[3823] | 1 | ! |
---|
| 2 | MODULE stdlevvar_mod |
---|
| 3 | ! |
---|
| 4 | ! This module contains main procedures for calculation |
---|
| 5 | ! of temperature, specific humidity and wind at a reference level |
---|
| 6 | ! |
---|
| 7 | USE cdrag_mod |
---|
| 8 | USE screenp_mod |
---|
| 9 | USE screenc_mod |
---|
| 10 | IMPLICIT NONE |
---|
| 11 | |
---|
| 12 | CONTAINS |
---|
| 13 | ! |
---|
| 14 | !**************************************************************************************** |
---|
| 15 | ! |
---|
| 16 | !r original routine svn3623 |
---|
| 17 | ! |
---|
| 18 | SUBROUTINE stdlevvar(klon, knon, nsrf, zxli, & |
---|
| 19 | u1, v1, t1, q1, z1, & |
---|
| 20 | ts1, qsurf, z0m, z0h, psol, pat1, & |
---|
| 21 | t_2m, q_2m, t_10m, q_10m, u_10m, ustar) |
---|
| 22 | IMPLICIT NONE |
---|
| 23 | !------------------------------------------------------------------------- |
---|
| 24 | ! |
---|
| 25 | ! Objet : calcul de la temperature et l'humidite relative a 2m et du |
---|
| 26 | ! module du vent a 10m a partir des relations de Dyer-Businger et |
---|
| 27 | ! des equations de Louis. |
---|
| 28 | ! |
---|
| 29 | ! Reference : Hess, Colman et McAvaney (1995) |
---|
| 30 | ! |
---|
| 31 | ! I. Musat, 01.07.2002 |
---|
| 32 | ! |
---|
| 33 | !AM On rajoute en sortie t et q a 10m pr le calcule d'hbtm2 dans clmain |
---|
| 34 | ! |
---|
| 35 | !------------------------------------------------------------------------- |
---|
| 36 | ! |
---|
| 37 | ! klon----input-I- dimension de la grille physique (= nb_pts_latitude X nb_pts_longitude) |
---|
| 38 | ! knon----input-I- nombre de points pour un type de surface |
---|
| 39 | ! nsrf----input-I- indice pour le type de surface; voir indice_sol_mod.F90 |
---|
| 40 | ! zxli----input-L- TRUE si calcul des cdrags selon Laurent Li |
---|
| 41 | ! u1------input-R- vent zonal au 1er niveau du modele |
---|
| 42 | ! v1------input-R- vent meridien au 1er niveau du modele |
---|
| 43 | ! t1------input-R- temperature de l'air au 1er niveau du modele |
---|
| 44 | ! q1------input-R- humidite relative au 1er niveau du modele |
---|
| 45 | ! z1------input-R- geopotentiel au 1er niveau du modele |
---|
| 46 | ! ts1-----input-R- temperature de l'air a la surface |
---|
| 47 | ! qsurf---input-R- humidite relative a la surface |
---|
| 48 | ! z0m, z0h---input-R- rugosite |
---|
| 49 | ! psol----input-R- pression au sol |
---|
| 50 | ! pat1----input-R- pression au 1er niveau du modele |
---|
| 51 | ! |
---|
| 52 | ! t_2m---output-R- temperature de l'air a 2m |
---|
| 53 | ! q_2m---output-R- humidite relative a 2m |
---|
| 54 | ! u_10m--output-R- vitesse du vent a 10m |
---|
| 55 | !AM |
---|
| 56 | ! t_10m--output-R- temperature de l'air a 10m |
---|
| 57 | ! q_10m--output-R- humidite specifique a 10m |
---|
| 58 | ! ustar--output-R- u* |
---|
| 59 | ! |
---|
| 60 | INTEGER, intent(in) :: klon, knon, nsrf |
---|
| 61 | LOGICAL, intent(in) :: zxli |
---|
| 62 | REAL, dimension(klon), intent(in) :: u1, v1, t1, q1, z1, ts1 |
---|
| 63 | REAL, dimension(klon), intent(in) :: qsurf, z0m, z0h |
---|
| 64 | REAL, dimension(klon), intent(in) :: psol, pat1 |
---|
| 65 | ! |
---|
| 66 | REAL, dimension(klon), intent(out) :: t_2m, q_2m, ustar |
---|
| 67 | REAL, dimension(klon), intent(out) :: u_10m, t_10m, q_10m |
---|
| 68 | !------------------------------------------------------------------------- |
---|
| 69 | include "flux_arp.h" |
---|
| 70 | include "YOMCST.h" |
---|
| 71 | !IM PLUS |
---|
| 72 | include "YOETHF.h" |
---|
| 73 | ! |
---|
| 74 | ! Quelques constantes et options: |
---|
| 75 | ! |
---|
| 76 | ! RKAR : constante de von Karman |
---|
| 77 | REAL, PARAMETER :: RKAR=0.40 |
---|
| 78 | ! niter : nombre iterations calcul "corrector" |
---|
| 79 | ! INTEGER, parameter :: niter=6, ncon=niter-1 |
---|
| 80 | INTEGER, parameter :: niter=2, ncon=niter-1 |
---|
| 81 | ! |
---|
| 82 | ! Variables locales |
---|
| 83 | INTEGER :: i, n |
---|
| 84 | REAL :: zref |
---|
| 85 | REAL, dimension(klon) :: speed |
---|
| 86 | ! tpot : temperature potentielle |
