[4594] | 1 | MODULE lmdz_wake |
---|
[3927] | 2 | ! $Id: wake.F90 3648 2020-03-16 15:36:59Z jghattas $ |
---|
[4594] | 3 | CONTAINS |
---|
[3927] | 4 | SUBROUTINE wake(znatsurf, p, ph, pi, dtime, & |
---|
| 5 | te0, qe0, omgb, & |
---|
| 6 | dtdwn, dqdwn, amdwn, amup, dta, dqa, wgen, & |
---|
| 7 | sigd_con, Cin, & |
---|
| 8 | deltatw, deltaqw, sigmaw, awdens, wdens, & ! state variables |
---|
| 9 | dth, hw, wape, fip, gfl, & |
---|
| 10 | dtls, dqls, ktopw, omgbdth, dp_omgb, tu, qu, & |
---|
| 11 | dtke, dqke, omg, dp_deltomg, spread, cstar, & |
---|
| 12 | d_deltat_gw, & |
---|
| 13 | d_deltatw2, d_deltaqw2, d_sigmaw2, d_awdens2, d_wdens2 & ! tendencies |
---|
| 14 | |
---|
| 15 | #ifdef ISO |
---|
| 16 | ,xte0,dxtdwn,dxta,deltaxtw & |
---|
| 17 | ,dxtls,xtu,dxtke,d_deltaxtw2 & |
---|
| 18 | #endif |
---|
| 19 | ) |
---|
| 20 | |
---|
| 21 | |
---|
| 22 | ! ************************************************************** |
---|
| 23 | ! * |
---|
| 24 | ! WAKE * |
---|
| 25 | ! retour a un Pupper fixe * |
---|
| 26 | ! * |
---|
| 27 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
| 28 | ! modified by : ROEHRIG Romain 01/29/2007 * |
---|
| 29 | ! ************************************************************** |
---|
| 30 | |
---|
[5112] | 31 | USE lmdz_ioipsl_getin_p, ONLY: getin_p |
---|
[3927] | 32 | USE dimphy |
---|
[5117] | 33 | USE lmdz_phys_para |
---|
[5112] | 34 | USE lmdz_print_control, ONLY: prt_level |
---|
[3927] | 35 | #ifdef ISO |
---|
[5101] | 36 | USE infotrac_phy, ONLY: ntraciso=>ntiso |
---|
[3927] | 37 | #ifdef ISOVERIF |
---|
| 38 | USE isotopes_verif_mod |
---|
| 39 | !, ONLY: errmax,errmaxrel |
---|
[4491] | 40 | USE isotopes_mod, ONLY: iso_eau,iso_hdo,ridicule |
---|
[3927] | 41 | #endif |
---|
| 42 | #endif |
---|
[5141] | 43 | USE lmdz_cvthermo |
---|
[5144] | 44 | USE lmdz_yomcst |
---|
[5141] | 45 | |
---|
[3927] | 46 | IMPLICIT NONE |
---|
| 47 | ! ============================================================================ |
---|
| 48 | |
---|
| 49 | |
---|
| 50 | ! But : Decrire le comportement des poches froides apparaissant dans les |
---|
| 51 | ! grands systemes convectifs, et fournir l'energie disponible pour |
---|
| 52 | ! le declenchement de nouvelles colonnes convectives. |
---|
| 53 | |
---|
| 54 | ! State variables : |
---|
| 55 | ! deltatw : temperature difference between wake and off-wake regions |
---|
| 56 | ! deltaqw : specific humidity difference between wake and off-wake regions |
---|
| 57 | ! sigmaw : fractional area covered by wakes. |
---|
| 58 | ! wdens : number of wakes per unit area |
---|
| 59 | |
---|
| 60 | ! Variable de sortie : |
---|
| 61 | |
---|
| 62 | ! wape : WAke Potential Energy |
---|
| 63 | ! fip : Front Incident Power (W/m2) - ALP |
---|
| 64 | ! gfl : Gust Front Length per unit area (m-1) |
---|
| 65 | ! dtls : large scale temperature tendency due to wake |
---|
| 66 | ! dqls : large scale humidity tendency due to wake |
---|
| 67 | ! hw : wake top hight (given by hw*deltatw(1)/2=wape) |
---|
| 68 | ! dp_omgb : vertical gradient of large scale omega |
---|
| 69 | ! awdens : densite de poches actives |
