source: LMDZ6/branches/IPSLCM6.0.14/DefLists/CMIP6_ping_atmos.xml @ 5468

Last change on this file since 5468 was 3157, checked in by Laurent Fairhead, 7 years ago

Corrections and modifications following CMIP6 WorkFlow? tests.
AC/LF

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
  • Property svn:keywords set to Id
File size: 77.3 KB
Line 
1<!-- $Id: CMIP6_ping_atmos.xml 3157 2018-01-16 13:38:52Z fhourdin $ -->
2<!-- Ping files generated by dr2xml 0.23 using Data Request 01.00.18 -->
3<!-- lrealms= ['atmos'] -->
4<!-- exact= False -->
5<!--  listof_home_vars : None
6 tierMax : 3
7 realms_per_context : {'lmdz': ['atmos', 'atmos land'], 'nemo': ['seaIce', 'ocean', 'ocean seaIce', 'ocnBgchem', 'seaIce ocean'], 'orchidee': ['land', 'landIce land', 'land landIce', 'landIce']}
8 max_priority : 3
9 max_file_size_in_floats : 20000000000.0
10 grid_choice : {'IPSL-CM6A-LR': 'LR'}
11 excluded_vars_file : None
12 sizes : {'LR': [20592, 79, 32768, 91, 30, 14, 128]}
13 ping_variables_prefix : CMIP6_
14 source_types : {'IPSL-CM6A-LR': 'AOGCM'}
15 path_extra_tables : None
16 grid_policy : native
17 path_special_defs : None
18 mips : {'LR': set(['CORDEX', 'GMMIP', 'RFMIP', 'AerChemMIP', 'CMIP6', 'OMIP', 'GeoMIP', 'C4MIP', 'PDRMIP', 'DCPP', 'DECK', 'LUMIP', 'CMIP5', 'CFMIP', 'ScenarioMIP', 'DAMIP', 'CCMI', 'SolarMIP', 'VIACSAB', 'SIMIP', 'CMIP', 'ISMIP6', 'VolMIP', 'PMIP', 'FAFMIP', 'HighResMIP', 'LS3MIP', 'SPECS', 'DynVar'])}
19 excluded_vars : []
20 orphan_variables : {}
21--> 
22
23<context id="atmos">
24<field_definition>
25<!-- for variables which realm equals one of _atmos-->
26   <field id="CMIP6_H2p"           field_ref="dummy_not_provided"         /> <!-- P1 () missing : Roche - LSCE -->
27   <field id="CMIP6_H2s"           field_ref="dummy_not_provided"         /> <!-- P1 () missing : Roche - LSCE -->
28   <field id="CMIP6_H2wv"          field_ref="dummy_not_provided"        /> <!-- P1 () missing : Roche - LSCE -->
29   <field id="CMIP6_O17p"          field_ref="dummy_not_provided"         /> <!-- P1 () missing : Roche - LSCE -->
30   <field id="CMIP6_O17s"          field_ref="dummy_not_provided"         /> <!-- P1 () missing : Roche - LSCE -->
31   <field id="CMIP6_O17wv"         field_ref="dummy_not_provided"        /> <!-- P1 () missing : Roche - LSCE -->
32   <field id="CMIP6_O18p"          field_ref="dummy_not_provided"         /> <!-- P1 () missing : Roche - LSCE -->
33   <field id="CMIP6_O18s"          field_ref="dummy_not_provided"         /> <!-- P1 () missing : Roche - LSCE -->
34   <field id="CMIP6_O18wv"         field_ref="dummy_not_provided"        /> <!-- P1 () missing : Roche - LSCE -->
35   <field id="CMIP6_aerasymbnd"    field_ref="dummy_not_provided"        /> <!-- P1 (1) band_aerosol_asymmetry_parameter : Aerosol level asymmetry parameter for each band -->
36   <field id="CMIP6_aeroptbnd"     field_ref="dummy_not_provided"        /> <!-- P1 (1) atmosphere_absorption_optical_thickness_due_to_ambient_aerosol_particles : Aerosol level absorption optical thickness for each band -->
37   <field id="CMIP6_aerssabnd"     field_ref="dummy_not_provided"        /> <!-- P1 (1) single_scattering_albedo_in_air_due_to_ambient_aerosol_particles : Aerosol level single-scattering albedo for each band -->
38   <field id="CMIP6_albdiffbnd"    field_ref="dummy_not_provided"         /> <!-- P1 (1.0) band_diffuse_albedo : Diffuse surface albedo for each band -->
39   <field id="CMIP6_albdirbnd"     field_ref="dummy_not_provided"         /> <!-- P1 (1.0) band_direct_albedo : Direct surface albedo for each band -->
40   <field id="CMIP6_albisccp"      field_ref="albisccp"         /> <!-- P1 (1.0) cloud_albedo : ISCCP Mean Cloud Albedo. Time-means are weighted by the ISCCP Total Cloud Fraction {:cltisccp} - see  http://cfmip.metoffice.com/COSP.html -->
41   <field id="CMIP6_aod550volso4"  field_ref="od550_STRAT"      /> <!-- P1 (1e-09) aerosol_optical_depth_due_to_stratospheric_volcanic_aerosols : aerosol optical depth at 550 nm due to stratospheric volcanic aerosols  -->
42   <field id="CMIP6_areacella"     field_ref="aire"             /> <!-- P1 (m2) cell_area : For atmospheres with more than 1 mesh (e.g., staggered grids), report areas that apply to surface vertical fluxes of energy. -->
43   <field id="CMIP6_ccb"           field_ref="pbase"            /> <!-- P1 (Pa) air_pressure_at_convective_cloud_base : Where convective cloud is present in the grid cell, the instantaneous cloud base altitude should be that of the bottom of the lowest level containing convective cloud. Missing data should be reported in the absence of convective cloud. The time mean should be calculated from these quantities averaging over occasions when convective cloud is present only, and should contain missing data for occasions when no convective cloud is present during the meaning period.  -->
44   <field id="CMIP6_ccldncl"       field_ref="dummy_XY"         /> <!-- P1 (m-3) number_concentration_of_convective_cloud_liquid_water_particles_in_air_at_liquid_water_cloud_top : Droplets are liquid only.  Report concentration 'as seen from space' over convective liquid cloudy portion of grid cell.  This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of  (as seen from TOA) each time sample when computing monthly mean. -->
45   <field id="CMIP6_cct"           field_ref="ptop"             /> <!-- P1 (Pa) air_pressure_at_convective_cloud_top : Where convective cloud is present in the grid cell, the instantaneous cloud top altitude should be that of the top of the highest level containing convective cloud. Missing data should be reported in the absence of convective cloud. The time mean should be calculated from these quantities averaging over occasions when convective cloud is present only, and should contain missing data for occasions when no convective cloud is present during the meaning period. -->
46   <field id="CMIP6_cfadDbze94"    field_ref="cfadDbze94"       /> <!-- P1 (1.0) histogram_of_equivalent_reflectivity_factor_over_height_above_reference_ellipsoid : CFAD (Cloud Frequency Altitude Diagrams) are frequency distributions of radar  reflectivity (or lidar scattering ratio) as a function of altitude. The variable cfadDbze94 is defined as the simulated relative frequency of occurrence of radar reflectivity in sampling volumes defined by altitude bins. The radar is observing at a frequency of 94GHz. -->
47   <field id="CMIP6_cfadLidarsr532" field_ref="cfad_lidarsr532" /> <!-- P1 (1.0) histogram_of_backscattering_ratio_over_height_above_reference_ellipsoid : CFAD (Cloud Frequency Altitude Diagrams) are frequency distributions of radar  reflectivity (or lidar scattering ratio) as a function of altitude. The variable cfadLidarsr532 is defined as the simulated relative frequency of lidar scattering ratio in sampling volumes defined by altitude bins. The lidar is observing at a wavelength of 532nm. -->
48   <field id="CMIP6_cfc113global"  field_ref="dummy_not_provided"         /> <!-- P1 (1e-12) mole_fraction_of_cfc113_in_air : unset -->
49   <field id="CMIP6_cfc11global"   field_ref="CFC11_ppt"        /> <!-- P1 (1e-12) mole_fraction_of_cfc11_in_air : unset -->
50   <field id="CMIP6_cfc12global"   field_ref="CFC12_ppt"        /> <!-- P1 (1e-12) mole_fraction_of_cfc12_in_air : unset -->
51   <field id="CMIP6_ch4"           field_ref="dummy_not_provided"        /> <!-- P1 (mol mol-1) mole_fraction_of_methane_in_air : CH4 volume mixing ratio -->
52   <field id="CMIP6_ch4global"     field_ref="CH4_ppb"          /> <!-- P1 (1e-09) mole_fraction_of_methane_in_air : Global Mean Mole Fraction of CH4 -->
53   <field id="CMIP6_ci"            field_ref="ftime_con"        /> <!-- P1 (1.0) convection_time_fraction : Fraction of time that convection occurs in the grid cell. -->
54   <field id="CMIP6_cl"            field_ref="rneb"> rneb*100. </field><!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover, including both large-scale and convective cloud. -->
55   <field id="CMIP6_clc"           field_ref="rnebcon"> rnebcon*100. </field><!-- P1 (%) convective_cloud_area_fraction_in_atmosphere_layer : Include only convective cloud. -->
56   <field id="CMIP6_clcalipso"     field_ref="pclcalipso"        /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover at CALIPSO standard heights. -->
57   <field id="CMIP6_clcalipso2"    field_ref="clcalipso2"       /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Clouds detected by CALIPSO but below the detectability threshold of CloudSat -->
58   <field id="CMIP6_clcalipsoice"  field_ref="clcalipsoice"     /> <!-- P1 (%) ice_cloud_area_fraction_in_atmosphere_layer : CALIPSO ice cloud Fraction -->
59   <field id="CMIP6_clcalipsoliq"  field_ref="clcalipsoice"     /> <!-- P1 (%) liquid_cloud_area_fraction_in_atmosphere_layer : CALIPSO liquid cloud Fraction -->
60   <field id="CMIP6_cldicemxrat"   field_ref="cldicemxrat"        /> <!-- P3 (1.0) cloud_ice_mixing_ratio : Cloud ice mixing ratio -->
61   <field id="CMIP6_cldnci"        field_ref="dummy_XY"         /> <!-- P1 (m-3) number_concentration_of_ice_crystals_in_air_at_ice_cloud_top : Concentration 'as seen from space' over ice-cloud portion of grid cell.  This is the value from uppermost model layer with ice cloud or, if available, it is the sum over all ice cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total ice cloud top fraction (as seen from TOA) of each time sample when computing monthly mean. -->
