_a(klon,klev)
639    REAL d_t_adjwk(klon,klev)                !jyg
640    REAL d_q_adjwk(klon,klev)                !jyg
641    LOGICAL,SAVE :: ok_adjwk=.FALSE.
642    !$OMP THREADPRIVATE(ok_adjwk)
[2882]643    INTEGER,SAVE :: iflag_adjwk=0            !jyg
644    !$OMP THREADPRIVATE(iflag_adjwk)         !jyg
[2657]645    REAL,SAVE :: oliqmax=999.,oicemax=999.
646    !$OMP THREADPRIVATE(oliqmax,oicemax)
[2469]647    REAL, SAVE :: alp_offset
648    !$OMP THREADPRIVATE(alp_offset)
[3150]649    REAL, SAVE :: dtcon_multistep_max=1.e6
650    !$OMP THREADPRIVATE(dtcon_multistep_max)
651    REAL, SAVE :: dqcon_multistep_max=1.e6
652    !$OMP THREADPRIVATE(dqcon_multistep_max)
653
[2897]654 
[2469]655    !
656    !RR:fin declarations poches froides
657    !==========================================================================
[1032]658
[2469]659    REAL ztv(klon,klev),ztva(klon,klev)
660    REAL zpspsk(klon,klev)
661    REAL ztla(klon,klev),zqla(klon,klev)
662    REAL zthl(klon,klev)
[1638]663
[2469]664    !cc nrlmd le 10/04/2012
[1638]665
[2469]666    !--------Stochastic Boundary Layer Triggering: ALE_BL--------
667    !---Propri\'et\'es du thermiques au LCL
668    real zlcl_th(klon)          ! Altitude du LCL calcul\'e
669    ! continument (pcon dans
670    ! thermcell_main.F90)
671    real fraca0(klon)           ! Fraction des thermiques au LCL
672    real w0(klon)               ! Vitesse des thermiques au LCL
673    real w_conv(klon)           ! Vitesse verticale de grande \'echelle au LCL
674    real tke0(klon,klev+1)      ! TKE au d\'ebut du pas de temps
675    real therm_tke_max0(klon)   ! TKE dans les thermiques au LCL
676    real env_tke_max0(klon)     ! TKE dans l'environnement au LCL
[1638]677
[2799]678!JLD    !---D\'eclenchement stochastique
679!JLD    integer :: tau_trig(klon)
[1638]680
[2469]681    REAL,SAVE :: random_notrig_max=1.
682    !$OMP THREADPRIVATE(random_notrig_max)
[2294]683
[2469]684    !--------Statistical Boundary Layer Closure: ALP_BL--------
685    !---Profils de TKE dans et hors du thermique
686    real therm_tke_max(klon,klev)   ! Profil de TKE dans les thermiques
687    real env_tke_max(klon,klev)     ! Profil de TKE dans l'environnement
[1638]688
[2897]689    !-------Activer les tendances de TKE due a l'orograp??ie---------
690     INTEGER, SAVE :: addtkeoro
691    !$OMP THREADPRIVATE(addtkeoro)
692     REAL, SAVE :: alphatkeoro
693    !$OMP THREADPRIVATE(alphatkeoro)
694     LOGICAL, SAVE :: smallscales_tkeoro
695    !$OMP THREADPRIVATE(smallscales_tkeoro)
[1638]696
[2897]697
698
[2469]699    !cc fin nrlmd le 10/04/2012
[782]700
[2469]701    ! Variables locales pour la couche limite (al1):
702    !
703    !Al1      REAL pblh(klon)           ! Hauteur de couche limite
704    !Al1      SAVE pblh
705    !34EK
706    !
707    ! Variables locales:
708    !
709    !AA
710    !AA  Pour phytrac
711    REAL u1(klon)             ! vents dans la premiere couche U
712    REAL v1(klon)             ! vents dans la premiere couche V
[524]713
[2469]714    !@$$      LOGICAL offline           ! Controle du stockage ds "physique"
715    !@$$      PARAMETER (offline=.false.)
716    !@$$      INTEGER physid
717    REAL frac_impa(klon,klev) ! fractions d'aerosols lessivees (impaction)
718    REAL frac_nucl(klon,klev) ! idem (nucleation)
719    ! RomP >>>
720    REAL beta_prec_fisrt(klon,klev) ! taux de conv de l'eau cond (fisrt)
721    ! RomP <<<
[2832]722    REAL          :: calday
[2068]723
[2469]724    !IM cf FH pour Tiedtke 080604
725    REAL rain_tiedtke(klon),snow_tiedtke(klon)
726    !
727    !IM 050204 END
728    REAL devap(klon) ! evaporation et sa derivee
729    REAL dsens(klon) ! chaleur sensible et sa derivee
[1279]730
[2469]731    !
732    ! Conditions aux limites
733    !
734    !
735    REAL :: day_since_equinox
736    ! Date de l'equinoxe de printemps
737    INTEGER, parameter :: mth_eq=3, day_eq=21
738    REAL :: jD_eq
[1279]739
[2469]740    LOGICAL, parameter :: new_orbit = .true.
[524]741
[2469]742    !
743    INTEGER lmt_pas
744    SAVE lmt_pas                ! frequence de mise a jour
745    !$OMP THREADPRIVATE(lmt_pas)
746    real zmasse(klon, nbp_lev),exner(klon, nbp_lev)
747    !     (column-density of mass of air in a cell, in kg m-2)
748    real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
[1797]749
[2469]750    !IM sorties
751    REAL un_jour
752    PARAMETER(un_jour=86400.)
753    INTEGER itapm1 !pas de temps de la physique du(es) mois precedents
754    SAVE itapm1    !mis a jour le dernier pas de temps du mois en cours
755    !$OMP THREADPRIVATE(itapm1)
756    !======================================================================
757    !
758    ! Declaration des procedures appelees
759    !
760    EXTERNAL angle     ! calculer angle zenithal du soleil
761    EXTERNAL alboc     ! calculer l'albedo sur ocean
762    EXTERNAL ajsec     ! ajustement sec
763    EXTERNAL conlmd    ! convection (schema LMD)
764    !KE43
765    EXTERNAL conema3  ! convect4.3
766    EXTERNAL fisrtilp  ! schema de condensation a grande echelle (pluie)
767    !AA
768    ! JBM (3/14) fisrtilp_tr not loaded
769    ! EXTERNAL fisrtilp_tr ! schema de condensation a grande echelle (pluie)
770    !                          ! stockage des coefficients necessaires au
771    !                          ! lessivage OFF-LINE et ON-LINE
772    EXTERNAL hgardfou  ! verifier les temperatures
773    EXTERNAL nuage     ! calculer les proprietes radiatives
774    !C      EXTERNAL o3cm      ! initialiser l'ozone
775    EXTERNAL orbite    ! calculer l'orbite terrestre
776    EXTERNAL phyetat0  ! lire l'etat initial de la physique
777    EXTERNAL phyredem  ! ecrire l'etat de redemarrage de la physique
778    EXTERNAL suphel    ! initialiser certaines constantes
779    EXTERNAL transp    ! transport total de l'eau et de l'energie
780    !IM
781    EXTERNAL haut2bas  !variables de haut en bas
782    EXTERNAL ini_undefSTD  !initialise a 0 une variable a 1 niveau de pression
783    EXTERNAL undefSTD !somme les valeurs definies d'1 var a 1 niveau de pression
784    !     EXTERNAL moy_undefSTD  !moyenne d'1 var a 1 niveau de pression
785    ! EXTERNAL moyglo_aire
786    ! moyenne globale d'1 var ponderee par l'aire de la maille (moyglo_pondaire)
787    ! par la masse/airetot (moyglo_pondaima) et la vraie masse (moyglo_pondmass)
788    !
789    !
790    ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
791    ! Local variables
792    ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
793    !
794    REAL rhcl(klon,klev)    ! humiditi relative ciel clair
795    REAL dialiq(klon,klev)  ! eau liquide nuageuse
796    REAL diafra(klon,klev)  ! fraction nuageuse
797    REAL cldliq(klon,klev)  ! eau liquide nuageuse
798    !
799    !XXX PB
800    REAL fluxq(klon,klev, nbsrf)   ! flux turbulent d'humidite
801    !
802    REAL zxfluxt(klon, klev)
803    REAL zxfluxq(klon, klev)
804    REAL zxfluxu(klon, klev)
805    REAL zxfluxv(klon, klev)
[1797]806
[2469]807    ! Le rayonnement n'est pas calcule tous les pas, il faut donc
808    !                      sauvegarder les sorties du rayonnement
809    !ym      SAVE  heat,cool,albpla,topsw,toplw,solsw,sollw,sollwdown
810    !ym      SAVE  sollwdownclr, toplwdown, toplwdownclr
811    !ym      SAVE  topsw0,toplw0,solsw0,sollw0, heat0, cool0
812    !
813    INTEGER itaprad
814    SAVE itaprad
815    !$OMP THREADPRIVATE(itaprad)
816    !
817    REAL conv_q(klon,klev) ! convergence de l'humidite (kg/kg/s)
818    REAL conv_t(klon,klev) ! convergence de la temperature(K/s)
819    !
[2799]820#ifdef INCA
[2469]821    REAL zxsnow_dummy(klon)
[2799]822#endif
[2469]823    REAL zsav_tsol(klon)
824    !
825    REAL dist, rmu0(klon), fract(klon)
826    REAL zrmu0(klon), zfract(klon)
827    REAL zdtime, zdtime1, zdtime2, zlongi
828    !
829    REAL qcheck
830    REAL z_avant(klon), z_apres(klon), z_factor(klon)
831    LOGICAL zx_ajustq
832    !
[2799]833    REAL za
834    REAL zx_t, zx_qs, zdelta, zcor
[2469]835    real zqsat(klon,klev)
836    !
[2897]837    INTEGER i, k, iq, j, nsrf, ll, l
[2469]838    !
839    REAL t_coup
840    PARAMETER (t_coup=234.0)
[1797]841
[2469]842    !ym A voir plus tard !!
843    !ym      REAL zx_relief(iim,jjmp1)
844    !ym      REAL zx_aire(iim,jjmp1)
845    !
846    ! Grandeurs de sorties
847    REAL s_capCL(klon)
848    REAL s_oliqCL(klon), s_cteiCL(klon)
849    REAL s_trmb1(klon), s_trmb2(klon)
850    REAL s_trmb3(klon)
[2707]851
852    ! La convection n'est pas calculee tous les pas, il faut donc
853    !                      sauvegarder les sorties de la convection
854    !ym      SAVE 
855    !ym      SAVE 
856    !ym      SAVE 
857    !
[2730]858    INTEGER itapcv, itapwk
859    SAVE itapcv, itapwk
860    !$OMP THREADPRIVATE(itapcv, itapwk)
[2707]861
[2469]862    !KE43
863    ! Variables locales pour la convection de K. Emanuel (sb):
[524]864
[2469]865    REAL tvp(klon,klev)       ! virtual temp of lifted parcel
866    CHARACTER*40 capemaxcels  !max(CAPE)
[1412]867
[2469]868    REAL rflag(klon)          ! flag fonctionnement de convect
869    INTEGER iflagctrl(klon)          ! flag fonctionnement de convect
[904]870
[2469]871    ! -- convect43:
872    INTEGER ntra              ! nb traceurs pour convect4.3
873    REAL dtvpdt1(klon,klev), dtvpdq1(klon,klev)
874    REAL dplcldt(klon), dplcldr(klon)
875    !?     .     condm_con(klon,klev),conda_con(klon,klev),
876    !?     .     mr_con(klon,klev),ep_con(klon,klev)
877    !?     .    ,sadiab(klon,klev),wadiab(klon,klev)
878    ! --
879    !34EK
880    !
881    ! Variables du changement
882    !
883    ! con: convection
884    ! lsc: condensation a grande echelle (Large-Scale-Condensation)
885    ! ajs: ajustement sec
886    ! eva: evaporation de l'eau liquide nuageuse
887    ! vdf: couche limite (Vertical DiFfusion)
[2611]888    !
[2469]889    ! tendance nulles
[2812]890    REAL, dimension(klon,klev):: du0, dv0, dt0, dq0, dql0, dqi0
891    REAL, dimension(klon)     :: dsig0, ddens0
892    INTEGER, dimension(klon)  :: wkoccur1
[2801]893    ! tendance buffer pour appel de add_phys_tend
894    REAL, DIMENSION(klon,klev)  :: d_q_ch4_dtime
[2611]895    !
896    ! Flag pour pouvoir ne pas ajouter les tendances.
897    ! Par defaut, les tendances doivente etre ajoutees et
898    ! flag_inhib_tend = 0
899    ! flag_inhib_tend > 0 : tendances non ajoutees, avec un nombre
900    ! croissant de print quand la valeur du flag augmente
901    !!! attention, ce flag doit etre change avec prudence !!!
902    INTEGER :: flag_inhib_tend = 0 !  0 is the default value
903!!    INTEGER :: flag_inhib_tend = 2
[3134]904    !
905    ! Logical switch to a bug : reseting to 0 convective variables at the
906    ! begining of physiq.
907    LOGICAL, SAVE :: ok_bug_cv_trac = .TRUE.
908    !$OMP THREADPRIVATE(ok_bug_cv_trac)
[524]909
[2469]910    !
911    !********************************************************
912    !     declarations
[524]913
[2469]914    !********************************************************
915    !IM 081204 END
916    !
917    REAL pen_u(klon,klev), pen_d(klon,klev)
918    REAL pde_u(klon,klev), pde_d(klon,klev)
919    INTEGER kcbot(klon), kctop(klon), kdtop(klon)
920    !
921    real ratqsbas,ratqshaut,tau_ratqs
922    save ratqsbas,ratqshaut,tau_ratqs
923    !$OMP THREADPRIVATE(ratqsbas,ratqshaut,tau_ratqs)
[2534]924    REAL, SAVE :: ratqsp0=50000., ratqsdp=20000.
925    !$OMP THREADPRIVATE(ratqsp0, ratqsdp)
[644]926
[2469]927    ! Parametres lies au nouveau schema de nuages (SB, PDF)
928    real fact_cldcon
929    real facttemps
930    logical ok_newmicro
931    save ok_newmicro
932    !$OMP THREADPRIVATE(ok_newmicro)
933    !real ref_liq_pi(klon,klev), ref_ice_pi(klon,klev)
934    save fact_cldcon,facttemps
935    !$OMP THREADPRIVATE(fact_cldcon,facttemps)
[524]936
[2469]937    integer iflag_cld_th
938    save iflag_cld_th
939    !$OMP THREADPRIVATE(iflag_cld_th)
[2877]940!IM logical ptconv(klon,klev)  !passe dans phys_local_var_mod
[2469]941    !IM cf. AM 081204 BEG
942    logical ptconvth(klon,klev)
943    !IM cf. AM 081204 END
944    !
945    ! Variables liees a l'ecriture de la bande histoire physique
946    !
947    !======================================================================
948    !
[2068]949
[2469]950    !
[2799]951!JLD    integer itau_w   ! pas de temps ecriture = itap + itau_phy
[2469]952    !
953    !
954    ! Variables locales pour effectuer les appels en serie
955    !
956    !IM RH a 2m (la surface)
957    REAL Lheat
[524]958
[2469]959    INTEGER        length
960    PARAMETER    ( length = 100 )
961    REAL tabcntr0( length       )
962    !
[2799]963!JLD    INTEGER ndex2d(nbp_lon*nbp_lat)
[2469]964    !IM
965    !
966    !IM AMIP2 BEG
[2799]967!JLD    REAL moyglo, mountor
[2469]968    !IM 141004 BEG
969    REAL zustrdr(klon), zvstrdr(klon)
970    REAL zustrli(klon), zvstrli(klon)
971    REAL zustrph(klon), zvstrph(klon)
972    REAL aam, torsfc
973    !IM 141004 END
974    !IM 190504 BEG
975    !  INTEGER imp1jmp1
976    !  PARAMETER(imp1jmp1=(iim+1)*jjmp1)
977    !ym A voir plus tard
978    !  REAL zx_tmp((nbp_lon+1)*nbp_lat)
979    !  REAL airedyn(nbp_lon+1,nbp_lat)
980    !IM 190504 END
[2799]981!JLD    LOGICAL ok_msk
982!JLD    REAL msk(klon)
[2469]983    !ym A voir plus tard
984    !ym      REAL zm_wo(jjmp1, klev)
985    !IM AMIP2 END
986    !
987    REAL zx_tmp_fi2d(klon)      ! variable temporaire grille physique
988    REAL zx_tmp_fi3d(klon,klev) ! variable temporaire pour champs 3D
[2799]989!JLD    REAL zx_tmp_2d(nbp_lon,nbp_lat)
990!JLD    REAL zx_lon(nbp_lon,nbp_lat)
991!JLD    REAL zx_lat(nbp_lon,nbp_lat)
[2469]992    !
[2630]993    INTEGER nid_ctesGCM
994    SAVE nid_ctesGCM
995    !$OMP THREADPRIVATE(nid_ctesGCM)
[2469]996    !
997    !IM 280405 BEG
998    !  INTEGER nid_bilKPins, nid_bilKPave
999    !  SAVE nid_bilKPins, nid_bilKPave
1000    !  !$OMP THREADPRIVATE(nid_bilKPins, nid_bilKPave)
1001    !
1002    REAL ve_lay(klon,klev) ! transport meri. de l'energie a chaque niveau vert.
1003    REAL vq_lay(klon,klev) ! transport meri. de l'eau a chaque niveau vert.
1004    REAL ue_lay(klon,klev) ! transport zonal de l'energie a chaque niveau vert.
1005    REAL uq_lay(klon,klev) ! transport zonal de l'eau a chaque niveau vert.
1006    !
[2799]1007!JLD    REAL zjulian
1008!JLD    SAVE zjulian
1009!JLD!$OMP THREADPRIVATE(zjulian)
[2590]1010
[2799]1011!JLD    INTEGER nhori, nvert
1012!JLD    REAL zsto
1013!JLD    REAL zstophy, zout
[2068]1014
[2469]1015    character*20 modname
1016    character*80 abort_message
1017    logical, save ::  ok_sync, ok_sync_omp
1018    !$OMP THREADPRIVATE(ok_sync)
1019    real date0
[524]1020
[2469]1021    ! essai writephys
1022    integer fid_day, fid_mth, fid_ins
1023    parameter (fid_ins = 1, fid_day = 2, fid_mth = 3)
1024    integer prof2d_on, prof3d_on, prof2d_av, prof3d_av
1025    parameter (prof2d_on = 1, prof3d_on = 2, &
1026         prof2d_av = 3, prof3d_av = 4)
1027    REAL ztsol(klon)
1028    REAL q2m(klon,nbsrf)  ! humidite a 2m
[524]1029
[2469]1030    !IM: t2m, q2m, ustar, u10m, v10m et t2mincels, t2maxcels
1031    CHARACTER*40 t2mincels, t2maxcels       !t2m min., t2m max
[2799]1032    CHARACTER*40 tinst, tave
[2469]1033    REAL cldtaupi(klon,klev) ! Cloud optical thickness for
1034    ! pre-industrial (pi) aerosols
[524]1035
[2863]1036    INTEGER :: naero
[2469]1037    ! Aerosol optical properties
1038    CHARACTER*4, DIMENSION(naero_grp) :: rfname
1039    REAL, DIMENSION(klon,klev)     :: mass_solu_aero ! total mass
1040    ! concentration
1041    ! for all soluble
1042    ! aerosols[ug/m3]
1043    REAL, DIMENSION(klon,klev)     :: mass_solu_aero_pi
1044    ! - " - (pre-industrial value)
[1279]1045
[2469]1046    ! Parameters
1047    LOGICAL ok_ade, ok_aie    ! Apply aerosol (in)direct effects or not
[2738]1048    LOGICAL ok_alw            ! Apply aerosol LW effect or not
[2469]1049    LOGICAL ok_cdnc ! ok cloud droplet number concentration (O. Boucher 01-2013)
1050    REAL bl95_b0, bl95_b1   ! Parameter in Boucher and Lohmann (1995)
[2738]1051    SAVE ok_ade, ok_aie, ok_alw, ok_cdnc, bl95_b0, bl95_b1
1052    !$OMP THREADPRIVATE(ok_ade, ok_aie, ok_alw, ok_cdnc, bl95_b0, bl95_b1)
[2469]1053    LOGICAL, SAVE :: aerosol_couple ! true  : calcul des aerosols dans INCA
1054    ! false : lecture des aerosol dans un fichier
1055    !$OMP THREADPRIVATE(aerosol_couple)   
[3339]1056    LOGICAL, SAVE :: chemistry_couple ! true  : use INCA chemistry O3
1057    ! false : use offline chemistry O3
1058    !$OMP THREADPRIVATE(chemistry_couple)   
[2469]1059    INTEGER, SAVE :: flag_aerosol
1060    !$OMP THREADPRIVATE(flag_aerosol)
[2644]1061    LOGICAL, SAVE :: flag_bc_internal_mixture
1062    !$OMP THREADPRIVATE(flag_bc_internal_mixture)
[2469]1063    LOGICAL, SAVE :: new_aod
1064    !$OMP THREADPRIVATE(new_aod)
1065    !
1066    !--STRAT AEROSOL
[2530]1067    INTEGER, SAVE :: flag_aerosol_strat
[2469]1068    !$OMP THREADPRIVATE(flag_aerosol_strat)
[3525]1069    !
1070    !--INTERACTIVE AEROSOL FEEDBACK ON RADIATION
1071    LOGICAL, SAVE :: flag_aer_feedback
1072    !$OMP THREADPRIVATE(flag_aer_feedback)
1073
[2469]1074    !c-fin STRAT AEROSOL
1075    !
1076    ! Declaration des constantes et des fonctions thermodynamiques
1077    !
1078    LOGICAL,SAVE :: first=.true.
1079    !$OMP THREADPRIVATE(first)
[1279]1080
[2788]1081    ! VARIABLES RELATED TO OZONE CLIMATOLOGIES ; all are OpenMP shared
1082    ! Note that pressure vectors are in Pa and in stricly ascending order
1083    INTEGER,SAVE :: read_climoz                ! Read ozone climatology
[2469]1084    !     (let it keep the default OpenMP shared attribute)
1085    !     Allowed values are 0, 1 and 2
1086    !     0: do not read an ozone climatology
1087    !     1: read a single ozone climatology that will be used day and night
1088    !     2: read two ozone climatologies, the average day and night
1089    !     climatology and the daylight climatology
[2788]1090    INTEGER,SAVE :: ncid_climoz                ! NetCDF file identifier
1091    REAL, POINTER, SAVE :: press_cen_climoz(:) ! Pressure levels
1092    REAL, POINTER, SAVE :: press_edg_climoz(:) ! Edges of pressure intervals
1093    REAL, POINTER, SAVE :: time_climoz(:)      ! Time vector
1094    CHARACTER(LEN=13), PARAMETER :: vars_climoz(2) &
1095                                  = ["tro3         ","tro3_daylight"]
1096    ! vars_climoz(1:read_climoz): variables names in climoz file.
[2819]1097    ! vars_climoz(1:read_climoz-2) if read_climoz>2 (temporary)
1098    REAL :: ro3i ! 0<=ro3i<=360 ; required time index in NetCDF file for
1099                 ! the ozone fields, old method.
[1279]1100
[2469]1101    include "YOMCST.h"
1102    include "YOETHF.h"
1103    include "FCTTRE.h"
1104    !IM 100106 BEG : pouvoir sortir les ctes de la physique
1105    include "conema3.h"
1106    include "fisrtilp.h"
1107    include "nuage.h"
1108    include "compbl.h"
1109    !IM 100106 END : pouvoir sortir les ctes de la physique
1110    !
1111    ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1112    ! Declarations pour Simulateur COSP
1113    !============================================================
[2799]1114#ifdef CPP_COSP
[2469]1115    real :: mr_ozone(klon,klev)
[2799]1116#endif
[2469]1117    !IM stations CFMIP
1118    INTEGER, SAVE :: nCFMIP
1119    !$OMP THREADPRIVATE(nCFMIP)
1120    INTEGER, PARAMETER :: npCFMIP=120
1121    INTEGER, ALLOCATABLE, SAVE :: tabCFMIP(:)
1122    REAL, ALLOCATABLE, SAVE :: lonCFMIP(:), latCFMIP(:)
1123    !$OMP THREADPRIVATE(tabCFMIP, lonCFMIP, latCFMIP)
1124    INTEGER, ALLOCATABLE, SAVE :: tabijGCM(:)
1125    REAL, ALLOCATABLE, SAVE :: lonGCM(:), latGCM(:)
1126    !$OMP THREADPRIVATE(tabijGCM, lonGCM, latGCM)
1127    INTEGER, ALLOCATABLE, SAVE :: iGCM(:), jGCM(:)
1128    !$OMP THREADPRIVATE(iGCM, jGCM)
1129    logical, dimension(nfiles)            :: phys_out_filestations
1130    logical, parameter :: lNMC=.FALSE.
[1539]1131
[2469]1132    !IM betaCRF
1133    REAL, SAVE :: pfree, beta_pbl, beta_free
1134    !$OMP THREADPRIVATE(pfree, beta_pbl, beta_free)
1135    REAL, SAVE :: lon1_beta,  lon2_beta, lat1_beta, lat2_beta
1136    !$OMP THREADPRIVATE(lon1_beta,  lon2_beta, lat1_beta, lat2_beta)
1137    LOGICAL, SAVE :: mskocean_beta
1138    !$OMP THREADPRIVATE(mskocean_beta)
1139    REAL, dimension(klon, klev) :: beta ! facteur sur cldtaurad et
1140    ! cldemirad pour evaluer les
1141    ! retros liees aux CRF
1142    REAL, dimension(klon, klev) :: cldtaurad   ! epaisseur optique
1143    ! pour radlwsw pour
1144    ! tester "CRF off"
1145    REAL, dimension(klon, klev) :: cldtaupirad ! epaisseur optique
1146    ! pour radlwsw pour
1147    ! tester "CRF off"
1148    REAL, dimension(klon, klev) :: cldemirad   ! emissivite pour
1149    ! radlwsw pour tester
1150    ! "CRF off"
1151    REAL, dimension(klon, klev) :: cldfrarad   ! fraction nuageuse
[1735]1152
[3419]1153#ifdef INCA
1154    ! set de variables utilisees pour l'initialisation des valeurs provenant de INCA
1155    REAL, DIMENSION(klon,klev,naero_grp,nbands) :: init_tauinca
1156    REAL, DIMENSION(klon,klev,naero_grp,nbands) :: init_pizinca
1157    REAL, DIMENSION(klon,klev,naero_grp,nbands) :: init_cginca
1158    REAL, DIMENSION(klon,klev,nbands) :: init_ccminca
1159#endif
1160    REAL, DIMENSION(klon,nbtr) :: init_source
1161
1162
[3048]1163    !lwoff=y : offset LW CRE for radiation code and other schemes
1164    REAL, SAVE :: betalwoff
1165    !OMP THREADPRIVATE(betalwoff)
1166!