---|
| 87 | REAL, dimension(klon) :: tpot |
---|
| 88 | REAL, dimension(klon) :: zri1, cdran |
---|
| 89 | REAL, dimension(klon) :: cdram, cdrah |
---|
| 90 | ! ri1 : nb. de Richardson entre la surface --> la 1ere couche |
---|
| 91 | REAL, dimension(klon) :: ri1 |
---|
| 92 | REAL, dimension(klon) :: testar, qstar |
---|
| 93 | REAL, dimension(klon) :: zdte, zdq |
---|
| 94 | ! lmon : longueur de Monin-Obukhov selon Hess, Colman and McAvaney |
---|
| 95 | DOUBLE PRECISION, dimension(klon) :: lmon |
---|
| 96 | DOUBLE PRECISION, parameter :: eps=1.0D-20 |
---|
| 97 | REAL, dimension(klon) :: delu, delte, delq |
---|
| 98 | REAL, dimension(klon) :: u_zref, te_zref, q_zref |
---|
| 99 | REAL, dimension(klon) :: temp, pref |
---|
| 100 | LOGICAL :: okri |
---|
| 101 | REAL, dimension(klon) :: u_zref_p, te_zref_p, temp_p, q_zref_p |
---|
| 102 | !convertgence |
---|
| 103 | REAL, dimension(klon) :: te_zref_con, q_zref_con |
---|
| 104 | REAL, dimension(klon) :: u_zref_c, te_zref_c, temp_c, q_zref_c |
---|
| 105 | REAL, dimension(klon) :: ok_pred, ok_corr |
---|
| 106 | ! REAL, dimension(klon) :: conv_te, conv_q |
---|
| 107 | !------------------------------------------------------------------------- |
---|
| 108 | DO i=1, knon |
---|
| 109 | speed(i)=SQRT(u1(i)**2+v1(i)**2) |
---|
| 110 | ri1(i) = 0.0 |
---|
| 111 | ENDDO |
---|
| 112 | ! |
---|
| 113 | okri=.FALSE. |
---|
| 114 | ! CALL coefcdrag(klon, knon, nsrf, zxli, & |
---|
| 115 | ! & speed, t1, q1, z1, psol, & |
---|
| 116 | ! & ts1, qsurf, rugos, okri, ri1, & |
---|
| 117 | ! & cdram, cdrah, cdran, zri1, pref) |
---|
| 118 | ! Fuxing WANG, 04/03/2015, replace the coefcdrag by the merged version: cdrag |
---|
| 119 | |
---|
| 120 | CALL cdrag(knon, nsrf, & |
---|
| 121 | & speed, t1, q1, z1, & |
---|
| 122 | & psol, ts1, qsurf, z0m, z0h, & |
---|
| 123 | & cdram, cdrah, zri1, pref) |
---|
| 124 | |
---|
| 125 | ! --- special Dice: on force cdragm ( a defaut de forcer ustar) MPL 05082013 |
---|
| 126 | IF (ok_prescr_ust) then |
---|
| 127 | DO i = 1, knon |
---|
| 128 | print *,'cdram avant=',cdram(i) |
---|
| 129 | cdram(i) = ust*ust/speed(i)/speed(i) |
---|
| 130 | print *,'cdram ust speed apres=',cdram(i),ust,speed |
---|
| 131 | ENDDO |
---|
| 132 | ENDIF |
---|
| 133 | ! |
---|
| 134 | !---------Star variables---------------------------------------------------- |
---|
| 135 | ! |
---|
| 136 | DO i = 1, knon |
---|
| 137 | ri1(i) = zri1(i) |
---|
| 138 | tpot(i) = t1(i)* (psol(i)/pat1(i))**RKAPPA |
---|
| 139 | ustar(i) = sqrt(cdram(i) * speed(i) * speed(i)) |
---|
| 140 | zdte(i) = tpot(i) - ts1(i) |
---|
| 141 | zdq(i) = max(q1(i),0.0) - max(qsurf(i),0.0) |
---|
| 142 | ! |
---|
| 143 | ! |
---|
| 144 | !IM BUG BUG BUG zdte(i) = max(zdte(i),1.e-10) |
---|
| 145 | zdte(i) = sign(max(abs(zdte(i)),1.e-10),zdte(i)) |
---|
| 146 | ! |
---|
| 147 | testar(i) = (cdrah(i) * zdte(i) * speed(i))/ustar(i) |
---|
| 148 | qstar(i) = (cdrah(i) * zdq(i) * speed(i))/ustar(i) |
---|
| 149 | lmon(i) = (ustar(i) * ustar(i) * tpot(i))/ & |
---|
| 150 | & (RKAR * RG * testar(i)) |
---|
| 151 | ENDDO |
---|
| 152 | ! |
---|
| 153 | !----------First aproximation of variables at zref -------------------------- |
---|
| 154 | zref = 2.0 |
---|
| 155 | CALL screenp(klon, knon, nsrf, speed, tpot, q1, & |
---|
| 156 | & ts1, qsurf, z0m, lmon, & |
---|
| 157 | & ustar, testar, qstar, zref, & |
---|
| 158 | & delu, delte, delq) |
---|
| 159 | ! |
---|
| 160 | DO i = 1, knon |
---|
| 161 | u_zref(i) = delu(i) |
---|
| 162 | q_zref(i) = max(qsurf(i),0.0) + delq(i) |
---|
| 163 | te_zref(i) = ts1(i) + delte(i) |
---|
| 164 | temp(i) = te_zref(i) * (psol(i)/pat1(i))**(-RKAPPA) |
---|
| 165 | q_zref_p(i) = q_zref(i) |
---|
| 166 | ! te_zref_p(i) = te_zref(i) |
---|
| 167 | temp_p(i) = temp(i) |
---|
| 168 | ENDDO |
---|
| 169 | ! |
---|
| 170 | ! Iteration of the variables at the reference level zref : corrector calculation ; see Hess & McAvaney, 1995 |
---|
| 171 | ! |
---|
| 172 | DO n = 1, niter |
---|
| 173 | ! |
---|