---|
| 70 | ! wdens : densite de poches |
---|
| 71 | ! omgbdth: flux of Delta_Theta transported by LS omega |
---|
| 72 | ! dtKE : differential heating (wake - unpertubed) |
---|
| 73 | ! dqKE : differential moistening (wake - unpertubed) |
---|
| 74 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
| 75 | ! dp_deltomg : vertical gradient of omg (s-1) |
---|
| 76 | ! spread : spreading term in d_t_wake and d_q_wake |
---|
| 77 | ! deltatw : updated temperature difference (T_w-T_u). |
---|
| 78 | ! deltaqw : updated humidity difference (q_w-q_u). |
---|
| 79 | ! sigmaw : updated wake fractional area. |
---|
| 80 | ! d_deltat_gw : delta T tendency due to GW |
---|
| 81 | |
---|
| 82 | ! Variables d'entree : |
---|
| 83 | |
---|
| 84 | ! aire : aire de la maille |
---|
| 85 | ! te0 : temperature dans l'environnement (K) |
---|
| 86 | ! qe0 : humidite dans l'environnement (kg/kg) |
---|
| 87 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
| 88 | ! dtdwn: source de chaleur due aux descentes (K/s) |
---|
| 89 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
| 90 | ! dta : source de chaleur due courants satures et detrain (K/s) |
---|
| 91 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
| 92 | ! wgen : number of wakes generated per unit area and per sec (/m^2/s) |
---|
| 93 | ! amdwn: flux de masse total des descentes, par unite de |
---|
| 94 | ! surface de la maille (kg/m2/s) |
---|
| 95 | ! amup : flux de masse total des ascendances, par unite de |
---|
| 96 | ! surface de la maille (kg/m2/s) |
---|
| 97 | ! sigd_con: |
---|
| 98 | ! Cin : convective inhibition |
---|
| 99 | ! p : pressions aux milieux des couches (Pa) |
---|
| 100 | ! ph : pressions aux interfaces (Pa) |
---|
| 101 | ! pi : (p/p_0)**kapa (adim) |
---|
| 102 | ! dtime: increment temporel (s) |
---|
| 103 | |
---|
| 104 | ! Variables internes : |
---|
| 105 | |
---|
| 106 | ! rhow : masse volumique de la poche froide |
---|
| 107 | ! rho : environment density at P levels |
---|
| 108 | ! rhoh : environment density at Ph levels |
---|
| 109 | ! te : environment temperature | may change within |
---|
| 110 | ! qe : environment humidity | sub-time-stepping |
---|
| 111 | ! the : environment potential temperature |
---|
| 112 | ! thu : potential temperature in undisturbed area |
---|
| 113 | ! tu : temperature in undisturbed area |
---|
| 114 | ! qu : humidity in undisturbed area |
---|
| 115 | ! dp_omgb: vertical gradient og LS omega |
---|
| 116 | ! omgbw : wake average vertical omega |
---|
| 117 | ! dp_omgbw: vertical gradient of omgbw |
---|
| 118 | ! omgbdq : flux of Delta_q transported by LS omega |
---|
| 119 | ! dth : potential temperature diff. wake-undist. |
---|
| 120 | ! th1 : first pot. temp. for vertical advection (=thu) |
---|
| 121 | ! th2 : second pot. temp. for vertical advection (=thw) |
---|
| 122 | ! q1 : first humidity for vertical advection |
---|
| 123 | ! q2 : second humidity for vertical advection |
---|
| 124 | ! d_deltatw : terme de redistribution pour deltatw |
---|
| 125 | ! d_deltaqw : terme de redistribution pour deltaqw |
---|
| 126 | ! deltatw0 : deltatw initial |