[2469]1167    INTEGER :: nbtr_tmp ! Number of tracer inside concvl
1168    REAL, dimension(klon,klev) :: sh_in ! Specific humidity entering in phytrac
[2784]1169    REAL, dimension(klon,klev) :: ch_in ! Condensed humidity entering in phytrac (eau liquide)
[2469]1170    integer iostat
[1539]1171
[2469]1172    REAL zzz
1173    !albedo SB >>>
1174    real,dimension(6),save :: SFRWL
1175    !albedo SB <<<
[1955]1176
[2485]1177    !--OB variables for mass fixer (hard coded for now)
[2477]1178    logical, parameter :: mass_fixer=.false.
[2799]1179    real qql1(klon),qql2(klon),corrqql
[2476]1180
[3110]1181    REAL pi
1182
1183    pi = 4. * ATAN(1.)
1184
[2469]1185    ! Ehouarn: set value of jjmp1 since it is no longer a "fixed parameter"
1186    jjmp1=nbp_lat
[2344]1187
[2469]1188    !======================================================================
1189    ! Gestion calendrier : mise a jour du module phys_cal_mod
1190    !
1191    pdtphys=pdtphys_
1192    CALL update_time(pdtphys)
[1355]1193
[2469]1194    !======================================================================
1195    ! Ecriture eventuelle d'un profil verticale en entree de la physique.
1196    ! Utilise notamment en 1D mais peut etre active egalement en 3D
1197    ! en imposant la valeur de igout.
1198    !======================================================================d
[2692]1199    IF (prt_level.ge.1) THEN
[2469]1200       igout=klon/2+1/klon
1201       write(lunout,*) 'DEBUT DE PHYSIQ !!!!!!!!!!!!!!!!!!!!'
1202       write(lunout,*) 'igout, lat, lon ',igout, latitude_deg(igout), &
1203            longitude_deg(igout)
1204       write(lunout,*) &
1205            'nlon,klev,nqtot,debut,lafin, jD_cur, jH_cur,pdtphys'
1206       write(lunout,*) &
1207            nlon,klev,nqtot,debut,lafin, jD_cur, jH_cur,pdtphys
[879]1208
[2469]1209       write(lunout,*) 'paprs, play, phi, u, v, t'
[2692]1210       DO k=1,klev
[2469]1211          write(lunout,*) paprs(igout,k),pplay(igout,k),pphi(igout,k), &
1212               u(igout,k),v(igout,k),t(igout,k)
[2692]1213       ENDDO
[2469]1214       write(lunout,*) 'ovap (g/kg),  oliq (g/kg)'
[2692]1215       DO k=1,klev
[2469]1216          write(lunout,*) qx(igout,k,1)*1000,qx(igout,k,2)*1000.
[2692]1217       ENDDO
1218    ENDIF
[879]1219
[2769]1220    ! Quick check on pressure levels:
[2774]1221    call assert(paprs(:, nbp_lev + 1) < paprs(:, nbp_lev), &
[2769]1222            "physiq_mod paprs bad order")
[879]1223
[2692]1224    IF (first) THEN
[2469]1225       !CR:nvelles variables convection/poches froides
1226
1227       print*, '================================================='
1228       print*, 'Allocation des variables locales et sauvegardees'
[2692]1229       CALL phys_local_var_init
[2469]1230       !
1231       pasphys=pdtphys
1232       !     appel a la lecture du run.def physique
[2692]1233       CALL conf_phys(ok_journe, ok_mensuel, &
[2469]1234            ok_instan, ok_hf, &
1235            ok_LES, &
1236            callstats, &
1237            solarlong0,seuil_inversion, &
1238            fact_cldcon, facttemps,ok_newmicro,iflag_radia, &
1239            iflag_cld_th,iflag_ratqs,ratqsbas,ratqshaut,tau_ratqs, &
[3408]1240            ok_ade, ok_aie, ok_alw, ok_cdnc, ok_volcan, aerosol_couple, &
[3525]1241            chemistry_couple, flag_aerosol, flag_aerosol_strat,         &
1242            flag_aer_feedback, new_aod, &
[2644]1243            flag_bc_internal_mixture, bl95_b0, bl95_b1, &
[2469]1244                                ! nv flags pour la convection et les
1245                                ! poches froides
1246            read_climoz, &
1247            alp_offset)
[2692]1248       CALL phys_state_var_init(read_climoz)
1249       CALL phys_output_var_init
[3521]1250
1251#ifdef CPP_StratAer
1252       CALL strataer_init
1253#endif
[2469]1254       print*, '================================================='
1255       !
1256       !CR: check sur le nb de traceurs de l eau
[2692]1257       IF ((iflag_ice_thermo.gt.0).and.(nqo==2)) THEN
[2469]1258          WRITE (lunout, *) ' iflag_ice_thermo==1 requires 3 H2O tracers ', &
1259               '(H2Ov, H2Ol, H2Oi) but nqo=', nqo, '. Might as well stop here.'
[2224]1260          STOP
[2692]1261       ENDIF
[2224]1262
[3154]1263       Ncvpaseq1 = 0
[2469]1264       dnwd0=0.0
1265       ftd=0.0
1266       fqd=0.0
1267       cin=0.
1268       !ym Attention pbase pas initialise dans concvl !!!!
1269       pbase=0
1270       !IM 180608
[904]1271
[2469]1272       itau_con=0
1273       first=.false.
[1797]1274
[2692]1275    ENDIF  ! first
[1797]1276
[2469]1277    !ym => necessaire pour iflag_con != 2   
1278    pmfd(:,:) = 0.
1279    pen_u(:,:) = 0.
1280    pen_d(:,:) = 0.
1281    pde_d(:,:) = 0.
1282    pde_u(:,:) = 0.
1283    aam=0.
1284    d_t_adjwk(:,:)=0
1285    d_q_adjwk(:,:)=0
[1797]1286
[2469]1287    alp_bl_conv(:)=0.
[2245]1288
[2469]1289    torsfc=0.
1290    forall (k=1: nbp_lev) zmasse(:, k) = (paprs(:, k)-paprs(:, k+1)) / rg
[1797]1291
[2469]1292    modname = 'physiq'
[644]1293
[2469]1294    IF (debut) THEN
1295       CALL suphel ! initialiser constantes et parametres phys.
[3324]1296! tau_gl : constante de rappel de la temperature a la surface de la glace - en
1297       tau_gl=5.
1298       CALL getin_p('tau_gl', tau_gl)
1299! tau_gl : constante de rappel de la temperature a la surface de la glace - en secondes
1300       tau_gl=86400.*tau_gl
1301       print*,'debut physiq_mod tau_gl=',tau_gl
[3415]1302       iflag_bug_t2m_ipslcm61 = 1
[3400]1303       CALL getin_p('iflag_bug_t2m_ipslcm61', iflag_bug_t2m_ipslcm61)
[3000]1304       CALL getin_p('iflag_alp_wk_cond', iflag_alp_wk_cond)
[2469]1305       CALL getin_p('random_notrig_max',random_notrig_max)
[2882]1306       CALL getin_p('ok_adjwk',ok_adjwk)
1307       IF (ok_adjwk) iflag_adjwk=2  ! for compatibility with older versions
1308       ! iflag_adjwk: ! 0 = Default: no convective adjustment of w-region
1309                      ! 1 => convective adjustment but state variables are unchanged
1310                      ! 2 => convective adjustment and state variables are changed
1311       CALL getin_p('iflag_adjwk',iflag_adjwk)
[3150]1312       CALL getin_p('dtcon_multistep_max',dtcon_multistep_max)
1313       CALL getin_p('dqcon_multistep_max',dqcon_multistep_max)
[2613]1314       CALL getin_p('oliqmax',oliqmax)
[2657]1315       CALL getin_p('oicemax',oicemax)
[2534]1316       CALL getin_p('ratqsp0',ratqsp0)
1317       CALL getin_p('ratqsdp',ratqsdp)
[2635]1318       iflag_wake_tend = 0
1319       CALL getin_p('iflag_wake_tend',iflag_wake_tend)
[2799]1320       ok_bad_ecmwf_thermo=.TRUE. ! By default thermodynamical constants are set
1321                                  ! in rrtm/suphec.F90 (and rvtmp2 is set to 0).
1322       CALL getin_p('ok_bad_ecmwf_thermo',ok_bad_ecmwf_thermo)
[3134]1323       CALL getin_p('ok_bug_cv_trac',ok_bug_cv_trac)
[2799]1324       fl_ebil = 0 ! by default, conservation diagnostics are desactivated
1325       CALL getin_p('fl_ebil',fl_ebil)
1326       fl_cor_ebil = 0 ! by default, no correction to ensure energy conservation
1327       CALL getin_p('fl_cor_ebil',fl_cor_ebil)
[2984]1328       iflag_phytrac = 1 ! by default we do want to call phytrac
[2973]1329       CALL getin_p('iflag_phytrac',iflag_phytrac)
[3011]1330       nvm_lmdz = 13
1331       CALL getin_p('NVM',nvm_lmdz)
[2469]1332    ENDIF
[878]1333
[2692]1334    IF (prt_level.ge.1) print *,'CONVERGENCE PHYSIQUE THERM 1 '
[1279]1335
[959]1336
[2469]1337    !======================================================================
1338    ! Gestion calendrier : mise a jour du module phys_cal_mod
1339    !
1340    !     CALL phys_cal_update(jD_cur,jH_cur)
[1279]1341
[2469]1342    !
1343    ! Si c'est le debut, il faut initialiser plusieurs choses
1344    !          ********
1345    !
1346    IF (debut) THEN
1347       !rv CRinitialisation de wght_th et lalim_conv pour la
1348       !definition de la couche alimentation de la convection a partir
1349       !des caracteristiques du thermique
1350       wght_th(:,:)=1.
1351       lalim_conv(:)=1
1352       !RC
1353       ustar(:,:)=0.
[2569]1354!       u10m(:,:)=0.
1355!       v10m(:,:)=0.
[2469]1356       rain_con(:)=0.
1357       snow_con(:)=0.
1358       topswai(:)=0.
1359       topswad(:)=0.
1360       solswai(:)=0.
1361       solswad(:)=0.
[959]1362
[2469]1363       wmax_th(:)=0.
1364       tau_overturning_th(:)=0.
[645]1365
[2469]1366       IF (type_trac == 'inca') THEN
[3425]1367          ! jg : initialisation jusqu'au ces variables sont dans restart
1368          ccm(:,:,:) = 0.
1369          tau_aero(:,:,:,:) = 0.
1370          piz_aero(:,:,:,:) = 0.
1371          cg_aero(:,:,:,:) = 0.
[2372]1372
[2469]1373          config_inca='none' ! default
1374          CALL getin_p('config_inca',config_inca)
[2372]1375
[2469]1376       ELSE
1377          config_inca='none' ! default
[2692]1378       ENDIF
[782]1379
[2469]1380       IF (aerosol_couple .AND. (config_inca /= "aero" &
1381            .AND. config_inca /= "aeNP ")) THEN
1382          abort_message &
1383               = 'if aerosol_couple is activated, config_inca need to be ' &
1384               // 'aero or aeNP'
1385          CALL abort_physic (modname,abort_message,1)
1386       ENDIF
[2443]1387
1388
[1863]1389
[2469]1390       rnebcon0(:,:) = 0.0
1391       clwcon0(:,:) = 0.0
1392       rnebcon(:,:) = 0.0
1393       clwcon(:,:) = 0.0
[1863]1394
[2469]1395       !
1396       print*,'iflag_coupl,iflag_clos,iflag_wake', &
1397            iflag_coupl,iflag_clos,iflag_wake
[3328]1398       print*,'iflag_cycle_diurne', iflag_cycle_diurne
[2469]1399       !
1400       IF (iflag_con.EQ.2.AND.iflag_cld_th.GT.-1) THEN
1401          abort_message = 'Tiedtke needs iflag_cld_th=-2 or -1'
1402          CALL abort_physic (modname,abort_message,1)
1403       ENDIF
1404       !
1405       !
1406       ! Initialiser les compteurs:
1407       !
1408       itap    = 0
1409       itaprad = 0
[2707]1410       itapcv = 0
[2730]1411       itapwk = 0
[878]1412
[2469]1413       ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1414       !! Un petit travail \`a faire ici.
1415       ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[878]1416
[2692]1417       IF (iflag_pbl>1) THEN
[2469]1418          PRINT*, "Using method MELLOR&YAMADA"
[2692]1419       ENDIF
[956]1420
[2469]1421       ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1422       ! FH 2008/05/02 changement lie a la lecture de nbapp_rad dans
1423       ! phylmd plutot que dyn3d
1424       ! Attention : la version precedente n'etait pas tres propre.
1425       ! Il se peut qu'il faille prendre une valeur differente de nbapp_rad
1426       ! pour obtenir le meme resultat.
[2731]1427!jyg for fh<
1428!!       dtime=pdtphys
1429       dtime=NINT(pdtphys)
1430       WRITE(lunout,*) 'Pas de temps dtime pdtphys ',dtime,pdtphys
1431       IF (abs(dtime-pdtphys)>1.e-10) THEN
1432          abort_message='pas de temps doit etre entier en seconde pour orchidee et XIOS'
1433          CALL abort_physic(modname,abort_message,1)
1434       ENDIF
1435!>jyg
1436       IF (MOD(NINT(86400./dtime),nbapp_rad).EQ.0) THEN
1437          radpas = NINT( 86400./dtime)/nbapp_rad
[2469]1438       ELSE
1439          WRITE(lunout,*) 'le nombre de pas de temps physique doit etre un ', &
1440               'multiple de nbapp_rad'
1441          WRITE(lunout,*) 'changer nbapp_rad ou alors commenter ce test ', &
1442               'mais 1+1<>2'
1443          abort_message='nbre de pas de temps physique n est pas multiple ' &
1444               // 'de nbapp_rad'
[2692]1445          CALL abort_physic(modname,abort_message,1)
[2469]1446       ENDIF
[2707]1447       IF (nbapp_cv .EQ. 0) nbapp_cv=86400./dtime
[2730]1448       IF (nbapp_wk .EQ. 0) nbapp_wk=86400./dtime
1449       print *,'physiq, nbapp_cv, nbapp_wk ',nbapp_cv,nbapp_wk
[2731]1450       IF (MOD(NINT(86400./dtime),nbapp_cv).EQ.0) THEN
[3150]1451          cvpas_0 = NINT( 86400./dtime)/nbapp_cv
1452          cvpas = cvpas_0
[2707]1453       print *,'physiq, cvpas ',cvpas
1454       ELSE
1455          WRITE(lunout,*) 'le nombre de pas de temps physique doit etre un ', &
1456               'multiple de nbapp_cv'
1457          WRITE(lunout,*) 'changer nbapp_cv ou alors commenter ce test ', &
1458               'mais 1+1<>2'
1459          abort_message='nbre de pas de temps physique n est pas multiple ' &
1460               // 'de nbapp_cv'
1461          call abort_physic(modname,abort_message,1)
1462       ENDIF
[2731]1463       IF (MOD(NINT(86400./dtime),nbapp_wk).EQ.0) THEN
1464          wkpas = NINT( 86400./dtime)/nbapp_wk
[2730]1465       print *,'physiq, wkpas ',wkpas
1466       ELSE
1467          WRITE(lunout,*) 'le nombre de pas de temps physique doit etre un ', &
1468               'multiple de nbapp_wk'
1469          WRITE(lunout,*) 'changer nbapp_wk ou alors commenter ce test ', &
1470               'mais 1+1<>2'
1471          abort_message='nbre de pas de temps physique n est pas multiple ' &
1472               // 'de nbapp_wk'
1473          call abort_physic(modname,abort_message,1)
1474       ENDIF
[2469]1475       ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[524]1476
[2469]1477       CALL phyetat0 ("startphy.nc",clesphy0,tabcntr0)
[2565]1478!jyg<
[2469]1479       IF (klon_glo==1) THEN
[3071]1480          IF (iflag_pbl > 1) THEN         
1481              pbl_tke(:,:,is_ave) = 0.
1482              DO nsrf=1,nbsrf
1483                DO k = 1,klev+1
1484                     pbl_tke(:,k,is_ave) = pbl_tke(:,k,is_ave) &
1485                         +pctsrf(:,nsrf)*pbl_tke(:,k,nsrf)
1486                ENDDO
1487              ENDDO
1488          ELSE   ! (iflag_pbl > 1)
1489              pbl_tke(:,:,:) = 0.
1490          ENDIF  ! (iflag_pbl > 1)
[2565]1491!>jyg
[2469]1492       ENDIF
1493       !IM begin
1494       print*,'physiq: clwcon rnebcon ratqs',clwcon(1,1),rnebcon(1,1) &
1495            ,ratqs(1,1)
1496       !IM end
[878]1497
1498
[2469]1499       ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1500       !
1501       ! on remet le calendrier a zero
1502       !
1503       IF (raz_date .eq. 1) THEN
1504          itau_phy = 0
1505       ENDIF
[524]1506
[2469]1507       CALL printflag( tabcntr0,radpas,ok_journe, &
1508            ok_instan, ok_region )
1509       !
1510       IF (ABS(dtime-pdtphys).GT.0.001) THEN
1511          WRITE(lunout,*) 'Pas physique n est pas correct',dtime, &
1512               pdtphys
1513          abort_message='Pas physique n est pas correct '
1514          !           call abort_physic(modname,abort_message,1)
1515          dtime=pdtphys
1516       ENDIF
1517       IF (nlon .NE. klon) THEN
1518          WRITE(lunout,*)'nlon et klon ne sont pas coherents', nlon,  &
1519               klon
1520          abort_message='nlon et klon ne sont pas coherents'
[2692]1521          CALL abort_physic(modname,abort_message,1)
[2469]1522       ENDIF
1523       IF (nlev .NE. klev) THEN
1524          WRITE(lunout,*)'nlev et klev ne sont pas coherents', nlev, &
1525               klev
1526          abort_message='nlev et klev ne sont pas coherents'
[2692]1527          CALL abort_physic(modname,abort_message,1)
[2469]1528       ENDIF
1529       !
1530       IF (dtime*REAL(radpas).GT.21600..AND.iflag_cycle_diurne.GE.1) THEN
1531          WRITE(lunout,*)'Nbre d appels au rayonnement insuffisant'
1532          WRITE(lunout,*)"Au minimum 4 appels par jour si cycle diurne"
1533          abort_message='Nbre d appels au rayonnement insuffisant'
[2692]1534          CALL abort_physic(modname,abort_message,1)
[2469]1535       ENDIF
1536       WRITE(lunout,*)"Clef pour la convection, iflag_con=", iflag_con
1537       WRITE(lunout,*)"Clef pour le driver de la convection, ok_cvl=", &
1538            ok_cvl
1539       !
1540       !KE43
1541       ! Initialisation pour la convection de K.E. (sb):
1542       IF (iflag_con.GE.3) THEN
[524]1543
[2469]1544          WRITE(lunout,*)"*** Convection de Kerry Emanuel 4.3  "
1545          WRITE(lunout,*) &
1546               "On va utiliser le melange convectif des traceurs qui"
1547          WRITE(lunout,*)"est calcule dans convect4.3"
1548          WRITE(lunout,*)" !!! penser aux logical flags de phytrac"
[524]1549
[2469]1550          DO i = 1, klon
1551             ema_cbmf(i) = 0.
1552             ema_pcb(i)  = 0.
1553             ema_pct(i)  = 0.
1554             !          ema_workcbmf(i) = 0.
1555          ENDDO
1556          !IM15/11/02 rajout initialisation ibas_con,itop_con cf. SB =>BEG
1557          DO i = 1, klon
1558             ibas_con(i) = 1
1559             itop_con(i) = 1
1560          ENDDO
1561          !IM15/11/02 rajout initialisation ibas_con,itop_con cf. SB =>END
1562          !================================================================
1563          !CR:04.12.07: initialisations poches froides
1564          ! Controle de ALE et ALP pour la fermeture convective (jyg)
[2692]1565          IF (iflag_wake>=1) THEN
[2469]1566             CALL ini_wake(0.,0.,it_wape_prescr,wape_prescr,fip_prescr &
1567                  ,alp_bl_prescr, ale_bl_prescr)
1568             ! 11/09/06 rajout initialisation ALE et ALP du wake et PBL(YU)
1569             !        print*,'apres ini_wake iflag_cld_th=', iflag_cld_th
[2638]1570             !
1571             ! Initialize tendencies of wake state variables (for some flag values
1572             ! they are not computed).
1573             d_deltat_wk(:,:) = 0.
1574             d_deltaq_wk(:,:) = 0.
1575             d_deltat_wk_gw(:,:) = 0.
1576             d_deltaq_wk_gw(:,:) = 0.
1577             d_deltat_vdf(:,:) = 0.
1578             d_deltaq_vdf(:,:) = 0.
1579             d_deltat_the(:,:) = 0.
1580             d_deltaq_the(:,:) = 0.
1581             d_deltat_ajs_cv(:,:) = 0.
1582             d_deltaq_ajs_cv(:,:) = 0.
1583             d_s_wk(:) = 0.
1584             d_dens_wk(:) = 0.
[2692]1585          ENDIF
[973]1586
[2469]1587          !        do i = 1,klon
1588          !           Ale_bl(i)=0.
1589          !           Alp_bl(i)=0.
1590          !        enddo
[1638]1591
[2469]1592          !===================================================================
1593          !IM stations CFMIP
1594          nCFMIP=npCFMIP
1595          OPEN(98,file='npCFMIP_param.data',status='old', &
1596               form='formatted',iostat=iostat)
[2692]1597          IF (iostat == 0) THEN
[2469]1598             READ(98,*,end=998) nCFMIP
1599998          CONTINUE
1600             CLOSE(98)
1601             CONTINUE
1602             IF(nCFMIP.GT.npCFMIP) THEN
1603                print*,'nCFMIP > npCFMIP : augmenter npCFMIP et recompiler'
[2692]1604                CALL abort_physic("physiq", "", 1)
1605             ELSE
[2469]1606                print*,'physiq npCFMIP=',npCFMIP,'nCFMIP=',nCFMIP
1607             ENDIF
[1279]1608
[2469]1609             !
1610             ALLOCATE(tabCFMIP(nCFMIP))
1611             ALLOCATE(lonCFMIP(nCFMIP), latCFMIP(nCFMIP))
1612             ALLOCATE(tabijGCM(nCFMIP))
1613             ALLOCATE(lonGCM(nCFMIP), latGCM(nCFMIP))
1614             ALLOCATE(iGCM(nCFMIP), jGCM(nCFMIP))
1615             !
1616             ! lecture des nCFMIP stations CFMIP, de leur numero
1617             ! et des coordonnees geographiques lonCFMIP, latCFMIP
1618             !
1619             CALL read_CFMIP_point_locations(nCFMIP, tabCFMIP,  &
1620                  lonCFMIP, latCFMIP)
1621             !
1622             ! identification des
1623             ! 1) coordonnees lonGCM, latGCM des points CFMIP dans la
1624             ! grille de LMDZ
1625             ! 2) indices points tabijGCM de la grille physique 1d sur
1626             ! klon points
1627             ! 3) indices iGCM, jGCM de la grille physique 2d
1628             !
1629             CALL LMDZ_CFMIP_point_locations(nCFMIP, lonCFMIP, latCFMIP, &
1630                  tabijGCM, lonGCM, latGCM, iGCM, jGCM)
1631             !
[2692]1632          ELSE
[2469]1633             ALLOCATE(tabijGCM(0))
1634             ALLOCATE(lonGCM(0), latGCM(0))
1635             ALLOCATE(iGCM(0), jGCM(0))
[2692]1636          ENDIF
1637       ELSE
[2469]1638          ALLOCATE(tabijGCM(0))
1639          ALLOCATE(lonGCM(0), latGCM(0))
1640          ALLOCATE(iGCM(0), jGCM(0))
1641       ENDIF
[878]1642
[2469]1643       DO i=1,klon
1644          rugoro(i) = f_rugoro * MAX(1.0e-05, zstd(i)*zsig(i)/2.0)
1645       ENDDO
[1863]1646
[2469]1647       !34EK
1648       IF (ok_orodr) THEN
[524]1649
[2469]1650          ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1651          ! FH sans doute a enlever de finitivement ou, si on le
1652          ! garde, l'activer justement quand ok_orodr = false.
1653          ! ce rugoro est utilise par la couche limite et fait double emploi
1654          ! avec les param\'etrisations sp\'ecifiques de Francois Lott.
1655          !           DO i=1,klon
1656          !             rugoro(i) = MAX(1.0e-05, zstd(i)*zsig(i)/2.0)
1657          !           ENDDO
1658          ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1659          IF (ok_strato) THEN
1660             CALL SUGWD_strato(klon,klev,paprs,pplay)
1661          ELSE
1662             CALL SUGWD(klon,klev,paprs,pplay)
1663          ENDIF
[1863]1664
[2469]1665          DO i=1,klon
1666             zuthe(i)=0.
1667             zvthe(i)=0.
[2692]1668             IF (zstd(i).gt.10.) THEN
[2469]1669                zuthe(i)=(1.-zgam(i))*cos(zthe(i))
1670                zvthe(i)=(1.-zgam(i))*sin(zthe(i))
[2692]1671             ENDIF
[2469]1672          ENDDO
1673       ENDIF
1674       !
1675       !
1676       lmt_pas = NINT(86400./dtime * 1.0)   ! tous les jours
1677       WRITE(lunout,*)'La frequence de lecture surface est de ',  &
1678            lmt_pas
1679       !
1680       capemaxcels = 't_max(X)'
1681       t2mincels = 't_min(X)'
1682       t2maxcels = 't_max(X)'
1683       tinst = 'inst(X)'
1684       tave = 'ave(X)'
1685       !IM cf. AM 081204 BEG
1686       write(lunout,*)'AVANT HIST IFLAG_CON=',iflag_con
1687       !IM cf. AM 081204 END
1688       !
1689       !=============================================================
1690       !   Initialisation des sorties
1691       !=============================================================
1692
[2679]1693#ifdef CPP_XIOS
[3029]1694! Need to put this initialisation after phyetat0 as in the coupled model the XIOS context is only
1695! initialised at that moment
1696       ! Get "missing_val" value from XML files (from temperature variable)
1697       !$OMP MASTER
1698       CALL xios_get_field_attr("temp",default_value=missing_val_omp)
1699       !$OMP END MASTER
1700       !$OMP BARRIER
1701       missing_val=missing_val_omp
[2679]1702#endif
1703
[524]1704#ifdef CPP_IOIPSL
1705
[2469]1706       !$OMP MASTER
1707       ! FH : if ok_sync=.true. , the time axis is written at each time step
1708       ! in the output files. Only at the end in the opposite case
1709       ok_sync_omp=.false.