| 174 | okri=.TRUE. |
---|
| 175 | CALL screenc(klon, knon, nsrf, zxli, & |
---|
| 176 | & u_zref, temp, q_zref, zref, & |
---|
| 177 | & ts1, qsurf, z0m, z0h, psol, & |
---|
| 178 | & ustar, testar, qstar, okri, ri1, & |
---|
| 179 | & pref, delu, delte, delq) |
---|
| 180 | ! |
---|
| 181 | DO i = 1, knon |
---|
| 182 | u_zref(i) = delu(i) |
---|
| 183 | q_zref(i) = delq(i) + max(qsurf(i),0.0) |
---|
| 184 | te_zref(i) = delte(i) + ts1(i) |
---|
| 185 | ! |
---|
| 186 | ! return to normal temperature |
---|
| 187 | ! |
---|
| 188 | temp(i) = te_zref(i) * (psol(i)/pref(i))**(-RKAPPA) |
---|
| 189 | ! temp(i) = te_zref(i) - (zref* RG)/RCPD/ & |
---|
| 190 | ! (1 + RVTMP2 * max(q_zref(i),0.0)) |
---|
| 191 | ! |
---|
| 192 | !IM +++ |
---|
| 193 | ! IF(temp(i).GT.350.) THEN |
---|
| 194 | ! WRITE(*,*) 'temp(i) GT 350 K !!',i,nsrf,temp(i) |
---|
| 195 | ! ENDIF |
---|
| 196 | !IM --- |
---|
| 197 | ! |
---|
| 198 | IF(n.EQ.ncon) THEN |
---|
| 199 | te_zref_con(i) = te_zref(i) |
---|
| 200 | q_zref_con(i) = q_zref(i) |
---|
| 201 | ENDIF |
---|
| 202 | ! |
---|
| 203 | ENDDO |
---|
| 204 | ! |
---|
| 205 | ENDDO |
---|
| 206 | ! |
---|
| 207 | ! verifier le critere de convergence : 0.25% pour te_zref et 5% pour qe_zref |
---|
| 208 | ! |
---|
| 209 | ! DO i = 1, knon |
---|
| 210 | ! conv_te(i) = (te_zref(i) - te_zref_con(i))/te_zref_con(i) |
---|
| 211 | ! conv_q(i) = (q_zref(i) - q_zref_con(i))/q_zref_con(i) |
---|
| 212 | !IM +++ |
---|
| 213 | ! IF(abs(conv_te(i)).GE.0.0025.AND.abs(conv_q(i)).GE.0.05) THEN |
---|
| 214 | ! PRINT*,'DIV','i=',i,te_zref_con(i),te_zref(i),conv_te(i), & |
---|
| 215 | ! q_zref_con(i),q_zref(i),conv_q(i) |
---|
| 216 | ! ENDIF |
---|
| 217 | !IM --- |
---|
| 218 | ! ENDDO |
---|
| 219 | ! |
---|
| 220 | DO i = 1, knon |
---|
| 221 | q_zref_c(i) = q_zref(i) |
---|
| 222 | temp_c(i) = temp(i) |
---|
| 223 | ! |
---|
| 224 | ! IF(zri1(i).LT.0.) THEN |
---|
| 225 | ! IF(nsrf.EQ.1) THEN |
---|
| 226 | ! ok_pred(i)=1. |
---|
| 227 | ! ok_corr(i)=0. |
---|
| 228 | ! ELSE |
---|
| 229 | ! ok_pred(i)=0. |
---|
| 230 | ! ok_corr(i)=1. |
---|
| 231 | ! ENDIF |
---|
| 232 | ! ELSE |
---|
| 233 | ! ok_pred(i)=0. |
---|
| 234 | ! ok_corr(i)=1. |
---|
| 235 | ! ENDIF |
---|
| 236 | ! |
---|
| 237 | ok_pred(i)=0. |
---|
| 238 | ok_corr(i)=1. |
---|
| 239 | ! |
---|
| 240 | t_2m(i) = temp_p(i) * ok_pred(i) + temp_c(i) * ok_corr(i) |
---|
| 241 | q_2m(i) = q_zref_p(i) * ok_pred(i) + q_zref_c(i) * ok_corr(i) |
---|
| 242 | !IM +++ |
---|
| 243 | ! IF(n.EQ.niter) THEN |
---|
| 244 | ! IF(t_2m(i).LT.t1(i).AND.t_2m(i).LT.ts1(i)) THEN |
---|
| 245 | ! PRINT*,' BAD t2m LT ',i,nsrf,t_2m(i),t1(i),ts1(i) |
---|
| 246 | ! ELSEIF(t_2m(i).GT.t1(i).AND.t_2m(i).GT.ts1(i)) THEN |
---|
| 247 | ! PRINT*,' BAD t2m GT ',i,nsrf,t_2m(i),t1(i),ts1(i) |
---|
| 248 | ! ENDIF |
---|
| 249 | ! ENDIF |
---|
| 250 | !IM --- |
---|
| 251 | ENDDO |
---|
| 252 | ! |
---|
| 253 | ! |
---|
| 254 | !----------First aproximation of variables at zref -------------------------- |
---|
| 255 | ! |
---|
| 256 | zref = 10.0 |
---|
| 257 | CALL screenp(klon, knon, nsrf, speed, tpot, q1, & |
---|
| 258 | & ts1, qsurf, z0m, lmon, & |
---|
| 259 | & ustar, testar, qstar, zref, & |
---|
| 260 | & delu, delte, delq) |
---|
| 261 | ! |
---|
| 262 | DO i = 1, knon |
---|
| 263 | u_zref(i) = delu(i) |
---|
| 264 | q_zref(i) = max(qsurf(i),0.0) + delq(i) |
---|
| 265 | te_zref(i) = ts1(i) + delte(i) |
---|
| 266 | temp(i) = te_zref(i) * (psol(i)/pat1(i))**(-RKAPPA) |
---|
| 267 | ! temp(i) = te_zref(i) - (zref* RG)/RCPD/ & |
---|
| 268 | ! (1 + RVTMP2 * max(q_zref(i),0.0)) |
---|
| 269 | u_zref_p(i) = u_zref(i) |
---|
| 270 | ENDDO |
---|
| 271 | ! |
---|
| 272 | ! Iteration of the variables at the reference level zref : corrector ; see Hess & McAvaney, 1995 |
---|
| 273 | ! |
---|
| 274 | DO n = 1, niter |
---|
| 275 | ! |
---|
| 276 | okri=.TRUE. |
---|
| 277 | CALL screenc(klon, knon, nsrf, zxli, & |
---|
| 278 | & u_zref, temp, q_zref, zref, & |
---|
| 279 | & ts1, qsurf, z0m, z0h, psol, & |
---|
