| 1 | MODULE lmdz_lscp |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 8 | SUBROUTINE lscp(klon,klev,dtime,missing_val, & |
|---|
| 9 | paprs,pplay,temp,qt,qice_save,ptconv,ratqs,sigma_qtherm, & |
|---|
| 10 | d_t, d_q, d_ql, d_qi, rneb, rneblsvol, & |
|---|
| 11 | pfraclr, pfracld, & |
|---|
| 12 | cldfraliq, sigma2_icefracturb,mean_icefracturb, & |
|---|
| 13 | radocond, radicefrac, rain, snow, & |
|---|
| 14 | frac_impa, frac_nucl, beta, & |
|---|
| 15 | prfl, psfl, rhcl, qta, fraca, & |
|---|
| 16 | tv, pspsk, tla, thl, iflag_cld_th, & |
|---|
| 17 | iflag_ice_thermo, distcltop, temp_cltop, & |
|---|
| 18 | tke, tke_dissip, & |
|---|
| 19 | cell_area, & |
|---|
| 20 | cf_seri, rvc_seri, u_seri, v_seri, & |
|---|
| 21 | qsub, qissr, qcld, subfra, issrfra, gamma_cond, & |
|---|
| 22 | ratio_qi_qtot, dcf_sub, dcf_con, dcf_mix, & |
|---|
| 23 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, & |
|---|
| 24 | dqvc_sub, dqvc_con, dqvc_mix, qsatl, qsati, & |
|---|
| 25 | Tcontr, qcontr, qcontr2, fcontrN, fcontrP, dcf_avi,& |
|---|
| 26 | dqi_avi, dqvc_avi, flight_dist, flight_h2o, & |
|---|
| 27 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv, & |
|---|
| 28 | qraindiag, qsnowdiag, dqreva, dqssub, dqrauto, & |
|---|
| 29 | dqrcol, dqrmelt, dqrfreez, dqsauto, dqsagg, dqsrim,& |
|---|
| 30 | dqsmelt, dqsfreez) |
|---|
| 31 | |
|---|
| 32 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 33 | ! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD) |
|---|
| 34 | ! A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD) |
|---|
| 35 | !-------------------------------------------------------------------------------- |
|---|
| 36 | ! Date: 01/2021 |
|---|
| 37 | !-------------------------------------------------------------------------------- |
|---|
| 38 | ! Aim: Large Scale Clouds and Precipitation (LSCP) |
|---|
| 39 | ! |
|---|
| 40 | ! This code is a new version of the fisrtilp.F90 routine, which is itself a |
|---|
| 41 | ! merge of 'first' (superrsaturation physics, P. LeVan K. Laval) |
|---|
| 42 | ! and 'ilp' (il pleut, L. Li) |
|---|
| 43 | ! |
|---|
| 44 | ! Compared to the original fisrtilp code, lscp |
|---|
| 45 | ! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.) |
|---|
| 46 | ! -> consider always precipitation thermalisation (fl_cor_ebil>0) |
|---|
| 47 | ! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T) |
|---|
| 48 | ! -> option "oldbug" by JYG has been removed |
|---|
| 49 | ! -> iflag_t_glace >0 always |
|---|
| 50 | ! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always) |
|---|
| 51 | ! -> rectangular distribution from L. Li no longer available |
|---|
| 52 | ! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt) |
|---|
| 53 | !-------------------------------------------------------------------------------- |
|---|
| 54 | ! References: |
|---|
| 55 | ! |
|---|
| 56 | ! - Bony, S., & Emanuel, K. A. 2001, JAS, doi: 10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2 |
|---|
| 57 | ! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y |
|---|
| 58 | ! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3 |
|---|
| 59 | ! - Jouhaud, et al. 2018. JAMES, doi:10.1029/2018MS001379 |
|---|
| 60 | ! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046 |
|---|
| 61 | ! - Touzze-Peifert Ludo, PhD thesis, p117-124 |
|---|
| 62 | ! ------------------------------------------------------------------------------- |
|---|
| 63 | ! Code structure: |
|---|
| 64 | ! |
|---|
| 65 | ! P0> Thermalization of the precipitation coming from the overlying layer |
|---|
| 66 | ! P1> Evaporation of the precipitation (falling from the k+1 level) |
|---|
| 67 | ! P2> Cloud formation (at the k level) |
|---|
| 68 | ! P2.A.1> With the PDFs, calculation of cloud properties using the inital |
|---|
| 69 | ! values of T and Q |
|---|
| 70 | ! P2.A.2> Coupling between condensed water and temperature |
|---|
| 71 | ! P2.A.3> Calculation of final quantities associated with cloud formation |
|---|
| 72 | ! P2.B> Release of Latent heat after cloud formation |
|---|
| 73 | ! P3> Autoconversion to precipitation (k-level) |
|---|
| 74 | ! P4> Wet scavenging |
|---|
| 75 | !------------------------------------------------------------------------------ |
|---|
| 76 | ! Some preliminary comments (JBM) : |
|---|
| 77 | ! |
|---|
| 78 | ! The cloud water that the radiation scheme sees is not the same that the cloud |
|---|
| 79 | ! water used in the physics and the dynamics |
|---|
| 80 | ! |
|---|
| 81 | ! During the autoconversion to precipitation (P3 step), radocond (cloud water used |
|---|
| 82 | ! by the radiation scheme) is calculated as an average of the water that remains |
|---|
| 83 | ! in the cloud during the precipitation and not the water remaining at the end |
|---|
| 84 | ! of the time step. The latter is used in the rest of the physics and advected |
|---|
| 85 | ! by the dynamics. |
|---|
| 86 | ! |
|---|
| 87 | ! In summary: |
|---|
| 88 | ! |
|---|
| 89 | ! Radiation: |
|---|
| 90 | ! xflwc(newmicro)+xfiwc(newmicro) = |
|---|
| 91 | ! radocond=lwcon(nc)+iwcon(nc) |
|---|
| 92 | ! |
|---|
| 93 | ! Notetheless, be aware of: |
|---|
| 94 | ! |
|---|
| 95 | ! radocond .NE. ocond(nc) |
|---|
| 96 | ! i.e.: |
|---|
| 97 | ! lwcon(nc)+iwcon(nc) .NE. ocond(nc) |
|---|
| 98 | ! but oliq+(ocond-oliq) .EQ. ocond |
|---|
| 99 | ! (which is not trivial) |
|---|
| 100 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 101 | ! |
|---|
| 102 | |
|---|
| 103 | ! USE de modules contenant des fonctions. |
|---|
| 104 | USE lmdz_cloudth, ONLY : cloudth, cloudth_v3, cloudth_v6, cloudth_mpc |
|---|
| 105 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf, calc_gammasat |
|---|
| 106 | USE lmdz_lscp_tools, ONLY : icefrac_lscp, icefrac_lscp_turb |
|---|
| 107 | USE lmdz_lscp_tools, ONLY : fallice_velocity, distance_to_cloud_top |
|---|
| 108 | !USE lmdz_lscp_condensation, ONLY : condensation_lognormal_test, condensation_ice_supersat |
|---|
| 109 | USE lmdz_lscp_condensation, ONLY : condensation_lognormal, condensation_ice_supersat |
|---|
| 110 | USE lmdz_lscp_poprecip, ONLY : poprecip_precld, poprecip_postcld |
|---|
| 111 | |
|---|
| 112 | ! Use du module lmdz_lscp_ini contenant les constantes |
|---|
| 113 | USE lmdz_lscp_ini, ONLY : prt_level, lunout, eps |
|---|
| 114 | USE lmdz_lscp_ini, ONLY : seuil_neb, niter_lscp, iflag_evap_prec, t_coup, DDT0, ztfondue, rain_int_min |
|---|
| 115 | USE lmdz_lscp_ini, ONLY : ok_radocond_snow, a_tr_sca, cld_expo_con, cld_expo_lsc |
|---|
| 116 | USE lmdz_lscp_ini, ONLY : iflag_cloudth_vert, iflag_rain_incloud_vol, iflag_t_glace, t_glace_min |
|---|
| 117 | USE lmdz_lscp_ini, ONLY : coef_eva, coef_sub,cld_tau_lsc, cld_tau_con, cld_lc_lsc, cld_lc_con |
|---|
| 118 | USE lmdz_lscp_ini, ONLY : iflag_bergeron, iflag_fisrtilp_qsat, iflag_vice, cice_velo, dice_velo |
|---|
| 119 | USE lmdz_lscp_ini, ONLY : iflag_autoconversion, ffallv_con, ffallv_lsc, min_frac_th_cld |
|---|
| 120 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG |
|---|
| 121 | USE lmdz_lscp_ini, ONLY : ok_poprecip |
|---|
| 122 | USE lmdz_lscp_ini, ONLY : ok_ice_supersat, ok_unadjusted_clouds, iflag_icefrac |
|---|
| 123 | |
|---|
| 124 | IMPLICIT NONE |
|---|
| 125 | |
|---|
| 126 | !=============================================================================== |
|---|
| 127 | ! VARIABLES DECLARATION |
|---|
| 128 | !=============================================================================== |
|---|
| 129 | |
|---|
| 130 | ! INPUT VARIABLES: |
|---|
| 131 | !----------------- |
|---|
| 132 | |
|---|
| 133 | INTEGER, INTENT(IN) :: klon,klev ! number of horizontal grid points and vertical levels |
|---|
| 134 | REAL, INTENT(IN) :: dtime ! time step [s] |
|---|
| 135 | REAL, INTENT(IN) :: missing_val ! missing value for output |
|---|
| 136 | |
|---|
| 137 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! inter-layer pressure [Pa] |
|---|
| 138 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! mid-layer pressure [Pa] |
|---|
| 139 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! temperature (K) |
|---|
| 140 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qt ! total specific humidity (in vapor phase in input) [kg/kg] |
|---|
| 141 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qice_save ! ice specific from previous time step [kg/kg] |
|---|
| 142 | INTEGER, INTENT(IN) :: iflag_cld_th ! flag that determines the distribution of convective clouds |
|---|
| 143 | INTEGER, INTENT(IN) :: iflag_ice_thermo! flag to activate the ice thermodynamics |
|---|
| 144 | ! CR: if iflag_ice_thermo=2, only convection is active |
|---|
| 145 | LOGICAL, DIMENSION(klon,klev), INTENT(IN) :: ptconv ! grid points where deep convection scheme is active |
|---|
| 146 | |
|---|
| 147 | !Inputs associated with thermal plumes |
|---|
| 148 | |
|---|
| 149 | REAL, DIMENSION(klon,klev), INTENT(IN) :: tv ! virtual potential temperature [K] |
|---|
| 150 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qta ! specific humidity within thermals [kg/kg] |
|---|
| 151 | REAL, DIMENSION(klon,klev), INTENT(IN) :: fraca ! fraction of thermals within the mesh [-] |
|---|
| 152 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pspsk ! exner potential (p/100000)**(R/cp) |
|---|
| 153 | REAL, DIMENSION(klon,klev), INTENT(IN) :: tla ! liquid temperature within thermals [K] |
|---|
| 154 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke !--turbulent kinetic energy [m2/s2] |
|---|
| 155 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke_dissip !--TKE dissipation [m2/s3] |
|---|
| 156 | |
|---|
| 157 | ! INPUT/OUTPUT variables |
|---|
| 158 | !------------------------ |
|---|
| 159 | |
|---|
| 160 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: thl ! liquid potential temperature [K] |
|---|
| 161 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: ratqs,sigma_qtherm ! function of pressure that sets the large-scale |
|---|
| 162 | |
|---|
| 163 | |
|---|
| 164 | ! INPUT/OUTPUT condensation and ice supersaturation |
|---|
| 165 | !-------------------------------------------------- |
|---|
| 166 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: cf_seri ! cloud fraction [-] |
|---|