1710       CALL getin('ok_sync',ok_sync_omp)
[2692]1711       CALL phys_output_open(longitude_deg,latitude_deg,nCFMIP,tabijGCM, &
[2469]1712            iGCM,jGCM,lonGCM,latGCM, &
1713            jjmp1,nlevSTD,clevSTD,rlevSTD, dtime,ok_veget, &
1714            type_ocean,iflag_pbl,iflag_pbl_split,ok_mensuel,ok_journe, &
[2738]1715            ok_hf,ok_instan,ok_LES,ok_ade,ok_aie, &
[2469]1716            read_climoz, phys_out_filestations, &
1717            new_aod, aerosol_couple, &
1718            flag_aerosol_strat, pdtphys, paprs, pphis,  &
1719            pplay, lmax_th, ptconv, ptconvth, ivap,  &
[2665]1720            d_u, d_t, qx, d_qx, zmasse, ok_sync_omp)
[2469]1721       !$OMP END MASTER
1722       !$OMP BARRIER
1723       ok_sync=ok_sync_omp
[909]1724
[2469]1725       freq_outNMC(1) = ecrit_files(7)
1726       freq_outNMC(2) = ecrit_files(8)
1727       freq_outNMC(3) = ecrit_files(9)
1728       WRITE(lunout,*)'OK freq_outNMC(1)=',freq_outNMC(1)
1729       WRITE(lunout,*)'OK freq_outNMC(2)=',freq_outNMC(2)
1730       WRITE(lunout,*)'OK freq_outNMC(3)=',freq_outNMC(3)
[524]1731
[2651]1732#ifndef CPP_XIOS
[2590]1733       CALL ini_paramLMDZ_phy(dtime,nid_ctesGCM)
[2651]1734#endif
[524]1735
[644]1736#endif
[2469]1737       ecrit_reg = ecrit_reg * un_jour
1738       ecrit_tra = ecrit_tra * un_jour
[1863]1739
[2469]1740       !XXXPB Positionner date0 pour initialisation de ORCHIDEE
1741       date0 = jD_ref
1742       WRITE(*,*) 'physiq date0 : ',date0
1743       !
1744       !
1745       !
1746       ! Prescrire l'ozone dans l'atmosphere
1747       !
1748       !
1749       !c         DO i = 1, klon
1750       !c         DO k = 1, klev
1751       !c            CALL o3cm (paprs(i,k)/100.,paprs(i,k+1)/100., wo(i,k),20)
1752       !c         ENDDO
1753       !c         ENDDO
1754       !
1755       IF (type_trac == 'inca') THEN
[524]1756#ifdef INCA
[2469]1757          CALL VTe(VTphysiq)
1758          CALL VTb(VTinca)
1759          calday = REAL(days_elapsed) + jH_cur
1760          WRITE(lunout,*) 'initial time chemini', days_elapsed, calday
[959]1761
[2469]1762          CALL chemini(  &
1763               rg, &
1764               ra, &
1765               cell_area, &
1766               latitude_deg, &
1767               longitude_deg, &
1768               presnivs, &
1769               calday, &
1770               klon, &
1771               nqtot, &
[2566]1772               nqo, &
[2469]1773               pdtphys, &
1774               annee_ref, &
[2906]1775               year_cur, &
[2469]1776               day_ref,  &
1777               day_ini, &
1778               start_time, &
1779               itau_phy, &
[2831]1780               date0, &
[2469]1781               io_lon, &
[3352]1782               io_lat, &
[3419]1783               chemistry_couple, &
1784               init_source, &
1785               init_tauinca, &
1786               init_pizinca, &
1787               init_cginca, &
1788               init_ccminca)
[959]1789
[3419]1790          ! initialisation des variables depuis le restart de inca
1791          ccm(:,:,:) = init_ccminca
1792          tau_aero(:,:,:,:) = init_tauinca
1793          piz_aero(:,:,:,:) = init_pizinca
1794          cg_aero(:,:,:,:) = init_cginca
1795
1796
[2469]1797          CALL VTe(VTinca)
1798          CALL VTb(VTphysiq)
[524]1799#endif
[2692]1800       ENDIF
[2469]1801       !
1802       ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1803       ! Nouvelle initialisation pour le rayonnement RRTM
1804       ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[998]1805
[2692]1806       CALL iniradia(klon,klev,paprs(1,1:klev+1))
[998]1807
[2469]1808       !$omp single
[2788]1809       IF (read_climoz >= 1) CALL open_climoz(ncid_climoz, press_cen_climoz,   &
[2820]1810           press_edg_climoz, time_climoz, ok_daily_climoz, adjust_tropopause)
[2469]1811       !$omp end single
1812       !
1813       !IM betaCRF
1814       pfree=70000. !Pa
1815       beta_pbl=1.
1816       beta_free=1.
1817       lon1_beta=-180.
1818       lon2_beta=+180.
1819       lat1_beta=90.
1820       lat2_beta=-90.
1821       mskocean_beta=.FALSE.
[1539]1822
[2469]1823       !albedo SB >>>
1824       select case(nsw)
1825       case(2)
1826          SFRWL(1)=0.45538747
1827          SFRWL(2)=0.54461211
1828       case(4)
1829          SFRWL(1)=0.45538747
1830          SFRWL(2)=0.32870591
1831          SFRWL(3)=0.18568763
1832          SFRWL(4)=3.02191470E-02
1833       case(6)
1834          SFRWL(1)=1.28432794E-03
1835          SFRWL(2)=0.12304168
1836          SFRWL(3)=0.33106142
1837          SFRWL(4)=0.32870591
1838          SFRWL(5)=0.18568763
1839          SFRWL(6)=3.02191470E-02
1840       end select
[2227]1841
1842
[2469]1843       !albedo SB <<<
[2227]1844
[2469]1845       OPEN(99,file='beta_crf.data',status='old', &
1846            form='formatted',err=9999)
1847       READ(99,*,end=9998) pfree
1848       READ(99,*,end=9998) beta_pbl
1849       READ(99,*,end=9998) beta_free
1850       READ(99,*,end=9998) lon1_beta
1851       READ(99,*,end=9998) lon2_beta
1852       READ(99,*,end=9998) lat1_beta
1853       READ(99,*,end=9998) lat2_beta
1854       READ(99,*,end=9998) mskocean_beta
18559998   Continue
1856       CLOSE(99)
18579999   Continue
1858       WRITE(*,*)'pfree=',pfree
1859       WRITE(*,*)'beta_pbl=',beta_pbl
1860       WRITE(*,*)'beta_free=',beta_free
1861       WRITE(*,*)'lon1_beta=',lon1_beta
1862       WRITE(*,*)'lon2_beta=',lon2_beta
1863       WRITE(*,*)'lat1_beta=',lat1_beta
1864       WRITE(*,*)'lat2_beta=',lat2_beta
1865       WRITE(*,*)'mskocean_beta=',mskocean_beta
[3048]1866
1867      !lwoff=y : offset LW CRE for radiation code and other schemes
1868      !lwoff=y : betalwoff=1.
1869      betalwoff=0.
1870      IF (ok_lwoff) THEN
1871         betalwoff=1.
1872      ENDIF
1873      WRITE(*,*)'ok_lwoff=',ok_lwoff
1874      !
1875      !lwoff=y to begin only sollw and sollwdown are set up to CS values
1876      sollw = sollw + betalwoff * (sollw0 - sollw)
1877      sollwdown(:)= sollwdown(:) + betalwoff *(-1.*ZFLDN0(:,1) - &
1878                    sollwdown(:))
[2469]1879    ENDIF
1880    !
1881    !   ****************     Fin  de   IF ( debut  )   ***************
1882    !
1883    !
1884    ! Incrementer le compteur de la physique
1885    !
1886    itap   = itap + 1
[2795]1887    IF (is_master .OR. prt_level > 9) THEN
[2783]1888      IF (prt_level > 5 .or. MOD(itap,5) == 0) THEN
[2795]1889         WRITE(LUNOUT,*)'Entering physics elapsed seconds since start ', current_time
1890         WRITE(LUNOUT,100)year_cur,mth_cur,day_cur,hour/3600.
1891 100     FORMAT('Date = ',i4.4,' / ',i2.2, ' / ',i2.2,' : ',f20.17)
[2783]1892      ENDIF
1893    ENDIF
[2469]1894    !
1895    !
1896    ! Update fraction of the sub-surfaces (pctsrf) and
1897    ! initialize, where a new fraction has appeared, all variables depending
1898    ! on the surface fraction.
1899    !
1900    CALL change_srf_frac(itap, dtime, days_elapsed+1,  &
1901         pctsrf, fevap, z0m, z0h, agesno,              &
1902         falb_dir, falb_dif, ftsol, ustar, u10m, v10m, pbl_tke)
[996]1903
[2469]1904    ! Update time and other variables in Reprobus
1905    IF (type_trac == 'repr') THEN
[1565]1906#ifdef REPROBUS
[2469]1907       CALL Init_chem_rep_xjour(jD_cur-jD_ref+day_ref)
1908       print*,'xjour equivalent rjourvrai',jD_cur-jD_ref+day_ref
1909       CALL Rtime(debut)
[1565]1910#endif
[2692]1911    ENDIF
[1565]1912
1913
[2469]1914    ! Tendances bidons pour les processus qui n'affectent pas certaines
1915    ! variables.
1916    du0(:,:)=0.
1917    dv0(:,:)=0.
1918    dt0 = 0.
1919    dq0(:,:)=0.
1920    dql0(:,:)=0.
1921    dqi0(:,:)=0.
[2635]1922    dsig0(:) = 0.
1923    ddens0(:) = 0.
1924    wkoccur1(:)=1
[2469]1925    !
1926    ! Mettre a zero des variables de sortie (pour securite)
1927    !
1928    DO i = 1, klon
1929       d_ps(i) = 0.0
1930    ENDDO
1931    DO k = 1, klev
1932       DO i = 1, klon
1933          d_t(i,k) = 0.0
1934          d_u(i,k) = 0.0
1935          d_v(i,k) = 0.0
1936       ENDDO
1937    ENDDO
1938    DO iq = 1, nqtot
1939       DO k = 1, klev
1940          DO i = 1, klon
1941             d_qx(i,k,iq) = 0.0
1942          ENDDO
1943       ENDDO
1944    ENDDO
1945    beta_prec_fisrt(:,:)=0.
1946    beta_prec(:,:)=0.
[3134]1947    !
1948    !   Output variables from the convective scheme should not be set to 0
1949    !   since convection is not always called at every time step.
1950    IF (ok_bug_cv_trac) THEN
1951      da(:,:)=0.
1952      mp(:,:)=0.
1953      phi(:,:,:)=0.
1954      ! RomP >>>
1955      phi2(:,:,:)=0.
1956      epmlmMm(:,:,:)=0.
1957      eplaMm(:,:)=0.
1958      d1a(:,:)=0.
1959      dam(:,:)=0.
1960      pmflxr(:,:)=0.
1961      pmflxs(:,:)=0.
1962      ! RomP <<<
1963    ENDIF
[1742]1964
[2469]1965    !
1966    ! Ne pas affecter les valeurs entrees de u, v, h, et q
1967    !
1968    DO k = 1, klev
1969       DO i = 1, klon
1970          t_seri(i,k)  = t(i,k)
1971          u_seri(i,k)  = u(i,k)
1972          v_seri(i,k)  = v(i,k)
1973          q_seri(i,k)  = qx(i,k,ivap)
1974          ql_seri(i,k) = qx(i,k,iliq)
1975          !CR: ATTENTION, on rajoute la variable glace
[2692]1976          IF (nqo.eq.2) THEN
[2469]1977             qs_seri(i,k) = 0.
[2692]1978          ELSE IF (nqo.eq.3) THEN
[2469]1979             qs_seri(i,k) = qx(i,k,isol)
[2692]1980          ENDIF
[2469]1981       ENDDO
1982    ENDDO
[2476]1983    !
1984    !--OB mass fixer
1985    IF (mass_fixer) THEN
1986    !--store initial water burden
1987    qql1(:)=0.0
[2499]1988    DO k = 1, klev
1989      qql1(:)=qql1(:)+(q_seri(:,k)+ql_seri(:,k)+qs_seri(:,k))*zmasse(:,k)
[2476]1990    ENDDO
1991    ENDIF
1992    !--fin mass fixer
1993
[2469]1994    tke0(:,:)=pbl_tke(:,:,is_ave)
1995    !CR:Nombre de traceurs de l'eau: nqo
1996    !  IF (nqtot.GE.3) THEN
1997    IF (nqtot.GE.(nqo+1)) THEN
1998       !     DO iq = 3, nqtot       
1999       DO iq = nqo+1, nqtot 
2000          DO  k = 1, klev
2001             DO  i = 1, klon
2002                !              tr_seri(i,k,iq-2) = qx(i,k,iq)
2003                tr_seri(i,k,iq-nqo) = qx(i,k,iq)
2004             ENDDO
2005          ENDDO
2006       ENDDO
2007    ELSE
2008       DO k = 1, klev
2009          DO i = 1, klon
2010             tr_seri(i,k,1) = 0.0
2011          ENDDO
2012       ENDDO
2013    ENDIF
2014    !
2015    DO i = 1, klon
2016       ztsol(i) = 0.
2017    ENDDO
2018    DO nsrf = 1, nbsrf
2019       DO i = 1, klon
2020          ztsol(i) = ztsol(i) + ftsol(i,nsrf)*pctsrf(i,nsrf)
2021       ENDDO
2022    ENDDO
[2611]2023    ! Initialize variables used for diagnostic purpose
[2692]2024    IF (flag_inhib_tend .ne. 0) CALL init_cmp_seri
[524]2025
[2469]2026    ! Diagnostiquer la tendance dynamique
2027    !
2028    IF (ancien_ok) THEN
[2499]2029    !
2030       d_u_dyn(:,:)  = (u_seri(:,:)-u_ancien(:,:))/dtime
2031       d_v_dyn(:,:)  = (v_seri(:,:)-v_ancien(:,:))/dtime
2032       d_t_dyn(:,:)  = (t_seri(:,:)-t_ancien(:,:))/dtime
2033       d_q_dyn(:,:)  = (q_seri(:,:)-q_ancien(:,:))/dtime
2034       d_ql_dyn(:,:) = (ql_seri(:,:)-ql_ancien(:,:))/dtime
2035       d_qs_dyn(:,:) = (qs_seri(:,:)-qs_ancien(:,:))/dtime
2036       CALL water_int(klon,klev,q_seri,zmasse,zx_tmp_fi2d)
2037       d_q_dyn2d(:)=(zx_tmp_fi2d(:)-prw_ancien(:))/dtime
2038       CALL water_int(klon,klev,ql_seri,zmasse,zx_tmp_fi2d)
2039       d_ql_dyn2d(:)=(zx_tmp_fi2d(:)-prlw_ancien(:))/dtime
2040       CALL water_int(klon,klev,qs_seri,zmasse,zx_tmp_fi2d)
2041       d_qs_dyn2d(:)=(zx_tmp_fi2d(:)-prsw_ancien(:))/dtime
[2469]2042       ! !! RomP >>>   td dyn traceur
[2499]2043       IF (nqtot.GT.nqo) THEN     ! jyg
[2469]2044          DO iq = nqo+1, nqtot      ! jyg
[2499]2045              d_tr_dyn(:,:,iq-nqo)=(tr_seri(:,:,iq-nqo)-tr_ancien(:,:,iq-nqo))/dtime ! jyg
[2469]2046          ENDDO
2047       ENDIF
2048       ! !! RomP <<<
2049    ELSE
[2499]2050       d_u_dyn(:,:)  = 0.0
2051       d_v_dyn(:,:)  = 0.0
2052       d_t_dyn(:,:)  = 0.0
2053       d_q_dyn(:,:)  = 0.0
2054       d_ql_dyn(:,:) = 0.0
2055       d_qs_dyn(:,:) = 0.0
2056       d_q_dyn2d(:)  = 0.0
2057       d_ql_dyn2d(:) = 0.0
2058       d_qs_dyn2d(:) = 0.0
[2469]2059       ! !! RomP >>>   td dyn traceur
[2499]2060       IF (nqtot.GT.nqo) THEN                                       ! jyg
2061          DO iq = nqo+1, nqtot                                      ! jyg
2062              d_tr_dyn(:,:,iq-nqo)= 0.0                             ! jyg
[2469]2063          ENDDO
2064       ENDIF
2065       ! !! RomP <<<
2066       ancien_ok = .TRUE.
2067    ENDIF
2068    !
2069    ! Ajouter le geopotentiel du sol:
2070    !
2071    DO k = 1, klev
2072       DO i = 1, klon
2073          zphi(i,k) = pphi(i,k) + pphis(i)
2074       ENDDO
2075    ENDDO
2076    !
2077    ! Verifier les temperatures
2078    !
2079    !IM BEG
2080    IF (check) THEN
2081       amn=MIN(ftsol(1,is_ter),1000.)
2082       amx=MAX(ftsol(1,is_ter),-1000.)
2083       DO i=2, klon
2084          amn=MIN(ftsol(i,is_ter),amn)
2085          amx=MAX(ftsol(i,is_ter),amx)
2086       ENDDO
2087       !
2088       PRINT*,' debut avant hgardfou min max ftsol',itap,amn,amx
2089    ENDIF !(check) THEN
2090    !IM END
2091    !
2092    CALL hgardfou(t_seri,ftsol,'debutphy',abortphy)
2093    IF (abortphy==1) Print*,'ERROR ABORT hgardfou debutphy'
[2235]2094
[2469]2095    !
2096    !IM BEG
2097    IF (check) THEN
2098       amn=MIN(ftsol(1,is_ter),1000.)
2099       amx=MAX(ftsol(1,is_ter),-1000.)
2100       DO i=2, klon
2101          amn=MIN(ftsol(i,is_ter),amn)
2102          amx=MAX(ftsol(i,is_ter),amx)
2103       ENDDO
2104       !
2105       PRINT*,' debut apres hgardfou min max ftsol',itap,amn,amx
2106    ENDIF !(check) THEN
2107    !IM END
2108    !
2109    ! Mettre en action les conditions aux limites (albedo, sst, etc.).
2110    ! Prescrire l'ozone et calculer l'albedo sur l'ocean.
2111    !
[2661]2112    ! Update ozone if day change
2113    IF (MOD(itap-1,lmt_pas) == 0) THEN
[2774]2114       IF (read_climoz <= 0) THEN
2115          ! Once per day, update ozone from Royer:
2116          IF (solarlong0<-999.) then
2117             ! Generic case with evolvoing season
2118             zzz=real(days_elapsed+1)
2119          ELSE IF (abs(solarlong0-1000.)<1.e-4) then
2120             ! Particular case with annual mean insolation
2121             zzz=real(90) ! could be revisited
2122             IF (read_climoz/=-1) THEN
2123                abort_message ='read_climoz=-1 is recommended when ' &
2124                     // 'solarlong0=1000.'
2125                CALL abort_physic (modname,abort_message,1)
2126             ENDIF
2127          ELSE
2128             ! Case where the season is imposed with solarlong0
2129             zzz=real(90) ! could be revisited
2130          ENDIF
[2661]2131
[2774]2132          wo(:,:,1)=ozonecm(latitude_deg, paprs,read_climoz,rjour=zzz)
2133       ELSE
[2820]2134          !--- ro3i = elapsed days number since current year 1st january, 0h
2135          ro3i=days_elapsed+jh_cur-jh_1jan
2136          !--- scaling for old style files (360 records)
2137          IF(SIZE(time_climoz)==360.AND..NOT.ok_daily_climoz) ro3i=ro3i*360./year_len
[2788]2138          IF(adjust_tropopause) THEN
[2820]2139             CALL regr_pr_time_av(ncid_climoz, vars_climoz(1:read_climoz),   &
[3086]2140                      ro3i, 'C', press_cen_climoz, pplay, wo, paprs(:,1),    &
2141                      time_climoz ,  longitude_deg,   latitude_deg,          &
[2968]2142                      dyn_tropopause(t_seri, ztsol, paprs, pplay, rot))
[2774]2143          ELSE
[3086]2144             CALL regr_pr_time_av(ncid_climoz,  vars_climoz(1:read_climoz),  &
2145                      ro3i, 'C', press_cen_climoz, pplay, wo, paprs(:,1),    &
2146                      time_climoz )
[2788]2147          END IF
[2774]2148          ! Convert from mole fraction of ozone to column density of ozone in a
2149          ! cell, in kDU:
2150          FORALL (l = 1: read_climoz) wo(:, :, l) = wo(:, :, l) * rmo3 / rmd &
2151               * zmasse / dobson_u / 1e3
[2788]2152          ! (By regridding ozone values for LMDZ only once a day, we
[2774]2153          ! have already neglected the variation of pressure in one
2154          ! day. So do not recompute "wo" at each time step even if
2155          ! "zmasse" changes a little.)
2156       ENDIF
[2469]2157    ENDIF
2158    !
2159    ! Re-evaporer l'eau liquide nuageuse
2160    !
[2705]2161     CALL reevap (klon,klev,iflag_ice_thermo,t_seri,q_seri,ql_seri,qs_seri, &
2162   &         d_t_eva,d_q_eva,d_ql_eva,d_qi_eva)
[1849]2163
[2705]2164     CALL add_phys_tend &
2165            (du0,dv0,d_t_eva,d_q_eva,d_ql_eva,d_qi_eva,paprs,&
[2812]2166               'eva',abortphy,flag_inhib_tend,itap,0)
[2799]2167    call prt_enerbil('eva',itap)
[2086]2168
[2469]2169    !=========================================================================
2170    ! Calculs de l'orbite.
2171    ! Necessaires pour le rayonnement et la surface (calcul de l'albedo).
2172    ! doit donc etre plac\'e avant radlwsw et pbl_surface
[883]2173
[2469]2174    ! !!   jyg 17 Sep 2010 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[2692]2175    CALL ymds2ju(year_cur, mth_eq, day_eq,0., jD_eq)
[2469]2176    day_since_equinox = (jD_cur + jH_cur) - jD_eq
2177    !
2178    !   choix entre calcul de la longitude solaire vraie ou valeur fixee a
2179    !   solarlong0
[2692]2180    IF (solarlong0<-999.) THEN
2181       IF (new_orbit) THEN
[2469]2182          ! calcul selon la routine utilisee pour les planetes
[2692]2183          CALL solarlong(day_since_equinox, zlongi, dist)
2184       ELSE
[2469]2185          ! calcul selon la routine utilisee pour l'AR4
2186          CALL orbite(REAL(days_elapsed+1),zlongi,dist)
[2692]2187       ENDIF
2188    ELSE
[2469]2189       zlongi=solarlong0  ! longitude solaire vraie
2190       dist=1.            ! distance au soleil / moyenne
[2692]2191    ENDIF
[1529]2192
[2692]2193    IF (prt_level.ge.1) write(lunout,*)'Longitude solaire ',zlongi,solarlong0,dist
[524]2194
[2692]2195
[2469]2196    ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2197    ! Calcul de l'ensoleillement :
2198    ! ============================
2199    ! Pour une solarlong0=1000., on calcule un ensoleillement moyen sur
2200    ! l'annee a partir d'une formule analytique.
2201    ! Cet ensoleillement est sym\'etrique autour de l'\'equateur et
2202    ! non nul aux poles.
[2692]2203    IF (abs(solarlong0-1000.)<1.e-4) THEN
2204       CALL zenang_an(iflag_cycle_diurne.GE.1,jH_cur, &
[2469]2205            latitude_deg,longitude_deg,rmu0,fract)
[2979]2206       swradcorr(:) = 1.0
2207       JrNt(:) = 1.0
2208       zrmu0(:) = rmu0(:)
[2469]2209    ELSE
2210       ! recode par Olivier Boucher en sept 2015
2211       SELECT CASE (iflag_cycle_diurne)
2212       CASE(0) 
2213          !  Sans cycle diurne
2214          CALL angle(zlongi, latitude_deg, fract, rmu0)
2215          swradcorr = 1.0
2216          JrNt = 1.0
2217          zrmu0 = rmu0
2218       CASE(1) 
2219          !  Avec cycle diurne sans application des poids
2220          !  bit comparable a l ancienne formulation cycle_diurne=true
2221          !  on integre entre gmtime et gmtime+radpas
2222          zdtime=dtime*REAL(radpas) ! pas de temps du rayonnement (s)
2223          CALL zenang(zlongi,jH_cur,0.0,zdtime, &
2224               latitude_deg,longitude_deg,rmu0,fract)
2225          zrmu0 = rmu0
2226          swradcorr = 1.0
2227          ! Calcul du flag jour-nuit
2228          JrNt = 0.0
2229          WHERE (fract.GT.0.0) JrNt = 1.0
2230       CASE(2) 
2231          !  Avec cycle diurne sans application des poids
2232          !  On integre entre gmtime-pdtphys et gmtime+pdtphys*(radpas-1)
2233          !  Comme cette routine est appele a tous les pas de temps de
2234          !  la physique meme si le rayonnement n'est pas appele je
2235          !  remonte en arriere les radpas-1 pas de temps
2236          !  suivant. Petite ruse avec MOD pour prendre en compte le
2237          !  premier pas de temps de la physique pendant lequel
2238          !  itaprad=0
2239          zdtime1=dtime*REAL(-MOD(itaprad,radpas)-1)     
2240          zdtime2=dtime*REAL(radpas-MOD(itaprad,radpas)-1)
2241          CALL zenang(zlongi,jH_cur,zdtime1,zdtime2, &
2242               latitude_deg,longitude_deg,rmu0,fract)
2243          !
2244          ! Calcul des poids
2245          !
2246          zdtime1=-dtime !--on corrige le rayonnement pour representer le
2247          zdtime2=0.0    !--pas de temps de la physique qui se termine
2248          CALL zenang(zlongi,jH_cur,zdtime1,zdtime2, &
2249               latitude_deg,longitude_deg,zrmu0,zfract)
2250          swradcorr = 0.0
2251          WHERE (rmu0.GE.1.e-10 .OR. fract.GE.1.e-10) &
2252               swradcorr=zfract/fract*zrmu0/rmu0
2253          ! Calcul du flag jour-nuit
2254          JrNt = 0.0
2255          WHERE (zfract.GT.0.0) JrNt = 1.0
2256       END SELECT
2257    ENDIF
[3110]2258    sza_o = ACOS (rmu0) *180./pi
[782]2259
[2692]2260    IF (mydebug) THEN
2261       CALL writefield_phy('u_seri',u_seri,nbp_lev)
2262       CALL writefield_phy('v_seri',v_seri,nbp_lev)
2263       CALL writefield_phy('t_seri',t_seri,nbp_lev)
2264       CALL writefield_phy('q_seri',q_seri,nbp_lev)
2265    ENDIF
[883]2266
[2469]2267    !cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2268    ! Appel au pbl_surface : Planetary Boudary Layer et Surface
2269    ! Cela implique tous les interactions des sous-surfaces et la
2270    ! partie diffusion turbulent du couche limit.
2271    !
2272    ! Certains varibales de sorties de pbl_surface sont utiliser que pour
2273    ! ecriture des fihiers hist_XXXX.nc, ces sont :
2274    !   qsol,      zq2m,      s_pblh,  s_lcl,
2275    !   s_capCL,   s_oliqCL,  s_cteiCL,s_pblT,
2276    !   s_therm,   s_trmb1,   s_trmb2, s_trmb3,
2277    !   zu10m,     zv10m,   fder,
2278    !   zxqsurf,   rh2m,      zxfluxu, zxfluxv,
2279    !   frugs,     agesno,    fsollw,  fsolsw,
2280    !   d_ts,      fevap,     fluxlat, t2m,
2281    !   wfbils,    wfbilo,    fluxt,   fluxu, fluxv,
2282    !