| 280 | & ustar, testar, qstar, okri, ri1, & |
---|
| 281 | & pref, delu, delte, delq) |
---|
| 282 | ! |
---|
| 283 | DO i = 1, knon |
---|
| 284 | u_zref(i) = delu(i) |
---|
| 285 | q_zref(i) = delq(i) + max(qsurf(i),0.0) |
---|
| 286 | te_zref(i) = delte(i) + ts1(i) |
---|
| 287 | temp(i) = te_zref(i) * (psol(i)/pref(i))**(-RKAPPA) |
---|
| 288 | ! temp(i) = te_zref(i) - (zref* RG)/RCPD/ & |
---|
| 289 | ! (1 + RVTMP2 * max(q_zref(i),0.0)) |
---|
| 290 | ENDDO |
---|
| 291 | ! |
---|
| 292 | ENDDO |
---|
| 293 | ! |
---|
| 294 | DO i = 1, knon |
---|
| 295 | u_zref_c(i) = u_zref(i) |
---|
| 296 | ! |
---|
| 297 | u_10m(i) = u_zref_p(i) * ok_pred(i) + u_zref_c(i) * ok_corr(i) |
---|
| 298 | ! |
---|
| 299 | !AM |
---|
| 300 | q_zref_c(i) = q_zref(i) |
---|
| 301 | temp_c(i) = temp(i) |
---|
| 302 | t_10m(i) = temp_p(i) * ok_pred(i) + temp_c(i) * ok_corr(i) |
---|
| 303 | q_10m(i) = q_zref_p(i) * ok_pred(i) + q_zref_c(i) * ok_corr(i) |
---|
| 304 | !MA |
---|
| 305 | ENDDO |
---|
| 306 | ! |
---|
| 307 | RETURN |
---|
| 308 | END subroutine stdlevvar |
---|
| 309 | ! |
---|
| 310 | SUBROUTINE stdlevvarn(klon, knon, nsrf, zxli, & |
---|
| 311 | u1, v1, t1, q1, z1, & |
---|
| 312 | ts1, qsurf, z0m, z0h, psol, pat1, & |
---|
[3838] | 313 | t_2m, q_2m, t_10m, q_10m, u_10m, ustar, & |
---|
| 314 | n2mout) |
---|
[3823] | 315 | ! |
---|
| 316 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
| 317 | IMPLICIT NONE |
---|
| 318 | !------------------------------------------------------------------------- |
---|
| 319 | ! |
---|
| 320 | ! Objet : calcul de la temperature et l'humidite relative a 2m et du |
---|
| 321 | ! module du vent a 10m a partir des relations de Dyer-Businger et |
---|
| 322 | ! des equations de Louis. |
---|
| 323 | ! |
---|
| 324 | ! Reference : Hess, Colman et McAvaney (1995) |
---|
| 325 | ! |
---|
| 326 | ! I. Musat, 01.07.2002 |
---|
| 327 | ! |
---|
| 328 | !AM On rajoute en sortie t et q a 10m pr le calcule d'hbtm2 dans clmain |
---|
| 329 | ! |
---|
| 330 | !------------------------------------------------------------------------- |
---|
| 331 | ! |
---|
| 332 | ! klon----input-I- dimension de la grille physique (= nb_pts_latitude X nb_pts_longitude) |
---|
| 333 | ! knon----input-I- nombre de points pour un type de surface |
---|
| 334 | ! nsrf----input-I- indice pour le type de surface; voir indice_sol_mod.F90 |
---|
| 335 | ! zxli----input-L- TRUE si calcul des cdrags selon Laurent Li |
---|
| 336 | ! u1------input-R- vent zonal au 1er niveau du modele |
---|
| 337 | ! v1------input-R- vent meridien au 1er niveau du modele |
---|
| 338 | ! t1------input-R- temperature de l'air au 1er niveau du modele |
---|
| 339 | ! q1------input-R- humidite relative au 1er niveau du modele |
---|
| 340 | ! z1------input-R- geopotentiel au 1er niveau du modele |
---|
| 341 | ! ts1-----input-R- temperature de l'air a la surface |
---|
| 342 | ! qsurf---input-R- humidite relative a la surface |
---|
| 343 | ! z0m, z0h---input-R- rugosite |
---|
| 344 | ! psol----input-R- pression au sol |
---|
| 345 | ! pat1----input-R- pression au 1er niveau du modele |
---|
| 346 | ! |
---|
| 347 | ! t_2m---output-R- temperature de l'air a 2m |
---|
| 348 | ! q_2m---output-R- humidite relative a 2m |
---|
| 349 | ! u_2m--output-R- vitesse du vent a 2m |
---|
| 350 | ! u_10m--output-R- vitesse du vent a 10m |
---|
[3838] | 351 | ! ustar--output-R- u* |
---|
[3823] | 352 | !AM |
---|
| 353 | ! t_10m--output-R- temperature de l'air a 10m |
---|
| 354 | ! q_10m--output-R- humidite specifique a 10m |
---|
| 355 | ! |
---|
| 356 | INTEGER, intent(in) :: klon, knon, nsrf |
---|
| 357 | LOGICAL, intent(in) :: zxli |
---|
| 358 | REAL, dimension(klon), intent(in) :: u1, v1, t1, q1, z1, ts1 |
---|
| 359 | REAL, dimension(klon), intent(in) :: qsurf, z0m, z0h |
---|
| 360 | REAL, dimension(klon), intent(in) :: psol, pat1 |
---|
| 361 | ! |
---|
[3838] | 362 | REAL, dimension(klon), intent(out) :: t_2m, q_2m, ustar |
---|
[3823] | 363 | REAL, dimension(klon), intent(out) :: u_10m, t_10m, q_10m |