---|
| 127 | ! deltaqw0 : deltaqw initial |
---|
| 128 | ! hw0 : wake top hight (defined as the altitude at which deltatw=0) |
---|
| 129 | ! amflux : horizontal mass flux through wake boundary |
---|
| 130 | ! wdens_ref: initial number of wakes per unit area (3D) or per |
---|
| 131 | ! unit length (2D), at the beginning of each time step |
---|
[5093] | 132 | ! Tgw : 1 sur la période de onde de gravité |
---|
| 133 | ! Cgw : vitesse de propagation de onde de gravité |
---|
[3927] | 134 | ! LL : distance entre 2 poches |
---|
| 135 | |
---|
| 136 | ! ------------------------------------------------------------------------- |
---|
[5093] | 137 | ! Déclaration de variables |
---|
[3927] | 138 | ! ------------------------------------------------------------------------- |
---|
| 139 | |
---|
| 140 | ! Arguments en entree |
---|
| 141 | ! -------------------- |
---|
| 142 | |
---|
| 143 | INTEGER, DIMENSION (klon), INTENT(IN) :: znatsurf |
---|
| 144 | REAL, DIMENSION (klon, klev), INTENT(IN) :: p, pi |
---|
| 145 | REAL, DIMENSION (klon, klev+1), INTENT(IN) :: ph |
---|
| 146 | REAL, DIMENSION (klon, klev), INTENT(IN) :: omgb |
---|
| 147 | REAL, INTENT(IN) :: dtime |
---|
| 148 | REAL, DIMENSION (klon, klev), INTENT(IN) :: te0, qe0 |
---|
| 149 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dtdwn, dqdwn |
---|
| 150 | REAL, DIMENSION (klon, klev), INTENT(IN) :: amdwn, amup |
---|
| 151 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dta, dqa |
---|
| 152 | REAL, DIMENSION (klon), INTENT(IN) :: wgen |
---|
| 153 | REAL, DIMENSION (klon), INTENT(IN) :: sigd_con |
---|
| 154 | REAL, DIMENSION (klon), INTENT(IN) :: Cin |
---|
| 155 | #ifdef ISO |
---|
| 156 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(IN) :: xte0 |
---|
| 157 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(IN) :: dxtdwn |
---|
| 158 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(IN) :: dxta |
---|
| 159 | #endif |
---|
| 160 | |
---|
| 161 | ! Input/Output |
---|
| 162 | ! State variables |
---|
| 163 | REAL, DIMENSION (klon, klev), INTENT(INOUT) :: deltatw, deltaqw |
---|
| 164 | REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw |
---|
| 165 | REAL, DIMENSION (klon), INTENT(INOUT) :: awdens |
---|
| 166 | REAL, DIMENSION (klon), INTENT(INOUT) :: wdens |
---|
| 167 | #ifdef ISO |
---|
| 168 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(INOUT) :: deltaxtw |
---|
| 169 | #endif |
---|
| 170 | |
---|
| 171 | ! Sorties |
---|
| 172 | ! -------- |
---|
| 173 | |
---|
| 174 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dth |
---|
| 175 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: tu, qu |
---|
| 176 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtls, dqls |
---|
| 177 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtke, dqke |
---|
| 178 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: spread ! unused (jyg) |
---|
| 179 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: omgbdth, omg |
---|
| 180 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dp_omgb, dp_deltomg |
---|
| 181 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltat_gw |