2283    ! Certains ne sont pas utiliser du tout :
2284    !   dsens, devap, zxsnow, zxfluxt, zxfluxq, q2m, fluxq
2285    !
[1724]2286
[2469]2287    ! Calcul de l'humidite de saturation au niveau du sol
[1724]2288
2289
[996]2290
[2692]2291    IF (iflag_pbl/=0) THEN
[2240]2292
[2469]2293       !jyg+nrlmd<
[2852]2294!!jyg       IF (prt_level .ge. 2 .and. mod(iflag_pbl_split,2) .eq. 1) THEN
2295       IF (prt_level .ge. 2 .and. mod(iflag_pbl_split,10) .ge. 1) THEN
[2469]2296          print *,'debut du splitting de la PBL'
2297       ENDIF
2298       ! !!
2299       !>jyg+nrlmd
2300       !
2301       !-------gustiness calculation-------!
2302       IF (iflag_gusts==0) THEN
2303          gustiness(1:klon)=0
2304       ELSE IF (iflag_gusts==1) THEN
[3111]2305          gustiness(1:klon)=f_gust_bl*ale_bl(1:klon)+f_gust_wk*ale_wake(1:klon)
2306       ELSE IF (iflag_gusts==2) THEN
2307          gustiness(1:klon)=f_gust_bl*ale_bl_stat(1:klon)+f_gust_wk*ale_wake(1:klon)
[2469]2308          ! ELSE IF (iflag_gusts==2) THEN
2309          !    do i = 1, klon
2310          !       gustiness(i)=f_gust_bl*ale_bl(i)+sigma_wk(i)*f_gust_wk&
2311          !           *ale_wake(i) !! need to make sigma_wk accessible here
2312          !    enddo
2313          ! ELSE IF (iflag_gusts==3) THEN
2314          !    do i = 1, klon
2315          !       gustiness(i)=f_gust_bl*alp_bl(i)+f_gust_wk*alp_wake(i)
2316          !    enddo
2317       ENDIF
[2278]2318
2319
[1067]2320
[2469]2321       CALL pbl_surface(  &
2322            dtime,     date0,     itap,    days_elapsed+1, &
2323            debut,     lafin, &
2324            longitude_deg, latitude_deg, rugoro,  zrmu0,      &
2325            zsig,      sollwdown, pphi,    cldt,      &
2326            rain_fall, snow_fall, solsw,   sollw,     &
2327            gustiness,                                &
2328            t_seri,    q_seri,    u_seri,  v_seri,    &
2329                                !nrlmd+jyg<
2330            wake_deltat, wake_deltaq, wake_cstar, wake_s, &
2331                                !>nrlmd+jyg
2332            pplay,     paprs,     pctsrf,             &
2333            ftsol,SFRWL,falb_dir,falb_dif,ustar,u10m,v10m,wstar, &
2334                                !albedo SB <<<
2335            cdragh,    cdragm,  u1,    v1,            &
2336                                !albedo SB >>>
2337                                ! albsol1,   albsol2,   sens,    evap,      &
2338            albsol_dir,   albsol_dif,   sens,    evap,   & 
2339                                !albedo SB <<<
2340            albsol3_lic,runoff,   snowhgt,   qsnow, to_ice, sissnow, &
2341            zxtsol,    zxfluxlat, zt2m,    qsat2m,  &
2342            d_t_vdf,   d_q_vdf,   d_u_vdf, d_v_vdf, d_t_diss, &
2343                                !nrlmd<
2344                                !jyg<
2345            d_t_vdf_w, d_q_vdf_w, &
2346            d_t_vdf_x, d_q_vdf_x, &
2347            sens_x, zxfluxlat_x, sens_w, zxfluxlat_w, &
2348                                !>jyg
2349            delta_tsurf,wake_dens, &
2350            cdragh_x,cdragh_w,cdragm_x,cdragm_w, &
2351            kh,kh_x,kh_w, &
2352                                !>nrlmd
2353            coefh(1:klon,1:klev,1:nbsrf+1), coefm(1:klon,1:klev,1:nbsrf+1), &
2354            slab_wfbils,                 &
2355            qsol,      zq2m,      s_pblh,  s_lcl, &
2356                                !jyg<
2357            s_pblh_x, s_lcl_x, s_pblh_w, s_lcl_w, &
2358                                !>jyg
2359            s_capCL,   s_oliqCL,  s_cteiCL,s_pblT, &
2360            s_therm,   s_trmb1,   s_trmb2, s_trmb3, &
2361            zustar, zu10m,     zv10m,   fder, &
2362            zxqsurf,   rh2m,      zxfluxu, zxfluxv, &
2363            z0m, z0h,     agesno,    fsollw,  fsolsw, &
2364            d_ts,      fevap,     fluxlat, t2m, &
[2670]2365            wfbils, wfbilo, wfevap, wfrain, wfsnow, &
2366            fluxt,   fluxu,  fluxv, &
[2469]2367            dsens,     devap,     zxsnow, &
2368            zxfluxt,   zxfluxq,   q2m,     fluxq, pbl_tke, &
2369                                !nrlmd+jyg<
[2952]2370            wake_delta_pbl_TKE, &
[2469]2371                                !>nrlmd+jyg
[2952]2372             treedrg )
2373!FC
[2469]2374       !
2375       !  Add turbulent diffusion tendency to the wake difference variables
[2852]2376!!jyg       IF (mod(iflag_pbl_split,2) .NE. 0) THEN
2377       IF (mod(iflag_pbl_split,10) .NE. 0) THEN
[2635]2378!jyg<
2379          d_deltat_vdf(:,:) = d_t_vdf_w(:,:)-d_t_vdf_x(:,:)
2380          d_deltaq_vdf(:,:) = d_q_vdf_w(:,:)-d_q_vdf_x(:,:)
2381          CALL add_wake_tend &
2382             (d_deltat_vdf, d_deltaq_vdf, dsig0, ddens0, wkoccur1, 'vdf', abortphy)
2383       ELSE
2384          d_deltat_vdf(:,:) = 0.
2385          d_deltaq_vdf(:,:) = 0.
2386!>jyg
[2469]2387       ENDIF
[3400]2388        if ( iflag_bug_t2m_ipslcm61 == 0 ) THEN
2389          CALL borne_var_surf( klon,nbsrf,                     &
2390            t_seri(:,1),q_seri(:,1),u_seri(:,1),v_seri(:,1),    &
2391            ftsol,pctsrf,                                       &
2392            t2m, q2m, u10m, v10m,                               &
2393            zt2m_cor, zq2m_cor, zu10m_cor, zv10m_cor)
2394        ELSE
2395          zt2m_cor(:)=zt2m(:)
2396          zq2m_cor(:)=zq2m(:)
2397          zu10m_cor(:)=zu10m(:)
2398          zv10m_cor(:)=zv10m(:)
2399        ENDIF
[1624]2400
[766]2401
[2897]2402
2403
2404
[2469]2405       !---------------------------------------------------------------------
2406       ! ajout des tendances de la diffusion turbulente
2407       IF (klon_glo==1) THEN
2408          CALL add_pbl_tend &
2409               (d_u_vdf,d_v_vdf,d_t_vdf+d_t_diss,d_q_vdf,dql0,dqi0,paprs,&
[2799]2410               'vdf',abortphy,flag_inhib_tend,itap)
[2469]2411       ELSE
2412          CALL add_phys_tend &
2413               (d_u_vdf,d_v_vdf,d_t_vdf+d_t_diss,d_q_vdf,dql0,dqi0,paprs,&
[2812]2414               'vdf',abortphy,flag_inhib_tend,itap,0)
[2469]2415       ENDIF
[2799]2416       call prt_enerbil('vdf',itap)
[2469]2417       !--------------------------------------------------------------------
[766]2418
[2692]2419       IF (mydebug) THEN
2420          CALL writefield_phy('u_seri',u_seri,nbp_lev)
2421          CALL writefield_phy('v_seri',v_seri,nbp_lev)
2422          CALL writefield_phy('t_seri',t_seri,nbp_lev)
2423          CALL writefield_phy('q_seri',q_seri,nbp_lev)
2424       ENDIF
[2227]2425
[2469]2426       !albedo SB >>>
2427       albsol1=0.
2428       albsol2=0.
2429       falb1=0.
2430       falb2=0.
[2692]2431       SELECT CASE(nsw)
2432       CASE(2)
[2469]2433          albsol1=albsol_dir(:,1)
2434          albsol2=albsol_dir(:,2)
2435          falb1=falb_dir(:,1,:)
2436          falb2=falb_dir(:,2,:)
[2692]2437       CASE(4)
[2469]2438          albsol1=albsol_dir(:,1)
2439          albsol2=albsol_dir(:,2)*SFRWL(2)+albsol_dir(:,3)*SFRWL(3) &
2440               +albsol_dir(:,4)*SFRWL(4)
2441          albsol2=albsol2/(SFRWL(2)+SFRWL(3)+SFRWL(4))
2442          falb1=falb_dir(:,1,:)
2443          falb2=falb_dir(:,2,:)*SFRWL(2)+falb_dir(:,3,:)*SFRWL(3) &
2444               +falb_dir(:,4,:)*SFRWL(4)
2445          falb2=falb2/(SFRWL(2)+SFRWL(3)+SFRWL(4))
[2692]2446       CASE(6)
[2469]2447          albsol1=albsol_dir(:,1)*SFRWL(1)+albsol_dir(:,2)*SFRWL(2) &
2448               +albsol_dir(:,3)*SFRWL(3)
2449          albsol1=albsol1/(SFRWL(1)+SFRWL(2)+SFRWL(3))
2450          albsol2=albsol_dir(:,4)*SFRWL(4)+albsol_dir(:,5)*SFRWL(5) &
2451               +albsol_dir(:,6)*SFRWL(6)
2452          albsol2=albsol2/(SFRWL(4)+SFRWL(5)+SFRWL(6))
2453          falb1=falb_dir(:,1,:)*SFRWL(1)+falb_dir(:,2,:)*SFRWL(2) &
2454               +falb_dir(:,3,:)*SFRWL(3)
2455          falb1=falb1/(SFRWL(1)+SFRWL(2)+SFRWL(3))
2456          falb2=falb_dir(:,4,:)*SFRWL(4)+falb_dir(:,5,:)*SFRWL(5) &
2457               +falb_dir(:,6,:)*SFRWL(6)
2458          falb2=falb2/(SFRWL(4)+SFRWL(5)+SFRWL(6))
[2692]2459       END SELECt
[2469]2460       !albedo SB <<<
[2227]2461
[766]2462
[2469]2463       CALL evappot(klon,nbsrf,ftsol,pplay(:,1),cdragh, &
2464            t_seri(:,1),q_seri(:,1),u_seri(:,1),v_seri(:,1),evap_pot)
[1724]2465
[2469]2466    ENDIF
2467    ! =================================================================== c
2468    !   Calcul de Qsat
[881]2469
[2469]2470    DO k = 1, klev
2471       DO i = 1, klon
2472          zx_t = t_seri(i,k)
2473          IF (thermcep) THEN
2474             zdelta = MAX(0.,SIGN(1.,rtt-zx_t))
2475             zx_qs  = r2es * FOEEW(zx_t,zdelta)/pplay(i,k)
2476             zx_qs  = MIN(0.5,zx_qs)
2477             zcor   = 1./(1.-retv*zx_qs)
2478             zx_qs  = zx_qs*zcor
2479          ELSE
2480             !!           IF (zx_t.LT.t_coup) THEN             !jyg
2481             IF (zx_t.LT.rtt) THEN                  !jyg
2482                zx_qs = qsats(zx_t)/pplay(i,k)
2483             ELSE
2484                zx_qs = qsatl(zx_t)/pplay(i,k)
2485             ENDIF
2486          ENDIF
2487          zqsat(i,k)=zx_qs
2488       ENDDO
2489    ENDDO
[959]2490
[2692]2491    IF (prt_level.ge.1) THEN
[2469]2492       write(lunout,*) 'L   qsat (g/kg) avant clouds_gno'
2493       write(lunout,'(i4,f15.4)') (k,1000.*zqsat(igout,k),k=1,klev)
[2692]2494    ENDIF
[2469]2495    !
2496    ! Appeler la convection (au choix)
2497    !
2498    DO k = 1, klev
2499       DO i = 1, klon
2500          conv_q(i,k) = d_q_dyn(i,k)  &
2501               + d_q_vdf(i,k)/dtime
2502          conv_t(i,k) = d_t_dyn(i,k)  &
2503               + d_t_vdf(i,k)/dtime
2504       ENDDO
2505    ENDDO
2506    IF (check) THEN
2507       za = qcheck(klon,klev,paprs,q_seri,ql_seri,cell_area)
2508       WRITE(lunout,*) "avantcon=", za
2509    ENDIF
2510    zx_ajustq = .FALSE.
2511    IF (iflag_con.EQ.2) zx_ajustq=.TRUE.
2512    IF (zx_ajustq) THEN
2513       DO i = 1, klon
2514          z_avant(i) = 0.0
2515       ENDDO
2516       DO k = 1, klev
2517          DO i = 1, klon
2518             z_avant(i) = z_avant(i) + (q_seri(i,k)+ql_seri(i,k)) &
2519                  *(paprs(i,k)-paprs(i,k+1))/RG
2520          ENDDO
2521       ENDDO
2522    ENDIF
[959]2523
[2469]2524    ! Calcule de vitesse verticale a partir de flux de masse verticale
2525    DO k = 1, klev
2526       DO i = 1, klon
2527          omega(i,k) = RG*flxmass_w(i,k) / cell_area(i)
[2692]2528       ENDDO
2529    ENDDO
2530
2531    IF (prt_level.ge.1) write(lunout,*) 'omega(igout, :) = ', &
[2469]2532         omega(igout, :)
[2707]2533    !
2534    ! Appel de la convection tous les "cvpas"
2535    !
[3150]2536!!jyg    IF (MOD(itapcv,cvpas).EQ.0) THEN
[3151]2537!!    print *,' physiq : itapcv, cvpas, itap-1, cvpas_0 ', &
2538!!                       itapcv, cvpas, itap-1, cvpas_0
[3150]2539    IF (MOD(itapcv,cvpas).EQ.0 .OR. MOD(itap-1,cvpas_0).EQ.0) THEN
[2707]2540
[3134]2541    !
2542    ! Mettre a zero des variables de sortie (pour securite)
2543    !
2544    pmflxr(:,:) = 0.
2545    pmflxs(:,:) = 0.
2546    wdtrainA(:,:) = 0.
2547    wdtrainM(:,:) = 0.
2548    upwd(:,:) = 0.
2549    dnwd(:,:) = 0.
2550    ep(:,:) = 0.
2551    da(:,:)=0.
2552    mp(:,:)=0.
2553    wght_cvfd(:,:)=0.
2554    phi(:,:,:)=0.
2555    phi2(:,:,:)=0.
2556    epmlmMm(:,:,:)=0.
2557    eplaMm(:,:)=0.
2558    d1a(:,:)=0.
2559    dam(:,:)=0.
2560    elij(:,:,:)=0.
2561    ev(:,:)=0.
2562    clw(:,:)=0.
2563    sij(:,:,:)=0.
2564    !
[2469]2565    IF (iflag_con.EQ.1) THEN
2566       abort_message ='reactiver le call conlmd dans physiq.F'
2567       CALL abort_physic (modname,abort_message,1)
2568       !     CALL conlmd (dtime, paprs, pplay, t_seri, q_seri, conv_q,
2569       !    .             d_t_con, d_q_con,
2570       !    .             rain_con, snow_con, ibas_con, itop_con)
2571    ELSE IF (iflag_con.EQ.2) THEN
2572       CALL conflx(dtime, paprs, pplay, t_seri, q_seri, &
2573            conv_t, conv_q, -evap, omega, &
2574            d_t_con, d_q_con, rain_con, snow_con, &
2575            pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &
2576            kcbot, kctop, kdtop, pmflxr, pmflxs)
2577       d_u_con = 0.
2578       d_v_con = 0.
[879]2579
[2469]2580       WHERE (rain_con < 0.) rain_con = 0.
2581       WHERE (snow_con < 0.) snow_con = 0.
2582       DO i = 1, klon
2583          ibas_con(i) = klev+1 - kcbot(i)
2584          itop_con(i) = klev+1 - kctop(i)
2585       ENDDO
2586    ELSE IF (iflag_con.GE.3) THEN
2587       ! nb of tracers for the KE convection:
2588       ! MAF la partie traceurs est faite dans phytrac
2589       ! on met ntra=1 pour limiter les appels mais on peut
2590       ! supprimer les calculs / ftra.
2591       ntra = 1
2592
2593       !=======================================================================
2594       !ajout pour la parametrisation des poches froides: calcul de
[2635]2595       !t_w et t_x: si pas de poches froides, t_w=t_x=t_seri
[2692]2596       IF (iflag_wake>=1) THEN
2597         DO k=1,klev
2598            DO i=1,klon
2599                t_w(i,k) = t_seri(i,k) + (1-wake_s(i))*wake_deltat(i,k)
2600                q_w(i,k) = q_seri(i,k) + (1-wake_s(i))*wake_deltaq(i,k)
2601                t_x(i,k) = t_seri(i,k) - wake_s(i)*wake_deltat(i,k)
2602                q_x(i,k) = q_seri(i,k) - wake_s(i)*wake_deltaq(i,k)
2603            ENDDO
2604         ENDDO
2605       ELSE
2606               t_w(:,:) = t_seri(:,:)
[2635]2607                q_w(:,:) = q_seri(:,:)
2608                t_x(:,:) = t_seri(:,:)
2609                q_x(:,:) = q_seri(:,:)
[2692]2610       ENDIF
[2469]2611       !
2612       !jyg<
2613       ! Perform dry adiabatic adjustment on wake profile
2614       ! The corresponding tendencies are added to the convective tendencies
2615       ! after the call to the convective scheme.
2616       IF (iflag_wake>=1) then
[2882]2617          IF (iflag_adjwk >= 1) THEN
[2469]2618             limbas(:) = 1
[2635]2619             CALL ajsec(paprs, pplay, t_w, q_w, limbas, &
[2309]2620                  d_t_adjwk, d_q_adjwk)
[2638]2621             !
2622             DO k=1,klev
2623                DO i=1,klon
2624                   IF (wake_s(i) .GT. 1.e-3) THEN
2625                      t_w(i,k) = t_w(i,k) + d_t_adjwk(i,k)
2626                      q_w(i,k) = q_w(i,k) + d_q_adjwk(i,k)
2627                      d_deltat_ajs_cv(i,k) = d_t_adjwk(i,k)
2628                      d_deltaq_ajs_cv(i,k) = d_q_adjwk(i,k)
2629                   ELSE
2630                      d_deltat_ajs_cv(i,k) = 0.
2631                      d_deltaq_ajs_cv(i,k) = 0.
2632                   ENDIF
2633                ENDDO
[2469]2634             ENDDO
[2882]2635             IF (iflag_adjwk == 2) THEN
2636               CALL add_wake_tend &
[2638]2637                 (d_deltat_ajs_cv, d_deltaq_ajs_cv, dsig0, ddens0, wkoccur1, 'ajs_cv', abortphy)
[2882]2638             ENDIF  ! (iflag_adjwk == 2)
2639          ENDIF  ! (iflag_adjwk >= 1)
[2469]2640       ENDIF ! (iflag_wake>=1)
2641       !>jyg
2642       !
[2638]2643       
2644!!      print *,'physiq. q_w(1,k), q_x(1,k) ', &
2645!!             (k, q_w(1,k), q_x(1,k),k=1,25)
2646
[2513]2647!jyg<
2648       CALL alpale( debut, itap, dtime, paprs, omega, t_seri,   &
2649                    alp_offset, it_wape_prescr,  wape_prescr, fip_prescr, &
2650                    ale_bl_prescr, alp_bl_prescr, &
2651                    wake_pe, wake_fip,  &
2652                    Ale_bl, Ale_bl_trig, Alp_bl, &
[2554]2653                    Ale, Alp , Ale_wake, Alp_wake)
[2513]2654!>jyg
2655!
[2469]2656       ! sb, oct02:
2657       ! Schema de convection modularise et vectorise:
2658       ! (driver commun aux versions 3 et 4)
2659       !
2660       IF (ok_cvl) THEN ! new driver for convectL
2661          !
2662          !jyg<
2663          ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2664          ! Calculate the upmost level of deep convection loops: k_upper_cv
2665          !  (near 22 km)
2666          k_upper_cv = klev
[3201]2667          !izero = klon/2+1/klon
2668          !DO k = klev,1,-1
2669          !   IF (pphi(izero,k) > 22.e4) k_upper_cv = k
2670          !ENDDO
2671          ! FH : nouveau calcul base sur un profil global sans quoi
2672          ! le modele etait sensible au decoupage de domaines
[2469]2673          DO k = klev,1,-1
[3201]2674             IF (-7*log(presnivs(k)/presnivs(1)) > 25.) k_upper_cv = k
[2469]2675          ENDDO
2676          IF (prt_level .ge. 5) THEN
2677             Print *, 'upmost level of deep convection loops: k_upper_cv = ', &
2678                  k_upper_cv
2679          ENDIF
2680          !
2681          !>jyg
2682          IF (type_trac == 'repr') THEN
2683             nbtr_tmp=ntra
2684          ELSE
2685             nbtr_tmp=nbtr
[2692]2686          ENDIF
[2469]2687          !jyg   iflag_con est dans clesphys
2688          !c          CALL concvl (iflag_con,iflag_clos,
2689          CALL concvl (iflag_clos, &
[2635]2690               dtime, paprs, pplay, k_upper_cv, t_x,q_x, &
2691               t_w,q_w,wake_s, &
[2469]2692               u_seri,v_seri,tr_seri,nbtr_tmp, &
2693               ALE,ALP, &
2694               sig1,w01, &
2695               d_t_con,d_q_con,d_u_con,d_v_con,d_tr, &
2696               rain_con, snow_con, ibas_con, itop_con, sigd, &
[2824]2697               ema_cbmf,plcl,plfc,wbeff,convoccur,upwd,dnwd,dnwd0, &
[2469]2698               Ma,mip,Vprecip,cape,cin,tvp,Tconv,iflagctrl, &
2699               pbase,bbase,dtvpdt1,dtvpdq1,dplcldt,dplcldr,qcondc,wd, &
2700                                ! RomP >>>
2701                                !!     .        pmflxr,pmflxs,da,phi,mp,
2702                                !!     .        ftd,fqd,lalim_conv,wght_th)
2703               pmflxr,pmflxs,da,phi,mp,phi2,d1a,dam,sij,clw,elij, &
2704               ftd,fqd,lalim_conv,wght_th, &
2705               ev, ep,epmlmMm,eplaMm, &
2706               wdtrainA,wdtrainM,wght_cvfd,qtc_cv,sigt_cv, &
[2481]2707               tau_cld_cv,coefw_cld_cv,epmax_diag)
[2630]2708
[2469]2709          ! RomP <<<
[619]2710
[2469]2711          !IM begin
2712          !       print*,'physiq: cin pbase dnwd0 ftd fqd ',cin(1),pbase(1),
2713          !    .dnwd0(1,1),ftd(1,1),fqd(1,1)
2714          !IM end
2715          !IM cf. FH
2716          clwcon0=qcondc
2717          pmfu(:,:)=upwd(:,:)+dnwd(:,:)
[3150]2718          !
2719          !jyg<
2720          ! If convective tendencies are too large, then call convection
2721          !  every time step
2722          cvpas = cvpas_0
2723          DO k=1,k_upper_cv
2724             DO i=1,klon
[3176]2725               IF (d_t_con(i,k) > 6.721 .AND. d_t_con(i,k) < 6.722 .AND.&
2726                   d_q_con(i,k) > -.0002171 .AND. d_q_con(i,k) < -.0002170) THEN
2727                     dtcon_multistep_max = 3.
2728                     dqcon_multistep_max = 0.02
2729               ENDIF
2730             ENDDO
2731          ENDDO
2732!
2733          DO k=1,k_upper_cv
2734             DO i=1,klon
[3150]2735!!               IF (abs(d_t_con(i,k)) > 0.24 .OR. &
2736!!                   abs(d_q_con(i,k)) > 2.e-2) THEN
2737               IF (abs(d_t_con(i,k)) > dtcon_multistep_max .OR. &
2738                   abs(d_q_con(i,k)) > dqcon_multistep_max) THEN
2739                 cvpas = 1
2740!!                 print *,'physiq1, i,k,d_t_con(i,k),d_q_con(i,k) ', &
2741!!                                   i,k,d_t_con(i,k),d_q_con(i,k)
2742               ENDIF
2743             ENDDO
2744          ENDDO
[3153]2745!!!   Ligne a ne surtout pas remettre sans avoir murement reflechi (jyg)
2746!!!          call bcast(cvpas)
2747!!!   ------------------------------------------------------------
[3150]2748          !>jyg
2749          !
[2692]2750          DO i = 1, klon
[3148]2751             IF (iflagctrl(i).le.1) itau_con(i)=itau_con(i)+cvpas
[2692]2752          ENDDO
[2469]2753          !
2754          !jyg<
2755          !    Add the tendency due to the dry adjustment of the wake profile
2756          IF (iflag_wake>=1) THEN
[2882]2757            IF (iflag_adjwk == 2) THEN
2758              DO k=1,klev
2759                 DO i=1,klon
2760                    ftd(i,k) = ftd(i,k) + wake_s(i)*d_t_adjwk(i,k)/dtime
2761                    fqd(i,k) = fqd(i,k) + wake_s(i)*d_q_adjwk(i,k)/dtime
2762                    d_t_con(i,k) = d_t_con(i,k) + wake_s(i)*d_t_adjwk(i,k)
2763                    d_q_con(i,k) = d_q_con(i,k) + wake_s(i)*d_q_adjwk(i,k)
2764                 ENDDO
2765              ENDDO
2766            ENDIF  ! (iflag_adjwk = 2)
2767          ENDIF   ! (iflag_wake>=1)
[2469]2768          !>jyg
2769          !
2770       ELSE ! ok_cvl
[1412]2771
[2469]2772          ! MAF conema3 ne contient pas les traceurs
2773          CALL conema3 (dtime, &
2774               paprs,pplay,t_seri,q_seri, &
2775               u_seri,v_seri,tr_seri,ntra, &
2776               sig1,w01, &
2777               d_t_con,d_q_con,d_u_con,d_v_con,d_tr, &
2778               rain_con, snow_con, ibas_con, itop_con, &
2779               upwd,dnwd,dnwd0,bas,top, &
2780               Ma,cape,tvp,rflag, &
2781               pbase &
2782               ,bbase,dtvpdt1,dtvpdq1,dplcldt,dplcldr &
2783               ,clwcon0)
[524]2784
[2469]2785       ENDIF ! ok_cvl
[524]2786
[2469]2787       !
2788       ! Correction precip
2789       rain_con = rain_con * cvl_corr
2790       snow_con = snow_con * cvl_corr
2791       !
[766]2792
[2469]2793       IF (.NOT. ok_gust) THEN
2794          do i = 1, klon
2795             wd(i)=0.0
2796          enddo
2797       ENDIF
[524]2798
[2469]2799       ! =================================================================== c
2800       ! Calcul des proprietes des nuages convectifs
2801       !