| 167 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: ratio_qi_qtot ! solid specific water to total specific water ratio [-] |
|---|
| 168 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: rvc_seri ! cloudy water vapor to total water vapor ratio [-] |
|---|
| 169 | REAL, DIMENSION(klon,klev), INTENT(IN) :: u_seri ! eastward wind [m/s] |
|---|
| 170 | REAL, DIMENSION(klon,klev), INTENT(IN) :: v_seri ! northward wind [m/s] |
|---|
| 171 | REAL, DIMENSION(klon), INTENT(IN) :: cell_area ! area of each cell [m2] |
|---|
| 172 | |
|---|
| 173 | ! INPUT/OUTPUT aviation |
|---|
| 174 | !-------------------------------------------------- |
|---|
| 175 | REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_dist ! Aviation distance flown within the mesh [m/s/mesh] |
|---|
| 176 | REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_h2o ! Aviation H2O emitted within the mesh [kg H2O/s/mesh] |
|---|
| 177 | |
|---|
| 178 | ! OUTPUT variables |
|---|
| 179 | !----------------- |
|---|
| 180 | |
|---|
| 181 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t ! temperature increment [K] |
|---|
| 182 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_q ! specific humidity increment [kg/kg] |
|---|
| 183 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_ql ! liquid water increment [kg/kg] |
|---|
| 184 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_qi ! cloud ice mass increment [kg/kg] |
|---|
| 185 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneb ! cloud fraction [-] |
|---|
| 186 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneblsvol ! cloud fraction per unit volume [-] |
|---|
| 187 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfraclr ! precip fraction clear-sky part [-] |
|---|
| 188 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfracld ! precip fraction cloudy part [-] |
|---|
| 189 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cldfraliq ! liquid fraction of cloud [-] |
|---|
| 190 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: sigma2_icefracturb ! Variance of the diagnostic supersaturation distribution (icefrac_turb) [-] |
|---|
| 191 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: mean_icefracturb ! Mean of the diagnostic supersaturation distribution (icefrac_turb) [-] |
|---|
| 192 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radocond ! condensed water used in the radiation scheme [kg/kg] |
|---|
| 193 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radicefrac ! ice fraction of condensed water for radiation scheme |
|---|
| 194 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rhcl ! clear-sky relative humidity [-] |
|---|
| 195 | REAL, DIMENSION(klon), INTENT(OUT) :: rain ! surface large-scale rainfall [kg/s/m2] |
|---|
| 196 | REAL, DIMENSION(klon), INTENT(OUT) :: snow ! surface large-scale snowfall [kg/s/m2] |
|---|
| 197 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: prfl ! large-scale rainfall flux in the column [kg/s/m2] |
|---|
| 198 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: psfl ! large-scale snowfall flux in the column [kg/s/m2] |
|---|
| 199 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: distcltop ! distance to cloud top [m] |
|---|
| 200 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: temp_cltop ! temperature of cloud top [K] |
|---|
| 201 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: beta ! conversion rate of condensed water |
|---|
| 202 | |
|---|
| 203 | ! fraction of aerosol scavenging through impaction and nucleation (for on-line) |
|---|
| 204 | |
|---|
| 205 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_impa ! scavenging fraction due tu impaction [-] |
|---|
| 206 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_nucl ! scavenging fraction due tu nucleation [-] |
|---|
| 207 | |
|---|
| 208 | ! for condensation and ice supersaturation |
|---|
| 209 | |
|---|
| 210 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsub !--specific total water content in sub-saturated clear sky region [kg/kg] |
|---|
| 211 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qissr !--specific total water content in supersat region [kg/kg] |
|---|
| 212 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcld !--specific total water content in cloudy region [kg/kg] |
|---|
| 213 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: subfra !--mesh fraction of subsaturated clear sky [-] |
|---|
| 214 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: issrfra !--mesh fraction of ISSR [-] |
|---|
| 215 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: gamma_cond !--coefficient governing the ice nucleation RHi threshold [-] |
|---|
| 216 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_sub !--cloud fraction tendency because of sublimation [s-1] |
|---|
| 217 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_con !--cloud fraction tendency because of condensation [s-1] |
|---|
| 218 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_mix !--cloud fraction tendency because of cloud mixing [s-1] |
|---|
| 219 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_adj !--specific ice content tendency because of temperature adjustment [kg/kg/s] |
|---|
| 220 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_sub !--specific ice content tendency because of sublimation [kg/kg/s] |
|---|
| 221 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_con !--specific ice content tendency because of condensation [kg/kg/s] |
|---|
| 222 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_mix !--specific ice content tendency because of cloud mixing [kg/kg/s] |
|---|
| 223 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_adj !--specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
|---|
| 224 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_sub !--specific cloud water vapor tendency because of sublimation [kg/kg/s] |
|---|
| 225 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_con !--specific cloud water vapor tendency because of condensation [kg/kg/s] |
|---|
| 226 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_mix !--specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
|---|
| 227 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsatl !--saturation specific humidity wrt liquid [kg/kg] |
|---|
| 228 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsati !--saturation specific humidity wrt ice [kg/kg] |
|---|
| 229 | |
|---|
| 230 | ! for contrails and aviation |
|---|
| 231 | |
|---|
| 232 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Tcontr !--threshold temperature for contrail formation [K] |
|---|
| 233 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcontr !--threshold humidity for contrail formation [kg/kg] |
|---|
| 234 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcontr2 !--// (2nd expression more consistent with LMDZ expression of q) |
|---|
| 235 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: fcontrN !--fraction of grid favourable to non-persistent contrails |
|---|
| 236 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: fcontrP !--fraction of grid favourable to persistent contrails |
|---|
| 237 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_avi !--cloud fraction tendency because of aviation [s-1] |
|---|
| 238 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_avi !--specific ice content tendency because of aviation [kg/kg/s] |
|---|
| 239 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_avi !--specific cloud water vapor tendency because of aviation [kg/kg/s] |
|---|
| 240 | |
|---|
| 241 | |
|---|
| 242 | ! for POPRECIP |
|---|
| 243 | |
|---|
| 244 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] |
|---|
| 245 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] |
|---|
| 246 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqreva !--rain tendendy due to evaporation [kg/kg/s] |
|---|
| 247 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
|---|
| 248 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] |
|---|
| 249 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] |
|---|
| 250 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
|---|
| 251 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
|---|
| 252 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsrim !--snow tendency due to riming [kg/kg/s] |
|---|
| 253 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsmelt !--snow tendency due to melting [kg/kg/s] |
|---|
| 254 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrmelt !--rain tendency due to melting [kg/kg/s] |
|---|
| 255 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] |
|---|
| 256 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] |
|---|
| 257 | |
|---|
| 258 | ! for thermals |
|---|
| 259 | |
|---|
| 260 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sth !--mean saturation deficit in thermals |
|---|
| 261 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_senv !--mean saturation deficit in environment |
|---|
| 262 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmath !--std of saturation deficit in thermals |
|---|
| 263 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmaenv !--std of saturation deficit in environment |
|---|
| 264 | |
|---|
| 265 | |
|---|
| 266 | ! LOCAL VARIABLES: |
|---|
| 267 | !---------------- |
|---|
| 268 | REAL,DIMENSION(klon) :: qsl, qsi ! saturation threshold at current vertical level |
|---|
| 269 | REAL :: zct, zcl,zexpo |
|---|
| 270 | REAL, DIMENSION(klon,klev) :: ctot |
|---|
| 271 | REAL, DIMENSION(klon,klev) :: ctot_vol |
|---|
| 272 | REAL, DIMENSION(klon) :: zqs, zdqs |
|---|
| 273 | REAL :: zdelta, zcor, zcvm5 |
|---|
| 274 | REAL, DIMENSION(klon) :: zdqsdT_raw |
|---|
| 275 | REAL, DIMENSION(klon) :: gammasat,dgammasatdt ! coefficient to make cold condensation at the correct RH and derivative wrt T |
|---|
| 276 | REAL, DIMENSION(klon) :: Tbef,qlbef,DT ! temperature, humidity and temp. variation during lognormal iteration |
|---|
| 277 | REAL :: num,denom |
|---|
| 278 | REAL :: cste |
|---|
| 279 | REAL, DIMENSION(klon) :: zpdf_sig,zpdf_k,zpdf_delta ! lognormal parameters |
|---|
| 280 | REAL, DIMENSION(klon) :: Zpdf_a,zpdf_b,zpdf_e1,zpdf_e2 ! lognormal intermediate variables |
|---|
| 281 | REAL :: erf |
|---|