---|
| 364 | INTEGER, dimension(klon, 6), intent(out) :: n2mout |
---|
| 365 | ! |
---|
| 366 | REAL, dimension(klon) :: u_2m |
---|
| 367 | REAL, dimension(klon) :: cdrm2m, cdrh2m, ri2m |
---|
| 368 | REAL, dimension(klon) :: cdram, cdrah, zri1 |
---|
| 369 | REAL, dimension(klon) :: cdmn1, cdhn1, fm1, fh1 |
---|
| 370 | REAL, dimension(klon) :: cdmn2m, cdhn2m, fm2m, fh2m |
---|
| 371 | REAL, dimension(klon) :: ri2m_new |
---|
| 372 | !------------------------------------------------------------------------- |
---|
| 373 | include "flux_arp.h" |
---|
| 374 | include "YOMCST.h" |
---|
| 375 | !IM PLUS |
---|
| 376 | include "YOETHF.h" |
---|
| 377 | ! |
---|
| 378 | ! Quelques constantes et options: |
---|
| 379 | ! |
---|
| 380 | ! RKAR : constante de von Karman |
---|
| 381 | REAL, PARAMETER :: RKAR=0.40 |
---|
| 382 | ! niter : nombre iterations calcul "corrector" |
---|
| 383 | ! INTEGER, parameter :: niter=6, ncon=niter-1 |
---|
| 384 | !IM 071020 INTEGER, parameter :: niter=2, ncon=niter-1 |
---|
| 385 | INTEGER, parameter :: niter=2, ncon=niter |
---|
| 386 | ! INTEGER, parameter :: niter=6, ncon=niter |
---|
| 387 | ! |
---|
| 388 | ! Variables locales |
---|
| 389 | INTEGER :: i, n |
---|
| 390 | REAL :: zref |
---|
| 391 | REAL, dimension(klon) :: speed |
---|
| 392 | ! tpot : temperature potentielle |
---|
| 393 | REAL, dimension(klon) :: tpot |
---|
| 394 | REAL, dimension(klon) :: cdran |
---|
| 395 | ! ri1 : nb. de Richardson entre la surface --> la 1ere couche |
---|
| 396 | REAL, dimension(klon) :: ri1 |
---|
| 397 | DOUBLE PRECISION, parameter :: eps=1.0D-20 |
---|
| 398 | REAL, dimension(klon) :: delu, delte, delq |
---|
| 399 | REAL, dimension(klon) :: delh, delm |
---|
| 400 | REAL, dimension(klon) :: delh_new, delm_new |
---|
| 401 | REAL, dimension(klon) :: u_zref, te_zref, q_zref |
---|
| 402 | REAL, dimension(klon) :: u_zref_pnew, te_zref_pnew, q_zref_pnew |
---|
| 403 | REAL, dimension(klon) :: temp, pref |
---|
| 404 | REAL, dimension(klon) :: temp_new, pref_new |
---|
| 405 | LOGICAL :: okri |
---|
| 406 | REAL, dimension(klon) :: u_zref_p, te_zref_p, temp_p, q_zref_p |
---|
| 407 | REAL, dimension(klon) :: u_zref_p_new, te_zref_p_new, temp_p_new, q_zref_p_new |
---|
| 408 | !convergence |
---|
| 409 | REAL, dimension(klon) :: te_zref_con, q_zref_con |
---|
| 410 | REAL, dimension(klon) :: u_zref_c, te_zref_c, temp_c, q_zref_c |
---|
| 411 | REAL, dimension(klon) :: ok_pred, ok_corr |
---|
| 412 | ! |
---|
| 413 | REAL, dimension(klon) :: cdrm10m, cdrh10m, ri10m |
---|
| 414 | REAL, dimension(klon) :: cdmn10m, cdhn10m, fm10m, fh10m |
---|
| 415 | REAL, dimension(klon) :: cdn2m, cdn1 |
---|
| 416 | REAL :: CEPDUE,zdu2 |
---|
| 417 | INTEGER :: nzref, nz1 |
---|
| 418 | LOGICAL, dimension(klon) :: ok_t2m_toosmall, ok_t2m_toobig |
---|
| 419 | LOGICAL, dimension(klon) :: ok_q2m_toosmall, ok_q2m_toobig |
---|
| 420 | LOGICAL, dimension(klon) :: ok_u2m_toobig |
---|
| 421 | LOGICAL, dimension(klon) :: ok_t10m_toosmall, ok_t10m_toobig |
---|
| 422 | LOGICAL, dimension(klon) :: ok_q10m_toosmall, ok_q10m_toobig |
---|
| 423 | LOGICAL, dimension(klon) :: ok_u10m_toobig |
---|
| 424 | INTEGER, dimension(klon, 6) :: n10mout |
---|
| 425 | |
---|
| 426 | !------------------------------------------------------------------------- |
---|
| 427 | CEPDUE=0.1 |
---|
| 428 | ! |
---|
| 429 | ! n2mout : compteur des pas de temps ou t2m,q2m ou u2m sont en dehors des intervalles |
---|
| 430 | ! [tsurf, temp], [qsurf, q1] ou [0, speed] |
---|
[3832] | 431 | ! n10mout : compteur des pas de temps ou t10m,q10m ou u10m sont en dehors des intervalles |
---|
| 432 | ! [tsurf, temp], [qsurf, q1] ou [0, speed] |
---|
[3823] | 433 | ! |
---|
| 434 | n2mout(:,:)=0 |
---|
[3832] | 435 | n10mout(:,:)=0 |
---|
[3823] | 436 | |
---|
| 437 | DO i=1, knon |
---|
| 438 | speed(i)=MAX(SQRT(u1(i)**2+v1(i)**2),CEPDUE) |
---|
| 439 | ri1(i) = 0.0 |
---|
| 440 | ENDDO |
---|
| 441 | ! |
---|
| 442 | okri=.FALSE. |
---|
| 443 | CALL cdrag(knon, nsrf, & |
---|
| 444 | & speed, t1, q1, z1, & |