---|
| 182 | REAL, DIMENSION (klon), INTENT(OUT) :: hw, wape, fip, gfl, cstar |
---|
| 183 | INTEGER, DIMENSION (klon), INTENT(OUT) :: ktopw |
---|
| 184 | ! Tendencies of state variables |
---|
| 185 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltatw2, d_deltaqw2 |
---|
| 186 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw2, d_awdens2, d_wdens2 |
---|
| 187 | #ifdef ISO |
---|
| 188 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(OUT) :: xtu |
---|
| 189 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(OUT) :: dxtls |
---|
| 190 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(OUT) :: dxtke |
---|
| 191 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(OUT) :: d_deltaxtw2 |
---|
| 192 | #endif |
---|
| 193 | |
---|
| 194 | ! Variables internes |
---|
| 195 | ! ------------------- |
---|
| 196 | |
---|
[5093] | 197 | ! Variables à fixer |
---|
[3927] | 198 | INTEGER, SAVE :: igout |
---|
| 199 | !$OMP THREADPRIVATE(igout) |
---|
| 200 | LOGICAL, SAVE :: first = .TRUE. |
---|
| 201 | !$OMP THREADPRIVATE(first) |
---|
| 202 | !jyg< |
---|
| 203 | !! REAL, SAVE :: stark, wdens_ref, coefgw, alpk |
---|
| 204 | REAL, SAVE, DIMENSION(2) :: wdens_ref |
---|
| 205 | REAL, SAVE :: stark, coefgw, alpk |
---|
| 206 | !>jyg |
---|
| 207 | REAL, SAVE :: crep_upper, crep_sol |
---|
| 208 | !$OMP THREADPRIVATE(stark, wdens_ref, coefgw, alpk, crep_upper, crep_sol) |
---|
| 209 | |
---|
| 210 | REAL, SAVE :: tau_cv |
---|
| 211 | !$OMP THREADPRIVATE(tau_cv) |
---|
| 212 | REAL, SAVE :: rzero, aa0 ! minimal wake radius and area |
---|
| 213 | !$OMP THREADPRIVATE(rzero, aa0) |
---|
| 214 | |
---|
| 215 | LOGICAL, SAVE :: flag_wk_check_trgl |
---|
| 216 | !$OMP THREADPRIVATE(flag_wk_check_trgl) |
---|
| 217 | INTEGER, SAVE :: iflag_wk_check_trgl |
---|
| 218 | !$OMP THREADPRIVATE(iflag_wk_check_trgl) |
---|
| 219 | INTEGER, SAVE :: iflag_wk_pop_dyn |
---|
| 220 | !$OMP THREADPRIVATE(iflag_wk_pop_dyn) |
---|
| 221 | |
---|
| 222 | REAL :: delta_t_min |
---|
| 223 | INTEGER :: nsub |
---|
| 224 | REAL :: dtimesub |
---|
| 225 | REAL, SAVE :: wdensmin |
---|
| 226 | !$OMP THREADPRIVATE(wdensmin) |
---|
| 227 | REAL, SAVE :: sigmad, hwmin, wapecut, cstart |
---|
| 228 | !$OMP THREADPRIVATE(sigmad, hwmin, wapecut, cstart) |
---|
| 229 | REAL, SAVE :: sigmaw_max |
---|
| 230 | !$OMP THREADPRIVATE(sigmaw_max) |
---|
| 231 | REAL, SAVE :: dens_rate |
---|
| 232 | !$OMP THREADPRIVATE(dens_rate) |
---|
| 233 | REAL :: wdens0 |
---|
| 234 | ! IM 080208 |
---|
| 235 | LOGICAL, DIMENSION (klon) :: gwake |
---|
| 236 | |
---|
| 237 | ! Variables de sauvegarde |
---|
| 238 | REAL, DIMENSION (klon, klev) :: deltatw0 |
---|
| 239 | REAL, DIMENSION (klon, klev) :: deltaqw0 |
---|
| 240 | REAL, DIMENSION (klon, klev) :: te, qe |
---|
| 241 | !! REAL, DIMENSION (klon) :: sigmaw1 |
---|
| 242 | #ifdef ISO |
---|
| 243 | REAL, DIMENSION (ntraciso,klon, klev) :: deltaxtw0 |
---|
| 244 | REAL, DIMENSION (ntraciso,klon, klev) :: xte |
---|
| 245 | #endif |
---|
| 246 | |
---|
| 247 | ! Variables liees a la dynamique de population |
---|