| 282 | REAL, DIMENSION(klon) :: zfice_th |
|---|
| 283 | REAL, DIMENSION(klon) :: qcloud, qincloud_mpc |
|---|
| 284 | REAL, DIMENSION(klon) :: zrfl, zrfln |
|---|
| 285 | REAL :: zqev, zqevt |
|---|
| 286 | REAL, DIMENSION(klon) :: zifl, zifln, ziflprev |
|---|
| 287 | REAL :: zqev0,zqevi, zqevti |
|---|
| 288 | REAL, DIMENSION(klon) :: zoliq, zcond, zq, zqn |
|---|
| 289 | REAL, DIMENSION(klon) :: zoliql, zoliqi |
|---|
| 290 | REAL, DIMENSION(klon) :: zt |
|---|
| 291 | REAL, DIMENSION(klon,klev) :: zrho |
|---|
| 292 | REAL, DIMENSION(klon) :: zdz,iwc |
|---|
| 293 | REAL :: zchau,zfroi |
|---|
| 294 | REAL, DIMENSION(klon) :: zfice,zneb,znebprecip |
|---|
| 295 | REAL :: zmelt,zrain,zsnow,zprecip |
|---|
| 296 | REAL, DIMENSION(klon) :: dzfice |
|---|
| 297 | REAL, DIMENSION(klon) :: zfice_turb, dzfice_turb |
|---|
| 298 | REAL :: zsolid |
|---|
| 299 | REAL, DIMENSION(klon) :: qtot, qzero |
|---|
| 300 | REAL, DIMENSION(klon) :: dqsl,dqsi |
|---|
| 301 | REAL :: smallestreal |
|---|
| 302 | ! Variables for Bergeron process |
|---|
| 303 | REAL :: zcp, coef1, DeltaT, Deltaq, Deltaqprecl |
|---|
| 304 | REAL, DIMENSION(klon) :: zqpreci, zqprecl |
|---|
| 305 | ! Variables precipitation energy conservation |
|---|
| 306 | REAL, DIMENSION(klon) :: zmqc |
|---|
| 307 | REAL :: zalpha_tr |
|---|
| 308 | REAL :: zfrac_lessi |
|---|
| 309 | REAL, DIMENSION(klon) :: zprec_cond |
|---|
| 310 | REAL :: zmair |
|---|
| 311 | REAL :: zcpair, zcpeau |
|---|
| 312 | REAL, DIMENSION(klon) :: zlh_solid |
|---|
| 313 | REAL, DIMENSION(klon) :: ztupnew |
|---|
| 314 | REAL, DIMENSION(klon) :: zqvapclr, zqupnew ! for poprecip evap / subl |
|---|
| 315 | REAL :: zm_solid ! for liquid -> solid conversion |
|---|
| 316 | REAL, DIMENSION(klon) :: zrflclr, zrflcld |
|---|
| 317 | REAL, DIMENSION(klon) :: d_zrfl_clr_cld, d_zifl_clr_cld |
|---|
| 318 | REAL, DIMENSION(klon) :: d_zrfl_cld_clr, d_zifl_cld_clr |
|---|
| 319 | REAL, DIMENSION(klon) :: ziflclr, ziflcld |
|---|
| 320 | REAL, DIMENSION(klon) :: znebprecipclr, znebprecipcld |
|---|
| 321 | REAL, DIMENSION(klon) :: tot_zneb, tot_znebn, d_tot_zneb |
|---|
| 322 | REAL, DIMENSION(klon) :: d_znebprecip_clr_cld, d_znebprecip_cld_clr |
|---|
| 323 | REAL, DIMENSION(klon,klev) :: velo |
|---|
| 324 | REAL :: vr, ffallv |
|---|
| 325 | REAL :: qlmpc, qimpc, rnebmpc |
|---|
| 326 | REAL, DIMENSION(klon,klev) :: radocondi, radocondl |
|---|
| 327 | REAL :: effective_zneb |
|---|
| 328 | REAL, DIMENSION(klon) :: zdistcltop, ztemp_cltop |
|---|
| 329 | REAL, DIMENSION(klon) :: zqliq, zqice, zqvapcl ! for icefrac_lscp_turb |
|---|
| 330 | |
|---|
| 331 | ! for condensation and ice supersaturation |
|---|
| 332 | REAL, DIMENSION(klon) :: qvc, shear |
|---|
| 333 | REAL :: delta_z |
|---|
| 334 | !--Added for ice supersaturation (ok_ice_supersat) and contrails (ok_plane_contrails) |
|---|
| 335 | ! Constants used for calculating ratios that are advected (using a parent-child |
|---|
| 336 | ! formalism). This is not done in the dynamical core because at this moment, |
|---|
| 337 | ! only isotopes can use this parent-child formalism. Note that the two constants |
|---|
| 338 | ! are the same as the one use in the dynamical core, being also defined in |
|---|
| 339 | ! dyn3d_common/infotrac.F90 |
|---|
| 340 | REAL :: min_qParent, min_ratio |
|---|
| 341 | |
|---|
| 342 | INTEGER i, k, n, kk, iter |
|---|
| 343 | INTEGER, DIMENSION(klon) :: n_i |
|---|
| 344 | INTEGER ncoreczq |
|---|
| 345 | INTEGER, DIMENSION(klon,klev) :: mpc_bl_points |
|---|
| 346 | LOGICAL iftop |
|---|
| 347 | |
|---|
| 348 | LOGICAL, DIMENSION(klon) :: lognormale |
|---|
| 349 | LOGICAL, DIMENSION(klon) :: keepgoing |
|---|
| 350 | |
|---|
| 351 | CHARACTER (len = 20) :: modname = 'lscp' |
|---|
| 352 | CHARACTER (len = 80) :: abort_message |
|---|
| 353 | |
|---|
| 354 | |
|---|
| 355 | !=============================================================================== |
|---|
| 356 | ! INITIALISATION |
|---|
| 357 | !=============================================================================== |
|---|
| 358 | |
|---|
| 359 | ! Few initial checks |
|---|
| 360 | |
|---|
| 361 | |
|---|
| 362 | IF (iflag_fisrtilp_qsat .LT. 0) THEN |
|---|
| 363 | abort_message = 'lscp cannot be used with iflag_fisrtilp<0' |
|---|
| 364 | CALL abort_physic(modname,abort_message,1) |
|---|
| 365 | ENDIF |
|---|
| 366 | |
|---|
| 367 | ! Few initialisations |
|---|
| 368 | |
|---|
| 369 | znebprecip(:)=0.0 |
|---|
| 370 | ctot_vol(1:klon,1:klev)=0.0 |
|---|
| 371 | rneblsvol(1:klon,1:klev)=0.0 |
|---|
| 372 | smallestreal=1.e-9 |
|---|
| 373 | znebprecipclr(:)=0.0 |
|---|
| 374 | znebprecipcld(:)=0.0 |
|---|
| 375 | mpc_bl_points(:,:)=0 |
|---|
| 376 | |
|---|
| 377 | IF (prt_level>9) WRITE(lunout,*) 'NUAGES4 A. JAM' |
|---|
| 378 | |
|---|
| 379 | ! AA for 'safety' reasons |
|---|
| 380 | zalpha_tr = 0. |
|---|
| 381 | zfrac_lessi = 0. |
|---|
| 382 | beta(:,:)= 0. |
|---|
| 383 | |
|---|
| 384 | ! Initialisation of variables: |
|---|
| 385 | |
|---|
| 386 | prfl(:,:) = 0.0 |
|---|
| 387 | psfl(:,:) = 0.0 |
|---|
| 388 | d_t(:,:) = 0.0 |
|---|
| 389 | d_q(:,:) = 0.0 |
|---|
| 390 | d_ql(:,:) = 0.0 |
|---|
| 391 | d_qi(:,:) = 0.0 |
|---|
| 392 | rneb(:,:) = 0.0 |
|---|
| 393 | pfraclr(:,:)=0.0 |
|---|
| 394 | pfracld(:,:)=0.0 |
|---|
| 395 | cldfraliq(:,:)=0. |
|---|
| 396 | sigma2_icefracturb(:,:)=0. |
|---|
| 397 | mean_icefracturb(:,:)=0. |
|---|
| 398 | radocond(:,:) = 0.0 |
|---|
| 399 | radicefrac(:,:) = 0.0 |
|---|
| 400 | frac_nucl(:,:) = 1.0 |
|---|
| 401 | frac_impa(:,:) = 1.0 |
|---|
| 402 | rain(:) = 0.0 |
|---|
| 403 | snow(:) = 0.0 |
|---|
| 404 | zoliq(:)=0.0 |
|---|
| 405 | zfice(:)=0.0 |
|---|
| 406 | dzfice(:)=0.0 |
|---|
| 407 | zfice_turb(:)=0.0 |
|---|
| 408 | dzfice_turb(:)=0.0 |
|---|
| 409 | zqprecl(:)=0.0 |
|---|
| 410 | zqpreci(:)=0.0 |
|---|
| 411 | zrfl(:) = 0.0 |
|---|
| 412 | zifl(:) = 0.0 |
|---|
| 413 | ziflprev(:)=0.0 |
|---|
| 414 | zneb(:) = seuil_neb |
|---|
| 415 | zrflclr(:) = 0.0 |
|---|
| 416 | ziflclr(:) = 0.0 |
|---|
| 417 | zrflcld(:) = 0.0 |
|---|
| 418 | ziflcld(:) = 0.0 |
|---|
| 419 | tot_zneb(:) = 0.0 |
|---|
| 420 | tot_znebn(:) = 0.0 |
|---|
| 421 | d_tot_zneb(:) = 0.0 |
|---|
| 422 | qzero(:) = 0.0 |
|---|
| 423 | zdistcltop(:)=0.0 |
|---|
| 424 | ztemp_cltop(:) = 0.0 |
|---|
| 425 | ztupnew(:)=0.0 |
|---|
| 426 | |
|---|
| 427 | distcltop(:,:)=0. |
|---|
| 428 | temp_cltop(:,:)=0. |
|---|
| 429 | |
|---|
| 430 | !--Ice supersaturation |
|---|
| 431 | gamma_cond(:,:) = 1. |
|---|
| 432 | qissr(:,:) = 0. |
|---|
| 433 | issrfra(:,:) = 0. |
|---|
| 434 | dcf_sub(:,:) = 0. |
|---|
| 435 | dcf_con(:,:) = 0. |
|---|
| 436 | dcf_mix(:,:) = 0. |
|---|
| 437 | dqi_adj(:,:) = 0. |
|---|
| 438 | dqi_sub(:,:) = 0. |
|---|
| 439 | dqi_con(:,:) = 0. |
|---|
| 440 | dqi_mix(:,:) = 0. |
|---|
| 441 | dqvc_adj(:,:) = 0. |
|---|
| 442 | dqvc_sub(:,:) = 0. |
|---|
| 443 | dqvc_con(:,:) = 0. |
|---|
| 444 | dqvc_mix(:,:) = 0. |
|---|
| 445 | fcontrN(:,:) = 0. |
|---|
| 446 | fcontrP(:,:) = 0. |
|---|
| 447 | Tcontr(:,:) = missing_val |
|---|
| 448 | qcontr(:,:) = missing_val |
|---|
| 449 | qcontr2(:,:) = missing_val |
|---|
| 450 | dcf_avi(:,:) = 0. |
|---|
| 451 | dqi_avi(:,:) = 0. |
|---|
| 452 | dqvc_avi(:,:) = 0. |
|---|
| 453 | qvc(:) = 0. |
|---|
| 454 | shear(:) = 0. |
|---|
| 455 | min_qParent = 1.e-30 |
|---|
| 456 | min_ratio = 1.e-16 |
|---|
| 457 | |
|---|
| 458 | !-- poprecip |
|---|
| 459 | qraindiag(:,:)= 0. |
|---|
| 460 | qsnowdiag(:,:)= 0. |
|---|
| 461 | dqreva(:,:) = 0. |
|---|
| 462 | dqrauto(:,:) = 0. |
|---|
| 463 | dqrmelt(:,:) = 0. |
|---|
| 464 | dqrfreez(:,:) = 0. |
|---|
| 465 | dqrcol(:,:) = 0. |
|---|
| 466 | dqssub(:,:) = 0. |
|---|
| 467 | dqsauto(:,:) = 0. |
|---|
| 468 | dqsrim(:,:) = 0. |
|---|
| 469 | dqsagg(:,:) = 0. |
|---|
| 470 | dqsfreez(:,:) = 0. |
|---|
| 471 | dqsmelt(:,:) = 0. |
|---|
| 472 | zqupnew(:) = 0. |
|---|
| 473 | zqvapclr(:) = 0. |
|---|
| 474 | |
|---|
| 475 | |
|---|
| 476 | |
|---|
| 477 | !c_iso: variable initialisation for iso |
|---|
| 478 | |
|---|
| 479 | |
|---|
| 480 | !=============================================================================== |
|---|
| 481 | ! BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM |
|---|
| 482 | !=============================================================================== |
|---|
| 483 | |
|---|
| 484 | ncoreczq=0 |
|---|
| 485 | |
|---|
| 486 | DO k = klev, 1, -1 |
|---|
| 487 | |
|---|
| 488 | IF (k.LE.klev-1) THEN |
|---|
| 489 | iftop=.false. |
|---|
| 490 | ELSE |
|---|
| 491 | iftop=.true. |
|---|
| 492 | ENDIF |
|---|
| 493 | |
|---|
| 494 | ! Initialisation temperature and specific humidity |
|---|
| 495 | ! temp(klon,klev) is not modified by the routine, instead all changes in temperature are made on zt |
|---|
| 496 | ! at the end of the klon loop, a temperature incremtent d_t due to all processes |
|---|
| 497 | ! (thermalization, evap/sub incoming precip, cloud formation, precipitation processes) is calculated |
|---|
| 498 | ! d_t = temperature tendency due to lscp |
|---|
| 499 | ! The temperature of the overlying layer is updated here because needed for thermalization |
|---|
| 500 | DO i = 1, klon |
|---|
| 501 | zt(i)=temp(i,k) |
|---|
| 502 | zq(i)=qt(i,k) |
|---|
| 503 | IF (.not. iftop) THEN |
|---|
| 504 | ztupnew(i) = temp(i,k+1) + d_t(i,k+1) |
|---|
| 505 | zqupnew(i) = qt(i,k+1) + d_q(i,k+1) + d_ql(i,k+1) + d_qi(i,k+1) |
|---|
| 506 | !--zqs(i) is the saturation specific humidity in the layer above |
|---|
| 507 | zqvapclr(i) = MAX(0., qt(i,k+1) + d_q(i,k+1) - rneb(i,k+1) * zqs(i)) |
|---|
| 508 | ENDIF |
|---|
| 509 | !c_iso init of iso |
|---|
| 510 | ENDDO |
|---|
| 511 | |
|---|
| 512 | !================================================================ |
|---|
| 513 | ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) |
|---|
| 514 | IF (ok_poprecip) THEN |
|---|
| 515 | |
|---|
| 516 | CALL poprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), pplay(:,k), & |
|---|
| 517 | zt, ztupnew, zq, zmqc, znebprecipclr, znebprecipcld, & |
|---|
| 518 | zqvapclr, zqupnew, & |
|---|
| 519 | zrfl, zrflclr, zrflcld, & |
|---|
| 520 | zifl, ziflclr, ziflcld, & |
|---|
| 521 | dqreva(:,k),dqssub(:,k) & |
|---|
| 522 | ) |
|---|
| 523 | |