62   <field id="CMIP6_cldncl"        field_ref="cldncl"> @cldncl / @lcc </field> <!-- P1 (m-3) number_concentration_of_cloud_liquid_water_particles_in_air_at_liquid_water_cloud_top : Droplets are liquid only.  Report concentration 'as seen from space' over liquid cloudy portion of grid cell.  This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of  (as seen from TOA) each time sample when computing monthly mean. -->
63   <field id="CMIP6_cldnvi"        field_ref="cldnvi"> @cldnvi / @lcc </field> <!-- P1 (m-2) atmosphere_number_content_of_cloud_droplets : Droplets are liquid only.  Values are weighted by liquid cloud fraction in each layer when vertically integrating, and for monthly means the samples are weighted by total liquid cloud fraction (as seen from TOA). -->
64   <field id="CMIP6_cldwatmxrat"   field_ref="cldwatmxrat"        /> <!-- P2 (1.0) cloud_liquid_water_mixing_ratio : Cloud water mixing ratio -->
65   <field id="CMIP6_clhcalipso"    field_ref="pclhcalipso"       /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 220hPa -->
66   <field id="CMIP6_cli"           field_ref="iwcon"            /> <!-- P1 (kg kg-1) mass_fraction_of_cloud_ice_in_air : Includes both large-scale and convective cloud. This is calculated as the mass of cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. It includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->
67   <field id="CMIP6_clic"          field_ref="icc3dcon"        /> <!-- P2 (1.0) mass_fraction_of_convective_cloud_ice_in_air : Calculated as the mass of convective cloud ice  in the grid cell divided by the mass of air (including the water in all phases) in the grid cell.  This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->
68   <field id="CMIP6_climodis"      field_ref="climodis"         /> <!-- P1 (%) ice_cloud_area_fraction : MODIS Ice Cloud Area Percentage -->
69   <field id="CMIP6_clis"          field_ref="icc3dstra"        /> <!-- P2 (1.0) mass_fraction_of_stratiform_cloud_ice_in_air : Calculated as the mass of stratiform cloud ice  in the grid cell divided by the mass of air (including the water in all phases) in the grid cell.  This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->
70   <field id="CMIP6_clisccp"       field_ref="clisccp2"         /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in optical depth categories. -->
71   <field id="CMIP6_clivi"         field_ref="iwp"              /> <!-- P1 (kg m-2) atmosphere_cloud_ice_content : mass of ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). Includes precipitating frozen hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model. -->
72   <field id="CMIP6_clivic"        field_ref="dummy_XY"         /> <!-- P1 (kg m-2) atmosphere_convective_cloud_ice_content : calculate mass of convective ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating frozen hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model.   -->
73   <field id="CMIP6_cllcalipso"    field_ref="pcllcalipso"       /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 840hPa -->
74   <field id="CMIP6_clmcalipso"    field_ref="pclmcalipso"       /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 560hPa -->
75   <field id="CMIP6_clmisr"        field_ref="clMISR"           /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Cloud percentage in spectral bands and layers as observed by the Multi-angle Imaging SpectroRadiometer (MISR) instrument. -->
76   <field id="CMIP6_cls"           field_ref="dummy_XYA"        /> <!-- P1 (%) stratiform_cloud_area_fraction_in_atmosphere_layer : unset -->
77   <field id="CMIP6_clt"           field_ref="cldt"> cldt*100. </field><!-- P1 (%) cloud_area_fraction : Total cloud area fraction for the whole atmospheric column, as seen from the surface or the top of the atmosphere. Includes both large-scale and convective cloud. -->
78   <field id="CMIP6_cltcalipso"    field_ref="pcltcalipso"       /> <!-- P1 (%) cloud_area_fraction : unset -->
79   <field id="CMIP6_cltisccp"      field_ref="tclisccp"         /> <!-- P1 (%) cloud_area_fraction : Percentage total cloud cover, simulating ISCCP observations. -->
80   <field id="CMIP6_cltmodis"      field_ref="cltmodis"         /> <!-- P1 (%) cloud_area_fraction : MODIS Total Cloud Cover Percentage -->
81   <field id="CMIP6_clw"           field_ref="lwcon"            /> <!-- P1 (kg kg-1) mass_fraction_of_cloud_liquid_water_in_air : Includes both large-scale and convective cloud. Calculate as the mass of cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cells. Precipitating hydrometeors are included ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->
82   <field id="CMIP6_clwc"          field_ref="lcc3dcon"         /> <!-- P2 (1.0) mass_fraction_of_convective_cloud_liquid_water_in_air : Calculated as the mass of convective cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell.  This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->
83   <field id="CMIP6_clwmodis"      field_ref="clwmodis"         /> <!-- P1 (%) liquid_water_cloud_area_fraction : MODIS Liquid Cloud Fraction -->
84   <field id="CMIP6_clws"          field_ref="lcc3dstra"        /> <!-- P2 (1.0) mass_fraction_of_stratiform_cloud_liquid_water_in_air : Calculated as the mass of stratiform cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell.  This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->
85   <field id="CMIP6_clwvi"         field_ref="lwp"              /> <!-- P1 (kg m-2) atmosphere_cloud_condensed_water_content : Mass of condensed (liquid + ice) water in the column divided by the area of the column (not just the area of the cloudy portion of the column). Includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->
86   <field id="CMIP6_clwvic"        field_ref="dummy_XY"         /> <!-- P1 (kg m-2) atmosphere_convective_cloud_condensed_water_content : calculate mass of convective condensed (liquid + ice) water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model.   -->
87   <field id="CMIP6_co2"           field_ref="dummy_not_provided"        /> <!-- P1 (mol mol-1) mole_fraction_of_carbon_dioxide_in_air : CO2 volume mixing ratio -->
88   <field id="CMIP6_co23D"         field_ref="dummy_not_provided"        /> <!-- P2 (kg kg-1) CO2_3D_tracer : report 3D field of model simulated atmospheric CO2 mass mixing ration on model levels -->
89   <field id="CMIP6_co2mass"       field_ref="mass_sum"> co2_ppm*1.e-6*44.011/28.97*mass_sum </field> <!-- P1 (kg) atmosphere_mass_of_carbon_dioxide : Total atmospheric mass of Carbon Dioxide -->
90   <field id="CMIP6_co2s"          field_ref="dummy_not_provided"         /> <!-- P2 (1e-06) mole_fraction_of_carbon_dioxide_in_air : As co2, but only at the surface -->
91   <field id="CMIP6_columnmassflux" field_ref="dummy_XY"         /> <!-- P2 (kg m-2 s-1) atmosphere_net_upward_convective_mass_flux : Column integral of (mcu-mcd) -->
92   <field id="CMIP6_conccmcn"      field_ref="dummy_not_provided"        /> <!-- P1 (m-3) number_concentration_of_coarse_mode_ambient_aerosol_in_air : includes all particles with diameter larger than 1 micron -->
93   <field id="CMIP6_conccn"        field_ref="dummy_not_provided"        /> <!-- P1 (m-3) number_concentration_of_ambient_aerosol_in_air : unset -->
94   <field id="CMIP6_concdust"      field_ref="concdust"         /> <!-- P1 (kg m-3) mass_concentration_of_dust_dry_aerosol_in_air : unset -->
95   <field id="CMIP6_concnmcn"      field_ref="dummy_not_provided"        /> <!-- P1 (m-3) number_concentration_of_nucleation_mode_ambient_aerosol_in_air : includes all particles with diameter smaller than 3 nm -->
96   <field id="CMIP6_demc"          field_ref="dummy_XYA"        /> <!-- P2 (1.0) convective_cloud_longwave_emissivity : This is the in-cloud emissivity obtained by considering only the cloudy portion of the grid cell. -->
97   <field id="CMIP6_dems"          field_ref="dummy_XYA"        /> <!-- P2 (1.0) stratiform_cloud_longwave_emissivity : This is the in-cloud emissivity obtained by considering only the cloudy portion of the grid cell. -->
98   <field id="CMIP6_diabdrag"      field_ref="dummy_XYA"        /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_numerical_artefacts : Other sub-grid scale/numerical zonal drag excluding that already provided for the parameterized orographic and non-orographic gravity waves. This would be used to calculate the total 'diabatic drag'. Contributions to this additional drag such Rayleigh friction and diffusion that can be calculated from the monthly mean wind fields should not be included, but details (e.g. coefficients) of the friction and/or diffusion used in the model should be provided separately. -->
99   <field id="CMIP6_dmc"           field_ref="upwd"             /> <!-- P2 (kg m-2 s-1) atmosphere_net_upward_deep_convective_mass_flux : The net mass flux  represents the difference between the updraft and downdraft components.   This is calculated as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud). -->
100   <field id="CMIP6_dtauc"         field_ref="dummy_XYA"        /> <!-- P3 (1.0) atmosphere_optical_thickness_due_to_convective_cloud : This is the in-cloud optical depth obtained by considering only the cloudy portion of the grid cell -->
101   <field id="CMIP6_dtaus"         field_ref="dummy_XYA"        /> <!-- P3 (1.0) atmosphere_optical_thickness_due_to_stratiform_cloud : This is the in-cloud optical depth obtained by considering only the cloudy portion of the grid cell. -->
102   <field id="CMIP6_edt"           field_ref="kz"               /> <!-- P1 (m2 s-1) atmosphere_heat_diffusivity : Vertical diffusion coefficient for temperature due to parametrised eddies -->