| 248 | REAL, DIMENSION(klon) :: act |
---|
| 249 | REAL, DIMENSION(klon) :: rad_wk, tau_wk_inv |
---|
| 250 | REAL, DIMENSION(klon) :: f_shear |
---|
| 251 | REAL, DIMENSION(klon) :: drdt |
---|
| 252 | REAL, DIMENSION(klon) :: d_sig_gen, d_sig_death, d_sig_col |
---|
| 253 | REAL, DIMENSION(klon) :: wape1_act, wape2_act |
---|
| 254 | LOGICAL, DIMENSION (klon) :: kill_wake |
---|
| 255 | INTEGER, SAVE :: iflag_wk_act |
---|
| 256 | !$OMP THREADPRIVATE(iflag_wk_act) |
---|
| 257 | REAL :: drdt_pos |
---|
| 258 | REAL :: tau_wk_inv_min |
---|
| 259 | |
---|
| 260 | ! Variables pour les GW |
---|
| 261 | REAL, DIMENSION (klon) :: ll |
---|
| 262 | REAL, DIMENSION (klon, klev) :: n2 |
---|
| 263 | REAL, DIMENSION (klon, klev) :: cgw |
---|
| 264 | REAL, DIMENSION (klon, klev) :: tgw |
---|
| 265 | |
---|
| 266 | ! Variables liees au calcul de hw |
---|
| 267 | REAL, DIMENSION (klon) :: ptop_provis, ptop, ptop_new |
---|
| 268 | REAL, DIMENSION (klon) :: sum_dth |
---|
| 269 | REAL, DIMENSION (klon) :: dthmin |
---|
| 270 | REAL, DIMENSION (klon) :: z, dz, hw0 |
---|
| 271 | INTEGER, DIMENSION (klon) :: ktop, kupper |
---|
| 272 | |
---|
| 273 | ! Variables liees au test de la forme triangulaire du profil de Delta_theta |
---|
| 274 | REAL, DIMENSION (klon) :: sum_half_dth |
---|
| 275 | REAL, DIMENSION (klon) :: dz_half |
---|
| 276 | |
---|
| 277 | ! Sub-timestep tendencies and related variables |
---|
| 278 | REAL, DIMENSION (klon, klev) :: d_deltatw, d_deltaqw |
---|
| 279 | REAL, DIMENSION (klon, klev) :: d_te, d_qe |
---|
| 280 | REAL, DIMENSION (klon) :: d_awdens, d_wdens |
---|
| 281 | REAL, DIMENSION (klon) :: d_sigmaw, alpha |
---|
| 282 | REAL, DIMENSION (klon) :: q0_min, q1_min |
---|
| 283 | LOGICAL, DIMENSION (klon) :: wk_adv, ok_qx_qw |
---|
| 284 | #ifdef ISO |
---|
| 285 | REAL, DIMENSION (ntraciso,klon, klev) :: d_deltaxtw |
---|
| 286 | REAL, DIMENSION (ntraciso,klon, klev) :: d_xte |
---|
| 287 | #endif |
---|
| 288 | REAL, SAVE :: epsilon |
---|
| 289 | !$OMP THREADPRIVATE(epsilon) |
---|
| 290 | DATA epsilon/1.E-15/ |
---|
| 291 | |
---|
| 292 | ! Autres variables internes |
---|
| 293 | INTEGER ::isubstep, k, i |
---|
| 294 | |
---|
| 295 | REAL :: wdens_targ |
---|
| 296 | REAL :: sigmaw_targ |
---|
| 297 | |
---|
| 298 | REAL, DIMENSION (klon) :: sum_thu, sum_tu, sum_qu, sum_thvu |
---|
| 299 | REAL, DIMENSION (klon) :: sum_dq, sum_rho |
---|
| 300 | REAL, DIMENSION (klon) :: sum_dtdwn, sum_dqdwn |
---|
| 301 | REAL, DIMENSION (klon) :: av_thu, av_tu, av_qu, av_thvu |
---|
| 302 | REAL, DIMENSION (klon) :: av_dth, av_dq, av_rho |
---|
| 303 | REAL, DIMENSION (klon) :: av_dtdwn, av_dqdwn |
---|
| 304 | ! pas besoin d'isos ici |
---|
| 305 | |
---|
| 306 | REAL, DIMENSION (klon, klev) :: rho, rhow |
---|
| 307 | REAL, DIMENSION (klon, klev+1) :: rhoh |
---|
| 308 | REAL, DIMENSION (klon, klev) :: rhow_moyen |
---|
| 309 | REAL, DIMENSION (klon, klev) :: zh |
---|
| 310 | REAL, DIMENSION (klon, klev+1) :: zhh |
---|
| 311 | REAL, DIMENSION (klon, klev) :: epaisseur1, epaisseur2 |
---|
| 312 | |
---|
| 313 | REAL, DIMENSION (klon, klev) :: the, thu |
---|
| 314 | |