|---|
| 524 | !================================================================ |
|---|
| 525 | ELSE |
|---|
| 526 | |
|---|
| 527 | ! -------------------------------------------------------------------- |
|---|
| 528 | ! P1> Thermalization of precipitation falling from the overlying layer |
|---|
| 529 | ! -------------------------------------------------------------------- |
|---|
| 530 | ! Computes air temperature variation due to enthalpy transported by |
|---|
| 531 | ! precipitation. Precipitation is then thermalized with the air in the |
|---|
| 532 | ! layer. |
|---|
| 533 | ! The precipitation should remain thermalized throughout the different |
|---|
| 534 | ! thermodynamical transformations. |
|---|
| 535 | ! The corresponding water mass should |
|---|
| 536 | ! be added when calculating the layer's enthalpy change with |
|---|
| 537 | ! temperature |
|---|
| 538 | ! See lmdzpedia page todoan |
|---|
| 539 | ! todoan: check consistency with ice phase |
|---|
| 540 | ! todoan: understand why several steps |
|---|
| 541 | ! --------------------------------------------------------------------- |
|---|
| 542 | |
|---|
| 543 | IF (iftop) THEN |
|---|
| 544 | |
|---|
| 545 | DO i = 1, klon |
|---|
| 546 | zmqc(i) = 0. |
|---|
| 547 | ENDDO |
|---|
| 548 | |
|---|
| 549 | ELSE |
|---|
| 550 | |
|---|
| 551 | DO i = 1, klon |
|---|
| 552 | |
|---|
| 553 | zmair=(paprs(i,k)-paprs(i,k+1))/RG |
|---|
| 554 | ! no condensed water so cp=cp(vapor+dry air) |
|---|
| 555 | ! RVTMP2=rcpv/rcpd-1 |
|---|
| 556 | zcpair=RCPD*(1.0+RVTMP2*zq(i)) |
|---|
| 557 | zcpeau=RCPD*RVTMP2 |
|---|
| 558 | |
|---|
| 559 | ! zmqc: precipitation mass that has to be thermalized with |
|---|
| 560 | ! layer's air so that precipitation at the ground has the |
|---|
| 561 | ! same temperature as the lowermost layer |
|---|
| 562 | zmqc(i) = (zrfl(i)+zifl(i))*dtime/zmair |
|---|
| 563 | ! t(i,k+1)+d_t(i,k+1): new temperature of the overlying layer |
|---|
| 564 | zt(i) = ( ztupnew(i)*zmqc(i)*zcpeau + zcpair*zt(i) ) & |
|---|
| 565 | / (zcpair + zmqc(i)*zcpeau) |
|---|
| 566 | |
|---|
| 567 | ENDDO |
|---|
| 568 | |
|---|
| 569 | ENDIF |
|---|
| 570 | |
|---|
| 571 | ! -------------------------------------------------------------------- |
|---|
| 572 | ! P2> Precipitation evaporation/sublimation/melting |
|---|
| 573 | ! -------------------------------------------------------------------- |
|---|
| 574 | ! A part of the precipitation coming from above is evaporated/sublimated/melted. |
|---|
| 575 | ! -------------------------------------------------------------------- |
|---|
| 576 | |
|---|
| 577 | IF (iflag_evap_prec.GE.1) THEN |
|---|
| 578 | |
|---|
| 579 | ! Calculation of saturation specific humidity |
|---|
| 580 | ! depending on temperature: |
|---|
| 581 | CALL calc_qsat_ecmwf(klon,zt(:),qzero(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
|---|
| 582 | ! wrt liquid water |
|---|
| 583 | CALL calc_qsat_ecmwf(klon,zt(:),qzero(:),pplay(:,k),RTT,1,.false.,qsl(:),dqsl(:)) |
|---|
| 584 | ! wrt ice |
|---|
| 585 | CALL calc_qsat_ecmwf(klon,zt(:),qzero(:),pplay(:,k),RTT,2,.false.,qsi(:),dqsi(:)) |
|---|
| 586 | |
|---|
| 587 | DO i = 1, klon |
|---|
| 588 | |
|---|
| 589 | ! if precipitation |
|---|
| 590 | IF (zrfl(i)+zifl(i).GT.0.) THEN |
|---|
| 591 | |
|---|
| 592 | ! LudoTP: we only account for precipitation evaporation in the clear-sky (iflag_evap_prec>=4). |
|---|
| 593 | ! c_iso: likely important to distinguish cs from neb isotope precipitation |
|---|
| 594 | |
|---|
| 595 | IF (iflag_evap_prec.GE.4) THEN |
|---|
| 596 | zrfl(i) = zrflclr(i) |
|---|
| 597 | zifl(i) = ziflclr(i) |
|---|
| 598 | ENDIF |
|---|
| 599 | |
|---|
| 600 | IF (iflag_evap_prec.EQ.1) THEN |
|---|
| 601 | znebprecip(i)=zneb(i) |
|---|
| 602 | ELSE |
|---|
| 603 | znebprecip(i)=MAX(zneb(i),znebprecip(i)) |
|---|
| 604 | ENDIF |
|---|
| 605 | |
|---|
| 606 | IF (iflag_evap_prec.GT.4) THEN |
|---|
| 607 | ! Max evaporation not to saturate the clear sky precip fraction |
|---|
| 608 | ! i.e. the fraction where evaporation occurs |
|---|
| 609 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecipclr(i)) |
|---|
| 610 | ELSEIF (iflag_evap_prec .EQ. 4) THEN |
|---|
| 611 | ! Max evaporation not to saturate the whole mesh |
|---|
| 612 | ! Pay attention -> lead to unrealistic and excessive evaporation |
|---|
| 613 | zqev0 = MAX(0.0, zqs(i)-zq(i)) |
|---|
| 614 | ELSE |
|---|
| 615 | ! Max evap not to saturate the fraction below the cloud |
|---|
| 616 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecip(i)) |
|---|
| 617 | ENDIF |
|---|
| 618 | |
|---|
| 619 | ! Evaporation of liquid precipitation coming from above |
|---|
| 620 | ! dP/dz=beta*(1-q/qsat)*sqrt(P) |
|---|
| 621 | ! formula from Sundquist 1988, Klemp & Wilhemson 1978 |
|---|
| 622 | ! LTP: evaporation only in the clear sky part (iflag_evap_prec>=4) |
|---|
| 623 | |
|---|
| 624 | IF (iflag_evap_prec.EQ.3) THEN |
|---|
| 625 | zqevt = znebprecip(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
|---|
| 626 | *SQRT(zrfl(i)/max(1.e-4,znebprecip(i))) & |
|---|
| 627 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
|---|
| 628 | ELSE IF (iflag_evap_prec.GE.4) THEN |
|---|
| 629 | zqevt = znebprecipclr(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
|---|
| 630 | *SQRT(zrfl(i)/max(1.e-8,znebprecipclr(i))) & |
|---|
| 631 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
|---|
| 632 | ELSE |
|---|
| 633 | zqevt = 1.*coef_eva*(1.0-zq(i)/qsl(i))*SQRT(zrfl(i)) & |
|---|
| 634 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
|---|
| 635 | ENDIF |
|---|
| 636 | |
|---|
| 637 | zqevt = MAX(0.0,MIN(zqevt,zrfl(i))) & |
|---|
| 638 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
|---|
| 639 | |
|---|
| 640 | ! sublimation of the solid precipitation coming from above |
|---|
| 641 | IF (iflag_evap_prec.EQ.3) THEN |
|---|
| 642 | zqevti = znebprecip(i)*coef_sub*(1.0-zq(i)/qsi(i)) & |
|---|
| 643 | *SQRT(zifl(i)/max(1.e-4,znebprecip(i))) & |
|---|
| 644 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
|---|
| 645 | ELSE IF (iflag_evap_prec.GE.4) THEN |
|---|
| 646 | zqevti = znebprecipclr(i)*coef_sub*(1.0-zq(i)/qsi(i)) & |
|---|
| 647 | *SQRT(zifl(i)/max(1.e-8,znebprecipclr(i))) & |
|---|
| 648 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
|---|
| 649 | ELSE |
|---|
| 650 | zqevti = 1.*coef_sub*(1.0-zq(i)/qsi(i))*SQRT(zifl(i)) & |
|---|
| 651 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
|---|
| 652 | ENDIF |
|---|
| 653 | |
|---|
| 654 | zqevti = MAX(0.0,MIN(zqevti,zifl(i))) & |
|---|
| 655 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
|---|
| 656 | |
|---|
| 657 | ! A. JAM |
|---|
| 658 | ! Evaporation limit: we ensure that the layer's fraction below |
|---|
| 659 | ! the cloud or the whole mesh (depending on iflag_evap_prec) |
|---|
| 660 | ! does not reach saturation. In this case, we |
|---|
| 661 | ! redistribute zqev0 conserving the ratio liquid/ice |
|---|
| 662 | |
|---|
| 663 | IF (zqevt+zqevti.GT.zqev0) THEN |
|---|
| 664 | zqev=zqev0*zqevt/(zqevt+zqevti) |
|---|
| 665 | zqevi=zqev0*zqevti/(zqevt+zqevti) |
|---|
| 666 | ELSE |
|---|
| 667 | zqev=zqevt |
|---|
| 668 | zqevi=zqevti |
|---|
| 669 | ENDIF |
|---|
| 670 | |
|---|
| 671 | |
|---|
| 672 | ! New solid and liquid precipitation fluxes after evap and sublimation |
|---|
| 673 | zrfln(i) = Max(0.,zrfl(i) - zqev*(paprs(i,k)-paprs(i,k+1)) & |
|---|
| 674 | /RG/dtime) |
|---|
| 675 | zifln(i) = Max(0.,zifl(i) - zqevi*(paprs(i,k)-paprs(i,k+1)) & |
|---|
| 676 | /RG/dtime) |
|---|
| 677 | |
|---|
| 678 | |
|---|
| 679 | ! vapor, temperature, precip fluxes update |
|---|
| 680 | ! vapor is updated after evaporation/sublimation (it is increased) |
|---|
| 681 | zq(i) = zq(i) - (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
|---|
| 682 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
|---|
| 683 | ! zmqc is the total condensed water in the precip flux (it is decreased) |
|---|
| 684 | zmqc(i) = zmqc(i) + (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
|---|
| 685 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
|---|
| 686 | ! air and precip temperature (i.e., gridbox temperature) |
|---|
| 687 | ! is updated due to latent heat cooling |
|---|
| 688 | zt(i) = zt(i) + (zrfln(i)-zrfl(i)) & |
|---|
| 689 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
|---|
| 690 | * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) & |
|---|
| 691 | + (zifln(i)-zifl(i)) & |
|---|
| 692 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
|---|
| 693 | * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
|---|
| 694 | |
|---|
| 695 | ! New values of liquid and solid precipitation |
|---|
| 696 | zrfl(i) = zrfln(i) |
|---|
| 697 | zifl(i) = zifln(i) |
|---|
| 698 | |
|---|
| 699 | ! c_iso here call_reevap that updates isotopic zrfl, zifl (in inout) |
|---|
| 700 | ! due to evap + sublim |
|---|
| 701 | |
|---|
| 702 | |
|---|
| 703 | IF (iflag_evap_prec.GE.4) THEN |
|---|
| 704 | zrflclr(i) = zrfl(i) |
|---|
| 705 | ziflclr(i) = zifl(i) |
|---|
| 706 | IF(zrflclr(i) + ziflclr(i).LE.0) THEN |
|---|
| 707 | znebprecipclr(i) = 0.0 |
|---|
| 708 | ENDIF |
|---|
| 709 | zrfl(i) = zrflclr(i) + zrflcld(i) |
|---|
| 710 | zifl(i) = ziflclr(i) + ziflcld(i) |
|---|
| 711 | ENDIF |
|---|
| 712 | |
|---|
| 713 | ! c_iso duplicate for isotopes or loop on isotopes |
|---|
| 714 | |
|---|
| 715 | ! Melting: |
|---|
| 716 | zmelt = ((zt(i)-RTT)/(ztfondue-RTT)) ! JYG |
|---|
| 717 | ! precip fraction that is melted |
|---|
| 718 | zmelt = MIN(MAX(zmelt,0.),1.) |
|---|
| 719 | |
|---|
| 720 | ! update of rainfall and snowfall due to melting |
|---|
| 721 | IF (iflag_evap_prec.GE.4) THEN |
|---|
| 722 | zrflclr(i)=zrflclr(i)+zmelt*ziflclr(i) |
|---|
| 723 | zrflcld(i)=zrflcld(i)+zmelt*ziflcld(i) |
|---|
| 724 | zrfl(i)=zrflclr(i)+zrflcld(i) |
|---|
| 725 | ELSE |
|---|
| 726 | zrfl(i)=zrfl(i)+zmelt*zifl(i) |
|---|
| 727 | ENDIF |
|---|
| 728 | |
|---|
| 729 | |
|---|
| 730 | ! c_iso: melting of isotopic precipi with zmelt (no fractionation) |
|---|
| 731 | |
|---|
| 732 | ! Latent heat of melting because of precipitation melting |
|---|
| 733 | ! NB: the air + precip temperature is simultaneously updated |
|---|