---|
| 445 | & psol, ts1, qsurf, z0m, z0h, & |
---|
| 446 | & cdram, cdrah, zri1, pref) |
---|
| 447 | |
---|
| 448 | ! |
---|
| 449 | DO i = 1, knon |
---|
| 450 | ri1(i) = zri1(i) |
---|
| 451 | tpot(i) = t1(i)* (psol(i)/pat1(i))**RKAPPA |
---|
| 452 | zdu2 = MAX(CEPDUE*CEPDUE, speed(i)**2) |
---|
[3838] | 453 | ustar(i) = sqrt(cdram(i) * zdu2) |
---|
[3823] | 454 | ! |
---|
| 455 | ENDDO |
---|
| 456 | ! |
---|
| 457 | !----------First aproximation of variables at zref -------------------------- |
---|
| 458 | zref = 2.0 |
---|
| 459 | ! |
---|
| 460 | ! calcul first-guess en utilisant dans les calculs à 2m |
---|
| 461 | ! le Richardson de la premiere couche atmospherique |
---|
| 462 | ! |
---|
| 463 | CALL screencn(klon, knon, nsrf, zxli, & |
---|
| 464 | & speed, tpot, q1, zref, & |
---|
| 465 | & ts1, qsurf, z0m, z0h, psol, & |
---|
| 466 | & cdram, cdrah, okri, & |
---|
| 467 | & ri1, 1, & |
---|
| 468 | & pref_new, delm_new, delh_new, ri2m) |
---|
| 469 | ! |
---|
| 470 | DO i = 1, knon |
---|
| 471 | u_zref(i) = delm_new(i)*speed(i) |
---|
| 472 | u_zref_p(i) = u_zref(i) |
---|
| 473 | q_zref(i) = delh_new(i)*max(q1(i),0.0) + & |
---|
| 474 | & max(qsurf(i),0.0)*(1-delh_new(i)) |
---|
| 475 | q_zref_p(i) = q_zref(i) |
---|
| 476 | te_zref(i) = delh_new(i)*tpot(i) + ts1(i)*(1-delh_new(i)) |
---|
| 477 | te_zref_p(i) = te_zref(i) |
---|
| 478 | ! |
---|
| 479 | ! return to normal temperature |
---|
| 480 | temp(i) = te_zref(i) * (psol(i)/pref_new(i))**(-RKAPPA) |
---|
| 481 | temp_p(i) = temp(i) |
---|
| 482 | ! |
---|
| 483 | ! compteurs ici |
---|
| 484 | ! |
---|
| 485 | ok_t2m_toosmall(i)=te_zref(i).LT.tpot(i).AND. & |
---|
| 486 | & te_zref(i).LT.ts1(i) |
---|
| 487 | ok_t2m_toobig(i)=te_zref(i).GT.tpot(i).AND. & |
---|
| 488 | & te_zref(i).GT.ts1(i) |
---|
| 489 | ok_q2m_toosmall(i)=q_zref(i).LT.q1(i).AND. & |
---|
| 490 | & q_zref(i).LT.qsurf(i) |
---|
| 491 | ok_q2m_toobig(i)=q_zref(i).GT.q1(i).AND. & |
---|
| 492 | & q_zref(i).GT.qsurf(i) |
---|
| 493 | ok_u2m_toobig(i)=u_zref(i).GT.speed(i) |
---|
| 494 | ! |
---|
| 495 | IF(ok_t2m_toosmall(i).OR.ok_t2m_toobig(i)) THEN |
---|
| 496 | n2mout(i,1)=n2mout(i,1)+1 |
---|
| 497 | ENDIF |
---|
| 498 | IF(ok_q2m_toosmall(i).OR.ok_q2m_toobig(i)) THEN |
---|
| 499 | n2mout(i,3)=n2mout(i,3)+1 |
---|
| 500 | ENDIF |
---|
| 501 | IF(ok_u2m_toobig(i)) THEN |
---|
| 502 | n2mout(i,5)=n2mout(i,5)+1 |
---|
| 503 | ENDIF |
---|
| 504 | ! |
---|
| 505 | IF(ok_t2m_toosmall(i).OR.ok_t2m_toobig(i).OR. & |
---|
| 506 | & ok_q2m_toosmall(i).OR.ok_q2m_toobig(i).OR. & |
---|
| 507 | & ok_u2m_toobig(i)) THEN |
---|
| 508 | delm_new(i)=min(max(delm_new(i),0.),1.) |
---|
| 509 | delh_new(i)=min(max(delh_new(i),0.),1.) |
---|
| 510 | u_zref(i) = delm_new(i)*speed(i) |
---|
| 511 | u_zref_p(i) = u_zref(i) |
---|
| 512 | q_zref(i) = delh_new(i)*max(q1(i),0.0) + & |
---|
| 513 | & max(qsurf(i),0.0)*(1-delh_new(i)) |
---|
| 514 | q_zref_p(i) = q_zref(i) |
---|
| 515 | te_zref(i) = delh_new(i)*tpot(i) + ts1(i)*(1-delh_new(i)) |
---|
| 516 | te_zref_p(i) = te_zref(i) |
---|
| 517 | ! |
---|
| 518 | ! return to normal temperature |
---|
| 519 | temp(i) = te_zref(i) * (psol(i)/pref_new(i))**(-RKAPPA) |
---|
| 520 | temp_p(i) = temp(i) |
---|
| 521 | ENDIF |
---|
| 522 | ! |
---|
| 523 | ENDDO |
---|
| 524 | ! |
---|
| 525 | ! Iteration of the variables at the reference level zref : corrector calculation ; see Hess & McAvaney, 1995 |
---|
| 526 | ! |
---|
| 527 | DO n = 1, niter |
---|
| 528 | ! |
---|
| 529 | okri=.TRUE. |
---|
| 530 | CALL screencn(klon, knon, nsrf, zxli, & |
---|
| 531 | & u_zref, temp, q_zref, zref, & |
---|
| 532 | & ts1, qsurf, z0m, z0h, psol, & |
---|
| 533 | & cdram, cdrah, okri, & |
---|
| 534 | & ri1, 0, & |
---|
| 535 | & pref, delm, delh, ri2m) |
---|
| 536 | ! |
---|
| 537 | DO i = 1, knon |
---|
| 538 | u_zref(i) = delm(i)*speed(i) |
---|
| 539 | q_zref(i) = delh(i)*max(q1(i),0.0) + & |
---|
| 540 | & max(qsurf(i),0.0)*(1-delh(i)) |
---|
| 541 | te_zref(i) = delh(i)*tpot(i) + ts1(i)*(1-delh(i)) |