[524]2802
[2469]2803       !   calcul des proprietes des nuages convectifs
2804       clwcon0(:,:)=fact_cldcon*clwcon0(:,:)
2805       IF (iflag_cld_cv == 0) THEN
[2692]2806          CALL clouds_gno &
[2469]2807               (klon,klev,q_seri,zqsat,clwcon0,ptconv,ratqsc,rnebcon0)
2808       ELSE
[2692]2809          CALL clouds_bigauss &
[2469]2810               (klon,klev,q_seri,zqsat,qtc_cv,sigt_cv,ptconv,ratqsc,rnebcon0)
2811       ENDIF
[524]2812
[2205]2813
[2469]2814       ! =================================================================== c
[524]2815
[2469]2816       DO i = 1, klon
2817          itop_con(i) = min(max(itop_con(i),1),klev)
2818          ibas_con(i) = min(max(ibas_con(i),1),itop_con(i))
2819       ENDDO
[1428]2820
[2469]2821       DO i = 1, klon
2822          ema_pcb(i)  = paprs(i,ibas_con(i))
2823       ENDDO
2824       DO i = 1, klon
2825          ! L'idicage de itop_con peut cacher un pb potentiel
2826          ! FH sous la dictee de JYG, CR
2827          ema_pct(i)  = paprs(i,itop_con(i)+1)
[879]2828
[2692]2829          IF (itop_con(i).gt.klev-3) THEN
2830             IF (prt_level >= 9) THEN
[2469]2831                write(lunout,*)'La convection monte trop haut '
2832                write(lunout,*)'itop_con(,',i,',)=',itop_con(i)
[2692]2833             ENDIF
2834          ENDIF
[2469]2835       ENDDO
2836    ELSE IF (iflag_con.eq.0) THEN
2837       write(lunout,*) 'On n appelle pas la convection'
2838       clwcon0=0.
2839       rnebcon0=0.
2840       d_t_con=0.
2841       d_q_con=0.
2842       d_u_con=0.
2843       d_v_con=0.
2844       rain_con=0.
2845       snow_con=0.
2846       bas=1
2847       top=1
2848    ELSE
2849       WRITE(lunout,*) "iflag_con non-prevu", iflag_con
[2692]2850       CALL abort_physic("physiq", "", 1)
[2469]2851    ENDIF
[524]2852
[2469]2853    !     CALL homogene(paprs, q_seri, d_q_con, u_seri,v_seri,
2854    !    .              d_u_con, d_v_con)
[524]2855
[2730]2856!jyg    Reinitialize proba_notrig and itapcv when convection has been called
2857    proba_notrig(:) = 1.
[2707]2858    itapcv = 0
[3150]2859    ENDIF !  (MOD(itapcv,cvpas).EQ.0 .OR. MOD(itapcv,cvpas_0).EQ.0)
[2730]2860!
[2707]2861    itapcv = itapcv+1
[3153]2862    !
2863    ! Compter les steps ou cvpas=1
2864    IF (cvpas == 1) THEN
2865      Ncvpaseq1 = Ncvpaseq1+1
2866    ENDIF
2867    IF (mod(itap,1000) == 0) THEN
2868      print *,' physiq, nombre de steps ou cvpas = 1 : ', Ncvpaseq1
2869    ENDIF
[2707]2870
[2812]2871!!!jyg  Appel diagnostique a add_phys_tend pour tester la conservation de
2872!!!     l'energie dans les courants satures.
2873!!    d_t_con_sat(:,:) = d_t_con(:,:) - ftd(:,:)*dtime
2874!!    d_q_con_sat(:,:) = d_q_con(:,:) - fqd(:,:)*dtime
2875!!    dql_sat(:,:) = (wdtrainA(:,:)+wdtrainM(:,:))*dtime/zmasse(:,:)
2876!!    CALL add_phys_tend(d_u_con, d_v_con, d_t_con_sat, d_q_con_sat, dql_sat,   &
2877!!                     dqi0, paprs, 'convection_sat', abortphy, flag_inhib_tend,& 
2878!!                     itap, 1)
2879!!    call prt_enerbil('convection_sat',itap)
2880!!
2881!!
[2469]2882    CALL add_phys_tend(d_u_con, d_v_con, d_t_con, d_q_con, dql0, dqi0, paprs, &
[2812]2883         'convection',abortphy,flag_inhib_tend,itap,0)
[2799]2884    call prt_enerbil('convection',itap)
[2235]2885
[2469]2886    !-------------------------------------------------------------------------
[766]2887
[2692]2888    IF (mydebug) THEN
2889       CALL writefield_phy('u_seri',u_seri,nbp_lev)
2890       CALL writefield_phy('v_seri',v_seri,nbp_lev)
2891       CALL writefield_phy('t_seri',t_seri,nbp_lev)
2892       CALL writefield_phy('q_seri',q_seri,nbp_lev)
2893    ENDIF
[766]2894
[2469]2895    IF (check) THEN
2896       za = qcheck(klon,klev,paprs,q_seri,ql_seri,cell_area)
2897       WRITE(lunout,*)"aprescon=", za
2898       zx_t = 0.0
2899       za = 0.0
2900       DO i = 1, klon
2901          za = za + cell_area(i)/REAL(klon)
2902          zx_t = zx_t + (rain_con(i)+ &
2903               snow_con(i))*cell_area(i)/REAL(klon)
2904       ENDDO
2905       zx_t = zx_t/za*dtime
2906       WRITE(lunout,*)"Precip=", zx_t
2907    ENDIF
2908    IF (zx_ajustq) THEN
2909       DO i = 1, klon
2910          z_apres(i) = 0.0
2911       ENDDO
2912       DO k = 1, klev
2913          DO i = 1, klon
2914             z_apres(i) = z_apres(i) + (q_seri(i,k)+ql_seri(i,k)) &
2915                  *(paprs(i,k)-paprs(i,k+1))/RG
2916          ENDDO
2917       ENDDO
2918       DO i = 1, klon
2919          z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*dtime) &
2920               /z_apres(i)
2921       ENDDO
2922       DO k = 1, klev
2923          DO i = 1, klon
2924             IF (z_factor(i).GT.(1.0+1.0E-08) .OR. &
2925                  z_factor(i).LT.(1.0-1.0E-08)) THEN
2926                q_seri(i,k) = q_seri(i,k) * z_factor(i)
2927             ENDIF
2928          ENDDO
2929       ENDDO
2930    ENDIF
2931    zx_ajustq=.FALSE.
[879]2932
[2469]2933    !
2934    !==========================================================================
2935    !RR:Evolution de la poche froide: on ne fait pas de separation wake/env
2936    !pour la couche limite diffuse pour l instant
2937    !
2938    !
2939    ! nrlmd le 22/03/2011---Si on met les poches hors des thermiques
2940    ! il faut rajouter cette tendance calcul\'ee hors des poches
2941    ! froides
2942    !
[2692]2943    IF (iflag_wake>=1) THEN
[2707]2944       !
2945       !
[2730]2946       ! Call wakes every "wkpas" step
2947       !
2948       IF (MOD(itapwk,wkpas).EQ.0) THEN
2949          !
2950          DO k=1,klev
[2469]2951             DO i=1,klon
[2730]2952                dt_dwn(i,k)  = ftd(i,k)
2953                dq_dwn(i,k)  = fqd(i,k)
2954                M_dwn(i,k)   = dnwd0(i,k)
2955                M_up(i,k)    = upwd(i,k)
2956                dt_a(i,k)    = d_t_con(i,k)/dtime - ftd(i,k)
2957                dq_a(i,k)    = d_q_con(i,k)/dtime - fqd(i,k)
[2469]2958             ENDDO
2959          ENDDO
[2730]2960         
2961          IF (iflag_wake==2) THEN
2962             ok_wk_lsp(:)=max(sign(1.,wake_s(:)-wake_s_min_lsp),0.)
2963             DO k = 1,klev
2964                dt_dwn(:,k)= dt_dwn(:,k)+ &
2965                     ok_wk_lsp(:)*(d_t_eva(:,k)+d_t_lsc(:,k))/dtime
2966                dq_dwn(:,k)= dq_dwn(:,k)+ &
2967                     ok_wk_lsp(:)*(d_q_eva(:,k)+d_q_lsc(:,k))/dtime
2968             ENDDO
2969          ELSEIF (iflag_wake==3) THEN
2970             ok_wk_lsp(:)=max(sign(1.,wake_s(:)-wake_s_min_lsp),0.)
2971             DO k = 1,klev
2972                DO i=1,klon
2973                   IF (rneb(i,k)==0.) THEN
2974                      ! On ne tient compte des tendances qu'en dehors des
2975                      ! nuages (c'est-\`a-dire a priri dans une region ou
2976                      ! l'eau se reevapore).
2977                      dt_dwn(i,k)= dt_dwn(i,k)+ &
2978                           ok_wk_lsp(i)*d_t_lsc(i,k)/dtime
2979                      dq_dwn(i,k)= dq_dwn(i,k)+ &
2980                           ok_wk_lsp(i)*d_q_lsc(i,k)/dtime
2981                   ENDIF
2982                ENDDO
2983             ENDDO
2984          ENDIF
2985         
2986          !
2987          !calcul caracteristiques de la poche froide
2988          CALL calWAKE (iflag_wake_tend, paprs, pplay, dtime, &
2989               t_seri, q_seri, omega,  &
2990               dt_dwn, dq_dwn, M_dwn, M_up,  &
2991               dt_a, dq_a,  &
2992               sigd,  &
2993               wake_deltat, wake_deltaq, wake_s, wake_dens,  &
2994               wake_dth, wake_h,  &
[3000]2995!!               wake_pe, wake_fip, wake_gfl,  &
2996               wake_pe, wake_fip_0, wake_gfl,  &   !! jyg
[2730]2997               d_t_wake, d_q_wake,  &
2998               wake_k, t_x, q_x,  &
2999               wake_omgbdth, wake_dp_omgb,  &
3000               wake_dtKE, wake_dqKE,  &
3001               wake_omg, wake_dp_deltomg,  &
3002               wake_spread, wake_Cstar, d_deltat_wk_gw,  &
3003               d_deltat_wk, d_deltaq_wk, d_s_wk, d_dens_wk)
3004          !
3005          !jyg    Reinitialize itapwk when wakes have been called
3006          itapwk = 0
3007       ENDIF !  (MOD(itapwk,wkpas).EQ.0)
[2469]3008       !
[2730]3009       itapwk = itapwk+1
[2469]3010       !
3011       !-----------------------------------------------------------------------
3012       ! ajout des tendances des poches froides
3013       CALL add_phys_tend(du0,dv0,d_t_wake,d_q_wake,dql0,dqi0,paprs,'wake', &
[2812]3014            abortphy,flag_inhib_tend,itap,0)
[2799]3015       call prt_enerbil('wake',itap)
[2469]3016       !------------------------------------------------------------------------
[879]3017
[2730]3018       ! Increment Wake state variables
[2635]3019       IF (iflag_wake_tend .GT. 0.) THEN
3020
3021         CALL add_wake_tend &
3022            (d_deltat_wk, d_deltaq_wk, d_s_wk, d_dens_wk, wake_k, &
3023             'wake', abortphy)
[2799]3024          call prt_enerbil('wake',itap)
[2635]3025       ENDIF   ! (iflag_wake_tend .GT. 0.)
3026
[3000]3027       IF (iflag_alp_wk_cond .GT. 0.) THEN
3028
3029         CALL alpale_wk(dtime, cell_area, wake_k, wake_s, wake_dens, wake_fip_0, &
3030                        wake_fip)
3031       ELSE
3032         wake_fip(:) = wake_fip_0(:)
3033       ENDIF   ! (iflag_alp_wk_cond .GT. 0.)
3034
[2692]3035    ENDIF  ! (iflag_wake>=1)
[2469]3036    !
3037    !===================================================================
3038    ! Convection seche (thermiques ou ajustement)
3039    !===================================================================
3040    !
[2692]3041    CALL stratocu_if(klon,klev,pctsrf,paprs, pplay,t_seri &
[2469]3042         ,seuil_inversion,weak_inversion,dthmin)
[878]3043
3044
3045
[2469]3046    d_t_ajsb(:,:)=0.
3047    d_q_ajsb(:,:)=0.
3048    d_t_ajs(:,:)=0.
3049    d_u_ajs(:,:)=0.
3050    d_v_ajs(:,:)=0.
3051    d_q_ajs(:,:)=0.
3052    clwcon0th(:,:)=0.
3053    !
3054    !      fm_therm(:,:)=0.
3055    !      entr_therm(:,:)=0.
3056    !      detr_therm(:,:)=0.
3057    !
[2692]3058    IF (prt_level>9) WRITE(lunout,*) &
[2469]3059         'AVANT LA CONVECTION SECHE , iflag_thermals=' &
3060         ,iflag_thermals,'   nsplit_thermals=',nsplit_thermals
[2692]3061    IF (iflag_thermals<0) THEN
[2469]3062       !  Rien
3063       !  ====
[2692]3064       IF (prt_level>9) WRITE(lunout,*)'pas de convection seche'
[541]3065
[878]3066
[2692]3067    ELSE
[878]3068
[2469]3069       !  Thermiques
3070       !  ==========
[2692]3071       IF (prt_level>9) WRITE(lunout,*)'JUSTE AVANT , iflag_thermals=' &
[2469]3072            ,iflag_thermals,'   nsplit_thermals=',nsplit_thermals
[878]3073
3074
[2469]3075       !cc nrlmd le 10/04/2012
3076       DO k=1,klev+1
3077          DO i=1,klon
3078             pbl_tke_input(i,k,is_oce)=pbl_tke(i,k,is_oce)
3079             pbl_tke_input(i,k,is_ter)=pbl_tke(i,k,is_ter)
3080             pbl_tke_input(i,k,is_lic)=pbl_tke(i,k,is_lic)
3081             pbl_tke_input(i,k,is_sic)=pbl_tke(i,k,is_sic)
[2159]3082          ENDDO
[2469]3083       ENDDO
3084       !cc fin nrlmd le 10/04/2012
[1403]3085
[2692]3086       IF (iflag_thermals>=1) THEN
[2469]3087          !jyg<
[2852]3088!!       IF (mod(iflag_pbl_split/2,2) .EQ. 1) THEN
3089       IF (mod(iflag_pbl_split/10,10) .GE. 1) THEN
[2469]3090             !  Appel des thermiques avec les profils exterieurs aux poches
3091             DO k=1,klev
3092                DO i=1,klon
3093                   t_therm(i,k) = t_seri(i,k) - wake_s(i)*wake_deltat(i,k)
3094                   q_therm(i,k) = q_seri(i,k) - wake_s(i)*wake_deltaq(i,k)
[2606]3095                   u_therm(i,k) = u_seri(i,k)
3096                   v_therm(i,k) = v_seri(i,k)
[2469]3097                ENDDO
3098             ENDDO
3099          ELSE
3100             !  Appel des thermiques avec les profils moyens
3101             DO k=1,klev
3102                DO i=1,klon
3103                   t_therm(i,k) = t_seri(i,k)
3104                   q_therm(i,k) = q_seri(i,k)
[2606]3105                   u_therm(i,k) = u_seri(i,k)
3106                   v_therm(i,k) = v_seri(i,k)
[2469]3107                ENDDO
3108             ENDDO
3109          ENDIF
3110          !>jyg
[2692]3111          CALL calltherm(pdtphys &
[2469]3112               ,pplay,paprs,pphi,weak_inversion &
[2606]3113                        ! ,u_seri,v_seri,t_seri,q_seri,zqsat,debut & !jyg
3114               ,u_therm,v_therm,t_therm,q_therm,zqsat,debut &  !jyg
[2469]3115               ,d_u_ajs,d_v_ajs,d_t_ajs,d_q_ajs &
3116               ,fm_therm,entr_therm,detr_therm &
3117               ,zqasc,clwcon0th,lmax_th,ratqscth &
3118               ,ratqsdiff,zqsatth &
3119                                !on rajoute ale et alp, et les
3120                                !caracteristiques de la couche alim
3121               ,Ale_bl,Alp_bl,lalim_conv,wght_th, zmax0, f0, zw2,fraca &
3122               ,ztv,zpspsk,ztla,zthl &
3123                                !cc nrlmd le 10/04/2012
3124               ,pbl_tke_input,pctsrf,omega,cell_area &
3125               ,zlcl_th,fraca0,w0,w_conv,therm_tke_max0,env_tke_max0 &
3126               ,n2,s2,ale_bl_stat &
3127               ,therm_tke_max,env_tke_max &
3128               ,alp_bl_det,alp_bl_fluct_m,alp_bl_fluct_tke &
3129               ,alp_bl_conv,alp_bl_stat &
3130                                !cc fin nrlmd le 10/04/2012
3131               ,zqla,ztva )
3132          !
3133          !jyg<
[2852]3134!!jyg          IF (mod(iflag_pbl_split/2,2) .EQ. 1) THEN
3135          IF (mod(iflag_pbl_split/10,10) .GE. 1) THEN
[2469]3136             !  Si les thermiques ne sont presents que hors des
3137             !  poches, la tendance moyenne associ\'ee doit etre
3138             !  multipliee par la fraction surfacique qu'ils couvrent.
3139             DO k=1,klev
3140                DO i=1,klon
3141                   !
[2635]3142                   d_deltat_the(i,k) = - d_t_ajs(i,k)
3143                   d_deltaq_the(i,k) = - d_q_ajs(i,k)
[2469]3144                   !
3145                   d_u_ajs(i,k) = d_u_ajs(i,k)*(1.-wake_s(i))
3146                   d_v_ajs(i,k) = d_v_ajs(i,k)*(1.-wake_s(i))
3147                   d_t_ajs(i,k) = d_t_ajs(i,k)*(1.-wake_s(i))
3148                   d_q_ajs(i,k) = d_q_ajs(i,k)*(1.-wake_s(i))
3149                   !
3150                ENDDO
3151             ENDDO
[2606]3152          !
[2638]3153             CALL add_wake_tend &
3154                 (d_deltat_the, d_deltaq_the, dsig0, ddens0, wkoccur1, 'the', abortphy)
[2799]3155             call prt_enerbil('the',itap)
[2638]3156          !
[2852]3157          ENDIF  ! (mod(iflag_pbl_split/10,10) .GE. 1)
[2638]3158          !
[2606]3159          CALL add_phys_tend(d_u_ajs,d_v_ajs,d_t_ajs,d_q_ajs,  &
[2812]3160                             dql0,dqi0,paprs,'thermals', abortphy,flag_inhib_tend,itap,0)
[2799]3161          call prt_enerbil('thermals',itap)
[2606]3162          !
[2513]3163!
[2565]3164          CALL alpale_th( dtime, lmax_th, t_seri, cell_area,  &
[2513]3165                          cin, s2, n2,  &
3166                          ale_bl_trig, ale_bl_stat, ale_bl,  &
[2556]3167                          alp_bl, alp_bl_stat, &
3168                          proba_notrig, random_notrig)
[2635]3169          !>jyg
[1638]3170
[2554]3171          ! ------------------------------------------------------------------
3172          ! Transport de la TKE par les panaches thermiques.
3173          ! FH : 2010/02/01
3174          !     if (iflag_pbl.eq.10) then
3175          !     call thermcell_dtke(klon,klev,nbsrf,pdtphys,fm_therm,entr_therm,
3176          !    s           rg,paprs,pbl_tke)
3177          !     endif
3178          ! -------------------------------------------------------------------
3179
[2692]3180          DO i=1,klon
[2469]3181             !           zmax_th(i)=pphi(i,lmax_th(i))/rg
3182             !CR:04/05/12:correction calcul zmax
3183             zmax_th(i)=zmax0(i)
[2692]3184          ENDDO
[1507]3185
[2692]3186       ENDIF
[878]3187
[2469]3188       !  Ajustement sec
3189       !  ==============
[878]3190
[2469]3191       ! Dans le cas o\`u on active les thermiques, on fait partir l'ajustement
3192       ! a partir du sommet des thermiques.
3193       ! Dans le cas contraire, on demarre au niveau 1.
[878]3194
[2692]3195       IF (iflag_thermals>=13.or.iflag_thermals<=0) THEN
[878]3196
[2692]3197          IF (iflag_thermals.eq.0) THEN
3198             IF (prt_level>9) WRITE(lunout,*)'ajsec'
[2469]3199             limbas(:)=1
[2692]3200          ELSE
[2469]3201             limbas(:)=lmax_th(:)
[2692]3202          ENDIF
[878]3203
[2469]3204          ! Attention : le call ajsec_convV2 n'est maintenu que momentanneement
3205          ! pour des test de convergence numerique.
3206          ! Le nouveau ajsec est a priori mieux, meme pour le cas
3207          ! iflag_thermals = 0 (l'ancienne version peut faire des tendances
3208          ! non nulles numeriquement pour des mailles non concernees.
[878]3209
[2692]3210          IF (iflag_thermals==0) THEN
[2469]3211             ! Calling adjustment alone (but not the thermal plume model)
3212             CALL ajsec_convV2(paprs, pplay, t_seri,q_seri &
3213                  , d_t_ajsb, d_q_ajsb)
[2692]3214          ELSE IF (iflag_thermals>0) THEN
[2469]3215             ! Calling adjustment above the top of thermal plumes
3216             CALL ajsec(paprs, pplay, t_seri,q_seri,limbas &
3217                  , d_t_ajsb, d_q_ajsb)
[2692]3218          ENDIF
[878]3219
[2469]3220          !--------------------------------------------------------------------
3221          ! ajout des tendances de l'ajustement sec ou des thermiques
3222          CALL add_phys_tend(du0,dv0,d_t_ajsb,d_q_ajsb,dql0,dqi0,paprs, &
[2812]3223               'ajsb',abortphy,flag_inhib_tend,itap,0)
[2799]3224          call prt_enerbil('ajsb',itap)
[2469]3225          d_t_ajs(:,:)=d_t_ajs(:,:)+d_t_ajsb(:,:)
3226          d_q_ajs(:,:)=d_q_ajs(:,:)+d_q_ajsb(:,:)
[904]3227
[2469]3228          !---------------------------------------------------------------------
[878]3229
[2692]3230       ENDIF
[524]3231
[2692]3232    ENDIF
[2469]3233    !
3234    !===================================================================
3235    ! Computation of ratqs, the width (normalized) of the subrid scale
3236    ! water distribution
3237    CALL  calcratqs(klon,klev,prt_level,lunout,        &
3238         iflag_ratqs,iflag_con,iflag_cld_th,pdtphys,  &
[2534]3239         ratqsbas,ratqshaut,ratqsp0, ratqsdp, &
3240         tau_ratqs,fact_cldcon,   &
[2469]3241         ptconv,ptconvth,clwcon0th, rnebcon0th,     &
3242         paprs,pplay,q_seri,zqsat,fm_therm, &
3243         ratqs,ratqsc)
[1032]3244
[2100]3245
[2469]3246    !
3247    ! Appeler le processus de condensation a grande echelle
3248    ! et le processus de precipitation
3249    !-------------------------------------------------------------------------
3250    IF (prt_level .GE.10) THEN
3251       print *,'itap, ->fisrtilp ',itap
3252    ENDIF
3253    !
3254    CALL fisrtilp(dtime,paprs,pplay, &
3255         t_seri, q_seri,ptconv,ratqs, &
3256         d_t_lsc, d_q_lsc, d_ql_lsc, d_qi_lsc, rneb, cldliq, &
3257         rain_lsc, snow_lsc, &
3258         pfrac_impa, pfrac_nucl, pfrac_1nucl, &
3259         frac_impa, frac_nucl, beta_prec_fisrt, &
3260         prfl, psfl, rhcl,  &
3261         zqasc, fraca,ztv,zpspsk,ztla,zthl,iflag_cld_th, &
3262         iflag_ice_thermo)
3263    !
3264    WHERE (rain_lsc < 0) rain_lsc = 0.
3265    WHERE (snow_lsc < 0) snow_lsc = 0.
[766]3266
[2799]3267!+JLD
3268!    write(*,9000) 'phys lsc',"enerbil: bil_q, bil_e,",rain_lsc+snow_lsc &
3269!        & ,((rcw-rcpd)*rain_lsc + (rcs-rcpd)*snow_lsc)*t_seri(1,1)-rlvtt*rain_lsc+rlstt*snow_lsc &
3270!        & ,rain_lsc,snow_lsc
3271!    write(*,9000) "rcpv","rcw",rcpv,rcw,rcs,t_seri(1,1)
3272!-JLD
[2469]3273    CALL add_phys_tend(du0,dv0,d_t_lsc,d_q_lsc,d_ql_lsc,d_qi_lsc,paprs, &
[2812]3274         'lsc',abortphy,flag_inhib_tend,itap,0)
[2799]3275    call prt_enerbil('lsc',itap)
[2613]3276    rain_num(:)=0.
[2657]3277    DO k = 1, klev
[2613]3278       DO i = 1, klon
3279          IF (ql_seri(i,k)>oliqmax) THEN
3280             rain_num(i)=rain_num(i)+(ql_seri(i,k)-oliqmax)*zmasse(i,k)/pdtphys
3281             ql_seri(i,k)=oliqmax
3282          ENDIF
3283       ENDDO
3284    ENDDO
[2657]3285    IF (nqo==3) THEN
3286    DO k = 1, klev
3287       DO i = 1, klon
3288          IF (qs_seri(i,k)>oicemax) THEN
3289             rain_num(i)=rain_num(i)+(qs_seri(i,k)-oicemax)*zmasse(i,k)/pdtphys
3290             qs_seri(i,k)=oicemax
3291          ENDIF
3292       ENDDO
3293    ENDDO
3294    ENDIF
[2613]3295
[2524]3296    !---------------------------------------------------------------------------
[2469]3297    DO k = 1, klev
3298       DO i = 1, klon
3299          cldfra(i,k) = rneb(i,k)
3300          !CR: a quoi ca sert? Faut-il ajouter qs_seri?
3301          IF (.NOT.new_oliq) cldliq(i,k) = ql_seri(i,k)
3302       ENDDO
3303    ENDDO
3304    IF (check) THEN
3305       za = qcheck(klon,klev,paprs,q_seri,ql_seri,cell_area)
3306       WRITE(lunout,*)"apresilp=", za
3307       zx_t = 0.0
3308       za = 0.0
3309       DO i = 1, klon
3310          za = za + cell_area(i)/REAL(klon)
3311          zx_t = zx_t + (rain_lsc(i) &
3312               + snow_lsc(i))*cell_area(i)/REAL(klon)
3313       ENDDO
3314       zx_t = zx_t/za*dtime
3315       WRITE(lunout,*)"Precip=", zx_t
3316    ENDIF
[766]3317
[2692]3318    IF (mydebug) THEN
3319       CALL writefield_phy('u_seri',u_seri,nbp_lev)
3320       CALL writefield_phy('v_seri',v_seri,nbp_lev)
3321       CALL writefield_phy('t_seri',t_seri,nbp_lev)
3322       CALL writefield_phy('q_seri',q_seri,nbp_lev)
3323    ENDIF
[524]3324
[2469]3325    !