| 734 | zt(i)=zt(i)-zifl(i)*zmelt*(RG*dtime)/(paprs(i,k)-paprs(i,k+1)) & |
|---|
| 735 | *RLMLT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
|---|
| 736 | |
|---|
| 737 | IF (iflag_evap_prec.GE.4) THEN |
|---|
| 738 | ziflclr(i)=ziflclr(i)*(1.-zmelt) |
|---|
| 739 | ziflcld(i)=ziflcld(i)*(1.-zmelt) |
|---|
| 740 | zifl(i)=ziflclr(i)+ziflcld(i) |
|---|
| 741 | ELSE |
|---|
| 742 | zifl(i)=zifl(i)*(1.-zmelt) |
|---|
| 743 | ENDIF |
|---|
| 744 | |
|---|
| 745 | ELSE |
|---|
| 746 | ! if no precip, we reinitialize the cloud fraction used for the precip to 0 |
|---|
| 747 | znebprecip(i)=0. |
|---|
| 748 | |
|---|
| 749 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
|---|
| 750 | |
|---|
| 751 | ENDDO ! loop on klon |
|---|
| 752 | |
|---|
| 753 | ENDIF ! (iflag_evap_prec>=1) |
|---|
| 754 | |
|---|
| 755 | ENDIF ! (ok_poprecip) |
|---|
| 756 | |
|---|
| 757 | ! -------------------------------------------------------------------- |
|---|
| 758 | ! End precip evaporation |
|---|
| 759 | ! -------------------------------------------------------------------- |
|---|
| 760 | |
|---|
| 761 | ! Calculation of qsat, L/Cp*dqsat/dT and ncoreczq counter |
|---|
| 762 | !------------------------------------------------------- |
|---|
| 763 | |
|---|
| 764 | qtot(:)=zq(:)+zmqc(:) |
|---|
| 765 | CALL calc_qsat_ecmwf(klon,zt(:),qtot(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
|---|
| 766 | DO i = 1, klon |
|---|
| 767 | zdelta = MAX(0.,SIGN(1.,RTT-zt(i))) |
|---|
| 768 | zdqsdT_raw(i) = zdqs(i)*RCPD*(1.0+RVTMP2*zq(i)) / (RLVTT*(1.-zdelta) + RLSTT*zdelta) |
|---|
| 769 | IF (zq(i) .LT. 1.e-15) THEN |
|---|
| 770 | ncoreczq=ncoreczq+1 |
|---|
| 771 | zq(i)=1.e-15 |
|---|
| 772 | ENDIF |
|---|
| 773 | ! c_iso: do something similar for isotopes |
|---|
| 774 | |
|---|
| 775 | ENDDO |
|---|
| 776 | |
|---|
| 777 | ! -------------------------------------------------------------------- |
|---|
| 778 | ! P2> Cloud formation |
|---|
| 779 | !--------------------------------------------------------------------- |
|---|
| 780 | ! |
|---|
| 781 | ! Unlike fisrtilp, we always assume a 'fractional cloud' approach |
|---|
| 782 | ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution |
|---|
| 783 | ! is prescribed and depends on large scale variables and boundary layer |
|---|
| 784 | ! properties) |
|---|
| 785 | ! The decrease in condensed part due tu latent heating is taken into |
|---|
| 786 | ! account |
|---|
| 787 | ! ------------------------------------------------------------------- |
|---|
| 788 | |
|---|
| 789 | ! P2.1> With the PDFs (log-normal, bigaussian) |
|---|
| 790 | ! cloud properties calculation with the initial values of t and q |
|---|
| 791 | ! ---------------------------------------------------------------- |
|---|
| 792 | |
|---|
| 793 | ! initialise gammasat and qincloud_mpc |
|---|
| 794 | gammasat(:)=1. |
|---|
| 795 | qincloud_mpc(:)=0. |
|---|
| 796 | |
|---|
| 797 | IF (iflag_cld_th.GE.5) THEN |
|---|
| 798 | ! Cloud cover and content in meshes affected by shallow convection, |
|---|
| 799 | ! are retrieved from a bi-gaussian distribution of the saturation deficit |
|---|
| 800 | ! following Jam et al. 2013 |
|---|
| 801 | |
|---|
| 802 | IF (iflag_cloudth_vert.LE.2) THEN |
|---|
| 803 | ! Old version of Arnaud Jam |
|---|
| 804 | |
|---|
| 805 | CALL cloudth(klon,klev,k,tv, & |
|---|
| 806 | zq,qta,fraca, & |
|---|
| 807 | qcloud,ctot,pspsk,paprs,pplay,tla,thl, & |
|---|
| 808 | ratqs,zqs,temp, & |
|---|
| 809 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 810 | |
|---|
| 811 | |
|---|
| 812 | ELSEIF (iflag_cloudth_vert.GE.3 .AND. iflag_cloudth_vert.LE.5) THEN |
|---|
| 813 | ! Default version of Arnaud Jam |
|---|
| 814 | |
|---|
| 815 | CALL cloudth_v3(klon,klev,k,tv, & |
|---|
| 816 | zq,qta,fraca, & |
|---|
| 817 | qcloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & |
|---|
| 818 | ratqs,sigma_qtherm,zqs,temp, & |
|---|
| 819 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 820 | |
|---|
| 821 | |
|---|
| 822 | ELSEIF (iflag_cloudth_vert.EQ.6) THEN |
|---|
| 823 | ! Jean Jouhaud's version, with specific separation between surface and volume |
|---|
| 824 | ! cloud fraction Decembre 2018 |
|---|
| 825 | |
|---|
| 826 | CALL cloudth_v6(klon,klev,k,tv, & |
|---|
| 827 | zq,qta,fraca, & |
|---|
| 828 | qcloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & |
|---|
| 829 | ratqs,zqs,temp, & |
|---|
| 830 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 831 | |
|---|
| 832 | ELSEIF (iflag_cloudth_vert .EQ. 7) THEN |
|---|
| 833 | ! Updated version of Arnaud Jam (correction by E. Vignon) + adapted treatment |
|---|
| 834 | ! for boundary-layer mixed phase clouds |
|---|
| 835 | CALL cloudth_mpc(klon,klev,k,mpc_bl_points,zt,zq,qta(:,k),fraca(:,k), & |
|---|
| 836 | pspsk(:,k),paprs(:,k+1),paprs(:,k),pplay(:,k), tla(:,k), & |
|---|
| 837 | ratqs(:,k),qcloud,qincloud_mpc,zfice_th,ctot(:,k),ctot_vol(:,k), & |
|---|
| 838 | cloudth_sth(:,k),cloudth_senv(:,k),cloudth_sigmath(:,k),cloudth_sigmaenv(:,k)) |
|---|
| 839 | |
|---|
| 840 | ENDIF |
|---|
| 841 | |
|---|
| 842 | |
|---|
| 843 | DO i=1,klon |
|---|
| 844 | rneb(i,k)=ctot(i,k) |
|---|
| 845 | rneblsvol(i,k)=ctot_vol(i,k) |
|---|
| 846 | zqn(i)=qcloud(i) |
|---|
| 847 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
|---|
| 848 | qvc(i) = rneb(i,k) * zqs(i) |
|---|
| 849 | ENDDO |
|---|
| 850 | |
|---|
| 851 | ENDIF |
|---|
| 852 | |
|---|
| 853 | IF (iflag_cld_th .LE. 4) THEN |
|---|
| 854 | |
|---|
| 855 | ! lognormal |
|---|
| 856 | lognormale(:) = .TRUE. |
|---|
| 857 | |
|---|
| 858 | ELSEIF (iflag_cld_th .GE. 6) THEN |
|---|
| 859 | |
|---|
| 860 | ! lognormal distribution when no thermals |
|---|
| 861 | lognormale(:) = fraca(:,k) < min_frac_th_cld |
|---|
| 862 | |
|---|
| 863 | ELSE |
|---|
| 864 | ! When iflag_cld_th=5, we always assume |
|---|
| 865 | ! bi-gaussian distribution |
|---|
| 866 | lognormale(:) = .FALSE. |
|---|
| 867 | |
|---|
| 868 | ENDIF |
|---|
| 869 | |
|---|
| 870 | DT(:) = 0. |
|---|
| 871 | n_i(:)=0 |
|---|
| 872 | Tbef(:)=zt(:) |
|---|
| 873 | qlbef(:)=0. |
|---|
| 874 | |
|---|
| 875 | ! Treatment of non-boundary layer clouds (lognormale) |
|---|
| 876 | ! condensation with qsat(T) variation (adaptation) |
|---|
| 877 | ! Iterative resolution to converge towards qsat |
|---|
| 878 | ! with update of temperature, ice fraction and qsat at |
|---|
| 879 | ! each iteration |
|---|
| 880 | |
|---|
| 881 | ! todoan -> sensitivity to iflag_fisrtilp_qsat |
|---|
| 882 | DO iter=1,iflag_fisrtilp_qsat+1 |
|---|
| 883 | |
|---|
| 884 | keepgoing(:) = .FALSE. |
|---|
| 885 | |
|---|
| 886 | DO i=1,klon |
|---|
| 887 | |
|---|
| 888 | ! keepgoing = .true. while convergence is not satisfied |
|---|
| 889 | |
|---|
| 890 | IF (((ABS(DT(i)).GT.DDT0) .OR. (n_i(i) .EQ. 0)) .AND. lognormale(i)) THEN |
|---|
| 891 | |
|---|
| 892 | ! if not convergence: |
|---|
| 893 | ! we calculate a new iteration |
|---|
| 894 | keepgoing(i) = .TRUE. |
|---|
| 895 | |
|---|
| 896 | ! P2.2.1> cloud fraction and condensed water mass calculation |
|---|
| 897 | ! Calculated variables: |
|---|
| 898 | ! rneb : cloud fraction |
|---|
| 899 | ! zqn : total water within the cloud |
|---|
| 900 | ! zcond: mean condensed water within the mesh |
|---|
| 901 | ! rhcl: clear-sky relative humidity |
|---|
| 902 | !--------------------------------------------------------------- |
|---|
| 903 | |
|---|
| 904 | ! new temperature that only serves in the iteration process: |
|---|
| 905 | Tbef(i)=Tbef(i)+DT(i) |
|---|
| 906 | |
|---|
| 907 | ! Rneb, qzn and zcond for lognormal PDFs |
|---|
| 908 | qtot(i)=zq(i)+zmqc(i) |
|---|
| 909 | |
|---|
| 910 | ENDIF |
|---|
| 911 | |
|---|
| 912 | ENDDO |
|---|
| 913 | |
|---|
| 914 | ! Calculation of saturation specific humidity and ice fraction |
|---|
| 915 | CALL calc_qsat_ecmwf(klon,Tbef(:),qtot(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
|---|
| 916 | CALL calc_gammasat(klon,Tbef(:),qtot(:),pplay(:,k),gammasat(:),dgammasatdt(:)) |
|---|
| 917 | ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs |
|---|
| 918 | zdqs(:) = gammasat(:)*zdqs(:)+zqs(:)*dgammasatdt(:) |
|---|
| 919 | ! cloud phase determination |
|---|
| 920 | IF (iflag_t_glace.GE.4) THEN |
|---|
| 921 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
|---|
| 922 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) |
|---|
| 923 | ENDIF |
|---|
| 924 | |
|---|
| 925 | CALL icefrac_lscp(klon, zt(:), iflag_ice_thermo, zdistcltop(:),ztemp_cltop(:),zfice(:),dzfice(:)) |
|---|
| 926 | |
|---|
| 927 | !--AB Activates a condensation scheme that allows for |
|---|
| 928 | !--ice supersaturation and contrails evolution from aviation |
|---|
| 929 | IF (ok_ice_supersat) THEN |
|---|
| 930 | |
|---|
| 931 | !--Calculate the shear value (input for condensation and ice supersat) |
|---|
| 932 | DO i = 1, klon |
|---|
| 933 | !--Cell thickness [m] |
|---|
| 934 | delta_z = ( paprs(i,k) - paprs(i,k+1) ) / RG / pplay(i,k) * Tbef(i) * RD |
|---|
| 935 | IF ( iftop ) THEN |
|---|
| 936 | ! top |
|---|
| 937 | shear(i) = SQRT( ( (u_seri(i,k) - u_seri(i,k-1)) / delta_z )**2. & |
|---|
| 938 | + ( (v_seri(i,k) - v_seri(i,k-1)) / delta_z )**2. ) |
|---|
| 939 | ELSEIF ( k .EQ. 1 ) THEN |
|---|
| 940 | ! surface |
|---|
| 941 | shear(i) = SQRT( ( (u_seri(i,k+1) - u_seri(i,k)) / delta_z )**2. & |
|---|
| 942 | + ( (v_seri(i,k+1) - v_seri(i,k)) / delta_z )**2. ) |
|---|
| 943 | ELSE |
|---|
| 944 | ! other layers |
|---|
| 945 | shear(i) = SQRT( ( ( (u_seri(i,k+1) + u_seri(i,k)) / 2. & |
|---|
| 946 | - (u_seri(i,k) + u_seri(i,k-1)) / 2. ) / delta_z )**2. & |
|---|
| 947 | + ( ( (v_seri(i,k+1) + v_seri(i,k)) / 2. & |
|---|
| 948 | - (v_seri(i,k) + v_seri(i,k-1)) / 2. ) / delta_z )**2. ) |
|---|
| 949 | ENDIF |
|---|
| 950 | ENDDO |
|---|
| 951 | |
|---|
| 952 | !--------------------------------------------- |
|---|
| 953 | !-- CONDENSATION AND ICE SUPERSATURATION -- |
|---|
| 954 | !--------------------------------------------- |
|---|
| 955 | |
|---|
| 956 | CALL condensation_ice_supersat( & |
|---|
| 957 | klon, dtime, missing_val, & |
|---|
| 958 | pplay(:,k), paprs(:,k), paprs(:,k+1), & |
|---|
| 959 | cf_seri(:,k), rvc_seri(:,k), ratio_qi_qtot(:,k), & |
|---|