103   <field id="CMIP6_epfy"          field_ref="dummy_XYA"        /> <!-- P1 (m3 s-2) northward_eliassen_palm_flux_in_air : Transformed Eulerian Mean Diagnostics Meridional component Fy of Eliassen-Palm (EP) flux (Fy, Fz) derived from 6hr or higher frequency fields (use daily fields or 12 hr fields if the 6 hr are not available). Please use the definitions given by equation 3.5.3a of Andrews, Holton and Leovy text book, but scaled by density to have units m3 s-2. -->
104   <field id="CMIP6_epfz"          field_ref="dummy_XYA"        /> <!-- P1 (m3 s-2) upward_eliassen_palm_flux_in_air : Transformed Eulerian Mean Diagnostics Meridional component Fz of the Eliassen-Palm (EP) flux (Fy, Fz) derived from 6hr or higher frequency fields (use daily fields or 12 hr fields if the 6 hr are not available). Please use the definitions given by equation 3.5.3b of Andrews, Holton and Leovy text book, but scaled by density to have units m3 s-2. -->
105   <field id="CMIP6_evspsbl"       field_ref="evap"             /> <!-- P1 (kg m-2 s-1) water_evaporation_flux : Evaporation at surface: flux of water into the atmosphere due to conversion of both liquid and solid phases to vapor (from underlying surface and vegetation) -->
106   <field id="CMIP6_evu"           field_ref="evu"              /> <!-- P1 (m2 s-1) atmosphere_momentum_diffusivity : Vertical diffusion coefficient for momentum due to parametrised eddies -->
107   <field id="CMIP6_fco2antt"      field_ref="dummy_not_provided"         /> <!-- P1 (kg m-2 s-1) tendency_of_atmosphere_mass_content_of_carbon_dioxide_expressed_as_carbon_due_to_anthropogenic_emission : This is requested only for the emission-driven coupled carbon climate model runs.  Does not include natural fire sources but, includes all anthropogenic sources, including fossil fuel use, cement production, agricultural burning, and sources associated with anthropogenic land use change excluding forest regrowth. -->
108   <field id="CMIP6_fco2fos"       field_ref="dummy_not_provided"         /> <!-- P1 (kg m-2 s-1) tendency_of_atmosphere_mass_content_of_carbon_dioxide_expressed_as_carbon_due_to_emission_from_fossil_fuel_combustion : This is the prescribed anthropogenic CO2 flux from fossil fuel use, including cement production, and flaring (but not from land-use changes, agricultural burning, forest regrowth, etc.) -->
109   <field id="CMIP6_fco2nat"       field_ref="dummy_not_provided"         /> <!-- P1 (kg m-2 s-1) surface_upward_mass_flux_of_carbon_dioxide_expressed_as_carbon_due_to_emission_from_natural_sources : This is what the atmosphere sees (on its own grid).  This field should be equivalent to the combined natural fluxes of carbon  that account for natural exchanges between the atmosphere and land (nep) or ocean (fgco2) reservoirs. -->
110   <field id="CMIP6_grpllsprof"    field_ref="dummy_not_provided"         /> <!-- P2 (kg m-2 s-1) large_scale_graupel_flux : unset -->
111   <field id="CMIP6_grplmxrat"     field_ref="dummy_not_provided"         /> <!-- P2 (1.0) mass_fraction_of_graupel_in_air : Graupel mixing ratio -->
112   <field id="CMIP6_h2o"           field_ref="ovap"> ovap+ocond     </field> <!-- P2 (1.0) mass_fraction_of_water_in_air : includes all phases of water -->
113   <field id="CMIP6_hcfc22global"  field_ref="dummy_not_provided"         /> <!-- P1 (1e-12) mole_fraction_of_hcfc22_in_air : unset -->
114   <field id="CMIP6_hfdsl"         field_ref="bils"> bils*fract_ter </field> <!-- P1 (W m-2) surface_downward_heat_flux_in_air : Downward Heat Flux at Land Surface -->
115   <field id="CMIP6_hfdsnb"        field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) missing : Heat flux from snow into the ice or land under the snow. -->
116   <field id="CMIP6_hfls"          field_ref="flat"> flat*(-1.) </field>      <!-- P1 (W m-2) surface_upward_latent_heat_flux : Surface Upward Latent Heat Flux -->
117   <field id="CMIP6_hfmlt"         field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) surface_snow_and_ice_melt_heat_flux : Energy consumed or released during liquid/solid phase changes. -->
118   <field id="CMIP6_hfrs"          field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) temperature_flux_due_to_rainfall_expressed_as_heat_flux_onto_snow_and_ice : Heat transferred to a snow cover by rain.. -->
119   <field id="CMIP6_hfsbl"         field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) surface_snow_and_ice_sublimation_heat_flux : Energy consumed or released during vapor/solid phase changes. -->
120   <field id="CMIP6_hfss"          field_ref="sens"> sens*(-1.) </field>       <!-- P1 (W m-2) surface_upward_sensible_heat_flux : Surface Upward Sensible Heat Flux -->
121   <field id="CMIP6_hur"           field_ref="rhum"> rhum*100. </field> <!-- P1 (%) relative_humidity : The relative humidity with respect to liquid water for T> 0 C, and with respect to ice for T<0 C. -->
122   <field id="CMIP6_hurs"          field_ref="rh2m"             /> <!-- P1 (%) relative_humidity : The relative humidity with respect to liquid water for T> 0 C, and with respect to ice for T<0 C. -->
123   <field id="CMIP6_hursmax"       field_ref="rh2m_max" freq_op="1d" > @rh2m_max </field>   <!-- P1 (%) relative_humidity : Daily Maximum Near-Surface Relative Humidity -->
124   <field id="CMIP6_hursmin"       field_ref="rh2m_min" freq_op="1d" > @rh2m_min </field>    <!-- P1 (%) relative_humidity : Daily Minimum Near-Surface Relative Humidity -->
125   <field id="CMIP6_hursminCrop"   field_ref="dummy_not_provided"         /> <!-- P1 (%) relative_humidity : minimum near-surface (usually, 2 meter) relative humidity (add cell_method attribute "time: min") -->
126   <field id="CMIP6_hus"           field_ref="ovap"             /> <!-- P1 (1.0) specific_humidity : Specific Humidity -->
127   <field id="CMIP6_huss"          field_ref="q2m"              /> <!-- P1 (1.0) specific_humidity : Near-surface (usually, 2 meter) specific humidity. -->
128   <field id="CMIP6_iareafl"       field_ref="fract_sic"         >fract_sic*aire </field> <!-- P3 (m2) floating_ice_shelf_area : Total area of the floating ice shelves (the component of ice sheet that flows over ocean) -->
129   <field id="CMIP6_iareagr"       field_ref="fract_lic"         >fract_lic*aire </field> <!-- P3 (m2) grounded_ice_sheet_area : Total area of the grounded ice sheets (the component of ice sheet resting over bedrock) -->
130   <field id="CMIP6_intuadse"      field_ref="dummy_XY"         /> <!-- P1 (1.e6 J m-1 s-1) vertical_integral_eastward_wind_by_dry_static_energy : Mass weighted vertical integral of the product of northward wind by dry static energy per unit mass: (cp.T +zg).u -->
131   <field id="CMIP6_intuaw"        field_ref="dummy_XY"         /> <!-- P1 (kg m-1 s-1) vertical_integral_eastward_wind_by_total_water : Used in PMIP2 -->
132   <field id="CMIP6_intvadse"      field_ref="dummy_XY"         /> <!-- P1 (1.e6 J m-1 s-1) vertical_integral_northward_wind_by_dry_static_energy : Used in PMIP2 -->
133   <field id="CMIP6_intvaw"        field_ref="dummy_XY"         /> <!-- P1 (kg m-1 s-1) vertical_integral_northward_wind_by_total_water : Used in PMIP2 -->
134   <field id="CMIP6_jo2"           field_ref="dummy_not_provided"        /> <!-- P1 (s-1) photolysis_rate_of_molecular_oxygen : Rate of photolysis of molecular oxygen to atomic oxygen (o2 -> o1d+o) -->
135   <field id="CMIP6_jo3"           field_ref="dummy_not_provided"        /> <!-- P1 (s-1) photolysis_rate_of_ozone : sum of rates o3 -> o1d+o2 and o3 -> o+o2 -->
136   <field id="CMIP6_jpdftaureicemodis" field_ref="crimodis"     /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : MODIS Optical Thickness-Particle Size joint  distribution, ice -->
137   <field id="CMIP6_jpdftaureliqmodis" field_ref="crlmodis"     /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : MODIS Optical Thickness-Particle Size joint  distribution, liquid -->
138   <field id="CMIP6_latitude"      field_ref="io_lat"              /> <!-- P1 (degrees_north) latitude : latitude -->
139   <field id="CMIP6_lim"           field_ref="dummy_not_provided"         /> <!-- P2 (kg) land_ice_mass : The ice sheet mass is computed as the volume times density -->
140   <field id="CMIP6_limnsw"        field_ref="dummy_not_provided"         /> <!-- P2 (kg) land_ice_mass_not_displacing_sea_water : The ice sheet mass is computed as the volume above flotation times density. Changes in land_ice_mass_not_displacing_sea_water will always result in a change in sea level, unlike changes in land_ice_mass which may not result in sea level change (such as melting of the floating ice shelves, or portion of ice that sits on bedrock below sea level) -->
141   <field id="CMIP6_loadbc"        field_ref="loadbc"           /> <!-- P1 (kg m-2) atmosphere_mass_content_of_black_carbon_dry_aerosol : unset -->
142   <field id="CMIP6_loaddust"      field_ref="loaddust"         /> <!-- P1 (kg m-2) atmosphere_mass_content_of_dust_dry_aerosol : unset -->
143   <field id="CMIP6_loadnh4"       field_ref="dummy_not_provided"         /> <!-- P1 (kg m-2) atmosphere_mass_content_of_ammonium_dry_aerosol : unset -->
144   <field id="CMIP6_loadno3"       field_ref="loadno3"          /> <!-- P1 (kg m-2) atmosphere_mass_content_of_nitrate_dry_aerosol : unset -->
145   <field id="CMIP6_loadoa"        field_ref="loadoa"           /> <!-- P1 (kg m-2) atmosphere_mass_content_of_particulate_organic_matter_dry_aerosol : atmosphere dry organic content: This is the vertically integrated sum of atmosphere_primary_organic_content and atmosphere_secondary_organic_content (see next two table entries). -->