3326    !-------------------------------------------------------------------
3327    !  PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
3328    !-------------------------------------------------------------------
[524]3329
[2469]3330    ! 1. NUAGES CONVECTIFS
3331    !
3332    !IM cf FH
3333    !     IF (iflag_cld_th.eq.-1) THEN ! seulement pour Tiedtke
3334    IF (iflag_cld_th.le.-1) THEN ! seulement pour Tiedtke
3335       snow_tiedtke=0.
3336       !     print*,'avant calcul de la pseudo precip '
3337       !     print*,'iflag_cld_th',iflag_cld_th
[2692]3338       IF (iflag_cld_th.eq.-1) THEN
[2469]3339          rain_tiedtke=rain_con
[2692]3340       ELSE
[2469]3341          !       print*,'calcul de la pseudo precip '
3342          rain_tiedtke=0.
3343          !         print*,'calcul de la pseudo precip 0'
[2692]3344          DO k=1,klev
3345             DO i=1,klon
3346                IF (d_q_con(i,k).lt.0.) THEN
[2469]3347                   rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i,k)/pdtphys &
3348                        *(paprs(i,k)-paprs(i,k+1))/rg
[2692]3349                ENDIF
3350             ENDDO
3351          ENDDO
3352       ENDIF
[2469]3353       !
3354       !     call dump2d(iim,jjm,rain_tiedtke(2:klon-1),'PSEUDO PRECIP ')
3355       !
[524]3356
[2469]3357       ! Nuages diagnostiques pour Tiedtke
3358       CALL diagcld1(paprs,pplay, &
3359                                !IM cf FH. rain_con,snow_con,ibas_con,itop_con,
3360            rain_tiedtke,snow_tiedtke,ibas_con,itop_con, &
3361            diafra,dialiq)
3362       DO k = 1, klev
3363          DO i = 1, klon
3364             IF (diafra(i,k).GT.cldfra(i,k)) THEN
3365                cldliq(i,k) = dialiq(i,k)
3366                cldfra(i,k) = diafra(i,k)
3367             ENDIF
3368          ENDDO
3369       ENDDO
[524]3370
[2469]3371    ELSE IF (iflag_cld_th.ge.3) THEN
3372       !  On prend pour les nuages convectifs le max du calcul de la
3373       !  convection et du calcul du pas de temps precedent diminue d'un facteur
3374       !  facttemps
3375       facteur = pdtphys *facttemps
[2692]3376       DO k=1,klev
3377          DO i=1,klon
[2469]3378             rnebcon(i,k)=rnebcon(i,k)*facteur
[2692]3379             IF (rnebcon0(i,k)*clwcon0(i,k).GT.rnebcon(i,k)*clwcon(i,k)) THEN
[2469]3380                rnebcon(i,k)=rnebcon0(i,k)
3381                clwcon(i,k)=clwcon0(i,k)
[2692]3382             ENDIF
3383          ENDDO
3384       ENDDO
[2469]3385
3386       !   On prend la somme des fractions nuageuses et des contenus en eau
[524]3387
[2692]3388       IF (iflag_cld_th>=5) THEN
[1411]3389
[2692]3390          DO k=1,klev
[2469]3391             ptconvth(:,k)=fm_therm(:,k+1)>0.
[2692]3392          ENDDO
[1496]3393
[2692]3394          IF (iflag_coupl==4) THEN
[1496]3395
[2469]3396             ! Dans le cas iflag_coupl==4, on prend la somme des convertures
3397             ! convectives et lsc dans la partie des thermiques
3398             ! Le controle par iflag_coupl est peut etre provisoire.
[2692]3399             DO k=1,klev
3400                DO i=1,klon
3401                   IF (ptconv(i,k).AND.ptconvth(i,k)) THEN
[2469]3402                      cldliq(i,k)=cldliq(i,k)+rnebcon(i,k)*clwcon(i,k)
3403                      cldfra(i,k)=min(cldfra(i,k)+rnebcon(i,k),1.)
[2692]3404                   ELSE IF (ptconv(i,k)) THEN
[2469]3405                      cldfra(i,k)=rnebcon(i,k)
3406                      cldliq(i,k)=rnebcon(i,k)*clwcon(i,k)
[2692]3407                   ENDIF
3408                ENDDO
3409             ENDDO
[1496]3410
[2692]3411          ELSE IF (iflag_coupl==5) THEN
3412             DO k=1,klev
3413                DO i=1,klon
[2469]3414                   cldfra(i,k)=min(cldfra(i,k)+rnebcon(i,k),1.)
3415                   cldliq(i,k)=cldliq(i,k)+rnebcon(i,k)*clwcon(i,k)
[2692]3416                ENDDO
3417             ENDDO
[1525]3418
[2692]3419          ELSE
[1525]3420
[2469]3421             ! Si on est sur un point touche par la convection
3422             ! profonde et pas par les thermiques, on prend la
3423             ! couverture nuageuse et l'eau nuageuse de la convection
3424             ! profonde.
[1411]3425
[2469]3426             !IM/FH: 2011/02/23
3427             ! definition des points sur lesquels ls thermiques sont actifs
[1496]3428
[2692]3429             DO k=1,klev
3430                DO i=1,klon
3431                   IF (ptconv(i,k).AND. .NOT.ptconvth(i,k)) THEN
[2469]3432                      cldfra(i,k)=rnebcon(i,k)
3433                      cldliq(i,k)=rnebcon(i,k)*clwcon(i,k)
[2692]3434                   ENDIF
3435                ENDDO
3436             ENDDO
[1496]3437
[2692]3438          ENDIF
[1496]3439
[2692]3440       ELSE
[1496]3441
[2469]3442          ! Ancienne version
3443          cldfra(:,:)=min(max(cldfra(:,:),rnebcon(:,:)),1.)
3444          cldliq(:,:)=cldliq(:,:)+rnebcon(:,:)*clwcon(:,:)
[2692]3445       ENDIF
[1411]3446
[2469]3447    ENDIF
[1507]3448
[2469]3449    !     plulsc(:)=0.
3450    !     do k=1,klev,-1
3451    !        do i=1,klon
3452    !              zzz=prfl(:,k)+psfl(:,k)
3453    !           if (.not.ptconvth.zzz.gt.0.)
3454    !        enddo prfl, psfl,
3455    !     enddo
3456    !
3457    ! 2. NUAGES STARTIFORMES
3458    !
3459    IF (ok_stratus) THEN
3460       CALL diagcld2(paprs,pplay,t_seri,q_seri, diafra,dialiq)
3461       DO k = 1, klev
3462          DO i = 1, klon
3463             IF (diafra(i,k).GT.cldfra(i,k)) THEN
3464                cldliq(i,k) = dialiq(i,k)
3465                cldfra(i,k) = diafra(i,k)
3466             ENDIF
3467          ENDDO
3468       ENDDO
3469    ENDIF
3470    !
3471    ! Precipitation totale
3472    !
3473    DO i = 1, klon
3474       rain_fall(i) = rain_con(i) + rain_lsc(i)
3475       snow_fall(i) = snow_con(i) + snow_lsc(i)
3476    ENDDO
3477    !
3478    ! Calculer l'humidite relative pour diagnostique
3479    !
3480    DO k = 1, klev
3481       DO i = 1, klon
3482          zx_t = t_seri(i,k)
3483          IF (thermcep) THEN
3484             !!           if (iflag_ice_thermo.eq.0) then                 !jyg
3485             zdelta = MAX(0.,SIGN(1.,rtt-zx_t))
3486             !!           else                                            !jyg
3487             !!           zdelta = MAX(0.,SIGN(1.,t_glace_min-zx_t))      !jyg
3488             !!           endif                                           !jyg
3489             zx_qs  = r2es * FOEEW(zx_t,zdelta)/pplay(i,k)
3490             zx_qs  = MIN(0.5,zx_qs)
3491             zcor   = 1./(1.-retv*zx_qs)
3492             zx_qs  = zx_qs*zcor
3493          ELSE
3494             !!           IF (zx_t.LT.t_coup) THEN             !jyg
3495             IF (zx_t.LT.rtt) THEN                  !jyg
3496                zx_qs = qsats(zx_t)/pplay(i,k)
3497             ELSE
3498                zx_qs = qsatl(zx_t)/pplay(i,k)
3499             ENDIF
3500          ENDIF
3501          zx_rh(i,k) = q_seri(i,k)/zx_qs
3502          zqsat(i,k)=zx_qs
3503       ENDDO
3504    ENDDO
[782]3505
[2469]3506    !IM Calcul temp.potentielle a 2m (tpot) et temp. potentielle
3507    !   equivalente a 2m (tpote) pour diagnostique
3508    !
3509    DO i = 1, klon
3510       tpot(i)=zt2m(i)*(100000./paprs(i,1))**RKAPPA
3511       IF (thermcep) THEN
3512          IF(zt2m(i).LT.RTT) then
3513             Lheat=RLSTT
3514          ELSE
3515             Lheat=RLVTT
3516          ENDIF
3517       ELSE
3518          IF (zt2m(i).LT.RTT) THEN
3519             Lheat=RLSTT
3520          ELSE
3521             Lheat=RLVTT
3522          ENDIF
3523       ENDIF
3524       tpote(i) = tpot(i)*      &
3525            EXP((Lheat *qsat2m(i))/(RCPD*zt2m(i)))
3526    ENDDO
[524]3527
[2469]3528    IF (type_trac == 'inca') THEN
[524]3529#ifdef INCA
[2469]3530       CALL VTe(VTphysiq)
3531       CALL VTb(VTinca)
3532       calday = REAL(days_elapsed + 1) + jH_cur
[524]3533
[2692]3534       CALL chemtime(itap+itau_phy-1, date0, dtime, itap)
[3481]3535       CALL aerosol_meteo_calc( &
3536            calday,pdtphys,pplay,paprs,t,pmflxr,pmflxs, &
3537            prfl,psfl,pctsrf,cell_area, &
3538            latitude_deg,longitude_deg,u10m,v10m)
[524]3539
[2469]3540       zxsnow_dummy(:) = 0.0
[625]3541
[2469]3542       CALL chemhook_begin (calday, &
3543            days_elapsed+1, &
3544            jH_cur, &
3545            pctsrf(1,1), &
3546            latitude_deg, &
3547            longitude_deg, &
3548            cell_area, &
3549            paprs, &
3550            pplay, &
3551            coefh(1:klon,1:klev,is_ave), &
3552            pphi, &
3553            t_seri, &
3554            u, &
3555            v, &
3556            wo(:, :, 1), &
3557            q_seri, &
3558            zxtsol, &
3559            zxsnow_dummy, &
3560            solsw, &
3561            albsol1, &
3562            rain_fall, &
3563            snow_fall, &
3564            itop_con, &
3565            ibas_con, &
3566            cldfra, &
3567            nbp_lon, &
3568            nbp_lat-1, &
3569            tr_seri, &
3570            ftsol, &
3571            paprs, &
3572            cdragh, &
3573            cdragm, &
3574            pctsrf, &
3575            pdtphys, &
3576            itap)
[616]3577
[2469]3578       CALL VTe(VTinca)
3579       CALL VTb(VTphysiq)
[959]3580#endif
[2692]3581    ENDIF !type_trac = inca
[2618]3582
3583
[2469]3584    !
[2618]3585    ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.
3586    !
3587    IF (MOD(itaprad,radpas).EQ.0) THEN
[959]3588
[2618]3589       !
3590       !jq - introduce the aerosol direct and first indirect radiative forcings
3591       !jq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr)
[2738]3592       IF (flag_aerosol .GT. 0) THEN
[2618]3593          IF (iflag_rrtm .EQ. 0) THEN !--old radiation
3594             IF (.NOT. aerosol_couple) THEN
3595                !
3596                CALL readaerosol_optic( &
3597                     debut, new_aod, flag_aerosol, itap, jD_cur-jD_ref, &
3598                     pdtphys, pplay, paprs, t_seri, rhcl, presnivs,  &
3599                     mass_solu_aero, mass_solu_aero_pi,  &
3600                     tau_aero, piz_aero, cg_aero,  &
3601                     tausum_aero, tau3d_aero)
3602             ENDIF
3603          ELSE                       ! RRTM radiation
3604             IF (aerosol_couple .AND. config_inca == 'aero' ) THEN
3605                abort_message='config_inca=aero et rrtm=1 impossible'
[2692]3606                CALL abort_physic(modname,abort_message,1)
[2618]3607             ELSE
3608                !
3609#ifdef CPP_RRTM
3610                IF (NSW.EQ.6) THEN
[2738]3611                   !--new aerosol properties SW and LW
[2618]3612                   !
[2753]3613#ifdef CPP_Dust
3614                   !--SPL aerosol model
3615                   CALL splaerosol_optic_rrtm( ok_alw, pplay, paprs, t_seri, rhcl, &
3616                        tr_seri, mass_solu_aero, mass_solu_aero_pi,  &
3617                        tau_aero_sw_rrtm, piz_aero_sw_rrtm, cg_aero_sw_rrtm,  &
3618                        tausum_aero, tau3d_aero)
3619#else
3620                   !--climatologies or INCA aerosols
[3425]3621                   CALL readaerosol_optic_rrtm( debut, aerosol_couple, ok_alw, ok_volcan, &
[2644]3622                        new_aod, flag_aerosol, flag_bc_internal_mixture, itap, jD_cur-jD_ref, &
[2618]3623                        pdtphys, pplay, paprs, t_seri, rhcl, presnivs,  &
3624                        tr_seri, mass_solu_aero, mass_solu_aero_pi,  &
3625                        tau_aero_sw_rrtm, piz_aero_sw_rrtm, cg_aero_sw_rrtm,  &
[2854]3626                        tausum_aero, drytausum_aero, tau3d_aero)
[2753]3627#endif
[3318]3628
3629                   IF (flag_aerosol .EQ. 7) THEN
3630                      CALL MACv2SP(pphis,pplay,paprs,longitude_deg,latitude_deg,  &
3631                                   tau_aero_sw_rrtm,piz_aero_sw_rrtm,cg_aero_sw_rrtm)
3632                   ENDIF
3633
[2738]3634                   !
[2618]3635                ELSE IF (NSW.EQ.2) THEN
3636                   !--for now we use the old aerosol properties
3637                   !
3638                   CALL readaerosol_optic( &
3639                        debut, new_aod, flag_aerosol, itap, jD_cur-jD_ref, &
3640                        pdtphys, pplay, paprs, t_seri, rhcl, presnivs,  &
3641                        mass_solu_aero, mass_solu_aero_pi,  &
3642                        tau_aero, piz_aero, cg_aero,  &
3643                        tausum_aero, tau3d_aero)
3644                   !
3645                   !--natural aerosols
3646                   tau_aero_sw_rrtm(:,:,1,:)=tau_aero(:,:,3,:)
3647                   piz_aero_sw_rrtm(:,:,1,:)=piz_aero(:,:,3,:)
3648                   cg_aero_sw_rrtm (:,:,1,:)=cg_aero (:,:,3,:)
3649                   !--all aerosols
3650                   tau_aero_sw_rrtm(:,:,2,:)=tau_aero(:,:,2,:)
3651                   piz_aero_sw_rrtm(:,:,2,:)=piz_aero(:,:,2,:)
3652                   cg_aero_sw_rrtm (:,:,2,:)=cg_aero (:,:,2,:)
[2738]3653                   !
3654                   !--no LW optics
3655                   tau_aero_lw_rrtm(:,:,:,:) = 1.e-15
3656                   !
[2618]3657                ELSE
3658                   abort_message='Only NSW=2 or 6 are possible with ' &
3659                        // 'aerosols and iflag_rrtm=1'
[2692]3660                   CALL abort_physic(modname,abort_message,1)
[2618]3661                ENDIF
3662#else
3663                abort_message='You should compile with -rrtm if running ' &
3664                     // 'with iflag_rrtm=1'
[2692]3665                CALL abort_physic(modname,abort_message,1)
[2618]3666#endif
3667                !
3668             ENDIF
3669          ENDIF
[2738]3670       ELSE   !--flag_aerosol = 0
[2618]3671          tausum_aero(:,:,:) = 0.
[2854]3672          drytausum_aero(:,:) = 0.
[2640]3673          mass_solu_aero(:,:) = 0.
3674          mass_solu_aero_pi(:,:) = 0.
[2618]3675          IF (iflag_rrtm .EQ. 0) THEN !--old radiation
3676             tau_aero(:,:,:,:) = 1.e-15
3677             piz_aero(:,:,:,:) = 1.
3678             cg_aero(:,:,:,:)  = 0.
3679          ELSE
3680             tau_aero_sw_rrtm(:,:,:,:) = 1.e-15
3681             tau_aero_lw_rrtm(:,:,:,:) = 1.e-15
3682             piz_aero_sw_rrtm(:,:,:,:) = 1.0
3683             cg_aero_sw_rrtm(:,:,:,:)  = 0.0
3684          ENDIF
3685       ENDIF
3686       !
[2994]3687       !--WMO criterion to determine tropopause
[3123]3688       CALL stratosphere_mask(missing_val, pphis, t_seri, pplay, latitude_deg)
[2994]3689       !
[2618]3690       !--STRAT AEROSOL
3691       !--updates tausum_aero,tau_aero,piz_aero,cg_aero
3692       IF (flag_aerosol_strat.GT.0) THEN
3693          IF (prt_level .GE.10) THEN
3694             PRINT *,'appel a readaerosolstrat', mth_cur
3695          ENDIF
3696          IF (iflag_rrtm.EQ.0) THEN
3697           IF (flag_aerosol_strat.EQ.1) THEN
3698             CALL readaerosolstrato(debut)
3699           ELSE
3700             abort_message='flag_aerosol_strat must equal 1 for rrtm=0'
3701             CALL abort_physic(modname,abort_message,1)
3702           ENDIF
3703          ELSE
[2009]3704#ifdef CPP_RRTM
[2690]3705#ifndef CPP_StratAer
3706          !--prescribed strat aerosols
3707          !--only in the case of non-interactive strat aerosols
[2618]3708            IF (flag_aerosol_strat.EQ.1) THEN
3709             CALL readaerosolstrato1_rrtm(debut)
3710            ELSEIF (flag_aerosol_strat.EQ.2) THEN
[3425]3711             CALL readaerosolstrato2_rrtm(debut, ok_volcan)
[2618]3712            ELSE
3713             abort_message='flag_aerosol_strat must equal 1 or 2 for rrtm=1'
3714             CALL abort_physic(modname,abort_message,1)
3715            ENDIF
[2690]3716#endif
[2618]3717#else
3718             abort_message='You should compile with -rrtm if running ' &
3719                  // 'with iflag_rrtm=1'
3720             CALL abort_physic(modname,abort_message,1)
3721#endif
3722          ENDIF
3723       ENDIF
[2690]3724!
3725#ifdef CPP_RRTM
3726#ifdef CPP_StratAer
[2692]3727       !--compute stratospheric mask
[3123]3728       CALL stratosphere_mask(missing_val, pphis, t_seri, pplay, latitude_deg)
[2690]3729       !--interactive strat aerosols
3730       CALL calcaerosolstrato_rrtm(pplay,t_seri,paprs,debut)
3731#endif
3732#endif
[2618]3733       !--fin STRAT AEROSOL
3734       !     
3735
3736       ! Calculer les parametres optiques des nuages et quelques
3737       ! parametres pour diagnostiques:
3738       !
3739       IF (aerosol_couple.AND.config_inca=='aero') THEN
3740          mass_solu_aero(:,:)    = ccm(:,:,1)
3741          mass_solu_aero_pi(:,:) = ccm(:,:,2)
[2692]3742       ENDIF
[2618]3743
3744       IF (ok_newmicro) then
3745          IF (iflag_rrtm.NE.0) THEN
3746#ifdef CPP_RRTM
3747             IF (ok_cdnc.AND.NRADLP.NE.3) THEN
[2469]3748             abort_message='RRTM choix incoherent NRADLP doit etre egal a 3 ' &
3749                  // 'pour ok_cdnc'
[2618]3750             CALL abort_physic(modname,abort_message,1)
3751             ENDIF
[2009]3752#else
3753
[2618]3754             abort_message='You should compile with -rrtm if running with '//'iflag_rrtm=1'
3755             CALL abort_physic(modname,abort_message,1)
[2009]3756#endif
[2618]3757          ENDIF
[3318]3758          CALL newmicro (flag_aerosol, ok_cdnc, bl95_b0, bl95_b1, &
[2618]3759               paprs, pplay, t_seri, cldliq, cldfra, &
3760               cldtau, cldemi, cldh, cldl, cldm, cldt, cldq, &
3761               flwp, fiwp, flwc, fiwc, &
3762               mass_solu_aero, mass_solu_aero_pi, &
3763               cldtaupi, re, fl, ref_liq, ref_ice, &
3764               ref_liq_pi, ref_ice_pi)
3765       ELSE
3766          CALL nuage (paprs, pplay, &
3767               t_seri, cldliq, cldfra, cldtau, cldemi, &
3768               cldh, cldl, cldm, cldt, cldq, &
3769               ok_aie, &
3770               mass_solu_aero, mass_solu_aero_pi, &
3771               bl95_b0, bl95_b1, &
3772               cldtaupi, re, fl)
[2469]3773       ENDIF
3774       !
[2618]3775       !IM betaCRF
[2469]3776       !
[2618]3777       cldtaurad   = cldtau
3778       cldtaupirad = cldtaupi
3779       cldemirad   = cldemi
3780       cldfrarad   = cldfra
3781
[2469]3782       !
[2618]3783       IF (lon1_beta.EQ.-180..AND.lon2_beta.EQ.180..AND. &
3784           lat1_beta.EQ.90..AND.lat2_beta.EQ.-90.) THEN
3785          !
3786          ! global
3787          !
[3048]3788!IM 251017 begin
[3263]3789!                print*,'physiq betaCRF global zdtime=',zdtime
[3048]3790!IM 251017 end
[2618]3791          DO k=1, klev
3792             DO i=1, klon
3793                IF (pplay(i,k).GE.pfree) THEN
[2469]3794                   beta(i,k) = beta_pbl
[2618]3795                ELSE
[2469]3796                   beta(i,k) = beta_free
[2618]3797                ENDIF
3798                IF (mskocean_beta) THEN
[2469]3799                   beta(i,k) = beta(i,k) * pctsrf(i,is_oce)
[2618]3800                ENDIF
[2469]3801                cldtaurad(i,k)   = cldtau(i,k) * beta(i,k)
3802                cldtaupirad(i,k) = cldtaupi(i,k) * beta(i,k)
3803                cldemirad(i,k)   = cldemi(i,k) * beta(i,k)
3804                cldfrarad(i,k)   = cldfra(i,k) * beta(i,k)
[2618]3805             ENDDO
3806          ENDDO
3807          !
3808       ELSE
3809          !
3810          ! regional
3811          !
3812          DO k=1, klev
3813             DO i=1,klon
3814                !
3815                IF (longitude_deg(i).ge.lon1_beta.AND. &
3816                    longitude_deg(i).le.lon2_beta.AND. &
3817                    latitude_deg(i).le.lat1_beta.AND.  &
3818                    latitude_deg(i).ge.lat2_beta) THEN
3819                   IF (pplay(i,k).GE.pfree) THEN
3820                      beta(i,k) = beta_pbl
3821                   ELSE
3822                      beta(i,k) = beta_free
3823                   ENDIF
3824                   IF (mskocean_beta) THEN
3825                      beta(i,k) = beta(i,k) * pctsrf(i,is_oce)
3826                   ENDIF
3827                   cldtaurad(i,k)   = cldtau(i,k) * beta(i,k)
3828                   cldtaupirad(i,k) = cldtaupi(i,k) * beta(i,k)
3829                   cldemirad(i,k)   = cldemi(i,k) * beta(i,k)
3830                   cldfrarad(i,k)   = cldfra(i,k) * beta(i,k)
3831                ENDIF
[2469]3832             !
[2618]3833             ENDDO
[2469]3834          ENDDO
3835       !
[2618]3836       ENDIF
[766]3837
[2618]3838       !lecture de la chlorophylle pour le nouvel albedo de Sunghye Baek
3839       IF (ok_chlorophyll) THEN
[2469]3840          print*,"-- reading chlorophyll"
[2618]3841          CALL readchlorophyll(debut)
3842       ENDIF
[1863]3843
[2524]3844!--if ok_suntime_rrtm we use ancillay data for RSUN
3845!--previous values are therefore overwritten
3846!--this is needed for CMIP6 runs
3847!--and only possible for new radiation scheme
3848       IF (iflag_rrtm.EQ.1.AND.ok_suntime_rrtm) THEN
[2525]3849#ifdef CPP_RRTM
[2524]3850         CALL read_rsun_rrtm(debut)
[2525]3851#endif
[2524]3852       ENDIF
3853
[2692]3854       IF (mydebug) THEN
3855          CALL writefield_phy('u_seri',u_seri,nbp_lev)
3856          CALL writefield_phy('v_seri',v_seri,nbp_lev)
3857          CALL writefield_phy('t_seri',t_seri,nbp_lev)
3858          CALL writefield_phy('q_seri',q_seri,nbp_lev)
3859       ENDIF
[2524]3860
[2469]3861       !
3862       !sonia : If Iflag_radia >=2, pertubation of some variables
3863       !input to radiation (DICE)
3864       !
3865       IF (iflag_radia .ge. 2) THEN
3866          zsav_tsol (:) = zxtsol(:)
[2692]3867          CALL perturb_radlwsw(zxtsol,iflag_radia)
[2469]3868       ENDIF
[2328]3869
[2469]3870       IF (aerosol_couple.AND.config_inca=='aero') THEN
[959]3871#ifdef INCA
[2469]3872          CALL radlwsw_inca  &
[3339]3873               (chemistry_couple, kdlon,kflev,dist, rmu0, fract, solaire, &
[2469]3874               paprs, pplay,zxtsol,albsol1, albsol2, t_seri,q_seri, &
[2684]3875               size(wo,3), wo, &
[2469]3876               cldfrarad, cldemirad, cldtaurad, &
3877               heat,heat0,cool,cool0,albpla, &
3878               topsw,toplw,solsw,sollw, &
3879               sollwdown, &
3880               topsw0,toplw0,solsw0,sollw0, &
3881               lwdn0, lwdn, lwup0, lwup,  &
3882               swdn0, swdn, swup0, swup, &
3883               ok_ade, ok_aie, &
3884               tau_aero, piz_aero, cg_aero, &
3885               topswad_aero, solswad_aero, &
3886               topswad0_aero, solswad0_aero, &
3887               topsw_aero, topsw0_aero, &
3888               solsw_aero, solsw0_aero, &
3889               cldtaupirad, &
3890               topswai_aero, solswai_aero)
[955]3891#endif
[2469]3892       ELSE
3893          !
3894          !IM calcul radiatif pour le cas actuel
3895          !
3896          RCO2 = RCO2_act
3897          RCH4 = RCH4_act
3898          RN2O = RN2O_act
3899          RCFC11 = RCFC11_act
3900          RCFC12 = RCFC12_act
3901          !
3902          IF (prt_level .GE.10) THEN
3903             print *,' ->radlwsw, number 1 '
3904          ENDIF
[3048]3905
[2469]3906          !