| 960 | shear(:), tke_dissip(:,k), cell_area(:), & |
|---|
| 961 | Tbef(:), zq(:), zqs(:), gammasat(:), ratqs(:,k), keepgoing(:), & |
|---|
| 962 | rneb(:,k), zqn(:), qvc(:), issrfra(:,k), qissr(:,k), & |
|---|
| 963 | dcf_sub(:,k), dcf_con(:,k), dcf_mix(:,k), & |
|---|
| 964 | dqi_adj(:,k), dqi_sub(:,k), dqi_con(:,k), dqi_mix(:,k), & |
|---|
| 965 | dqvc_adj(:,k), dqvc_sub(:,k), dqvc_con(:,k), dqvc_mix(:,k), & |
|---|
| 966 | Tcontr(:,k), qcontr(:,k), qcontr2(:,k), fcontrN(:,k), fcontrP(:,k), & |
|---|
| 967 | flight_dist(:,k), flight_h2o(:,k), & |
|---|
| 968 | dcf_avi(:,k), dqi_avi(:,k), dqvc_avi(:,k)) |
|---|
| 969 | |
|---|
| 970 | |
|---|
| 971 | ELSE |
|---|
| 972 | !--generalised lognormal condensation scheme (Bony and Emanuel 2001) |
|---|
| 973 | |
|---|
| 974 | CALL condensation_lognormal( & |
|---|
| 975 | klon, Tbef, zq, zqs, gammasat, ratqs(:,k), & |
|---|
| 976 | keepgoing, rneb(:,k), zqn, qvc) |
|---|
| 977 | ! CALL condensation_lognormal_test( & |
|---|
| 978 | ! klon, klev, k, keepgoing, ratqs, gammasat, zq, zqs, & |
|---|
| 979 | ! zqn, qvc, rneb) |
|---|
| 980 | |
|---|
| 981 | |
|---|
| 982 | ENDIF ! .NOT. ok_ice_supersat |
|---|
| 983 | |
|---|
| 984 | DO i=1,klon |
|---|
| 985 | IF (keepgoing(i)) THEN |
|---|
| 986 | |
|---|
| 987 | ! If vertical heterogeneity, change fraction by volume as well |
|---|
| 988 | IF (iflag_cloudth_vert.GE.3) THEN |
|---|
| 989 | ctot_vol(i,k)=rneb(i,k) |
|---|
| 990 | rneblsvol(i,k)=ctot_vol(i,k) |
|---|
| 991 | ENDIF |
|---|
| 992 | |
|---|
| 993 | |
|---|
| 994 | ! P2.2.2> Approximative calculation of temperature variation DT |
|---|
| 995 | ! due to condensation. |
|---|
| 996 | ! Calculated variables: |
|---|
| 997 | ! dT : temperature change due to condensation |
|---|
| 998 | !--------------------------------------------------------------- |
|---|
| 999 | |
|---|
| 1000 | |
|---|
| 1001 | IF (zfice(i).LT.1) THEN |
|---|
| 1002 | cste=RLVTT |
|---|
| 1003 | ELSE |
|---|
| 1004 | cste=RLSTT |
|---|
| 1005 | ENDIF |
|---|
| 1006 | |
|---|
| 1007 | ! LEA_R : check formule |
|---|
| 1008 | IF ( ok_unadjusted_clouds ) THEN |
|---|
| 1009 | !--AB We relax the saturation adjustment assumption |
|---|
| 1010 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
|---|
| 1011 | IF ( rneb(i,k) .GT. eps ) THEN |
|---|
| 1012 | qlbef(i) = MAX(0., zqn(i) - qvc(i) / rneb(i,k)) |
|---|
| 1013 | ELSE |
|---|
| 1014 | qlbef(i) = 0. |
|---|
| 1015 | ENDIF |
|---|
| 1016 | ELSE |
|---|
| 1017 | qlbef(i)=max(0.,zqn(i)-zqs(i)) |
|---|
| 1018 | ENDIF |
|---|
| 1019 | |
|---|
| 1020 | num = -Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT & |
|---|
| 1021 | +zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*qlbef(i) |
|---|
| 1022 | denom = 1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) & |
|---|
| 1023 | -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*rneb(i,k) & |
|---|
| 1024 | *qlbef(i)*dzfice(i) |
|---|
| 1025 | ! here we update a provisory temperature variable that only serves in the iteration |
|---|
| 1026 | ! process |
|---|
| 1027 | DT(i)=num/denom |
|---|
| 1028 | n_i(i)=n_i(i)+1 |
|---|
| 1029 | |
|---|
| 1030 | ENDIF ! end keepgoing |
|---|
| 1031 | |
|---|
| 1032 | ENDDO ! end loop on i |
|---|
| 1033 | |
|---|
| 1034 | ENDDO ! iter=1,iflag_fisrtilp_qsat+1 |
|---|
| 1035 | |
|---|
| 1036 | ! P2.3> Final quantities calculation |
|---|
| 1037 | ! Calculated variables: |
|---|
| 1038 | ! rneb : cloud fraction |
|---|
| 1039 | ! zcond: mean condensed water in the mesh |
|---|
| 1040 | ! zqn : mean water vapor in the mesh |
|---|
| 1041 | ! zfice: ice fraction in clouds |
|---|
| 1042 | ! zt : temperature |
|---|
| 1043 | ! rhcl : clear-sky relative humidity |
|---|
| 1044 | ! ---------------------------------------------------------------- |
|---|
| 1045 | |
|---|
| 1046 | |
|---|
| 1047 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
|---|
| 1048 | IF (iflag_t_glace.GE.4) THEN |
|---|
| 1049 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) |
|---|
| 1050 | distcltop(:,k)=zdistcltop(:) |
|---|
| 1051 | temp_cltop(:,k)=ztemp_cltop(:) |
|---|
| 1052 | ENDIF |
|---|
| 1053 | |
|---|
| 1054 | ! Partition function depending on temperature |
|---|
| 1055 | CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop, ztemp_cltop, zfice, dzfice) |
|---|
| 1056 | |
|---|
| 1057 | ! Partition function depending on tke for non shallow-convective clouds |
|---|
| 1058 | IF (iflag_icefrac .GE. 1) THEN |
|---|
| 1059 | |
|---|
| 1060 | CALL icefrac_lscp_turb(klon, dtime, Tbef, pplay(:,k), paprs(:,k), paprs(:,k+1), qice_save(:,k), ziflcld, zqn, & |
|---|
| 1061 | rneb(:,k), tke(:,k), tke_dissip(:,k), zqliq, zqvapcl, zqice, zfice_turb, dzfice_turb, cldfraliq(:,k),sigma2_icefracturb(:,k), mean_icefracturb(:,k)) |
|---|
| 1062 | |
|---|
| 1063 | ENDIF |
|---|
| 1064 | |
|---|
| 1065 | ! Water vapor update, Phase determination and subsequent latent heat exchange |
|---|
| 1066 | DO i=1, klon |
|---|
| 1067 | ! Overwrite phase partitioning in boundary layer mixed phase clouds when the |
|---|
| 1068 | ! iflag_cloudth_vert=7 and specific param is activated |
|---|
| 1069 | IF (mpc_bl_points(i,k) .GT. 0) THEN |
|---|
| 1070 | zcond(i) = MAX(0.0,qincloud_mpc(i))*rneb(i,k) |
|---|
| 1071 | ! following line is very strange and probably wrong |
|---|
| 1072 | rhcl(i,k)= (zqs(i)+zq(i))/2./zqs(i) |
|---|
| 1073 | ! water vapor update and partition function if thermals |
|---|
| 1074 | zq(i) = zq(i) - zcond(i) |
|---|
| 1075 | zfice(i)=zfice_th(i) |
|---|
| 1076 | ELSE |
|---|
| 1077 | ! Checks on rneb, rhcl and zqn |
|---|
| 1078 | IF (rneb(i,k) .LE. 0.0) THEN |
|---|
| 1079 | zqn(i) = 0.0 |
|---|
| 1080 | rneb(i,k) = 0.0 |
|---|
| 1081 | zcond(i) = 0.0 |
|---|
| 1082 | rhcl(i,k)=zq(i)/zqs(i) |
|---|
| 1083 | ELSE IF (rneb(i,k) .GE. 1.0) THEN |
|---|
| 1084 | zqn(i) = zq(i) |
|---|
| 1085 | rneb(i,k) = 1.0 |
|---|
| 1086 | IF ( ok_unadjusted_clouds ) THEN |
|---|
| 1087 | !--AB We relax the saturation adjustment assumption |
|---|
| 1088 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
|---|
| 1089 | zcond(i) = MAX(0., zqn(i) - qvc(i)) |
|---|
| 1090 | ELSE |
|---|
| 1091 | zcond(i) = MAX(0.0,zqn(i)-zqs(i)) |
|---|
| 1092 | ENDIF |
|---|
| 1093 | rhcl(i,k)=1.0 |
|---|
| 1094 | ELSE |
|---|
| 1095 | IF ( ok_unadjusted_clouds ) THEN |
|---|
| 1096 | !--AB We relax the saturation adjustment assumption |
|---|
| 1097 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
|---|
| 1098 | zcond(i) = MAX(0., zqn(i) * rneb(i,k) - qvc(i)) |
|---|
| 1099 | ELSE |
|---|
| 1100 | zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k) |
|---|
| 1101 | ENDIF |
|---|
| 1102 | ! following line is very strange and probably wrong: |
|---|
| 1103 | rhcl(i,k)=(zqs(i)+zq(i))/2./zqs(i) |
|---|
| 1104 | ! Overwrite partitioning for non shallow-convective clouds if iflag_icefrac>1 (icefrac turb param) |
|---|
| 1105 | IF (iflag_icefrac .GE. 1) THEN |
|---|
| 1106 | IF (lognormale(i)) THEN |
|---|
| 1107 | zcond(i) = zqliq(i) + zqice(i) |
|---|
| 1108 | zfice(i)=zfice_turb(i) |
|---|
| 1109 | rhcl(i,k) = zqvapcl(i) * rneb(i,k) + (zq(i) - zqn(i)) * (1.-rneb(i,k)) |
|---|
| 1110 | ENDIF |
|---|
| 1111 | ENDIF |
|---|
| 1112 | ENDIF |
|---|
| 1113 | |
|---|
| 1114 | ! water vapor update |
|---|
| 1115 | zq(i) = zq(i) - zcond(i) |
|---|
| 1116 | |
|---|
| 1117 | ENDIF |
|---|
| 1118 | |
|---|
| 1119 | ! c_iso : routine that computes in-cloud supersaturation |
|---|
| 1120 | ! c_iso condensation of isotopes (zcond, zsursat, zfice, zq in input) |
|---|
| 1121 | |
|---|
| 1122 | ! temperature update due to phase change |
|---|
| 1123 | zt(i) = zt(i) + (1.-zfice(i))*zcond(i) & |
|---|
| 1124 | & * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) & |
|---|
| 1125 | +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
|---|
| 1126 | ENDDO |
|---|
| 1127 | |
|---|
| 1128 | ! If vertical heterogeneity, change volume fraction |
|---|
| 1129 | IF (iflag_cloudth_vert .GE. 3) THEN |
|---|
| 1130 | ctot_vol(1:klon,k)=min(max(ctot_vol(1:klon,k),0.),1.) |
|---|
| 1131 | rneblsvol(1:klon,k)=ctot_vol(1:klon,k) |
|---|
| 1132 | ENDIF |
|---|
| 1133 | |
|---|
| 1134 | !--AB Write diagnostics and tracers for ice supersaturation |
|---|
| 1135 | IF ( ok_ice_supersat ) THEN |
|---|
| 1136 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,1,.false.,qsatl(:,k),zdqs) |
|---|
| 1137 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,2,.false.,qsati(:,k),zdqs) |
|---|
| 1138 | |
|---|
| 1139 | DO i = 1, klon |
|---|
| 1140 | |
|---|
| 1141 | cf_seri(i,k) = rneb(i,k) |
|---|
| 1142 | |
|---|
| 1143 | IF ( .NOT. ok_unadjusted_clouds ) THEN |
|---|
| 1144 | qvc(i) = zqs(i) * rneb(i,k) |
|---|
| 1145 | ENDIF |
|---|
| 1146 | IF ( zq(i) .GT. min_qParent ) THEN |
|---|
| 1147 | rvc_seri(i,k) = qvc(i) / zq(i) |
|---|
| 1148 | ELSE |
|---|
| 1149 | rvc_seri(i,k) = min_ratio |
|---|
| 1150 | ENDIF |
|---|
| 1151 | !--The MIN barrier is NEEDED because of: |
|---|
| 1152 | !-- 1) very rare pathological cases of the lsc scheme (rvc = 1. + 1e-16 sometimes) |
|---|
| 1153 | !-- 2) the thermal scheme does NOT guarantee that qvc <= qvap (or even qincld <= qtot) |
|---|
| 1154 | !--The MAX barrier is a safeguard that should not be activated |
|---|
| 1155 | rvc_seri(i,k) = MIN(MAX(rvc_seri(i,k), 0.), 1.) |
|---|
| 1156 | |
|---|
| 1157 | !--Diagnostics |
|---|
| 1158 | gamma_cond(i,k) = gammasat(i) |
|---|
| 1159 | IF ( issrfra(i,k) .LT. eps ) THEN |
|---|
| 1160 | issrfra(i,k) = 0. |
|---|
| 1161 | qissr(i,k) = 0. |
|---|
| 1162 | ENDIF |
|---|
| 1163 | subfra(i,k) = 1. - cf_seri(i,k) - issrfra(i,k) |
|---|
| 1164 | qsub(i,k) = zq(i) - qvc(i) - qissr(i,k) |
|---|
| 1165 | IF ( subfra(i,k) .LT. eps ) THEN |
|---|
| 1166 | subfra(i,k) = 0. |
|---|
| 1167 | qsub(i,k) = 0. |
|---|
| 1168 | ENDIF |
|---|
| 1169 | qcld(i,k) = qvc(i) + zcond(i) |
|---|
| 1170 | IF ( cf_seri(i,k) .LT. eps ) THEN |
|---|
| 1171 | qcld(i,k) = 0. |
|---|
| 1172 | ENDIF |
|---|
| 1173 | ENDDO |
|---|
| 1174 | ENDIF |
|---|
| 1175 | |
|---|
| 1176 | |
|---|
| 1177 | ! ---------------------------------------------------------------- |
|---|
| 1178 | ! P3> Precipitation formation |
|---|
| 1179 | ! ---------------------------------------------------------------- |
|---|
| 1180 | |
|---|