146   <field id="CMIP6_loadpoa"       field_ref="loadoa"           /> <!-- P1 (kg m-2) atmosphere_mass_content_of_primary_particulate_organic_matter_dry_aerosol : unset -->
147   <field id="CMIP6_loadso4"       field_ref="loadso4"          /> <!-- P1 (kg m-2) atmosphere_mass_content_of_sulfate_dry_aerosol : unset -->
148   <field id="CMIP6_loadsoa"       field_ref="dummy_not_provided"         /> <!-- P1 (kg m-2) atmosphere_mass_content_of_secondary_particulate_organic_matter_dry_aerosol : unset -->
149   <field id="CMIP6_loadss"        field_ref="loadss"           /> <!-- P1 (kg m-2) atmosphere_mass_content_of_seasalt_dry_aerosol : unset -->
150   <field id="CMIP6_longitude"     field_ref="io_lon"              /> <!-- P1 (degrees_east) longitude : Longitude -->
151   <field id="CMIP6_lwsffluxaero"  field_ref="dummy_XY"         /> <!-- P2 (W m-2) longwave__flux__due_to_volcanic_aerosols_at_the_surface : downwelling longwave  flux  due to volcanic aerosols at the surface to be diagnosed through double radiation call -->
152   <field id="CMIP6_lwsrfasdust"   field_ref="dummy_XY"         /> <!-- P1 (W m-2) surface_instantaneous_longwave_forcing_due_to_dust : Balkanski - LSCE -->
153   <field id="CMIP6_lwsrfcsdust"   field_ref="dummy_XY"         /> <!-- P1 (W m-2) surface_instantaneous_longwave_forcing_due_to_dust_in_clearsky : Balkanski - LSCE -->
154   <field id="CMIP6_lwtoaasdust"   field_ref="dummy_XY"         /> <!-- P1 (W m-2) toa_instantaneous_longwave_forcing : proposed name: toa_instantaneous_longwave_forcing_due_to_dust_ambient_aerosol -->
155   <field id="CMIP6_lwtoacsaer"    field_ref="toplwad0"         /> <!-- P1 (W m-2) toa_instantaneous_longwave_forcing : proposed name: toa_instantaneous_longwave_forcing_due_to_ambient_aerosol_assuming_clear_sky -->
156   <field id="CMIP6_lwtoacsdust"   field_ref="dummy_XY"         /> <!-- P1 (W m-2) toa_instantaneous_longwave_forcing_due_to_dust_in_clearsky : Balkanski - LSCE -->
157   <field id="CMIP6_lwtoafluxaerocs" field_ref="dummy_XY"       /> <!-- P1 (W m-2) longwave_flux_due_to_volcanic_aerosols_at_TOA_under_clear_sky : downwelling longwave flux due to volcanic aerosols at TOA under clear sky to be diagnosed through double radiation call -->
158   <field id="CMIP6_mc"            field_ref="mc"               /> <!-- P3 (kg m-2 s-1) atmosphere_net_upward_convective_mass_flux : The net mass flux should represent the difference between the updraft and downdraft components.  The flux is computed as the mass divided by the area of the grid cell. -->
159   <field id="CMIP6_mcd"           field_ref="dnwd"              > (dnwd-dnwd0) &gt; 0 ? (dnwd-dnwd0) : 0 </field> <!-- P2 (kg m-2 s-1) atmosphere_downdraft_convective_mass_flux : Calculated as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud). -->
160   <field id="CMIP6_mcu"           field_ref="upwd"             /> <!-- P1 (kg m-2 s-1) atmosphere_updraft_convective_mass_flux : In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The atmosphere convective mass flux is the vertical transport of mass for a field of cumulus clouds or thermals, given by the product of air density and vertical velocity. For an area-average, cell_methods should specify whether the average is over all the area or the area of updrafts only. -->
161   <field id="CMIP6_md"            field_ref="dummy_not_provided"        /> <!-- P1 (kg m-2 s-1) tendency_of_atmosphere_mass_content_of_dust_dry_aerosol_particles_due_to_emission : Balkanski - LSCE -->
162   <field id="CMIP6_mrroLi"        field_ref="mrroli"                    /> <!-- P1 (kg m-2 s-1) land_ice_runoff_flux : Runoff flux over land ice is the difference between any available liquid water in the snowpack less any refreezing. Computed as the sum of rainfall and melt of snow or ice less any refreezing or water retained in the snowpack -->
163   <field id="CMIP6_n2o"           field_ref="dummy_not_provided"        /> <!-- P1 (mol mol-1) mole_fraction_of_nitrous_oxide_in_air : N2O volume mixing ratio -->
164   <field id="CMIP6_n2oglobal"     field_ref="N2O_ppb"          /> <!-- P1 (1e-09) mole_fraction_of_nitrous_oxide_in_air : Global mean Nitrous Oxide (N2O) -->
165   <field id="CMIP6_o3"            field_ref="ozone"             /> <!-- P1 (mol mol-1) mole_fraction_of_ozone_in_air : Ozone volume mixing ratio -->
166   <field id="CMIP6_od443dust"     field_ref="dummy_not_provided"         /> <!-- P1 (1.0) atmosphere_optical_thickness_due_to_dust_ambient_aerosol_particles : Balkanski - LSCE -->
167   <field id="CMIP6_od550aerso"    field_ref="od550_STRAT"      /> <!-- P1 (1.0) strat_aerosol_optical_depth : From tropopause to stratopause as defined by the model -->
168   <field id="CMIP6_od550so4so"    field_ref="dummy_not_provided"         /> <!-- P1 (1.0) missing : Balkanski - LSCE -->
169   <field id="CMIP6_od865dust"     field_ref="dummy_not_provided"         /> <!-- P1 (1.0) atmosphere_optical_thickness_due_to_dust_ambient_aerosol_particles : Balkanski - LSCE -->
170   <field id="CMIP6_parasolRefl_sea" field_ref="parasol_refl"> parasol_refl*fract_oce </field> <!-- P1 (1.0) toa_bidirectional_reflectance : Simulated reflectance from PARASOL as seen at the top of the atmosphere for 5 solar zenith angles. Valid only over ocean and for one viewing direction (viewing zenith angle of 30 degrees and relative azimuth angle 320 degrees). -->
171   <field id="CMIP6_pctisccp"      field_ref="ctpisccp"         /> <!-- P1 (Pa) air_pressure_at_cloud_top : ISCCP Mean Cloud Top Pressure. Time-means are weighted by the ISCCP Total Cloud Fraction {:cltisccp} - see  http://cfmip.metoffice.com/COSP.html -->
172   <field id="CMIP6_pfull"         field_ref="pres"             /> <!-- P1 (Pa) air_pressure : Air pressure on model levels -->
173   <field id="CMIP6_phalf"         field_ref="paprs"            /> <!-- P1 (Pa) air_pressure : Air pressure on model half-levels -->
174   <field id="CMIP6_pr"            field_ref="precip"           /> <!-- P1 (kg m-2 s-1) precipitation_flux : includes both liquid and solid phases -->
175   <field id="CMIP6_prCrop"        field_ref="dummy_not_provided"         /> <!-- P1 (kg m-2 s-1) precipitation_flux : includes both liquid and solid phases -->
176   <field id="CMIP6_prc"           field_ref="pluc"             /> <!-- P1 (kg m-2 s-1) convective_precipitation_flux : Convective precipitation at surface; includes both liquid and solid phases. -->
177   <field id="CMIP6_prcprof"       field_ref="pr_con_l"         /> <!-- P2 (kg m-2 s-1) convective_rainfall_flux : unset -->
178   <field id="CMIP6_prcsh"         field_ref="dummy_not_provided"         /> <!-- P1 (kg m-2 s-1) shallow_convective_precipitation_flux : Convection precipitation from shallow convection -->
179   <field id="CMIP6_prhmax"        field_ref="prhmax" freq_op="1h" >   @prhmax   </field> <!-- P1 (kg m-2 s-1) precipitation_flux : Maximum Hourly Precipitation Rate -->
180   <field id="CMIP6_prlsns"        field_ref="snowl"            /> <!-- P2 (kg m-2 s-1) large_scale_snowfall_flux : large-scale precipitation of all forms of water in the solid phase. -->
181   <field id="CMIP6_prlsprof"      field_ref="plul"             /> <!-- P2 (kg m-2 s-1) large_scale_rainfall_flux : unset -->
182   <field id="CMIP6_prra"          field_ref="rain_fall"         /> <!-- P1 (kg m-2 s-1) rainfall_flux : Rainfall rate -->
183   <field id="CMIP6_prrc"          field_ref="pluc"             /> <!-- P1 (kg m-2 s-1) convective_rainfall_flux : Convective Rainfall rate -->
184   <field id="CMIP6_prrsn"         field_ref="dummy_not_provided"         /> <!-- P1 (1) mass_fraction_of_rainfall_onto_snow : The fraction of the grid averaged rainfall which falls on the snow pack -->
185   <field id="CMIP6_prsn"          field_ref="snow"             /> <!-- P1 (kg m-2 s-1) snowfall_flux : at surface; includes precipitation of all forms of water in the solid phase -->
186   <field id="CMIP6_prsnc"         field_ref="pr_con_i"         /> <!-- P2 (kg m-2 s-1) convective_snowfall_flux : convective precipitation of all forms of water in the solid phase. -->
187   <field id="CMIP6_prsnsn"        field_ref="dummy_not_provided"         /> <!-- P1 (1) mass_fraction_of_snowfall_onto_snow : The fraction of the snowfall which falls on the snow pack -->
188   <field id="CMIP6_prw"           field_ref="prw"              /> <!-- P1 (kg m-2) atmosphere_water_vapor_content : vertically integrated through the atmospheric column -->
189   <field id="CMIP6_ps"            field_ref="psol"             /> <!-- P1 (Pa) surface_air_pressure : surface pressure (not mean sea-level pressure), 2-D field to calculate the 3-D pressure field from hybrid coordinates -->
190   <field id="CMIP6_psitem"        field_ref="dummy_XYA"      /> <!-- P1 (kg s^-1)  meridional_streamfunction_transformed_eulerian_mean : Residual mass streamfunction, computed from vstar and integrated from the top of the atmosphere (on the native model grid). Reference: Andrews et al (1987): Middle Atmospheric Dynamics. Academic Press. -->
191   <field id="CMIP6_psl"           field_ref="slp"              /> <!-- P1 (Pa) air_pressure_at_sea_level : Sea Level Pressure -->
192   <field id="CMIP6_rainmxrat"     field_ref="dummy_not_provided"        /> <!-- P2 (1.0) mass_fraction_of_rain_in_air : Rain mixing ratio -->