---|
| 542 | ! |
---|
| 543 | ! return to normal temperature |
---|
| 544 | temp(i) = te_zref(i) * (psol(i)/pref(i))**(-RKAPPA) |
---|
| 545 | ! |
---|
| 546 | ! compteurs ici |
---|
| 547 | ! |
---|
| 548 | ok_t2m_toosmall(i)=te_zref(i).LT.tpot(i).AND. & |
---|
| 549 | & te_zref(i).LT.ts1(i) |
---|
| 550 | ok_t2m_toobig(i)=te_zref(i).GT.tpot(i).AND. & |
---|
| 551 | & te_zref(i).GT.ts1(i) |
---|
| 552 | ok_q2m_toosmall(i)=q_zref(i).LT.q1(i).AND. & |
---|
| 553 | & q_zref(i).LT.qsurf(i) |
---|
| 554 | ok_q2m_toobig(i)=q_zref(i).GT.q1(i).AND. & |
---|
| 555 | & q_zref(i).GT.qsurf(i) |
---|
| 556 | ok_u2m_toobig(i)=u_zref(i).GT.speed(i) |
---|
| 557 | ! |
---|
| 558 | IF(ok_t2m_toosmall(i).OR.ok_t2m_toobig(i)) THEN |
---|
| 559 | n2mout(i,2)=n2mout(i,2)+1 |
---|
| 560 | ENDIF |
---|
| 561 | IF(ok_q2m_toosmall(i).OR.ok_q2m_toobig(i)) THEN |
---|
| 562 | n2mout(i,4)=n2mout(i,4)+1 |
---|
| 563 | ENDIF |
---|
| 564 | IF(ok_u2m_toobig(i)) THEN |
---|
| 565 | n2mout(i,6)=n2mout(i,6)+1 |
---|
| 566 | ENDIF |
---|
| 567 | ! |
---|
| 568 | IF(ok_t2m_toosmall(i).OR.ok_t2m_toobig(i).OR. & |
---|
| 569 | & ok_q2m_toosmall(i).OR.ok_q2m_toobig(i).OR. & |
---|
| 570 | & ok_u2m_toobig(i)) THEN |
---|
| 571 | delm(i)=min(max(delm(i),0.),1.) |
---|
| 572 | delh(i)=min(max(delh(i),0.),1.) |
---|
| 573 | u_zref(i) = delm(i)*speed(i) |
---|
| 574 | q_zref(i) = delh(i)*max(q1(i),0.0) + & |
---|
| 575 | & max(qsurf(i),0.0)*(1-delh(i)) |
---|
| 576 | te_zref(i) = delh(i)*tpot(i) + ts1(i)*(1-delh(i)) |
---|
| 577 | temp(i) = te_zref(i) * (psol(i)/pref(i))**(-RKAPPA) |
---|
| 578 | ENDIF |
---|
| 579 | ! |
---|
| 580 | ! |
---|
| 581 | IF(n.EQ.ncon) THEN |
---|
| 582 | te_zref_con(i) = te_zref(i) |
---|
| 583 | q_zref_con(i) = q_zref(i) |
---|
| 584 | ENDIF |
---|
| 585 | ! |
---|
| 586 | ENDDO |
---|
| 587 | ! |
---|
| 588 | ENDDO |
---|
| 589 | ! |
---|
| 590 | DO i = 1, knon |
---|
| 591 | q_zref_c(i) = q_zref(i) |
---|
| 592 | temp_c(i) = temp(i) |
---|
| 593 | ! |
---|
| 594 | ok_pred(i)=0. |
---|
| 595 | ok_corr(i)=1. |
---|
| 596 | ! |
---|
| 597 | t_2m(i) = temp_p(i) * ok_pred(i) + temp_c(i) * ok_corr(i) |
---|
| 598 | q_2m(i) = q_zref_p(i) * ok_pred(i) + q_zref_c(i) * ok_corr(i) |
---|
| 599 | ! |
---|
| 600 | u_zref_c(i) = u_zref(i) |
---|
| 601 | u_2m(i) = u_zref_p(i) * ok_pred(i) + u_zref_c(i) * ok_corr(i) |
---|
| 602 | ENDDO |
---|
| 603 | ! |
---|
| 604 | ! |
---|
| 605 | !----------First aproximation of variables at zref -------------------------- |
---|
| 606 | ! |
---|
| 607 | zref = 10.0 |
---|
| 608 | ! |
---|
| 609 | CALL screencn(klon, knon, nsrf, zxli, & |
---|
| 610 | & speed, tpot, q1, zref, & |
---|
| 611 | & ts1, qsurf, z0m, z0h, psol, & |
---|
| 612 | & cdram, cdrah, okri, & |
---|
| 613 | & ri1, 1, & |
---|
| 614 | & pref_new, delm_new, delh_new, ri10m) |
---|
| 615 | ! |
---|
| 616 | DO i = 1, knon |
---|
| 617 | u_zref(i) = delm_new(i)*speed(i) |
---|
| 618 | q_zref(i) = delh_new(i)*max(q1(i),0.0) + & |
---|
| 619 | & max(qsurf(i),0.0)*(1-delh_new(i)) |
---|
| 620 | te_zref(i) = delh_new(i)*tpot(i) + ts1(i)*(1-delh_new(i)) |
---|
| 621 | temp(i) = te_zref(i) * (psol(i)/pref_new(i))**(-RKAPPA) |
---|
| 622 | u_zref_p(i) = u_zref(i) |
---|
| 623 | ! |
---|
| 624 | ! compteurs ici |
---|
| 625 | ! |
---|
| 626 | ok_t10m_toosmall(i)=te_zref(i).LT.tpot(i).AND. & |
---|
| 627 | & te_zref(i).LT.ts1(i) |
---|
| 628 | ok_t10m_toobig(i)=te_zref(i).GT.tpot(i).AND. & |
---|
| 629 | & te_zref(i).GT.ts1(i) |
---|
| 630 | ok_q10m_toosmall(i)=q_zref(i).LT.q1(i).AND. & |
---|
| 631 | & q_zref(i).LT.qsurf(i) |
---|
| 632 | ok_q10m_toobig(i)=q_zref(i).GT.q1(i).AND. & |
---|
| 633 | & q_zref(i).GT.qsurf(i) |
---|
| 634 | ok_u10m_toobig(i)=u_zref(i).GT.speed(i) |
---|
| 635 | ! |
---|
[3832] | 636 | IF(ok_t10m_toosmall(i).OR.ok_t10m_toobig(i)) THEN |
---|
| 637 | n10mout(i,1)=n10mout(i,1)+1 |
---|
| 638 | ENDIF |
---|
| 639 | IF(ok_q10m_toosmall(i).OR.ok_q10m_toobig(i)) THEN |
---|
| 640 | n10mout(i,3)=n10mout(i,3)+1 |
---|
| 641 | ENDIF |
---|
| 642 | IF(ok_u10m_toobig(i)) THEN |