| 1181 | !================================================================ |
|---|
| 1182 | IF (ok_poprecip) THEN |
|---|
| 1183 | |
|---|
| 1184 | DO i = 1, klon |
|---|
| 1185 | zoliql(i) = zcond(i) * ( 1. - zfice(i) ) |
|---|
| 1186 | zoliqi(i) = zcond(i) * zfice(i) |
|---|
| 1187 | ENDDO |
|---|
| 1188 | |
|---|
| 1189 | CALL poprecip_postcld(klon, dtime, paprs(:,k), paprs(:,k+1), pplay(:,k), & |
|---|
| 1190 | ctot_vol(:,k), ptconv(:,k), & |
|---|
| 1191 | zt, zq, zoliql, zoliqi, zfice, & |
|---|
| 1192 | rneb(:,k), znebprecipclr, znebprecipcld, & |
|---|
| 1193 | zrfl, zrflclr, zrflcld, & |
|---|
| 1194 | zifl, ziflclr, ziflcld, & |
|---|
| 1195 | qraindiag(:,k), qsnowdiag(:,k), dqrauto(:,k), & |
|---|
| 1196 | dqrcol(:,k), dqrmelt(:,k), dqrfreez(:,k), & |
|---|
| 1197 | dqsauto(:,k), dqsagg(:,k), dqsrim(:,k), & |
|---|
| 1198 | dqsmelt(:,k), dqsfreez(:,k) & |
|---|
| 1199 | ) |
|---|
| 1200 | |
|---|
| 1201 | DO i = 1, klon |
|---|
| 1202 | zoliq(i) = zoliql(i) + zoliqi(i) |
|---|
| 1203 | IF ( zoliq(i) .GT. 0. ) THEN |
|---|
| 1204 | zfice(i) = zoliqi(i)/zoliq(i) |
|---|
| 1205 | ELSE |
|---|
| 1206 | zfice(i) = 0.0 |
|---|
| 1207 | ENDIF |
|---|
| 1208 | |
|---|
| 1209 | ! calculation of specific content of condensates seen by radiative scheme |
|---|
| 1210 | IF (ok_radocond_snow) THEN |
|---|
| 1211 | radocond(i,k) = zoliq(i) |
|---|
| 1212 | radocondl(i,k)= radocond(i,k)*(1.-zfice(i)) |
|---|
| 1213 | radocondi(i,k)= radocond(i,k)*zfice(i)+qsnowdiag(i,k) |
|---|
| 1214 | ELSE |
|---|
| 1215 | radocond(i,k) = zoliq(i) |
|---|
| 1216 | radocondl(i,k)= radocond(i,k)*(1.-zfice(i)) |
|---|
| 1217 | radocondi(i,k)= radocond(i,k)*zfice(i) |
|---|
| 1218 | ENDIF |
|---|
| 1219 | ENDDO |
|---|
| 1220 | |
|---|
| 1221 | !================================================================ |
|---|
| 1222 | ELSE |
|---|
| 1223 | |
|---|
| 1224 | ! LTP: |
|---|
| 1225 | IF (iflag_evap_prec .GE. 4) THEN |
|---|
| 1226 | |
|---|
| 1227 | !Partitionning between precipitation coming from clouds and that coming from CS |
|---|
| 1228 | |
|---|
| 1229 | !0) Calculate tot_zneb, total cloud fraction above the cloud |
|---|
| 1230 | !assuming a maximum-random overlap (voir Jakob and Klein, 2000) |
|---|
| 1231 | |
|---|
| 1232 | DO i=1, klon |
|---|
| 1233 | tot_znebn(i) = 1. - (1.-tot_zneb(i))*(1 - max(rneb(i,k),zneb(i))) & |
|---|
| 1234 | /(1.-min(zneb(i),1.-smallestreal)) |
|---|
| 1235 | d_tot_zneb(i) = tot_znebn(i) - tot_zneb(i) |
|---|
| 1236 | tot_zneb(i) = tot_znebn(i) |
|---|
| 1237 | |
|---|
| 1238 | |
|---|
| 1239 | !1) Cloudy to clear air |
|---|
| 1240 | d_znebprecip_cld_clr(i) = znebprecipcld(i) - min(rneb(i,k),znebprecipcld(i)) |
|---|
| 1241 | IF (znebprecipcld(i) .GT. 0.) THEN |
|---|
| 1242 | d_zrfl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*zrflcld(i) |
|---|
| 1243 | d_zifl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*ziflcld(i) |
|---|
| 1244 | ELSE |
|---|
| 1245 | d_zrfl_cld_clr(i) = 0. |
|---|
| 1246 | d_zifl_cld_clr(i) = 0. |
|---|
| 1247 | ENDIF |
|---|
| 1248 | |
|---|
| 1249 | !2) Clear to cloudy air |
|---|
| 1250 | d_znebprecip_clr_cld(i) = max(0., min(znebprecipclr(i), rneb(i,k) - d_tot_zneb(i) - zneb(i))) |
|---|
| 1251 | IF (znebprecipclr(i) .GT. 0) THEN |
|---|
| 1252 | d_zrfl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*zrflclr(i) |
|---|
| 1253 | d_zifl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*ziflclr(i) |
|---|
| 1254 | ELSE |
|---|
| 1255 | d_zrfl_clr_cld(i) = 0. |
|---|
| 1256 | d_zifl_clr_cld(i) = 0. |
|---|
| 1257 | ENDIF |
|---|
| 1258 | |
|---|
| 1259 | !Update variables |
|---|
| 1260 | znebprecipcld(i) = znebprecipcld(i) + d_znebprecip_clr_cld(i) - d_znebprecip_cld_clr(i) |
|---|
| 1261 | znebprecipclr(i) = znebprecipclr(i) + d_znebprecip_cld_clr(i) - d_znebprecip_clr_cld(i) |
|---|
| 1262 | zrflcld(i) = zrflcld(i) + d_zrfl_clr_cld(i) - d_zrfl_cld_clr(i) |
|---|
| 1263 | ziflcld(i) = ziflcld(i) + d_zifl_clr_cld(i) - d_zifl_cld_clr(i) |
|---|
| 1264 | zrflclr(i) = zrflclr(i) + d_zrfl_cld_clr(i) - d_zrfl_clr_cld(i) |
|---|
| 1265 | ziflclr(i) = ziflclr(i) + d_zifl_cld_clr(i) - d_zifl_clr_cld(i) |
|---|
| 1266 | |
|---|
| 1267 | ! c_iso do the same thing for isotopes precip |
|---|
| 1268 | ENDDO |
|---|
| 1269 | ENDIF |
|---|
| 1270 | |
|---|
| 1271 | |
|---|
| 1272 | ! Autoconversion |
|---|
| 1273 | ! ------------------------------------------------------------------------------- |
|---|
| 1274 | |
|---|
| 1275 | |
|---|
| 1276 | ! Initialisation of zoliq and radocond variables |
|---|
| 1277 | |
|---|
| 1278 | DO i = 1, klon |
|---|
| 1279 | zoliq(i) = zcond(i) |
|---|
| 1280 | zoliqi(i)= zoliq(i)*zfice(i) |
|---|
| 1281 | zoliql(i)= zoliq(i)*(1.-zfice(i)) |
|---|
| 1282 | ! c_iso : initialisation of zoliq* also for isotopes |
|---|
| 1283 | zrho(i,k) = pplay(i,k) / zt(i) / RD |
|---|
| 1284 | zdz(i) = (paprs(i,k)-paprs(i,k+1)) / (zrho(i,k)*RG) |
|---|
| 1285 | iwc(i) = 0. |
|---|
| 1286 | zneb(i) = MAX(rneb(i,k),seuil_neb) |
|---|
| 1287 | radocond(i,k) = zoliq(i)/REAL(niter_lscp+1) |
|---|
| 1288 | radocondi(i,k)=zoliq(i)*zfice(i)/REAL(niter_lscp+1) |
|---|
| 1289 | radocondl(i,k)=zoliq(i)*(1.-zfice(i))/REAL(niter_lscp+1) |
|---|
| 1290 | ENDDO |
|---|
| 1291 | |
|---|
| 1292 | |
|---|
| 1293 | DO n = 1, niter_lscp |
|---|
| 1294 | |
|---|
| 1295 | DO i=1,klon |
|---|
| 1296 | IF (rneb(i,k).GT.0.0) THEN |
|---|
| 1297 | iwc(i) = zrho(i,k) * zoliqi(i) / zneb(i) ! in-cloud ice condensate content |
|---|
| 1298 | ENDIF |
|---|
| 1299 | ENDDO |
|---|
| 1300 | |
|---|
| 1301 | CALL fallice_velocity(klon,iwc(:),zt(:),zrho(:,k),pplay(:,k),ptconv(:,k),velo(:,k)) |
|---|
| 1302 | |
|---|
| 1303 | DO i = 1, klon |
|---|
| 1304 | |
|---|
| 1305 | IF (rneb(i,k).GT.0.0) THEN |
|---|
| 1306 | |
|---|
| 1307 | ! Initialization of zrain, zsnow and zprecip: |
|---|
| 1308 | zrain=0. |
|---|
| 1309 | zsnow=0. |
|---|
| 1310 | zprecip=0. |
|---|
| 1311 | ! c_iso same init for isotopes. Externalisation? |
|---|
| 1312 | |
|---|
| 1313 | IF (zneb(i).EQ.seuil_neb) THEN |
|---|
| 1314 | zprecip = 0.0 |
|---|
| 1315 | zsnow = 0.0 |
|---|
| 1316 | zrain= 0.0 |
|---|
| 1317 | ELSE |
|---|
| 1318 | |
|---|
| 1319 | IF (ptconv(i,k)) THEN ! if convective point |
|---|
| 1320 | zcl=cld_lc_con |
|---|
| 1321 | zct=1./cld_tau_con |
|---|
| 1322 | zexpo=cld_expo_con |
|---|
| 1323 | ffallv=ffallv_con |
|---|
| 1324 | ELSE |
|---|
| 1325 | zcl=cld_lc_lsc |
|---|
| 1326 | zct=1./cld_tau_lsc |
|---|
| 1327 | zexpo=cld_expo_lsc |
|---|
| 1328 | ffallv=ffallv_lsc |
|---|
| 1329 | ENDIF |
|---|
| 1330 | |
|---|
| 1331 | |
|---|
| 1332 | ! if vertical heterogeneity is taken into account, we use |
|---|
| 1333 | ! the "true" volume fraction instead of a modified |
|---|
| 1334 | ! surface fraction (which is larger and artificially |
|---|
| 1335 | ! reduces the in-cloud water). |
|---|
| 1336 | |
|---|
| 1337 | ! Liquid water quantity to remove: zchau (Sundqvist, 1978) |
|---|
| 1338 | ! dqliq/dt=-qliq/tau*(1-exp(-qcin/clw)**2) |
|---|
| 1339 | !......................................................... |
|---|
| 1340 | IF ((iflag_cloudth_vert.GE.3).AND.(iflag_rain_incloud_vol.EQ.1)) THEN |
|---|
| 1341 | |
|---|
| 1342 | ! if vertical heterogeneity is taken into account, we use |
|---|
| 1343 | ! the "true" volume fraction instead of a modified |
|---|
| 1344 | ! surface fraction (which is larger and artificially |
|---|
| 1345 | ! reduces the in-cloud water). |
|---|
| 1346 | effective_zneb=ctot_vol(i,k) |
|---|
| 1347 | ELSE |
|---|
| 1348 | effective_zneb=zneb(i) |
|---|
| 1349 | ENDIF |
|---|
| 1350 | |
|---|
| 1351 | |
|---|
| 1352 | IF (iflag_autoconversion .EQ. 2) THEN |
|---|
| 1353 | ! two-steps resolution with niter_lscp=1 sufficient |
|---|
| 1354 | ! we first treat the second term (with exponential) in an explicit way |
|---|
| 1355 | ! and then treat the first term (-q/tau) in an exact way |
|---|
| 1356 | zchau=zoliql(i)*(1.-exp(-dtime/REAL(niter_lscp)*zct & |
|---|
| 1357 | *(1.-exp(-(zoliql(i)/effective_zneb/zcl)**zexpo)))) |
|---|
| 1358 | ELSE |
|---|
| 1359 | ! old explicit resolution with subtimesteps |
|---|
| 1360 | zchau = zct*dtime/REAL(niter_lscp)*zoliql(i) & |
|---|
| 1361 | *(1.0-EXP(-(zoliql(i)/effective_zneb/zcl)**zexpo)) |
|---|
| 1362 | ENDIF |
|---|
| 1363 | |
|---|
| 1364 | |
|---|
| 1365 | ! Ice water quantity to remove (Zender & Kiehl, 1997) |
|---|
| 1366 | ! dqice/dt=1/rho*d(rho*wice*qice)/dz |
|---|
| 1367 | !.................................... |
|---|
| 1368 | IF (iflag_autoconversion .EQ. 2) THEN |
|---|
| 1369 | ! exact resolution, niter_lscp=1 is sufficient but works only |
|---|
| 1370 | ! with iflag_vice=0 |
|---|
| 1371 | IF (zoliqi(i) .GT. 0.) THEN |
|---|
| 1372 | zfroi=(zoliqi(i)-((zoliqi(i)**(-dice_velo)) & |
|---|
| 1373 | +dice_velo*dtime/REAL(niter_lscp)*cice_velo/zdz(i)*ffallv)**(-1./dice_velo)) |
|---|
| 1374 | ELSE |
|---|
| 1375 | zfroi=0. |
|---|
| 1376 | ENDIF |
|---|
| 1377 | ELSE |
|---|
| 1378 | ! old explicit resolution with subtimesteps |
|---|
| 1379 | zfroi = dtime/REAL(niter_lscp)/zdz(i)*zoliqi(i)*velo(i,k) |
|---|
| 1380 | ENDIF |
|---|
| 1381 | |
|---|
| 1382 | zrain = MIN(MAX(zchau,0.0),zoliql(i)) |
|---|
| 1383 | zsnow = MIN(MAX(zfroi,0.0),zoliqi(i)) |
|---|
| 1384 | zprecip = MAX(zrain + zsnow,0.0) |
|---|
| 1385 | |
|---|
| 1386 | ENDIF |
|---|
| 1387 | |
|---|
| 1388 | IF (iflag_autoconversion .GE. 1) THEN |
|---|
| 1389 | ! debugged version with phase conservation through the autoconversion process |
|---|
| 1390 | zoliql(i) = MAX(zoliql(i)-1.*zrain , 0.0) |
|---|
| 1391 | zoliqi(i) = MAX(zoliqi(i)-1.*zsnow , 0.0) |
|---|
| 1392 | zoliq(i) = MAX(zoliq(i)-zprecip , 0.0) |
|---|
| 1393 | ELSE |
|---|
| 1394 | ! bugged version with phase resetting |
|---|
| 1395 | zoliql(i) = MAX(zoliq(i)*(1.-zfice(i))-1.*zrain , 0.0) |
|---|
| 1396 | zoliqi(i) = MAX(zoliq(i)*zfice(i)-1.*zsnow , 0.0) |
|---|
| 1397 | zoliq(i) = MAX(zoliq(i)-zprecip , 0.0) |
|---|
| 1398 | ENDIF |
|---|
| 1399 | |
|---|
| 1400 | ! c_iso: call isotope_conversion (for readibility) or duplicate |
|---|
| 1401 | |
|---|
| 1402 | radocond(i,k) = radocond(i,k) + zoliq(i)/REAL(niter_lscp+1) |
|---|
| 1403 | radocondl(i,k) = radocondl(i,k) + zoliql(i)/REAL(niter_lscp+1) |
|---|
| 1404 | radocondi(i,k) = radocondi(i,k) + zoliqi(i)/REAL(niter_lscp+1) |