193   <field id="CMIP6_reffcclwtop"   field_ref="dummy_XY"         /> <!-- P1 (m) effective_radius_of_convective_cloud_liquid_water_particle_at_liquid_water_cloud_top : Droplets are liquid only.  This is the effective radius "as seen from space" over convective liquid cloudy portion of grid cell.  This is the value from uppermost model layer with liquid cloud or, if available, or for some models it is the sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Reported values are weighted by total liquid cloud top fraction of  (as seen from TOA) each time sample when computing monthly mean.daily data, separated to large-scale clouds, convective clouds. If any of the cloud is from more than one process (i.e. shallow convection), please provide them separately. -->
194   <field id="CMIP6_reffclic"      field_ref="dummy_XYA"        /> <!-- P2 (m) effective_radius_of_convective_cloud_ice_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). -->
195   <field id="CMIP6_reffclis"      field_ref="ref_ice"          /> <!-- P2 (m) effective_radius_of_stratiform_cloud_ice_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). -->
196   <field id="CMIP6_reffclwc"      field_ref="dummy_XYA"        /> <!-- P2 (m) effective_radius_of_convective_cloud_liquid_water_particle : Droplets are liquid.  The effective radius is defined as the ratio of the third moment over the second moment of the particle size distribution and the time-mean should be calculated, weighting the individual samples by the cloudy fraction of the grid cell. -->
197   <field id="CMIP6_reffclws"      field_ref="dummy_XYA"        /> <!-- P2 (m) effective_radius_of_stratiform_cloud_liquid_water_particle : Droplets are liquid.  The effective radius is defined as the ratio of the third moment over the second moment of the particle size distribution and the time-mean should be calculated, weighting the individual samples by the cloudy fraction of the grid cell. -->
198   <field id="CMIP6_reffgrpls"     field_ref="dummy_XYA"        /> <!-- P2 (m) effective_radius_of_stratiform_cloud_graupel_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). -->
199   <field id="CMIP6_reffrainc"     field_ref="dummy_XYA"        /> <!-- P2 (m) effective_radius_of_convective_cloud_rain_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). -->
200   <field id="CMIP6_reffrains"     field_ref="dummy_XYA"        /> <!-- P2 (m) effective_radius_of_stratiform_cloud_rain_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). -->
201   <field id="CMIP6_reffsclwtop"   field_ref="dummy_XY"         /> <!-- P1 (m) effective_radius_of_stratiform_cloud_liquid_water_particle_at_liquid_water_cloud_top : Droplets are liquid only.  This is the effective radius "as seen from space" over liquid stratiform cloudy portion of grid cell.  This is the value from uppermost model layer with liquid cloud or, if available, or for some models it is the sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Reported values are weighted by total liquid cloud top fraction of  (as seen from TOA) each time sample when computing monthly mean.daily data, separated to large-scale clouds, convective clouds. If any of the cloud is from more than one process (i.e. shallow convection), please provide them separately. -->
202   <field id="CMIP6_reffsnowc"     field_ref="dummy_XYA"        /> <!-- P2 (m) effective_radius_of_convective_cloud_snow_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). -->
203   <field id="CMIP6_reffsnows"     field_ref="dummy_XYA"        /> <!-- P2 (m) effective_radius_of_stratiform_cloud_snow_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). -->
204   <field id="CMIP6_rld"           field_ref="rld"              /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air : Downwelling Longwave Radiation (includes the fluxes at the surface and TOA) -->
205   <field id="CMIP6_rld4co2"       field_ref="rld4co2"          /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air : Downwelling longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) -->
206   <field id="CMIP6_rldcs"         field_ref="rldcs"            /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air_assuming_clear_sky : Downwelling clear-sky longwave radiation (includes the fluxes at the surface and TOA) -->
207   <field id="CMIP6_rldcs4co2"     field_ref="rldcs4co2"        /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air_assuming_clear_sky : Downwelling clear-sky longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) -->
208   <field id="CMIP6_rlds"          field_ref="LWdnSFC"          /> <!-- P1 (W m-2) surface_downwelling_longwave_flux_in_air : Surface Downwelling Longwave Radiation -->
209   <field id="CMIP6_rldscs"        field_ref="LWdnSFCclr"       /> <!-- P1 (W m-2) surface_downwelling_longwave_flux_in_air_assuming_clear_sky : Surface downwelling clear-sky longwave radiation -->
210   <field id="CMIP6_rls"           field_ref="soll"             /> <!-- P1 (W m-2) surface_net_downward_longwave_flux : Net longwave surface radiation -->
211   <field id="CMIP6_rlu"           field_ref="rlu"              /> <!-- P1 (W m-2) upwelling_longwave_flux_in_air : Upwelling longwave radiation (includes the fluxes at the surface and TOA) -->
212   <field id="CMIP6_rlu4co2"       field_ref="rlu4co2"          /> <!-- P1 (W m-2) upwelling_longwave_flux_in_air : Upwelling longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) -->
213   <field id="CMIP6_rlucs"         field_ref="rlucs"            /> <!-- P1 (W m-2) upwelling_longwave_flux_in_air_assuming_clear_sky : Upwelling clear-sky longwave radiation  (includes the fluxes at the surface and TOA) -->
214   <field id="CMIP6_rlucs4co2"     field_ref="rlucs4co2"        /> <!-- P1 (W m-2) upwelling_longwave_flux_in_air_assuming_clear_sky : Upwelling clear-sky longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) -->
215   <field id="CMIP6_rlus"          field_ref="LWupSFC"          /> <!-- P1 (W m-2) surface_upwelling_longwave_flux_in_air : Surface Upwelling Longwave Radiation -->
216   <field id="CMIP6_rlut"          field_ref="topl"             /> <!-- P1 (W m-2) toa_outgoing_longwave_flux : at the top of the atmosphere (to be compared with satellite measurements) -->
217   <field id="CMIP6_rlut4co2"      field_ref="rlut4co2"         /> <!-- P1 (W m-2) toa_outgoing_longwave_flux : Top-of-atmosphere outgoing longwave radiation calculated using carbon dioxide concentrations increased fourfold -->
218   <field id="CMIP6_rlutcs"        field_ref="topl0"            /> <!-- P1 (W m-2) toa_outgoing_longwave_flux_assuming_clear_sky : Upwelling clear-sky longwave radiation at top of atmosphere -->
219   <field id="CMIP6_rlutcs4co2"    field_ref="rlutcs4co2"       /> <!-- P1 (W m-2) toa_outgoing_longwave_flux_assuming_clear_sky : Top-of-atmosphere outgoing clear-sky longwave radiation calculated using carbon dioxide concentrations increased fourfold -->
220   <field id="CMIP6_rsd"           field_ref="rsd"              /> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air : Downwelling shortwave radiation (includes the fluxes at the surface and top-of-atmosphere) -->
221   <field id="CMIP6_rsd4co2"       field_ref="rsd4co2"          /> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air : Downwelling shortwave radiation calculated using carbon dioxide concentrations increased fourfold -->
222   <field id="CMIP6_rsdcs"         field_ref="rsdcs"            /> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air_assuming_clear_sky : Downwelling clear-sky shortwave radiation (includes the fluxes at the surface and top-of-atmosphere) -->
223   <field id="CMIP6_rsdcs4co2"     field_ref="rsdcs4co2"        /> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air_assuming_clear_sky : Downwelling clear-sky shortwave radiation calculated using carbon dioxide concentrations increased fourfold -->
224   <field id="CMIP6_rsdcsaf"       field_ref="rsdcsaf"        /> <!-- P1 (W m-2) downwelling_shortwave_flux_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds (following Ghan). This requires a double-call in the radiation code with precisely the same meteorology. -->
225   <field id="CMIP6_rsdcsafbnd"    field_ref="dummy_not_provided"        /> <!-- P1 (W m-2) band_downwelling_shortwave_flux_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds (following Ghan). This requires a double-call in the radiation code with precisely the same meteorology. -->
226   <field id="CMIP6_rsdcsbnd"      field_ref="dummy_not_provided"        /> <!-- P1 (W m-2) band_downwelling_shortwave_flux_assuming_clear_sky : Calculated with aerosols but without clouds. This is a standard clear-sky calculation -->
227   <field id="CMIP6_rsds"          field_ref="SWdnSFC"          /> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air : surface solar irradiance for UV calculations -->
228   <field id="CMIP6_rsdscs"        field_ref="SWdnSFCclr"       /> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air_assuming_clear_sky : surface solar irradiance clear sky for UV calculations -->
229   <field id="CMIP6_rsdscsaf"      field_ref="SWdnSFCcleanclr"  /> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds. -->
230   <field id="CMIP6_rsdscsafbnd"   field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds, following Ghan (2013, ACP). This requires a double-call in the radiation code with precisely the same meteorology. -->
231   <field id="CMIP6_rsdscsbnd"     field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air_assuming_clear_sky : Calculated with aerosols but without clouds. This is a standard clear-sky calculation -->