3907          CALL radlwsw &
3908               (dist, rmu0, fract,  &
3909                                !albedo SB >>>
3910                                !      paprs, pplay,zxtsol,albsol1, albsol2,  &
3911               paprs, pplay,zxtsol,SFRWL,albsol_dir, albsol_dif,  &
3912                                !albedo SB <<<
3913               t_seri,q_seri,wo, &
3914               cldfrarad, cldemirad, cldtaurad, &
[3408]3915               ok_ade.OR.flag_aerosol_strat.GT.0, ok_aie, ok_volcan, &
[3525]3916               flag_aerosol, flag_aerosol_strat, flag_aer_feedback, &
[2469]3917               tau_aero, piz_aero, cg_aero, &
3918               tau_aero_sw_rrtm, piz_aero_sw_rrtm, cg_aero_sw_rrtm, &
3919               ! Rajoute par OB pour RRTM
3920               tau_aero_lw_rrtm, &
3921               cldtaupirad,new_aod, &
[3048]3922!              zqsat, flwcrad, fiwcrad, &
[2469]3923               zqsat, flwc, fiwc, &
3924               ref_liq, ref_ice, ref_liq_pi, ref_ice_pi, &
3925               heat,heat0,cool,cool0,albpla, &
[3408]3926               heat_volc,cool_volc, &
[2469]3927               topsw,toplw,solsw,sollw, &
3928               sollwdown, &
3929               topsw0,toplw0,solsw0,sollw0, &
[3106]3930               lwdnc0, lwdn0, lwdn, lwupc0, lwup0, lwup,  &
[3082]3931               swdnc0, swdn0, swdn, swupc0, swup0, swup, &
[2469]3932               topswad_aero, solswad_aero, &
3933               topswai_aero, solswai_aero, &
3934               topswad0_aero, solswad0_aero, &
3935               topsw_aero, topsw0_aero, &
3936               solsw_aero, solsw0_aero, &
3937               topswcf_aero, solswcf_aero, &
3938                                !-C. Kleinschmitt for LW diagnostics
3939               toplwad_aero, sollwad_aero,&
3940               toplwai_aero, sollwai_aero, &
3941               toplwad0_aero, sollwad0_aero,&
3942                                !-end
3943               ZLWFT0_i, ZFLDN0, ZFLUP0, &
[3117]3944               ZSWFT0_i, ZFSDN0, ZFSUP0)
[879]3945
[3048]3946          !lwoff=y, betalwoff=1. : offset LW CRE for radiation code and other
3947          !schemes
3948          toplw = toplw + betalwoff * (toplw0 - toplw)
3949          sollw = sollw + betalwoff * (sollw0 - sollw)
3950          lwdn = lwdn + betalwoff * (lwdn0 - lwdn)
3951          lwup = lwup + betalwoff * (lwup0 - lwup)
3952          sollwdown(:)= sollwdown(:) + betalwoff *(-1.*ZFLDN0(:,1) - &
3953                        sollwdown(:))
3954          cool = cool + betalwoff * (cool0 - cool)
3955 
[2679]3956#ifndef CPP_XIOS
3957          !--OB 30/05/2016 modified 21/10/2016
[2854]3958          !--here we return swaero_diag and dryaod_diag to FALSE
[2529]3959          !--and histdef will switch it back to TRUE if necessary
3960          !--this is necessary to get the right swaero at first step
[2679]3961          !--but only in the case of no XIOS as XIOS is covered elsewhere
[3082]3962          IF (debut) swaerofree_diag = .FALSE.
[2529]3963          IF (debut) swaero_diag = .FALSE.
[2854]3964          IF (debut) dryaod_diag = .FALSE.
[2989]3965          !--IM 15/09/2017 here we return ok_4xCO2atm to FALSE
3966          !--as for swaero_diag, see above
3967          IF (debut) ok_4xCO2atm = .FALSE.
[3149]3968
[2469]3969          !
3970          !IM 2eme calcul radiatif pour le cas perturbe ou au moins un
3971          !IM des taux doit etre different du taux actuel
3972          !IM Par defaut on a les taux perturbes egaux aux taux actuels
3973          !
[2989]3974          IF (RCO2_per.NE.RCO2_act.OR. &
3975              RCH4_per.NE.RCH4_act.OR. &
3976              RN2O_per.NE.RN2O_act.OR. &
3977              RCFC11_per.NE.RCFC11_act.OR. &
3978              RCFC12_per.NE.RCFC12_act) ok_4xCO2atm =.TRUE.
[3149]3979#endif
[2989]3980   !
[2692]3981          IF (ok_4xCO2atm) THEN
[2469]3982                !
3983                RCO2 = RCO2_per
3984                RCH4 = RCH4_per
3985                RN2O = RN2O_per
3986                RCFC11 = RCFC11_per
3987                RCFC12 = RCFC12_per
3988                !
3989                IF (prt_level .GE.10) THEN
3990                   print *,' ->radlwsw, number 2 '
3991                ENDIF
3992                !
3993                CALL radlwsw &
3994                     (dist, rmu0, fract,  &
3995                                !albedo SB >>>
3996                                !      paprs, pplay,zxtsol,albsol1, albsol2,  &
3997                     paprs, pplay,zxtsol,SFRWL,albsol_dir, albsol_dif, &
3998                                !albedo SB <<<
3999                     t_seri,q_seri,wo, &
[2640]4000                     cldfrarad, cldemirad, cldtaurad, &
[3408]4001                     ok_ade.OR.flag_aerosol_strat.GT.0, ok_aie, ok_volcan, &
[3525]4002                     flag_aerosol, flag_aerosol_strat, flag_aer_feedback, &
[2469]4003                     tau_aero, piz_aero, cg_aero, &
4004                     tau_aero_sw_rrtm, piz_aero_sw_rrtm, cg_aero_sw_rrtm, &
4005                                ! Rajoute par OB pour RRTM
4006                     tau_aero_lw_rrtm, &
4007                     cldtaupi,new_aod, &
[3048]4008!                    zqsat, flwcrad, fiwcrad, &
[2469]4009                     zqsat, flwc, fiwc, &
4010                     ref_liq, ref_ice, ref_liq_pi, ref_ice_pi, &
4011                     heatp,heat0p,coolp,cool0p,albplap, &
[3408]4012                     heat_volc,cool_volc, &
[2469]4013                     topswp,toplwp,solswp,sollwp, &
4014                     sollwdownp, &
4015                     topsw0p,toplw0p,solsw0p,sollw0p, &
[3106]4016                     lwdnc0p, lwdn0p, lwdnp, lwupc0p, lwup0p, lwupp,  &
[3082]4017                     swdnc0p, swdn0p, swdnp, swupc0p, swup0p, swupp, &
[2469]4018                     topswad_aerop, solswad_aerop, &
4019                     topswai_aerop, solswai_aerop, &
4020                     topswad0_aerop, solswad0_aerop, &
4021                     topsw_aerop, topsw0_aerop, &
4022                     solsw_aerop, solsw0_aerop, &
4023                     topswcf_aerop, solswcf_aerop, &
4024                                !-C. Kleinschmitt for LW diagnostics
4025                     toplwad_aerop, sollwad_aerop,&
4026                     toplwai_aerop, sollwai_aerop, &
4027                     toplwad0_aerop, sollwad0_aerop,&
4028                                !-end
4029                     ZLWFT0_i, ZFLDN0, ZFLUP0, &
[3117]4030                     ZSWFT0_i, ZFSDN0, ZFSUP0)
[3048]4031          endif !ok_4xCO2atm
[2469]4032       ENDIF ! aerosol_couple
4033       itaprad = 0
4034       !
4035       !  If Iflag_radia >=2, reset pertubed variables
4036       !
4037       IF (iflag_radia .ge. 2) THEN
4038          zxtsol(:) = zsav_tsol (:)
4039       ENDIF
4040    ENDIF ! MOD(itaprad,radpas)
4041    itaprad = itaprad + 1
[879]4042
[2469]4043    IF (iflag_radia.eq.0) THEN
4044       IF (prt_level.ge.9) THEN
4045          PRINT *,'--------------------------------------------------'
4046          PRINT *,'>>>> ATTENTION rayonnement desactive pour ce cas'
4047          PRINT *,'>>>>           heat et cool mis a zero '
4048          PRINT *,'--------------------------------------------------'
[2692]4049       ENDIF
[2469]4050       heat=0.
4051       cool=0.
4052       sollw=0.   ! MPL 01032011
4053       solsw=0.
4054       radsol=0.
4055       swup=0.    ! MPL 27102011 pour les fichiers AMMA_profiles et AMMA_scalars
4056       swup0=0.
4057       lwup=0.
4058       lwup0=0.
4059       lwdn=0.
4060       lwdn0=0.
[2692]4061    ENDIF
[782]4062
[2469]4063    !
4064    ! Calculer radsol a l'exterieur de radlwsw
4065    ! pour prendre en compte le cycle diurne
4066    ! recode par Olivier Boucher en sept 2015
4067    !
4068    radsol=solsw*swradcorr+sollw
[2618]4069
[2692]4070    IF (ok_4xCO2atm) THEN
[2469]4071       radsolp=solswp*swradcorr+sollwp
[2692]4072    ENDIF
[2359]4073
[2469]4074    !
4075    ! Ajouter la tendance des rayonnements (tous les pas)
4076    ! avec une correction pour le cycle diurne dans le SW
4077    !
[2359]4078
[2469]4079    DO k=1, klev
4080       d_t_swr(:,k)=swradcorr(:)*heat(:,k)*dtime/RDAY
4081       d_t_sw0(:,k)=swradcorr(:)*heat0(:,k)*dtime/RDAY
4082       d_t_lwr(:,k)=-cool(:,k)*dtime/RDAY
4083       d_t_lw0(:,k)=-cool0(:,k)*dtime/RDAY
4084    ENDDO
[2194]4085
[2812]4086    CALL add_phys_tend(du0,dv0,d_t_swr,dq0,dql0,dqi0,paprs,'SW',abortphy,flag_inhib_tend,itap,0)
[2799]4087    call prt_enerbil('SW',itap)
[2812]4088    CALL add_phys_tend(du0,dv0,d_t_lwr,dq0,dql0,dqi0,paprs,'LW',abortphy,flag_inhib_tend,itap,0)
[2799]4089    call prt_enerbil('LW',itap)
[1863]4090
[2469]4091    !
[2692]4092    IF (mydebug) THEN
4093       CALL writefield_phy('u_seri',u_seri,nbp_lev)
4094       CALL writefield_phy('v_seri',v_seri,nbp_lev)
4095       CALL writefield_phy('t_seri',t_seri,nbp_lev)
4096       CALL writefield_phy('q_seri',q_seri,nbp_lev)
4097    ENDIF
[1863]4098
[2469]4099    ! Calculer l'hydrologie de la surface
4100    !
4101    !      CALL hydrol(dtime,pctsrf,rain_fall, snow_fall, zxevap,
4102    !     .            agesno, ftsol,fqsurf,fsnow, ruis)
4103    !
[1001]4104
[2469]4105    !
4106    ! Calculer le bilan du sol et la derive de temperature (couplage)
4107    !
4108    DO i = 1, klon
4109       !         bils(i) = radsol(i) - sens(i) - evap(i)*RLVTT
4110       ! a la demande de JLD
4111       bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
4112    ENDDO
4113    !
4114    !moddeblott(jan95)
4115    ! Appeler le programme de parametrisation de l'orographie
4116    ! a l'echelle sous-maille:
4117    !
4118    IF (prt_level .GE.10) THEN
4119       print *,' call orography ? ', ok_orodr
4120    ENDIF
4121    !
4122    IF (ok_orodr) THEN
4123       !
4124       !  selection des points pour lesquels le shema est actif:
4125       igwd=0
4126       DO i=1,klon
4127          itest(i)=0
4128          !        IF ((zstd(i).gt.10.0)) THEN
4129          IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN
4130             itest(i)=1
4131             igwd=igwd+1
4132             idx(igwd)=i
4133          ENDIF
4134       ENDDO
4135       !        igwdim=MAX(1,igwd)
4136       !
4137       IF (ok_strato) THEN
[1863]4138
[2897]4139          CALL drag_noro_strato(0,klon,klev,dtime,paprs,pplay, &
[2469]4140               zmea,zstd, zsig, zgam, zthe,zpic,zval, &
4141               igwd,idx,itest, &
4142               t_seri, u_seri, v_seri, &
4143               zulow, zvlow, zustrdr, zvstrdr, &
4144               d_t_oro, d_u_oro, d_v_oro)
[1863]4145
[2469]4146       ELSE
4147          CALL drag_noro(klon,klev,dtime,paprs,pplay, &
4148               zmea,zstd, zsig, zgam, zthe,zpic,zval, &
4149               igwd,idx,itest, &
4150               t_seri, u_seri, v_seri, &
4151               zulow, zvlow, zustrdr, zvstrdr, &
4152               d_t_oro, d_u_oro, d_v_oro)
4153       ENDIF
4154       !
4155       !  ajout des tendances
4156       !-----------------------------------------------------------------------
4157       ! ajout des tendances de la trainee de l'orographie
4158       CALL add_phys_tend(d_u_oro,d_v_oro,d_t_oro,dq0,dql0,dqi0,paprs,'oro', &
[2812]4159            abortphy,flag_inhib_tend,itap,0)
[2799]4160       call prt_enerbil('oro',itap)
[2469]4161       !----------------------------------------------------------------------
4162       !
4163    ENDIF ! fin de test sur ok_orodr
4164    !
[2692]4165    IF (mydebug) THEN
4166       CALL writefield_phy('u_seri',u_seri,nbp_lev)
4167       CALL writefield_phy('v_seri',v_seri,nbp_lev)
4168       CALL writefield_phy('t_seri',t_seri,nbp_lev)
4169       CALL writefield_phy('q_seri',q_seri,nbp_lev)
4170    ENDIF
[1001]4171
[2469]4172    IF (ok_orolf) THEN
4173       !
4174       !  selection des points pour lesquels le shema est actif:
4175       igwd=0
4176       DO i=1,klon
4177          itest(i)=0
4178          IF ((zpic(i)-zmea(i)).GT.100.) THEN
4179             itest(i)=1
4180             igwd=igwd+1
4181             idx(igwd)=i
4182          ENDIF
4183       ENDDO
4184       !        igwdim=MAX(1,igwd)
4185       !
4186       IF (ok_strato) THEN
[1001]4187
[2469]4188          CALL lift_noro_strato(klon,klev,dtime,paprs,pplay, &
4189               latitude_deg,zmea,zstd,zpic,zgam,zthe,zpic,zval, &
4190               igwd,idx,itest, &
4191               t_seri, u_seri, v_seri, &
4192               zulow, zvlow, zustrli, zvstrli, &
4193               d_t_lif, d_u_lif, d_v_lif               )
[2333]4194
[2469]4195       ELSE
4196          CALL lift_noro(klon,klev,dtime,paprs,pplay, &
4197               latitude_deg,zmea,zstd,zpic, &
4198               itest, &
4199               t_seri, u_seri, v_seri, &
4200               zulow, zvlow, zustrli, zvstrli, &
4201               d_t_lif, d_u_lif, d_v_lif)
4202       ENDIF
[1638]4203
[2469]4204       ! ajout des tendances de la portance de l'orographie
4205       CALL add_phys_tend(d_u_lif, d_v_lif, d_t_lif, dq0, dql0, dqi0, paprs, &
[2812]4206            'lif', abortphy,flag_inhib_tend,itap,0)
[2799]4207       call prt_enerbil('lif',itap)
[2469]4208    ENDIF ! fin de test sur ok_orolf
[1638]4209
[2469]4210    IF (ok_hines) then
4211       !  HINES GWD PARAMETRIZATION
4212       east_gwstress=0.
4213       west_gwstress=0.
4214       du_gwd_hines=0.
4215       dv_gwd_hines=0.
4216       CALL hines_gwd(klon, klev, dtime, paprs, pplay, latitude_deg, t_seri, &
4217            u_seri, v_seri, zustr_gwd_hines, zvstr_gwd_hines, d_t_hin, &
4218            du_gwd_hines, dv_gwd_hines)
4219       zustr_gwd_hines=0.
4220       zvstr_gwd_hines=0.
4221       DO k = 1, klev
4222          zustr_gwd_hines(:)=zustr_gwd_hines(:)+ du_gwd_hines(:, k)/dtime &
4223               * (paprs(:, k)-paprs(:, k+1))/rg
4224          zvstr_gwd_hines(:)=zvstr_gwd_hines(:)+ dv_gwd_hines(:, k)/dtime &
4225               * (paprs(:, k)-paprs(:, k+1))/rg
4226       ENDDO
[1001]4227
[2469]4228       d_t_hin(:, :)=0.
4229       CALL add_phys_tend(du_gwd_hines, dv_gwd_hines, d_t_hin, dq0, dql0, &
[2812]4230            dqi0, paprs, 'hin', abortphy,flag_inhib_tend,itap,0)
[2799]4231       call prt_enerbil('hin',itap)
[2469]4232    ENDIF
[2333]4233
[2469]4234    IF (.not. ok_hines .and. ok_gwd_rando) then
4235       CALL acama_GWD_rando(DTIME, pplay, latitude_deg, t_seri, u_seri, &
4236            v_seri, rot, zustr_gwd_front, zvstr_gwd_front, du_gwd_front, &
4237            dv_gwd_front, east_gwstress, west_gwstress)
4238       zustr_gwd_front=0.
4239       zvstr_gwd_front=0.
4240       DO k = 1, klev
4241          zustr_gwd_front(:)=zustr_gwd_front(:)+ du_gwd_front(:, k)/dtime &
4242               * (paprs(:, k)-paprs(:, k+1))/rg
4243          zvstr_gwd_front(:)=zvstr_gwd_front(:)+ dv_gwd_front(:, k)/dtime &
4244               * (paprs(:, k)-paprs(:, k+1))/rg
4245       ENDDO
[644]4246
[2469]4247       CALL add_phys_tend(du_gwd_front, dv_gwd_front, dt0, dq0, dql0, dqi0, &
[2812]4248            paprs, 'front_gwd_rando', abortphy,flag_inhib_tend,itap,0)
[2799]4249       call prt_enerbil('front_gwd_rando',itap)
[2469]4250    ENDIF
[1938]4251
[2692]4252    IF (ok_gwd_rando) THEN
4253       CALL FLOTT_GWD_rando(DTIME, pplay, t_seri, u_seri, v_seri, &
[2469]4254            rain_fall + snow_fall, zustr_gwd_rando, zvstr_gwd_rando, &
4255            du_gwd_rando, dv_gwd_rando, east_gwstress, west_gwstress)
4256       CALL add_phys_tend(du_gwd_rando, dv_gwd_rando, dt0, dq0, dql0, dqi0, &
[2812]4257            paprs, 'flott_gwd_rando', abortphy,flag_inhib_tend,itap,0)
[2799]4258       call prt_enerbil('flott_gwd_rando',itap)
[2469]4259       zustr_gwd_rando=0.
4260       zvstr_gwd_rando=0.
4261       DO k = 1, klev
4262          zustr_gwd_rando(:)=zustr_gwd_rando(:)+ du_gwd_rando(:, k)/dtime &
4263               * (paprs(:, k)-paprs(:, k+1))/rg
4264          zvstr_gwd_rando(:)=zvstr_gwd_rando(:)+ dv_gwd_rando(:, k)/dtime &
4265               * (paprs(:, k)-paprs(:, k+1))/rg
4266       ENDDO
[2692]4267    ENDIF
[766]4268
[2469]4269    ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE
[1279]4270
[2692]4271    IF (mydebug) THEN
4272       CALL writefield_phy('u_seri',u_seri,nbp_lev)
4273       CALL writefield_phy('v_seri',v_seri,nbp_lev)
4274       CALL writefield_phy('t_seri',t_seri,nbp_lev)
4275       CALL writefield_phy('q_seri',q_seri,nbp_lev)
4276    ENDIF
[2136]4277
[2469]4278    DO i = 1, klon
4279       zustrph(i)=0.
4280       zvstrph(i)=0.
4281    ENDDO
4282    DO k = 1, klev
4283       DO i = 1, klon
4284          zustrph(i)=zustrph(i)+(u_seri(i,k)-u(i,k))/dtime* &
4285               (paprs(i,k)-paprs(i,k+1))/rg
4286          zvstrph(i)=zvstrph(i)+(v_seri(i,k)-v(i,k))/dtime* &
4287               (paprs(i,k)-paprs(i,k+1))/rg
4288       ENDDO
4289    ENDDO
4290    !
4291    !IM calcul composantes axiales du moment angulaire et couple des montagnes
4292    !
4293    IF (is_sequential .and. ok_orodr) THEN
4294       CALL aaam_bud (27,klon,klev,jD_cur-jD_ref,jH_cur, &
4295            ra,rg,romega, &
4296            latitude_deg,longitude_deg,pphis, &
4297            zustrdr,zustrli,zustrph, &
4298            zvstrdr,zvstrli,zvstrph, &
4299            paprs,u,v, &
4300            aam, torsfc)
4301    ENDIF
4302    !IM cf. FLott END
4303    !DC Calcul de la tendance due au methane
4304    IF(ok_qch4) THEN
4305       CALL METHOX(1,klon,klon,klev,q_seri,d_q_ch4,pplay)
4306       ! ajout de la tendance d'humidite due au methane
[2801]4307       d_q_ch4_dtime(:,:) = d_q_ch4(:,:)*dtime
4308       CALL add_phys_tend(du0, dv0, dt0, d_q_ch4_dtime, dql0, dqi0, paprs, &
[2812]4309            'q_ch4', abortphy,flag_inhib_tend,itap,0)
[2801]4310       d_q_ch4(:,:) = d_q_ch4_dtime(:,:)/dtime
[2692]4311    ENDIF
[2469]4312    !
4313    !
[2897]4314
4315!===============================================================
4316!            Additional tendency of TKE due to orography
4317!===============================================================
4318!
4319! Inititialization
4320!------------------
4321
4322   
4323
4324       addtkeoro=0   
4325       CALL getin_p('addtkeoro',addtkeoro)
4326     
4327       IF (prt_level.ge.5) &
4328            print*,'addtkeoro', addtkeoro
4329           
4330       alphatkeoro=1.   
4331       CALL getin_p('alphatkeoro',alphatkeoro)
4332       alphatkeoro=min(max(0.,alphatkeoro),1.)
4333
4334       smallscales_tkeoro=.false.   
4335       CALL getin_p('smallscales_tkeoro',smallscales_tkeoro)
4336
4337
4338        dtadd(:,:)=0.
4339        duadd(:,:)=0.
4340        dvadd(:,:)=0.
4341
4342
4343
4344! Choices for addtkeoro:
4345!      ** 0 no TKE tendency from orography   
4346!      ** 1 we include a fraction alphatkeoro of the whole tendency duoro
4347!      ** 2 we include a fraction alphatkeoro of the gravity wave part of duoro
4348!
4349
4350       IF (addtkeoro .GT. 0 .AND. ok_orodr ) THEN
4351!      -------------------------------------------
4352
4353
4354       !  selection des points pour lesquels le schema est actif:
4355
4356
4357
4358  IF (addtkeoro .EQ. 1 ) THEN
4359
4360            duadd(:,:)=alphatkeoro*d_u_oro(:,:)
4361            dvadd(:,:)=alphatkeoro*d_v_oro(:,:)
4362
4363  ELSE IF (addtkeoro .EQ. 2) THEN
4364
4365
4366
4367       IF (smallscales_tkeoro) THEN
4368       igwd=0
4369       DO i=1,klon
4370          itest(i)=0
4371! Etienne: ici je prends en compte plus de relief que la routine drag_noro_strato
4372! car on peut s'attendre a ce que les petites echelles produisent aussi de la TKE
4373! Mais attention, cela ne va pas dans le sens de la conservation de l'energie!
4374          IF (zstd(i).GT.1.0) THEN
4375             itest(i)=1
4376             igwd=igwd+1
4377             idx(igwd)=i
4378          ENDIF
4379       ENDDO
4380
4381     ELSE
4382
4383       igwd=0
4384       DO i=1,klon
4385          itest(i)=0
4386        IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN
4387             itest(i)=1
4388             igwd=igwd+1
4389             idx(igwd)=i
4390          ENDIF
4391       ENDDO
4392
4393       END IF
4394
4395
4396
4397
4398       CALL drag_noro_strato(addtkeoro,klon,klev,dtime,paprs,pplay, &
4399               zmea,zstd, zsig, zgam, zthe,zpic,zval, &
4400               igwd,idx,itest, &
4401               t_seri, u_seri, v_seri, &
4402               zulow, zvlow, zustrdr, zvstrdr, &
4403               d_t_oro_gw, d_u_oro_gw, d_v_oro_gw)
4404
4405            zustrdr(:)=0.
4406            zvstrdr(:)=0.
4407            zulow(:)=0.
4408            zvlow(:)=0.
4409
4410            duadd(:,:)=alphatkeoro*d_u_oro_gw(:,:)
4411            dvadd(:,:)=alphatkeoro*d_v_oro_gw(:,:)
4412 END IF
4413   
4414
4415
4416   ! TKE update from subgrid temperature and wind tendencies
4417   !----------------------------------------------------------
4418    forall (k=1: nbp_lev) exner(:, k) = (pplay(:, k)/paprs(:,1))**RKAPPA
4419
4420
[3200]4421    CALL tend_to_tke(pdtphys,paprs,exner,t_seri,u_seri,v_seri,dtadd,duadd,dvadd,pctsrf,pbl_tke)
[2897]4422
4423
4424
4425       ENDIF
4426!      -----
4427!===============================================================
4428
4429
4430
[2469]4431    !====================================================================
4432    ! Interface Simulateur COSP (Calipso, ISCCP, MISR, ..)