---|
| 643 | n10mout(i,5)=n10mout(i,5)+1 |
---|
| 644 | ENDIF |
---|
| 645 | ! |
---|
[3823] | 646 | IF(ok_t10m_toosmall(i).OR.ok_t10m_toobig(i).OR. & |
---|
| 647 | & ok_q10m_toosmall(i).OR.ok_q10m_toobig(i).OR. & |
---|
| 648 | & ok_u10m_toobig(i)) THEN |
---|
| 649 | delm_new(i)=min(max(delm_new(i),0.),1.) |
---|
| 650 | delh_new(i)=min(max(delh_new(i),0.),1.) |
---|
| 651 | u_zref(i) = delm_new(i)*speed(i) |
---|
| 652 | u_zref_p(i) = u_zref(i) |
---|
| 653 | q_zref(i) = delh_new(i)*max(q1(i),0.0) + & |
---|
| 654 | & max(qsurf(i),0.0)*(1-delh_new(i)) |
---|
| 655 | te_zref(i) = delh_new(i)*tpot(i) + ts1(i)*(1-delh_new(i)) |
---|
| 656 | temp(i) = te_zref(i) * (psol(i)/pref_new(i))**(-RKAPPA) |
---|
| 657 | ENDIF |
---|
| 658 | ! |
---|
| 659 | ENDDO |
---|
| 660 | ! |
---|
| 661 | ! Iteration of the variables at the reference level zref : corrector calculation ; see Hess & McAvaney, 1995 |
---|
| 662 | ! |
---|
| 663 | DO n = 1, niter |
---|
| 664 | ! |
---|
| 665 | okri=.TRUE. |
---|
| 666 | CALL screencn(klon, knon, nsrf, zxli, & |
---|
| 667 | & u_zref, temp, q_zref, zref, & |
---|
| 668 | & ts1, qsurf, z0m, z0h, psol, & |
---|
| 669 | & cdram, cdrah, okri, & |
---|
| 670 | & ri1, 0, & |
---|
| 671 | & pref, delm, delh, ri10m) |
---|
| 672 | ! |
---|
| 673 | DO i = 1, knon |
---|
| 674 | u_zref(i) = delm(i)*speed(i) |
---|
| 675 | q_zref(i) = delh(i)*max(q1(i),0.0) + & |
---|
| 676 | & max(qsurf(i),0.0)*(1-delh(i)) |
---|
| 677 | te_zref(i) = delh(i)*tpot(i) + ts1(i)*(1-delh(i)) |
---|
| 678 | ! |
---|
| 679 | ! return to normal temperature |
---|
| 680 | temp(i) = te_zref(i) * (psol(i)/pref(i))**(-RKAPPA) |
---|
| 681 | ! |
---|
| 682 | ! compteurs ici |
---|
| 683 | ! |
---|
| 684 | ok_t10m_toosmall(i)=te_zref(i).LT.tpot(i).AND. & |
---|
| 685 | & te_zref(i).LT.ts1(i) |
---|
| 686 | ok_t10m_toobig(i)=te_zref(i).GT.tpot(i).AND. & |
---|
| 687 | & te_zref(i).GT.ts1(i) |
---|
| 688 | ok_q10m_toosmall(i)=q_zref(i).LT.q1(i).AND. & |
---|
| 689 | & q_zref(i).LT.qsurf(i) |
---|
| 690 | ok_q10m_toobig(i)=q_zref(i).GT.q1(i).AND. & |
---|
| 691 | & q_zref(i).GT.qsurf(i) |
---|
| 692 | ok_u10m_toobig(i)=u_zref(i).GT.speed(i) |
---|
| 693 | ! |
---|
| 694 | IF(ok_t10m_toosmall(i).OR.ok_t10m_toobig(i)) THEN |
---|
| 695 | n10mout(i,2)=n10mout(i,2)+1 |
---|
| 696 | ENDIF |
---|
| 697 | IF(ok_q10m_toosmall(i).OR.ok_q10m_toobig(i)) THEN |
---|
| 698 | n10mout(i,4)=n10mout(i,4)+1 |
---|
| 699 | ENDIF |
---|
| 700 | IF(ok_u10m_toobig(i)) THEN |
---|
| 701 | n10mout(i,6)=n10mout(i,6)+1 |
---|
| 702 | ENDIF |
---|
| 703 | ! |
---|
| 704 | IF(ok_t10m_toosmall(i).OR.ok_t10m_toobig(i).OR. & |
---|
| 705 | & ok_q10m_toosmall(i).OR.ok_q10m_toobig(i).OR. & |
---|
| 706 | & ok_u10m_toobig(i)) THEN |
---|
| 707 | delm(i)=min(max(delm(i),0.),1.) |
---|
| 708 | delh(i)=min(max(delh(i),0.),1.) |
---|
| 709 | u_zref(i) = delm(i)*speed(i) |
---|
| 710 | q_zref(i) = delh(i)*max(q1(i),0.0) + & |
---|
| 711 | & max(qsurf(i),0.0)*(1-delh(i)) |
---|
| 712 | te_zref(i) = delh(i)*tpot(i) + ts1(i)*(1-delh(i)) |
---|
| 713 | temp(i) = te_zref(i) * (psol(i)/pref(i))**(-RKAPPA) |
---|
| 714 | ENDIF |
---|
| 715 | ! |
---|
| 716 | ! |
---|
| 717 | IF(n.EQ.ncon) THEN |
---|
| 718 | te_zref_con(i) = te_zref(i) |
---|
| 719 | q_zref_con(i) = q_zref(i) |
---|
| 720 | ENDIF |
---|
| 721 | ! |
---|
| 722 | ENDDO |
---|
| 723 | ! |
---|
| 724 | ENDDO |
---|
| 725 | ! |
---|
| 726 | DO i = 1, knon |
---|
| 727 | q_zref_c(i) = q_zref(i) |
---|
| 728 | temp_c(i) = temp(i) |
---|
| 729 | ! |
---|
| 730 | ok_pred(i)=0. |
---|
| 731 | ok_corr(i)=1. |
---|
| 732 | ! |
---|
| 733 | t_10m(i) = temp_p(i) * ok_pred(i) + temp_c(i) * ok_corr(i) |
---|
| 734 | q_10m(i) = q_zref_p(i) * ok_pred(i) + q_zref_c(i) * ok_corr(i) |
---|
| 735 | ! |
---|
| 736 | u_zref_c(i) = u_zref(i) |
---|
| 737 | u_10m(i) = u_zref_p(i) * ok_pred(i) + u_zref_c(i) * ok_corr(i) |
---|
| 738 | ENDDO |
---|
| 739 | ! |
---|
| 740 | RETURN |
---|
| 741 | END subroutine stdlevvarn |
---|
| 742 | |
---|
| 743 | END MODULE stdlevvar_mod |
---|