232   <field id="CMIP6_rsdscsdiff"    field_ref="dummy_XY"         /> <!-- P1 (W m-2) surface_diffuse_downwelling_shortwave_flux_in_air_assuming_clear_sky : unset -->
233   <field id="CMIP6_rsdsdiff"      field_ref="dummy_XY"         /> <!-- P1 (W m-2) surface_diffuse_downwelling_shortwave_flux_in_air : unset -->
234   <field id="CMIP6_rsdt"          field_ref="SWdnTOA"          /> <!-- P1 (W m-2) toa_incoming_shortwave_flux : Shortwave radiation incident at the top of the atmosphere -->
235   <field id="CMIP6_rss"           field_ref="sols"             /> <!-- P1 (W m-2) surface_net_downward_shortwave_flux : Net downward shortwave radiation at the surface -->
236   <field id="CMIP6_rsu"           field_ref="rsu"              /> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air : Upwelling shortwave radiation  (includes also the fluxes at the surface and top of atmosphere) -->
237   <field id="CMIP6_rsu4co2"       field_ref="rsu4co2"          /> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air : Upwelling Shortwave Radiation calculated using carbon dioxide concentrations increased fourfold -->
238   <field id="CMIP6_rsucs"         field_ref="rsucs"            /> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air_assuming_clear_sky : Upwelling clear-sky shortwave radiation  (includes the fluxes at the surface and TOA) -->
239   <field id="CMIP6_rsucs4co2"     field_ref="rsucs4co2"        /> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air_assuming_clear_sky : Upwelling clear-sky shortwave radiation calculated using carbon dioxide concentrations increased fourfold -->
240   <field id="CMIP6_rsucsaf"       field_ref="rsucsaf"        /> <!-- P1 (W m-2) upwelling_shortwave_flux_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds (following Ghan). This requires a double-call in the radiation code with precisely the same meteorology. -->
241   <field id="CMIP6_rsucsafbnd"    field_ref="dummy_not_provided"        /> <!-- P1 (W m-2) band_upwelling_shortwave_flux_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds (following Ghan). This requires a double-call in the radiation code with precisely the same meteorology. -->
242   <field id="CMIP6_rsucsbnd"      field_ref="dummy_not_provided"        /> <!-- P1 (W m-2) band_upwelling_shortwave_flux_assuming_clear_sky : Calculated with aerosols but without clouds. This is a standard clear-sky calculation -->
243   <field id="CMIP6_rsus"          field_ref="SWupSFC"          /> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air : Surface Upwelling Shortwave Radiation -->
244   <field id="CMIP6_rsuscs"        field_ref="SWupSFCclr"       /> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air_assuming_clear_sky : Surface Upwelling Clear-sky Shortwave Radiation -->
245   <field id="CMIP6_rsuscsaf"      field_ref="SWupSFCcleanclr " /> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air_assuming_clean_clear_sky : Surface Upwelling Clear-sky, Aerosol Free Shortwave Radiation -->
246   <field id="CMIP6_rsuscsafbnd"   field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds, following Ghan (ACP, 2013). This requires a double-call in the radiation code with precisely the same meteorology. -->
247   <field id="CMIP6_rsuscsbnd"     field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air_assuming_clear_sky : Calculated with aerosols but without clouds. This is a standard clear-sky calculation -->
248   <field id="CMIP6_rsut"          field_ref="SWupTOA"          /> <!-- P1 (W m-2) toa_outgoing_shortwave_flux : at the top of the atmosphere -->
249   <field id="CMIP6_rsut4co2"      field_ref="rsut4co2"         /> <!-- P1 (W m-2) toa_outgoing_shortwave_flux : TOA Outgoing Shortwave Radiation calculated using carbon dioxide concentrations increased fourfold -->
250   <field id="CMIP6_rsutcs"        field_ref="SWupTOAclr"       /> <!-- P1 (W m-2) toa_outgoing_shortwave_flux_assuming_clear_sky : Calculated in the absence of clouds. -->
251   <field id="CMIP6_rsutcs4co2"    field_ref="rsutcs4co2"       /> <!-- P1 (W m-2) toa_outgoing_shortwave_flux_assuming_clear_sky : TOA Outgoing Clear-Sky Shortwave Radiation calculated using carbon dioxide concentrations increased fourfold -->
252   <field id="CMIP6_rsutcsafbnd"   field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) band_toa_outgoing_shortwave_flux_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds, following Ghan (2013, ACP). This requires a double-call in the radiation code with precisely the same meteorology. -->
253   <field id="CMIP6_rsutcsbnd"     field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) toa_outgoing_shortwave_flux_assuming_clear_sky : Calculated with aerosols but without clouds. This is a standard clear-sky calculation -->
254   <field id="CMIP6_rtmt"          field_ref="nettop"           /> <!-- P1 (W m-2) net_downward_radiative_flux_at_top_of_atmosphere_model : Net Downward Radiative Flux at Top of Model : I.e., at the top of that portion of the atmosphere where dynamics are explicitly treated by the model. This is reported only if it differs from the net downward radiative flux at the top of the atmosphere. -->
255   <field id="CMIP6_rv"            field_ref="dummy_XY"         /> <!-- P1 (s-1) atmosphere_relative_vorticity : Relative Vorticity at 850 hPa -->
256   <field id="CMIP6_sblnosn"       field_ref="dummy_not_provided"         /> <!-- P1 (kg m-2 s-1) sublimation_amount_assuming_no_snow : Sublimation of the snow free area -->
257   <field id="CMIP6_sci"           field_ref="ftime_th"         /> <!-- P1 (1.0) shallow_convection_time_fraction : Fraction of time that shallow convection occurs in the grid cell. -->
258   <field id="CMIP6_scldncl"       field_ref="dummy_XY"         /> <!-- P1 (m-3) number_concentration_of_stratiform_cloud_liquid_water_particles_in_air_at_liquid_water_cloud_top : Droplets are liquid only.  Report concentration "as seen from space" over stratiform liquid cloudy portion of grid cell.  This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of  (as seen from TOA) each time sample when computing monthly mean. -->
259   <field id="CMIP6_sconcdust"     field_ref="sconcdust"        /> <!-- P1 (kg m-3) mass_concentration_of_dust_dry_aerosol_in_air : mass concentration of dust dry aerosol in air in model lowest layer -->
260   <field id="CMIP6_sconcso4"      field_ref="sconcso4"         /> <!-- P1 (kg m-3) mass_concentration_of_sulfate_dry_aerosol_in_air : mass concentration of sulfate dry aerosol in air in model lowest layer. -->
261   <field id="CMIP6_sconcss"       field_ref="sconcss"          /> <!-- P1 (kg m-3) mass_concentration_of_seasalt_dry_aerosol_in_air : mass concentration of seasalt dry aerosol in air in model lowest layer -->
262   <field id="CMIP6_sfcWind"       field_ref="wind10m"          /> <!-- P1 (m s-1) wind_speed : near-surface (usually, 10 meters) wind speed. -->
263   <field id="CMIP6_sfcWindmax"    field_ref="sfcWindmax" freq_op="1d"   > @sfcWindmax </field>   <!-- P1 (m s-1) wind_speed : Daily maximum near-surface (usually, 10 meters) wind speed. -->
264   <field id="CMIP6_sftlf"         field_ref="pourc_ter"> pourc_ter+pourc_lic </field> <!-- P1 (%) land_area_fraction : Please express "X_area_fraction" as the percentage of horizontal area occupied by X. -->
265   <field id="CMIP6_siltfrac"      field_ref="dummy_not_provided"       /> <!-- P1 (1.0) missing : Silt Fraction -->
266   <field id="CMIP6_smc"           field_ref="f_th"        /> <!-- P2 (kg m-2 s-1) atmosphere_net_upward_shallow_convective_mass_flux : The net mass flux represents the difference between the updraft and downdraft components.  For models with a distinct shallow convection scheme, this is calculated as convective mass flux divided by the area of the whole grid cell (not just the area of the cloud). -->
267   <field id="CMIP6_snmsl"         field_ref="dummy_not_provided"         /> <!-- P1 (kg m-2 s-1) surface_snow_melt_flux_into_soil_layer : Water flowing out of snowpack -->
268   <field id="CMIP6_snowmxrat"     field_ref="dummy_not_provided"         /> <!-- P3 (1.0) mass_fraction_of_snow_in_air : Snow mixing ratio -->
269   <field id="CMIP6_snrefr"        field_ref="dummy_not_provided"         /> <!-- P1 (kg m-2 s-1) surface_snow_and_ice_refreezing_flux : Re-freezing of water in the snow -->
270   <field id="CMIP6_snwc"          field_ref="dummy_not_provided"         /> <!-- P1 (kg m-2) canopy_snow_amount : Total water mass of the snowpack (liquid or frozen), averaged over a grid cell and interecepted by the canopy. -->
271   <field id="CMIP6_solbnd"        field_ref="solbnd"         /> <!-- P1 (W m-2) band_solar_insolation : Top-of-Atmosphere Solar Insolation for each band -->
272   <field id="CMIP6_swsffluxaero"  field_ref="dummy_not_provided"         /> <!-- P2 (W m-2) shortwave__flux_due_to_volcanic_aerosols_at__the_surface : shortwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required -->
273   <field id="CMIP6_swsrfasdust"   field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) tendency_of_all_sky_surface_shortwave_flux_due_to_dust_ambient_aerosol_particles : Balkanski - LSCE -->
274   <field id="CMIP6_swsrfcsdust"   field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) tendency_of_clear_sky_surface_shortwave_flux_due_to_dust_ambient_aerosol_particles : Balkanski - LSCE -->
275   <field id="CMIP6_swtoaasdust"   field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) toa_instantaneous_shortwave_forcing : proposed name: toa_instantaneous_shortwave_forcing_due_to_dust_ambient_aerosol -->