|---|
| 1405 | |
|---|
| 1406 | ENDIF ! rneb >0 |
|---|
| 1407 | |
|---|
| 1408 | ENDDO ! i = 1,klon |
|---|
| 1409 | |
|---|
| 1410 | ENDDO ! n = 1,niter |
|---|
| 1411 | |
|---|
| 1412 | ! Precipitation flux calculation |
|---|
| 1413 | |
|---|
| 1414 | DO i = 1, klon |
|---|
| 1415 | |
|---|
| 1416 | IF (iflag_evap_prec.GE.4) THEN |
|---|
| 1417 | ziflprev(i)=ziflcld(i) |
|---|
| 1418 | ELSE |
|---|
| 1419 | ziflprev(i)=zifl(i)*zneb(i) |
|---|
| 1420 | ENDIF |
|---|
| 1421 | |
|---|
| 1422 | IF (rneb(i,k) .GT. 0.0) THEN |
|---|
| 1423 | |
|---|
| 1424 | ! CR&JYG: We account for the Wegener-Findeisen-Bergeron process in the precipitation flux: |
|---|
| 1425 | ! If T<0C, liquid precip are converted into ice, which leads to an increase in |
|---|
| 1426 | ! temperature DeltaT. The effect of DeltaT on condensates and precipitation is roughly |
|---|
| 1427 | ! taken into account through a linearization of the equations and by approximating |
|---|
| 1428 | ! the liquid precipitation process with a "threshold" process. We assume that |
|---|
| 1429 | ! condensates are not modified during this operation. Liquid precipitation is |
|---|
| 1430 | ! removed (in the limit DeltaT<273.15-T). Solid precipitation increases. |
|---|
| 1431 | ! Water vapor increases as well |
|---|
| 1432 | ! Note that compared to fisrtilp, we always assume iflag_bergeron=2 |
|---|
| 1433 | |
|---|
| 1434 | zqpreci(i)=(zcond(i)-zoliq(i))*zfice(i) |
|---|
| 1435 | zqprecl(i)=(zcond(i)-zoliq(i))*(1.-zfice(i)) |
|---|
| 1436 | zcp=RCPD*(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
|---|
| 1437 | coef1 = rneb(i,k)*RLSTT/zcp*zdqsdT_raw(i) |
|---|
| 1438 | ! Computation of DT if all the liquid precip freezes |
|---|
| 1439 | DeltaT = RLMLT*zqprecl(i) / (zcp*(1.+coef1)) |
|---|
| 1440 | ! T should not exceed the freezing point |
|---|
| 1441 | ! that is Delta > RTT-zt(i) |
|---|
| 1442 | DeltaT = max( min( RTT-zt(i), DeltaT) , 0. ) |
|---|
| 1443 | zt(i) = zt(i) + DeltaT |
|---|
| 1444 | ! water vaporization due to temp. increase |
|---|
| 1445 | Deltaq = rneb(i,k)*zdqsdT_raw(i)*DeltaT |
|---|
| 1446 | ! we add this vaporized water to the total vapor and we remove it from the precip |
|---|
| 1447 | zq(i) = zq(i) + Deltaq |
|---|
| 1448 | ! The three "max" lines herebelow protect from rounding errors |
|---|
| 1449 | zcond(i) = max( zcond(i)- Deltaq, 0. ) |
|---|
| 1450 | ! liquid precipitation converted to ice precip |
|---|
| 1451 | Deltaqprecl = -zcp/RLMLT*(1.+coef1)*DeltaT |
|---|
| 1452 | zqprecl(i) = max( zqprecl(i) + Deltaqprecl, 0. ) |
|---|
| 1453 | ! iced water budget |
|---|
| 1454 | zqpreci(i) = max (zqpreci(i) - Deltaqprecl - Deltaq, 0.) |
|---|
| 1455 | |
|---|
| 1456 | ! c_iso : mv here condensation of isotopes + redispatchage en precip |
|---|
| 1457 | |
|---|
| 1458 | IF (iflag_evap_prec.GE.4) THEN |
|---|
| 1459 | zrflcld(i) = zrflcld(i)+zqprecl(i) & |
|---|
| 1460 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
|---|
| 1461 | ziflcld(i) = ziflcld(i)+ zqpreci(i) & |
|---|
| 1462 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
|---|
| 1463 | znebprecipcld(i) = rneb(i,k) |
|---|
| 1464 | zrfl(i) = zrflcld(i) + zrflclr(i) |
|---|
| 1465 | zifl(i) = ziflcld(i) + ziflclr(i) |
|---|
| 1466 | ELSE |
|---|
| 1467 | zrfl(i) = zrfl(i)+ zqprecl(i) & |
|---|
| 1468 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
|---|
| 1469 | zifl(i) = zifl(i)+ zqpreci(i) & |
|---|
| 1470 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
|---|
| 1471 | ENDIF |
|---|
| 1472 | ! c_iso : same for isotopes |
|---|
| 1473 | |
|---|
| 1474 | ENDIF ! rneb>0 |
|---|
| 1475 | |
|---|
| 1476 | ENDDO |
|---|
| 1477 | |
|---|
| 1478 | ! LTP: limit of surface cloud fraction covered by precipitation when the local intensity of the flux is below rain_int_min |
|---|
| 1479 | ! if iflag_evap_prec>=4 |
|---|
| 1480 | IF (iflag_evap_prec.GE.4) THEN |
|---|
| 1481 | |
|---|
| 1482 | DO i=1,klon |
|---|
| 1483 | |
|---|
| 1484 | IF ((zrflclr(i) + ziflclr(i)) .GT. 0. ) THEN |
|---|
| 1485 | znebprecipclr(i) = min(znebprecipclr(i),max(zrflclr(i)/ & |
|---|
| 1486 | (MAX(znebprecipclr(i),seuil_neb)*rain_int_min), ziflclr(i)/(MAX(znebprecipclr(i),seuil_neb)*rain_int_min))) |
|---|
| 1487 | ELSE |
|---|
| 1488 | znebprecipclr(i)=0.0 |
|---|
| 1489 | ENDIF |
|---|
| 1490 | |
|---|
| 1491 | IF ((zrflcld(i) + ziflcld(i)) .GT. 0.) THEN |
|---|
| 1492 | znebprecipcld(i) = min(znebprecipcld(i), max(zrflcld(i)/ & |
|---|
| 1493 | (MAX(znebprecipcld(i),seuil_neb)*rain_int_min), ziflcld(i)/(MAX(znebprecipcld(i),seuil_neb)*rain_int_min))) |
|---|
| 1494 | ELSE |
|---|
| 1495 | znebprecipcld(i)=0.0 |
|---|
| 1496 | ENDIF |
|---|
| 1497 | ENDDO |
|---|
| 1498 | |
|---|
| 1499 | ENDIF |
|---|
| 1500 | |
|---|
| 1501 | |
|---|
| 1502 | ENDIF ! ok_poprecip |
|---|
| 1503 | |
|---|
| 1504 | ! End of precipitation formation |
|---|
| 1505 | ! -------------------------------- |
|---|
| 1506 | |
|---|
| 1507 | |
|---|
| 1508 | ! Calculation of cloud condensates amount seen by radiative scheme |
|---|
| 1509 | !----------------------------------------------------------------- |
|---|
| 1510 | |
|---|
| 1511 | ! Calculation of the concentration of condensates seen by the radiation scheme |
|---|
| 1512 | ! for liquid phase, we take radocondl |
|---|
| 1513 | ! for ice phase, we take radocondi if we neglect snowfall, otherwise (ok_radocond_snow=true) |
|---|
| 1514 | ! we recalculate radocondi to account for contributions from the precipitation flux |
|---|
| 1515 | ! TODO: for the moment, we deactivate this option when ok_poprecip=.true. |
|---|
| 1516 | |
|---|
| 1517 | IF ((ok_radocond_snow) .AND. (k .LT. klev) .AND. (.NOT. ok_poprecip)) THEN |
|---|
| 1518 | ! for the solid phase (crystals + snowflakes) |
|---|
| 1519 | ! we recalculate radocondi by summing |
|---|
| 1520 | ! the ice content calculated in the mesh |
|---|
| 1521 | ! + the contribution of the non-evaporated snowfall |
|---|
| 1522 | ! from the overlying layer |
|---|
| 1523 | DO i=1,klon |
|---|
| 1524 | IF (ziflprev(i) .NE. 0.0) THEN |
|---|
| 1525 | radocondi(i,k)=zoliq(i)*zfice(i)+zqpreci(i)+ziflprev(i)/zrho(i,k+1)/velo(i,k+1) |
|---|
| 1526 | ELSE |
|---|
| 1527 | radocondi(i,k)=zoliq(i)*zfice(i)+zqpreci(i) |
|---|
| 1528 | ENDIF |
|---|
| 1529 | radocond(i,k)=radocondl(i,k)+radocondi(i,k) |
|---|
| 1530 | ENDDO |
|---|
| 1531 | ENDIF |
|---|
| 1532 | |
|---|
| 1533 | ! caculate the percentage of ice in "radocond" so cloud+precip seen by the radiation scheme |
|---|
| 1534 | DO i=1,klon |
|---|
| 1535 | IF (radocond(i,k) .GT. 0.) THEN |
|---|
| 1536 | radicefrac(i,k)=MIN(MAX(radocondi(i,k)/radocond(i,k),0.),1.) |
|---|
| 1537 | ENDIF |
|---|
| 1538 | ENDDO |
|---|
| 1539 | |
|---|
| 1540 | ! ---------------------------------------------------------------- |
|---|
| 1541 | ! P4> Wet scavenging |
|---|
| 1542 | ! ---------------------------------------------------------------- |
|---|
| 1543 | |
|---|
| 1544 | !Scavenging through nucleation in the layer |
|---|
| 1545 | |
|---|
| 1546 | DO i = 1,klon |
|---|
| 1547 | |
|---|
| 1548 | IF(zcond(i).GT.zoliq(i)+1.e-10) THEN |
|---|
| 1549 | beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime |
|---|
| 1550 | ELSE |
|---|
| 1551 | beta(i,k) = 0. |
|---|
| 1552 | ENDIF |
|---|
| 1553 | |
|---|
| 1554 | zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0)*(paprs(i,k)-paprs(i,k+1))/RG |
|---|
| 1555 | |
|---|
| 1556 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
|---|
| 1557 | |
|---|
| 1558 | IF (temp(i,k) .GE. t_glace_min) THEN |
|---|
| 1559 | zalpha_tr = a_tr_sca(3) |
|---|
| 1560 | ELSE |
|---|
| 1561 | zalpha_tr = a_tr_sca(4) |
|---|
| 1562 | ENDIF |
|---|
| 1563 | |
|---|
| 1564 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
|---|
| 1565 | frac_nucl(i,k)= 1.-zneb(i)*zfrac_lessi |
|---|
| 1566 | |
|---|
| 1567 | ! Nucleation with a factor of -1 instead of -0.5 |
|---|
| 1568 | zfrac_lessi = 1. - EXP(-zprec_cond(i)/zneb(i)) |
|---|
| 1569 | |
|---|
| 1570 | ENDIF |
|---|
| 1571 | |
|---|
| 1572 | ENDDO |
|---|
| 1573 | |
|---|
| 1574 | ! Scavenging through impaction in the underlying layer |
|---|
| 1575 | |
|---|
| 1576 | DO kk = k-1, 1, -1 |
|---|
| 1577 | |
|---|
| 1578 | DO i = 1, klon |
|---|
| 1579 | |
|---|
| 1580 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
|---|
| 1581 | |
|---|
| 1582 | IF (temp(i,kk) .GE. t_glace_min) THEN |
|---|
| 1583 | zalpha_tr = a_tr_sca(1) |
|---|
| 1584 | ELSE |
|---|
| 1585 | zalpha_tr = a_tr_sca(2) |
|---|
| 1586 | ENDIF |
|---|
| 1587 | |
|---|
| 1588 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
|---|
| 1589 | frac_impa(i,kk)= 1.-zneb(i)*zfrac_lessi |
|---|
| 1590 | |
|---|
| 1591 | ENDIF |
|---|
| 1592 | |
|---|
| 1593 | ENDDO |
|---|
| 1594 | |
|---|
| 1595 | ENDDO |
|---|
| 1596 | |
|---|
| 1597 | ! Outputs: |
|---|
| 1598 | !------------------------------- |
|---|
| 1599 | ! Precipitation fluxes at layer interfaces |
|---|
| 1600 | ! + precipitation fractions + |
|---|
| 1601 | ! temperature and water species tendencies |
|---|
| 1602 | DO i = 1, klon |
|---|
| 1603 | psfl(i,k)=zifl(i) |
|---|
| 1604 | prfl(i,k)=zrfl(i) |
|---|
| 1605 | pfraclr(i,k)=znebprecipclr(i) |
|---|
| 1606 | pfracld(i,k)=znebprecipcld(i) |
|---|
| 1607 | d_ql(i,k) = (1-zfice(i))*zoliq(i) |
|---|
| 1608 | d_qi(i,k) = zfice(i)*zoliq(i) |
|---|
| 1609 | d_q(i,k) = zq(i) - qt(i,k) |
|---|
| 1610 | ! c_iso: same for isotopes |
|---|
| 1611 | d_t(i,k) = zt(i) - temp(i,k) |
|---|
| 1612 | ENDDO |
|---|
| 1613 | |
|---|
| 1614 | |
|---|
| 1615 | ENDDO |
|---|
| 1616 | |
|---|
| 1617 | |
|---|
| 1618 | ! Rain or snow at the surface (depending on the first layer temperature) |
|---|
| 1619 | DO i = 1, klon |
|---|
| 1620 | snow(i) = zifl(i) |
|---|
| 1621 | rain(i) = zrfl(i) |
|---|
| 1622 | ! c_iso final output |
|---|
| 1623 | ENDDO |
|---|
| 1624 | |
|---|
| 1625 | IF (ncoreczq>0) THEN |
|---|
| 1626 | WRITE(lunout,*)'WARNING : ZQ in LSCP ',ncoreczq,' val < 1.e-15.' |
|---|
| 1627 | ENDIF |
|---|
| 1628 | |
|---|
| 1629 | |
|---|
| 1630 | RETURN |
|---|
| 1631 | |
|---|
| 1632 | END SUBROUTINE lscp |
|---|
| 1633 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 1634 | |
|---|
| 1635 | END MODULE lmdz_lscp |
|---|