4433    !====================================================================
4434    ! Abderrahmane 24.08.09
4435
4436    IF (ok_cosp) THEN
4437       ! adeclarer
[1279]4438#ifdef CPP_COSP
[2469]4439       IF (itap.eq.1.or.MOD(itap,NINT(freq_cosp/dtime)).EQ.0) THEN
[1279]4440
[2469]4441          IF (prt_level .GE.10) THEN
4442             print*,'freq_cosp',freq_cosp
4443          ENDIF
4444          mr_ozone=wo(:, :, 1) * dobson_u * 1e3 / zmasse
4445          !       print*,'Dans physiq.F avant appel cosp ref_liq,ref_ice=',
4446          !     s        ref_liq,ref_ice
[2692]4447          CALL phys_cosp(itap,dtime,freq_cosp, &
[2469]4448               ok_mensuelCOSP,ok_journeCOSP,ok_hfCOSP, &
[2794]4449               ecrit_mth,ecrit_day,ecrit_hf, ok_all_xml, missing_val, &
[2469]4450               klon,klev,longitude_deg,latitude_deg,presnivs,overlap, &
4451               JrNt,ref_liq,ref_ice, &
4452               pctsrf(:,is_ter)+pctsrf(:,is_lic), &
4453               zu10m,zv10m,pphis, &
4454               zphi,paprs(:,1:klev),pplay,zxtsol,t_seri, &
4455               qx(:,:,ivap),zx_rh,cldfra,rnebcon,flwc,fiwc, &
4456               prfl(:,1:klev),psfl(:,1:klev), &
4457               pmflxr(:,1:klev),pmflxs(:,1:klev), &
4458               mr_ozone,cldtau, cldemi)
[1412]4459
[2469]4460          !     L         calipso2D,calipso3D,cfadlidar,parasolrefl,atb,betamol,
4461          !     L          cfaddbze,clcalipso2,dbze,cltlidarradar,
4462          !     M          clMISR,
4463          !     R          clisccp2,boxtauisccp,boxptopisccp,tclisccp,ctpisccp,
4464          !     I          tauisccp,albisccp,meantbisccp,meantbclrisccp)
[1279]4465
[2469]4466       ENDIF
[1279]4467
4468#endif
[2469]4469    ENDIF  !ok_cosp
[2580]4470
4471
4472! Marine
4473
4474  IF (ok_airs) then
4475
4476  IF (itap.eq.1.or.MOD(itap,NINT(freq_airs/dtime)).EQ.0) THEN
[2692]4477     write(*,*) 'je vais appeler simu_airs, ok_airs, freq_airs=', ok_airs, freq_airs
4478     CALL simu_airs(itap,rneb, t_seri, cldemi, fiwc, ref_ice, pphi, pplay, paprs,&
4479        & map_prop_hc,map_prop_hist,&
4480        & map_emis_hc,map_iwp_hc,map_deltaz_hc,map_pcld_hc,map_tcld_hc,&
4481        & map_emis_Cb,map_pcld_Cb,map_tcld_Cb,&
4482        & map_emis_ThCi,map_pcld_ThCi,map_tcld_ThCi,&
4483        & map_emis_Anv,map_pcld_Anv,map_tcld_Anv,&
4484        & map_emis_hist,map_iwp_hist,map_deltaz_hist,map_rad_hist,&
4485        & map_ntot,map_hc,map_hist,&
4486        & map_Cb,map_ThCi,map_Anv,&
4487        & alt_tropo )
[2580]4488  ENDIF
4489
4490  ENDIF  ! ok_airs
4491
4492
[2469]4493    ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4494    !AA
4495    !AA Installation de l'interface online-offline pour traceurs
4496    !AA
4497    !====================================================================
4498    !   Calcul  des tendances traceurs
4499    !====================================================================
4500    !
[959]4501
[2469]4502    IF (type_trac=='repr') THEN
4503       sh_in(:,:) = q_seri(:,:)
4504    ELSE
4505       sh_in(:,:) = qx(:,:,ivap)
[2784]4506       ch_in(:,:) = qx(:,:,iliq)
[2692]4507    ENDIF
[1565]4508
[2973]4509    IF (iflag_phytrac == 1 ) THEN
4510
[2630]4511#ifdef CPP_Dust
4512      CALL       phytracr_spl ( debut,lafin , jD_cur,jH_cur,iflag_con,       &  ! I
4513                      pdtphys,ftsol,                                   &  ! I
4514                      t,q_seri,paprs,pplay,RHcl,                  &  ! I
4515                      pmfu, pmfd, pen_u, pde_u, pen_d, pde_d,          &  ! I
4516                      coefh(1:klon,1:klev,is_ave), cdragh, cdragm, u1, v1,                 &  ! I
4517                      u_seri, v_seri, latitude_deg, longitude_deg,  &
4518                      pphis,pctsrf,pmflxr,pmflxs,prfl,psfl,            &  ! I
4519                      da,phi,phi2,d1a,dam,mp,ep,sigd,sij,clw,elij,     &  ! I
4520                      epmlmMm,eplaMm,upwd,dnwd,itop_con,ibas_con,      &  ! I
4521                      ev,wdtrainA,  wdtrainM,wght_cvfd,              &  ! I
4522                      fm_therm, entr_therm, rneb,                      &  ! I
4523                      beta_prec_fisrt,beta_prec, & !I
4524                      zu10m,zv10m,wstar,ale_bl,ale_wake,               &  ! I
4525                      d_tr_dyn,tr_seri)
4526
4527#else
4528
[2692]4529    CALL phytrac ( &
[2469]4530         itap,     days_elapsed+1,    jH_cur,   debut, &
4531         lafin,    dtime,     u, v,     t, &
4532         paprs,    pplay,     pmfu,     pmfd, &
4533         pen_u,    pde_u,     pen_d,    pde_d, &
4534         cdragh,   coefh(1:klon,1:klev,is_ave),   fm_therm, entr_therm, &
4535         u1,       v1,        ftsol,    pctsrf, &
4536         zustar,   zu10m,     zv10m, &
4537         wstar(:,is_ave),    ale_bl,         ale_wake, &
4538         latitude_deg, longitude_deg, &
4539         frac_impa,frac_nucl, beta_prec_fisrt,beta_prec, &
4540         presnivs, pphis,     pphi,     albsol1, &
[2784]4541         sh_in,   ch_in,    rhcl,      cldfra,   rneb, &
[2469]4542         diafra,   cldliq,    itop_con, ibas_con, &
4543         pmflxr,   pmflxs,    prfl,     psfl, &
4544         da,       phi,       mp,       upwd, &
4545         phi2,     d1a,       dam,      sij, wght_cvfd, &        !<<RomP+RL
4546         wdtrainA, wdtrainM,  sigd,     clw,elij, &   !<<RomP
4547         ev,       ep,        epmlmMm,  eplaMm, &     !<<RomP
4548         dnwd,     aerosol_couple,      flxmass_w, &
4549         tau_aero, piz_aero,  cg_aero,  ccm, &
4550         rfname, &
4551         d_tr_dyn, &                                 !<<RomP
[3419]4552         tr_seri, init_source)
[2630]4553#endif
[2973]4554    ENDIF    ! (iflag_phytrac=1)
[524]4555
[2469]4556    IF (offline) THEN
[524]4557
[2469]4558       IF (prt_level.ge.9) &
4559            print*,'Attention on met a 0 les thermiques pour phystoke'
[2692]4560       CALL phystokenc ( &
[2469]4561            nlon,klev,pdtphys,longitude_deg,latitude_deg, &
4562            t,pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &
4563            fm_therm,entr_therm, &
4564            cdragh,coefh(1:klon,1:klev,is_ave),u1,v1,ftsol,pctsrf, &
4565            frac_impa, frac_nucl, &
4566            pphis,cell_area,dtime,itap, &
4567            qx(:,:,ivap),da,phi,mp,upwd,dnwd)
[524]4568
4569
[2469]4570    ENDIF
[524]4571
[2469]4572    !
4573    ! Calculer le transport de l'eau et de l'energie (diagnostique)
4574    !
4575    CALL transp (paprs,zxtsol, &
[3250]4576         t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, zphi, &
4577         ve, vq, ue, uq, vwat, uwat)
[2469]4578    !
4579    !IM global posePB BEG
4580    IF(1.EQ.0) THEN
4581       !
4582       CALL transp_lay (paprs,zxtsol, &
4583            t_seri, q_seri, u_seri, v_seri, zphi, &
4584            ve_lay, vq_lay, ue_lay, uq_lay)
4585       !
4586    ENDIF !(1.EQ.0) THEN
4587    !IM global posePB END
4588    ! Accumuler les variables a stocker dans les fichiers histoire:
4589    !
[1279]4590
[2469]4591    !================================================================
4592    ! Conversion of kinetic and potential energy into heat, for
4593    ! parameterisation of subgrid-scale motions
4594    !================================================================
[1753]4595
[2469]4596    d_t_ec(:,:)=0.
4597    forall (k=1: nbp_lev) exner(:, k) = (pplay(:, k)/paprs(:,1))**RKAPPA
[2851]4598    CALL ener_conserv(klon,klev,pdtphys,u,v,t,qx(:,:,ivap),qx(:,:,iliq),qx(:,:,isol), &
4599         u_seri,v_seri,t_seri,q_seri,ql_seri,qs_seri,pbl_tke(:,:,is_ave)-tke0(:,:), &
[2469]4600         zmasse,exner,d_t_ec)
4601    t_seri(:,:)=t_seri(:,:)+d_t_ec(:,:)
[1753]4602
[2469]4603    !=======================================================================
4604    !   SORTIES
4605    !=======================================================================
4606    !
4607    !IM initialisation + calculs divers diag AMIP2
4608    !
4609    include "calcul_divers.h"
4610    !
4611    !IM Interpolation sur les niveaux de pression du NMC
4612    !   -------------------------------------------------
4613    !
[3301]4614!    include "calcul_STDlev.h"
[2469]4615    !
4616    ! slp sea level pressure derived from Arpege-IFS : CALL ctstar + CALL pppmer
4617    CALL diag_slp(klon,t_seri,paprs,pplay,pphis,ptstar,pt0,slp)
4618    !
[2496]4619    !cc prw  = eau precipitable
4620    !   prlw = colonne eau liquide
4621    !   prlw = colonne eau solide
[2499]4622    prw(:) = 0.
4623    prlw(:) = 0.
4624    prsw(:) = 0.
4625    DO k = 1, klev
4626       prw(:)  = prw(:)  + q_seri(:,k)*zmasse(:,k)
4627       prlw(:) = prlw(:) + ql_seri(:,k)*zmasse(:,k)
4628       prsw(:) = prsw(:) + qs_seri(:,k)*zmasse(:,k)
[2469]4629    ENDDO
4630    !
4631    IF (type_trac == 'inca') THEN
[655]4632#ifdef INCA
[2469]4633       CALL VTe(VTphysiq)
4634       CALL VTb(VTinca)
[959]4635
[2469]4636       CALL chemhook_end ( &
4637            dtime, &
4638            pplay, &
4639            t_seri, &
4640            tr_seri, &
4641            nbtr, &
4642            paprs, &
4643            q_seri, &
4644            cell_area, &
4645            pphi, &
4646            pphis, &
[2832]4647            zx_rh, &
4648            aps, bps)
[959]4649
[2469]4650       CALL VTe(VTinca)
4651       CALL VTb(VTphysiq)
[655]4652#endif
[2692]4653    ENDIF
[655]4654
[1753]4655
[2469]4656    !
4657    ! Convertir les incrementations en tendances
4658    !
4659    IF (prt_level .GE.10) THEN
4660       print *,'Convertir les incrementations en tendances '
4661    ENDIF
4662    !
[2692]4663    IF (mydebug) THEN
4664       CALL writefield_phy('u_seri',u_seri,nbp_lev)
4665       CALL writefield_phy('v_seri',v_seri,nbp_lev)
4666       CALL writefield_phy('t_seri',t_seri,nbp_lev)
4667       CALL writefield_phy('q_seri',q_seri,nbp_lev)
4668    ENDIF
[766]4669
[2469]4670    DO k = 1, klev
4671       DO i = 1, klon
4672          d_u(i,k) = ( u_seri(i,k) - u(i,k) ) / dtime
4673          d_v(i,k) = ( v_seri(i,k) - v(i,k) ) / dtime
4674          d_t(i,k) = ( t_seri(i,k)-t(i,k) ) / dtime
4675          d_qx(i,k,ivap) = ( q_seri(i,k) - qx(i,k,ivap) ) / dtime
4676          d_qx(i,k,iliq) = ( ql_seri(i,k) - qx(i,k,iliq) ) / dtime
4677          !CR: on ajoute le contenu en glace
[2692]4678          IF (nqo.eq.3) THEN
[2469]4679             d_qx(i,k,isol) = ( qs_seri(i,k) - qx(i,k,isol) ) / dtime
[2692]4680          ENDIF
[2469]4681       ENDDO
4682    ENDDO
4683    !
4684    !CR: nb de traceurs eau: nqo
4685    !  IF (nqtot.GE.3) THEN
4686    IF (nqtot.GE.(nqo+1)) THEN
4687       !     DO iq = 3, nqtot
4688       DO iq = nqo+1, nqtot
4689          DO  k = 1, klev
4690             DO  i = 1, klon
4691                ! d_qx(i,k,iq) = ( tr_seri(i,k,iq-2) - qx(i,k,iq) ) / dtime
4692                d_qx(i,k,iq) = ( tr_seri(i,k,iq-nqo) - qx(i,k,iq) ) / dtime
4693             ENDDO
4694          ENDDO
4695       ENDDO
4696    ENDIF
4697    !
4698    !IM rajout diagnostiques bilan KP pour analyse MJO par Jun-Ichi Yano
4699    !IM global posePB      include "write_bilKP_ins.h"
4700    !IM global posePB      include "write_bilKP_ave.h"
4701    !
[1412]4702
[2489]4703    !--OB mass fixer
4704    !--profile is corrected to force mass conservation of water
4705    IF (mass_fixer) THEN
4706    qql2(:)=0.0
[2499]4707    DO k = 1, klev
4708      qql2(:)=qql2(:)+(q_seri(:,k)+ql_seri(:,k)+qs_seri(:,k))*zmasse(:,k)
[2489]4709    ENDDO
4710    DO i = 1, klon
4711      !--compute ratio of what q+ql should be with conservation to what it is
4712      corrqql=(qql1(i)+(evap(i)-rain_fall(i)-snow_fall(i))*pdtphys)/qql2(i)
4713      DO k = 1, klev
4714        q_seri(i,k) =q_seri(i,k)*corrqql
4715        ql_seri(i,k)=ql_seri(i,k)*corrqql
4716      ENDDO
4717    ENDDO
4718    ENDIF
4719    !--fin mass fixer
4720
[2469]4721    ! Sauvegarder les valeurs de t et q a la fin de la physique:
4722    !
[2499]4723    u_ancien(:,:)  = u_seri(:,:)
4724    v_ancien(:,:)  = v_seri(:,:)
4725    t_ancien(:,:)  = t_seri(:,:)
4726    q_ancien(:,:)  = q_seri(:,:)
4727    ql_ancien(:,:) = ql_seri(:,:)
4728    qs_ancien(:,:) = qs_seri(:,:)
4729    CALL water_int(klon,klev,q_ancien,zmasse,prw_ancien)
4730    CALL water_int(klon,klev,ql_ancien,zmasse,prlw_ancien)
4731    CALL water_int(klon,klev,qs_ancien,zmasse,prsw_ancien)
[2469]4732    ! !! RomP >>>
4733    !CR: nb de traceurs eau: nqo
[2499]4734    IF (nqtot.GT.nqo) THEN
[2469]4735       DO iq = nqo+1, nqtot
[2499]4736          tr_ancien(:,:,iq-nqo) = tr_seri(:,:,iq-nqo)
[2469]4737       ENDDO
4738    ENDIF
4739    ! !! RomP <<<
4740    !==========================================================================
4741    ! Sorties des tendances pour un point particulier
4742    ! a utiliser en 1D, avec igout=1 ou en 3D sur un point particulier
4743    ! pour le debug
4744    ! La valeur de igout est attribuee plus haut dans le programme
4745    !==========================================================================
[879]4746
[2692]4747    IF (prt_level.ge.1) THEN
[2469]4748       write(lunout,*) 'FIN DE PHYSIQ !!!!!!!!!!!!!!!!!!!!'
4749       write(lunout,*) &
4750            'nlon,klev,nqtot,debut,lafin,jD_cur, jH_cur, pdtphys pct tlos'
4751       write(lunout,*) &
4752            nlon,klev,nqtot,debut,lafin, jD_cur, jH_cur ,pdtphys, &
4753            pctsrf(igout,is_ter), pctsrf(igout,is_lic),pctsrf(igout,is_oce), &
4754            pctsrf(igout,is_sic)
4755       write(lunout,*) 'd_t_dyn,d_t_con,d_t_lsc,d_t_ajsb,d_t_ajs,d_t_eva'
[2692]4756       DO k=1,klev
[2469]4757          write(lunout,*) d_t_dyn(igout,k),d_t_con(igout,k), &
4758               d_t_lsc(igout,k),d_t_ajsb(igout,k),d_t_ajs(igout,k), &
4759               d_t_eva(igout,k)
[2692]4760       ENDDO
[2469]4761       write(lunout,*) 'cool,heat'
[2692]4762       DO k=1,klev
[2469]4763          write(lunout,*) cool(igout,k),heat(igout,k)
[2692]4764       ENDDO
[879]4765
[2469]4766       !jyg<     (En attendant de statuer sur le sort de d_t_oli)
4767       !jyg!     write(lunout,*) 'd_t_oli,d_t_vdf,d_t_oro,d_t_lif,d_t_ec'
4768       !jyg!     do k=1,klev
4769       !jyg!        write(lunout,*) d_t_oli(igout,k),d_t_vdf(igout,k), &
4770       !jyg!             d_t_oro(igout,k),d_t_lif(igout,k),d_t_ec(igout,k)
4771       !jyg!     enddo
4772       write(lunout,*) 'd_t_vdf,d_t_oro,d_t_lif,d_t_ec'
[2692]4773       DO k=1,klev
[2469]4774          write(lunout,*) d_t_vdf(igout,k), &
4775               d_t_oro(igout,k),d_t_lif(igout,k),d_t_ec(igout,k)
[2692]4776       ENDDO
[2469]4777       !>jyg
[879]4778
[2469]4779       write(lunout,*) 'd_ps ',d_ps(igout)
4780       write(lunout,*) 'd_u, d_v, d_t, d_qx1, d_qx2 '
[2692]4781       DO k=1,klev
[2469]4782          write(lunout,*) d_u(igout,k),d_v(igout,k),d_t(igout,k), &
4783               d_qx(igout,k,1),d_qx(igout,k,2)
[2692]4784       ENDDO
4785    ENDIF
[879]4786
[2469]4787    !============================================================
4788    !   Calcul de la temperature potentielle
4789    !============================================================
4790    DO k = 1, klev
4791       DO i = 1, klon
4792          !JYG/IM theta en debut du pas de temps
4793          !JYG/IM       theta(i,k)=t(i,k)*(100000./pplay(i,k))**(RD/RCPD)
4794          !JYG/IM theta en fin de pas de temps de physique
4795          theta(i,k)=t_seri(i,k)*(100000./pplay(i,k))**(RD/RCPD)
4796          ! thetal: 2 lignes suivantes a decommenter si vous avez les fichiers
4797          !     MPL 20130625
4798          ! fth_fonctions.F90 et parkind1.F90
4799          ! sinon thetal=theta
4800          !       thetal(i,k)=fth_thetal(pplay(i,k),t_seri(i,k),q_seri(i,k),
4801          !    :         ql_seri(i,k))
4802          thetal(i,k)=theta(i,k)
4803       ENDDO
4804    ENDDO
4805    !
[879]4806
[2469]4807    ! 22.03.04 BEG
4808    !=============================================================
4809    !   Ecriture des sorties
4810    !=============================================================
[524]4811#ifdef CPP_IOIPSL
4812
[2469]4813    ! Recupere des varibles calcule dans differents modules
4814    ! pour ecriture dans histxxx.nc
[782]4815
[2469]4816    ! Get some variables from module fonte_neige_mod
4817    CALL fonte_neige_get_vars(pctsrf,  &
[2517]4818         zxfqcalving, zxfqfonte, zxffonte, zxrunofflic)
[782]4819
[1507]4820
[2469]4821    !=============================================================
4822    ! Separation entre thermiques et non thermiques dans les sorties
4823    ! de fisrtilp
4824    !=============================================================
[1507]4825
[2692]4826    IF (iflag_thermals>=1) THEN
[2469]4827       d_t_lscth=0.
4828       d_t_lscst=0.
4829       d_q_lscth=0.
4830       d_q_lscst=0.
[2692]4831       DO k=1,klev
4832          DO i=1,klon
4833             IF (ptconvth(i,k)) THEN
[2469]4834                d_t_lscth(i,k)=d_t_eva(i,k)+d_t_lsc(i,k)
4835                d_q_lscth(i,k)=d_q_eva(i,k)+d_q_lsc(i,k)
[2692]4836             ELSE
[2469]4837                d_t_lscst(i,k)=d_t_eva(i,k)+d_t_lsc(i,k)
4838                d_q_lscst(i,k)=d_q_eva(i,k)+d_q_lsc(i,k)
[2692]4839             ENDIF
4840          ENDDO
4841       ENDDO
[1507]4842
[2692]4843       DO i=1,klon
[2469]4844          plul_st(i)=prfl(i,lmax_th(i)+1)+psfl(i,lmax_th(i)+1)
4845          plul_th(i)=prfl(i,1)+psfl(i,1)
[2692]4846       ENDDO
4847    ENDIF
[909]4848
[2469]4849    !On effectue les sorties:
[1791]4850
[2630]4851#ifdef CPP_Dust
4852  CALL phys_output_write_spl(itap, pdtphys, paprs, pphis,  &
4853       pplay, lmax_th, aerosol_couple,                 &
4854       ok_ade, ok_aie, ivap, new_aod, ok_sync,         &
4855       ptconv, read_climoz, clevSTD,                   &
4856       ptconvth, d_t, qx, d_qx, d_tr_dyn, zmasse,      &
4857       flag_aerosol, flag_aerosol_strat, ok_cdnc)
4858#else
[2469]4859    CALL phys_output_write(itap, pdtphys, paprs, pphis,  &
4860         pplay, lmax_th, aerosol_couple,                 &
[3408]4861         ok_ade, ok_aie, ok_volcan, ivap, iliq, isol, new_aod,      &
[2496]4862         ok_sync, ptconv, read_climoz, clevSTD,          &
[2665]4863         ptconvth, d_u, d_t, qx, d_qx, zmasse,           &
[2469]4864         flag_aerosol, flag_aerosol_strat, ok_cdnc)
[2630]4865#endif
[1791]4866
[2651]4867#ifndef CPP_XIOS
[2590]4868    CALL write_paramLMDZ_phy(itap,nid_ctesGCM,ok_sync)
[2651]4869#endif
[687]4870
[524]4871#endif
4872
[3240]4873! On remet des variables a .false. apres un premier appel
[3293]4874!      write (lunout,*)'ok_4xCO2atm= ',swaero_diag, swaerofree_diag, dryaod_diag, ok_4xCO2atm
[3240]4875    if (debut) then
4876#ifdef CPP_XIOS
4877      swaero_diag=.FALSE.
4878      swaerofree_diag=.FALSE.
4879      dryaod_diag=.FALSE.
4880      ok_4xCO2atm= .FALSE.
[3525]4881!      write (lunout,*)'ok_4xCO2atm= ',swaero_diag, swaerofree_diag, dryaod_diag, ok_4xCO2atm
[2235]4882
[3256]4883      IF (is_master) then
4884        !--setting up swaero_diag to TRUE in XIOS case
4885        IF (xios_field_is_active("topswad").OR.xios_field_is_active("topswad0").OR. &
[3240]4886           xios_field_is_active("solswad").OR.xios_field_is_active("solswad0").OR. &
4887           xios_field_is_active("topswai").OR.xios_field_is_active("solswai").OR.  &
4888             (iflag_rrtm==1.AND.(xios_field_is_active("toplwad").OR.xios_field_is_active("toplwad0").OR. &
4889                                 xios_field_is_active("sollwad").OR.xios_field_is_active("sollwad0"))))  &
4890           !!!--for now these fields are not in the XML files so they are omitted
4891           !!!  xios_field_is_active("toplwai").OR.xios_field_is_active("sollwai") !))) &
4892           swaero_diag=.TRUE.
4893
[3256]4894        !--setting up swaerofree_diag to TRUE in XIOS case
4895        IF (xios_field_is_active("SWdnSFCcleanclr").OR.xios_field_is_active("SWupSFCcleanclr").OR. &
[3240]4896           xios_field_is_active("SWupTOAcleanclr").OR.xios_field_is_active("rsucsaf").OR.   &
4897           xios_field_is_active("rsdcsaf") .OR. xios_field_is_active("LWdnSFCcleanclr").OR. &
4898           xios_field_is_active("LWupTOAcleanclr")) &
4899           swaerofree_diag=.TRUE.
4900
[3256]4901        !--setting up dryaod_diag to TRUE in XIOS case
4902        DO naero = 1, naero_tot-1
[3240]4903         IF (xios_field_is_active("dryod550_"//name_aero_tau(naero))) dryaod_diag=.TRUE.
[3256]4904        ENDDO
4905        !
4906        !--setting up ok_4xCO2atm to TRUE in XIOS case
4907        IF (xios_field_is_active("rsut4co2").OR.xios_field_is_active("rlut4co2").OR. &
[3240]4908           xios_field_is_active("rsutcs4co2").OR.xios_field_is_active("rlutcs4co2").OR. &
4909           xios_field_is_active("rsu4co2").OR.xios_field_is_active("rsucs4co2").OR. &
4910           xios_field_is_active("rsd4co2").OR.xios_field_is_active("rsdcs4co2").OR. &
4911           xios_field_is_active("rlu4co2").OR.xios_field_is_active("rlucs4co2").OR. &
4912           xios_field_is_active("rld4co2").OR.xios_field_is_active("rldcs4co2")) &
4913           ok_4xCO2atm=.TRUE.
[3256]4914      endif
4915      !$OMP BARRIER
4916      call bcast(swaero_diag)
4917      call bcast(swaerofree_diag)
4918      call bcast(dryaod_diag)
4919      call bcast(ok_4xCO2atm)
[3525]4920!      write (lunout,*)'ok_4xCO2atm= ',swaero_diag, swaerofree_diag, dryaod_diag, ok_4xCO2atm
[3240]4921#endif
4922    endif
[3293]4923!      write (lunout,*)'ok_4xCO2atm= ',swaero_diag, swaerofree_diag, dryaod_diag, ok_4xCO2atm
[3240]4924
[2469]4925    !====================================================================
4926    ! Arret du modele apres hgardfou en cas de detection d'un
4927    ! plantage par hgardfou
4928    !====================================================================
[2235]4929
4930    IF (abortphy==1) THEN
4931       abort_message ='Plantage hgardfou'
[2311]4932       CALL abort_physic (modname,abort_message,1)
[2235]4933    ENDIF
4934
[2469]4935    ! 22.03.04 END
4936    !
4937    !====================================================================
4938    ! Si c'est la fin, il faut conserver l'etat de redemarrage
4939    !====================================================================
4940    !
[782]4941
[2469]4942    IF (lafin) THEN
4943       itau_phy = itau_phy + itap
4944       CALL phyredem ("restartphy.nc")
4945       !         open(97,form="unformatted",file="finbin")
4946       !         write(97) u_seri,v_seri,t_seri,q_seri
4947       !         close(97)
4948       !$OMP MASTER
[2692]4949       IF (read_climoz >= 1) THEN
4950          IF (is_mpi_root) THEN
4951             CALL nf95_close(ncid_climoz)
4952          ENDIF
[2788]4953          DEALLOCATE(press_edg_climoz) ! pointer
4954          DEALLOCATE(press_cen_climoz) ! pointer
[2692]4955       ENDIF
[2469]4956       !$OMP END MASTER
[3153]4957       print *,' physiq fin, nombre de steps ou cvpas = 1 : ', Ncvpaseq1
[2469]4958    ENDIF
[1863]4959
[2469]4960    !      first=.false.
[1863]4961
[2418]4962
[2469]4963  END SUBROUTINE physiq
[2418]4964
[2902]4965END MODULE physiq_mod
Note: See TracBrowser for help on using the repository browser.