276   <field id="CMIP6_swtoacsdust"   field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) toa_instantaneous_shortwave_forcing : proposed name: toa_instantaneous_shortwave_forcing_due_to_dust_ambient_aerosol_assuming_clear_sky -->
277   <field id="CMIP6_swtoafluxaerocs" field_ref="dummy_not_provided"         /> <!-- P1 (W m-2) shortwave_flux_due_to_volcanic_aerosols_at_TOA_under_clear_sky : downwelling shortwave flux due to volcanic aerosols at TOA under clear sky to be diagnosed through double radiation call -->
278   <field id="CMIP6_sza"           field_ref="sza"              /> <!-- P1 (degree) solar_zenith_angle : The angle between the line of sight to the sun and the local vertical -->
279   <field id="CMIP6_t2"            field_ref="temp"> temp*temp   </field> <!-- P2 (K2) square_of_air_temperature : Air temperature squared -->
280   <field id="CMIP6_ta"            field_ref="temp"             /> <!-- P3 (K) air_temperature : Air Temperature -->
281   <field id="CMIP6_tas"           field_ref="t2m"              /> <!-- P1 (K) air_temperature : near-surface (usually, 2 meter) air temperature -->
282   <field id="CMIP6_tasmax"        field_ref="tasmax" freq_op="1d"> @tasmax </field>   <!-- P1 (K) air_temperature : maximum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: max") -->
283   <field id="CMIP6_tasmaxCrop"    field_ref="dummy_not_provided"         /> <!-- P1 (K) air_temperature : maximum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: max") -->
284   <field id="CMIP6_tasmin"        field_ref="tasmin" freq_op="1d"> @tasmin  </field>   <!-- P1 (K) air_temperature : minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: min") -->
285   <field id="CMIP6_tasminCrop"    field_ref="dummy_not_provided"         /> <!-- P1 (K) air_temperature : minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: min") -->
286   <field id="CMIP6_tau"           field_ref="taux"              >  sqrt( taux^2 + tauy^2)        </field>   <!-- P1 (N m-2) surface_downward_stress : module of the momentum lost by the atmosphere to the surface. -->
287   <field id="CMIP6_tauu"          field_ref="taux"             /> <!-- P1 (Pa) surface_downward_eastward_stress : Downward eastward wind stress at the surface -->
288   <field id="CMIP6_tauupbl"       field_ref="dummy_XY"         /> <!-- P1 (Pa) surface_downward_eastward_stress_due_to_planetary_boundary_layer : The  downward eastward stress associated with the models parameterization of the planetary boundary layer. (This request is related to a WGNE effort to understand how models parameterize the surface stresses.) -->
289   <field id="CMIP6_tauv"          field_ref="tauy"             /> <!-- P1 (Pa) surface_downward_northward_stress : Downward northward wind stress at the surface -->
290   <field id="CMIP6_tauvpbl"       field_ref="dummy_XY"         /> <!-- P1 (Pa) surface_downward_northward_stress_due_to_planetary_boundary_layer : The  downward northward stress associated with the models parameterization of the planetary boundary layer. (This request is related to a WGNE effort to understand how models parameterize the surface stresses.) -->
291   <field id="CMIP6_tdps"          field_ref="pvap"> 273.16 + (273.16 - 35.86)/(17.269/log(pvap/611.14)-1.)      </field> <!-- P2 (K) dew_point_temperature : unset -->
292   <field id="CMIP6_tendacabf"     field_ref="dummy_not_provided"         /> <!-- P3 (kg s-1) tendency_of_land_ice_mass_due_to_surface_mass_balance : The total surface mass balance flux over land ice is a spatial integration of the surface mass balance flux -->
293   <field id="CMIP6_tendlibmassbf" field_ref="dummy_not_provided"         /> <!-- P3 (kg s-1) tendency_of_land_ice_mass_due_to_basal_mass_balance : The total basal mass balance flux over land ice is a spatial integration of the basal mass balance flux -->
294   <field id="CMIP6_tendlicalvf"   field_ref="dummy_not_provided"         /> <!-- P3 (kg s-1) tendency_of_land_ice_mass_due_to_calving : The total calving flux over land ice is a spatial integration of the calving flux -->
295   <field id="CMIP6_tnhus"         field_ref="tnhus"            /> <!-- P1 (s-1) tendency_of_specific_humidity : Tendency of Specific Humidity -->
296   <field id="CMIP6_tnhusa"        field_ref="dqdyn"            /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_advection : Tendency of Specific Humidity due to Advection -->
297   <field id="CMIP6_tnhusc"        field_ref="tnhusc"           /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_convection : Tendencies from cumulus convection scheme. -->
298   <field id="CMIP6_tnhusd"        field_ref="dqvdf"            /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_diffusion : Tendency of specific humidity due to numerical diffusion.This includes any horizontal or vertical numerical moisture diffusion not associated with the parametrized moist physics or the resolved dynamics.  For example, any vertical diffusion which is part of the boundary layer mixing scheme should be excluded, as should any diffusion which is included in the terms from the resolved dynamics.   This term is required to check the closure of the moisture budget. -->
299   <field id="CMIP6_tnhusmp"       field_ref="dqphy"            /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_model_physics : Tendency of specific humidity due to model physics. This includes sources and sinks from parametrized moist physics (e.g. convection, boundary layer, stratiform condensation/evaporation, etc.) and excludes sources and sinks from resolved dynamics or from horizontal or vertical numerical diffusion not associated with model physics.  For example any diffusive mixing by the boundary layer scheme would be included. -->
300   <field id="CMIP6_tnhuspbl"      field_ref="dqvdf"             > dqvdf+dqthe </field> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_boundary_layer_mixing : Includes all boundary layer terms including diffusive terms. -->
301   <field id="CMIP6_tnhusscp"      field_ref="dqlscst"          /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_stratiform_clouds_and_precipitation : Tendency of Specific Humidity Due to Stratiform Clouds and Precipitation -->
302   <field id="CMIP6_tnhusscpbl"    field_ref="tnhusscpbl"       /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_stratiform_cloud_and_precipitation_and_boundary_layer_mixing : Tendency of Specific Humidity Due to Stratiform Cloud and Precipitation and Boundary Layer Mixing  (to be specified only in  models which do not separate budget terms for stratiform cloud, precipitation and boundary layer schemes.  Includes all bounday layer terms including and diffusive terms.) -->
303   <field id="CMIP6_tnt"           field_ref="tnt"              /> <!-- P1 (K s-1) tendency_of_air_temperature : Tendency of Air Temperature -->
304   <field id="CMIP6_tnta"          field_ref="dtdyn"            /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_advection : Tendency of Air Temperature due to Advection -->
305   <field id="CMIP6_tntc"          field_ref="tntc"             /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_convection : Tendencies from cumulus convection scheme. -->
306   <field id="CMIP6_tntd"          field_ref="dtajs"             > dtajs+dtoro+dtlif+dthin </field> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_numerical_diffusion : This includes any horizontal or vertical numerical temperature diffusion not associated with the parametrized moist physics or the resolved dynamics.  For example, any vertical diffusion which is part of the boundary layer mixing scheme should be excluded, as should any diffusion which is included in the terms from the resolved dynamics.   This term is required to check the closure of the temperature budget. -->
307   <field id="CMIP6_tntmp"         field_ref="dtphy"            /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_model_physics : Tendency of air temperature due to model physics. This includes sources and sinks from parametrized physics (e.g. radiation, convection, boundary layer, stratiform condensation/evaporation, etc.). It excludes sources and sinks from resolved dynamics and numerical diffusion not associated with parametrized physics.  For example, any vertical diffusion which is part of the boundary layer mixing scheme should be included, while numerical diffusion applied in addition to physics or resolved dynamics should be excluded.  This term is required to check the closure of the heat budget. -->
308   <field id="CMIP6_tntnogw"       field_ref="dummy_XYA"        /> <!-- P2 (K s-1) temperature_tendency_due_to_dissipation_nonorographic_gravity_wave_drag : Temperature tendency due to dissipation of parameterized nonorographic gravity waves. -->
309   <field id="CMIP6_tntogw"        field_ref="dtoro"            /> <!-- P2 (K s-1) temperature_tendency_due_to_dissipation_orographic_gravity_wave_drag : Temperature tendency due to dissipation of parameterized orographic gravity waves. -->
310   <field id="CMIP6_tntpbl"        field_ref="dtvdf"             > dtvdf + dtthe </field> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_boundary_layer_mixing : Includes all boundary layer terms including diffusive terms. -->
311   <field id="CMIP6_tntr"          field_ref="tntr"             /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_radiative_heating : Tendency of Air Temperature due to Radiative Heating -->
312   <field id="CMIP6_tntrlcs"       field_ref="dtlw0"            /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_longwave_heating_assuming_clear_sky : Tendency of Air Temperature due to Clear Sky Longwave Radiative Heating -->
313   <field id="CMIP6_tntrscs"       field_ref="dtsw0"            /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_shortwave_heating_assuming_clear_sky : Tendency of Air Temperature due to Clear Sky Shortwave Radiative Heating -->
314   <field id="CMIP6_tntscp"        field_ref="dummy_XYA"        /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_stratiform_clouds_and_precipitation : Tendency of Air Temperature Due to Stratiform Clouds and Precipitation -->
315   <field id="CMIP6_tntscpbl"      field_ref="tntscpbl"        /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_stratiform_cloud_and_precipitation_and_boundary_layer_mixing : Tendency of Air Temperature Due to Stratiform Cloud and Precipitation and Boundary Layer Mixing (to be specified only in  models which do not separate cloud, precipitation and boundary layer terms.  Includes all boundary layer terms including diffusive ones.) -->
316   <field id="CMIP6_tr"            field_ref="tsol"         /> <!-- P1 (K) surface_temperature : Effective radiative surface temperature, averaged over the grid cell -->
317   <field id="CMIP6_ts"            field_ref="tsol"             /> <!-- P1 (K) surface_temperature : Temperature of the lower boundary of the atmosphere -->
318   <field id="CMIP6_tsns"          field_ref="dummy_not_provided"         /> <!-- P1 (K) surface_temperature : Temperature of the snow surface as it interacts with the atmosphere, averaged over a grid cell. -->
319   <field id="CMIP6_twap"          field_ref="vitw">vitw*temp </field> <!-- P2 (K Pa s-1) product_of_omega_and_air_temperature : Product of air temperature and pressure tendency -->
320   <field id="CMIP6_u2"            field_ref="vitu"              > vitu*vitu</field> <!-- P2 (m2 s-2) square_of_eastward_wind : u*u -->
321   <field id="CMIP6_ua"            field_ref="vitu"             /> <!-- P1 (m s-1) eastward_wind : Eastward Wind -->
322   <field id="CMIP6_uas"           field_ref="u10m"             /> <!-- P1 (m s-1) eastward_wind : Eastward component of the near-surface (usually, 10 meters)  wind -->
323   <field id="CMIP6_uqint"         field_ref="dummy_XY"         /> <!-- P1 (m2 s-1) integral_of_product_of_eastward_wind_and_specific_humidity_wrt_height : Column integrated eastward wind times specific humidity -->
324   <field id="CMIP6_ut"            field_ref="vitu"              > vitu*temp </field> <!-- P2 (K m s-1) product_of_eastward_wind_and_air_temperature : Product of air temperature and eastward wind -->
325   <field id="CMIP6_utendepfd"     field_ref="dummy_XYA"        /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_eliassen_palm_flux_divergence : Tendency of the zonal mean zonal wind due to the divergence of the Eliassen-Palm flux. -->
326   <field id="CMIP6_utendnogw"     field_ref="du_gwd_rando"> du_gwd_rando + du_gwd_front </field> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_nonorographic_gravity_wave_drag : Tendency of the eastward wind by parameterized nonorographic gravity waves. -->
327   <field id="CMIP6_utendogw"      field_ref="duoro"        /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_orographic_gravity_wave_drag : Tendency of the eastward wind by parameterized orographic gravity waves. -->
328   <field id="CMIP6_utendvtem"     field_ref="dummy_XYA"        /> <!-- P1 (m s-1 d-1) u-tendency_by_wstar_advection : Tendency of zonally averaged eastward wind, by the residual upward wind advection (on the native model grid). Reference: Andrews et al (1987): Middle Atmospheric Dynamics. Academic Press. -->
329   <field id="CMIP6_utendwtem"     field_ref="dummy_XYA"        /> <!-- P1 (m s-1 d-1) u-tendency_by_vstar_advection : Tendency of zonally averaged eastward wind, by the residual northward wind advection (on the native model grid). Reference: Andrews et al (1987): Middle Atmospheric Dynamics. Academic Press. -->
330   <field id="CMIP6_uv"            field_ref="vitu"> vitu*vitv  </field> <!-- P2 (m2 s-2) product_of_eastward_wind_and_northward_wind : u*v -->
331   <field id="CMIP6_uwap"          field_ref="vitu"> vitu*vitw  </field> <!-- P2 (Pa m s-2) product_of_eastward_wind_and_omega : u*omega -->
332   <field id="CMIP6_v2"            field_ref="vitv"> vitv*vitv  </field> <!-- P2 (m2 s-2) square_of_northward_wind : v*v -->
333   <field id="CMIP6_va"            field_ref="vitv"             /> <!-- P1 (m s-1) northward_wind : Northward component of the wind at 850hPa -->
334   <field id="CMIP6_vas"           field_ref="v10m"             /> <!-- P1 (m s-1) northward_wind : Northward component of the near surface wind -->
335   <field id="CMIP6_vortmean"      field_ref="dummy_XY"         /> <!-- P1 (s-1) atmosphere_relative_vorticity : Mean vorticity over 850,700,600 hPa -->
336   <field id="CMIP6_vqint"         field_ref="dummy_XY"         /> <!-- P1 (m2 s-1) integral_of_product_of_northward_wind_and_specific_humidity_wrt_height : Column integrated northward wind times specific humidity -->
337   <field id="CMIP6_vt"            field_ref="vitv"> vitv*temp  </field> <!-- P2 (K m s-1) product_of_northward_wind_and_air_temperature : Product of air temperature and northward wind -->
338   <field id="CMIP6_vtem"          field_ref="dummy_XYA"        /> <!-- P1 (m s-1) northward_transformed_eulerian_mean_air_velocity : Transformed Eulerian Mean Diagnostics v*, meridional component of the residual meridional circulation (v*, w*) derived from 6 hr or higher frequency data fields (use instantaneous daily fields or 12 hr fields if the 6 hr data are not available). -->
339   <field id="CMIP6_vtendnogw"     field_ref="dv_gwd_rando">dv_gwd_rando + dv_gwd_front </field> <!-- P2 (m s-2) tendency_of_northward_wind_due_to_nonorographic_gravity_wave_drag : Tendency of the northward wind by parameterized nonorographic gravity waves.  (Note that CF name tables only have a general northward tendency for all gravity waves, and we need it separated by type.) -->
340   <field id="CMIP6_vtendogw"      field_ref="dvoro"        /> <!-- P2 (m s-2) tendency_of_northward_wind_due_to_orographic_gravity_wave_drag : Tendency of the northward wind by parameterized orographic gravity waves.  (Note that CF name tables only have a general northward tendency for all gravity waves, and we need it separated by type.) -->
341   <field id="CMIP6_vwap"          field_ref="vitv"> vitv*vitw  </field> <!-- P2 (Pa m s-2) product_of_northward_wind_and_omega : v*omega -->
342   <field id="CMIP6_wap"           field_ref="vitw"             /> <!-- P1 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) -->
343   <field id="CMIP6_wap2"          field_ref="vitw"> vitw*vitw  </field> <!-- P2 (Pa2 s-2) square_of_lagrangian_tendency_of_air_pressure : omega*omega -->
344   <field id="CMIP6_wbptemp"       field_ref="dummy_XYA"        /> <!-- P1 (K) wet_bulb_potential_temperature : Wet bulb potential temperature -->
345   <field id="CMIP6_wtem"          field_ref="dummy_XYA"        /> <!-- P1 (m s-1) unset : Transformed Eulerian Mean Diagnostics w*, meridional component of the residual meridional circulation (v*, w*) derived from 6 hr or higher frequency data fields (use instantaneous daily fields or 12 hr fields if the 6 hr data are not available). Scale height: 6950 m -->
346   <field id="CMIP6_xgwdparam"     field_ref="east_gwstress"    /> <!-- P2 (Pa) atmosphere_eastward_stress_due_to_gravity_wave_drag : Parameterised x-component of gravity wave drag -->
347   <field id="CMIP6_ygwdparam"     field_ref="west_gwstress"    /> <!-- P2 (Pa) atmosphere_northward_stress_due_to_gravity_wave_drag : Parameterised y- component of gravity wave drag -->
348   <field id="CMIP6_zfull"         field_ref="zfull"            /> <!-- P2 (m) height_above_reference_ellipsoid : Altitude of Model Full-Levels -->
349   <field id="CMIP6_zg"            field_ref="geop"             /> <!-- P1 (m) geopotential_height : Geopotential height on the 1000 hPa surface -->
350   <field id="CMIP6_zhalf"         field_ref="zhalf"            /> <!-- P2 (m) height_above_reference_ellipsoid : Altitude of Model Half-Levels -->
351   <field id="CMIP6_zmla"          field_ref="s_pblh"           /> <!-- P1 (m) atmosphere_boundary_layer_thickness : Height of Boundary Layer -->
352   <field id="CMIP6_zmlwaero"      field_ref="dummy_not_provided"        /> <!-- P1 (K s-1) longwave_heating_rate_due_to_volcanic_aerosols : longwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required -->
353   <field id="CMIP6_zmswaero"      field_ref="dummy_not_provided"        /> <!-- P1 (K s-1) shortwave_heating_rate_due_to_volcanic_aerosols : shortwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required -->
354   <field id="CMIP6_zmtnt"         field_ref="dtphy"            /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_diabatic_processes : The diabatic heating rates due to all the processes that may change potential temperature -->
355   <field id="CMIP6_ap" field_ref="Ahyb" /><!-- One of the hybrid coordinate arrays -->
356   <field id="CMIP6_ap_bnds" field_ref="Ahyb_inter" /><!-- One of the hybrid coordinate arrays -->
357   <field id="CMIP6_b" field_ref="Bhyb" /><!-- One of the hybrid coordinate arrays -->
358   <field id="CMIP6_b_bnds" field_ref="Bhyb_inter" /><!-- One of the hybrid coordinate arrays -->
359</field_definition>
360</context>
Note: See TracBrowser for help on using the repository browser.