---|
| 315 | REAL, DIMENSION (klon, klev) :: omgbw |
---|
| 316 | REAL, DIMENSION (klon) :: pupper |
---|
| 317 | REAL, DIMENSION (klon) :: omgtop |
---|
| 318 | REAL, DIMENSION (klon, klev) :: dp_omgbw |
---|
| 319 | REAL, DIMENSION (klon) :: ztop, dztop |
---|
| 320 | REAL, DIMENSION (klon, klev) :: alpha_up |
---|
| 321 | |
---|
| 322 | REAL, DIMENSION (klon) :: rre1, rre2 |
---|
| 323 | REAL :: rrd1, rrd2 |
---|
| 324 | REAL, DIMENSION (klon, klev) :: th1, th2, q1, q2 |
---|
| 325 | REAL, DIMENSION (klon, klev) :: d_th1, d_th2, d_dth |
---|
| 326 | REAL, DIMENSION (klon, klev) :: d_q1, d_q2, d_dq |
---|
| 327 | REAL, DIMENSION (klon, klev) :: omgbdq |
---|
| 328 | #ifdef ISO |
---|
| 329 | REAL, DIMENSION(ntraciso,klon,klev) :: xt1, xt2 |
---|
| 330 | REAL, DIMENSION(ntraciso,klon,klev) :: D_xt1, D_xt2, D_dxt |
---|
| 331 | REAL, DIMENSION(ntraciso,klon,klev) :: omgbdxt |
---|
[5117] | 332 | INTEGER ixt |
---|
[3927] | 333 | #endif |
---|
| 334 | |
---|
| 335 | REAL, DIMENSION (klon) :: ff, gg |
---|
| 336 | REAL, DIMENSION (klon) :: wape2, cstar2, heff |
---|
| 337 | |
---|
| 338 | REAL, DIMENSION (klon, klev) :: crep |
---|
| 339 | |
---|
| 340 | REAL, DIMENSION (klon, klev) :: ppi |
---|
| 341 | |
---|
| 342 | ! cc nrlmd |
---|
| 343 | REAL, DIMENSION (klon) :: death_rate |
---|
| 344 | !! REAL, DIMENSION (klon) :: nat_rate |
---|
| 345 | REAL, DIMENSION (klon, klev) :: entr |
---|
| 346 | REAL, DIMENSION (klon, klev) :: detr |
---|
| 347 | |
---|
| 348 | REAL, DIMENSION(klon) :: sigmaw_in ! pour les prints |
---|
| 349 | REAL, DIMENSION(klon) :: awdens_in, wdens_in ! pour les prints |
---|
| 350 | |
---|
| 351 | ! ------------------------------------------------------------------------- |
---|
| 352 | ! Initialisations |
---|
| 353 | ! ------------------------------------------------------------------------- |
---|
| 354 | |
---|
[5103] | 355 | ! PRINT*, 'wake initialisations' |
---|
[4036] | 356 | !#ifdef ISOVERIF |
---|
[5116] | 357 | ! WRITE(*,*) 'wake 358: entree' |
---|
[4036] | 358 | !#endif |
---|
[3927] | 359 | |
---|
| 360 | ! Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
| 361 | ! ------------------------------------------------------------------------- |
---|
| 362 | |
---|
| 363 | !! DATA wapecut, sigmad, hwmin/5., .02, 10./ |
---|
| 364 | !! DATA wapecut, sigmad, hwmin/1., .02, 10./ |
---|
| 365 | DATA sigmad, hwmin/.02, 10./ |
---|
| 366 | !! DATA wdensmin/1.e-12/ |
---|
| 367 | DATA wdensmin/1.e-14/ |
---|
| 368 | ! cc nrlmd |
---|
| 369 | DATA sigmaw_max/0.4/ |
---|
| 370 | DATA dens_rate/0.1/ |
---|
| 371 | ! cc |
---|
| 372 | ! Longueur de maille (en m) |
---|
| 373 | ! ------------------------------------------------------------------------- |
---|
| 374 | |
---|
| 375 | ! ALON = 3.e5 |
---|
| 376 | ! alon = 1.E6 |
---|
| 377 | |
---|
| 378 | ! Provisionnal; to be suppressed when f_shear is parameterized |
---|
| 379 | f_shear(:) = 1. ! 0. for strong shear, 1. for weak shear |
---|
| 380 | |
---|
| 381 | |
---|
| 382 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
| 383 | |
---|
[5093] | 384 | ! coefgw : Coefficient pour les ondes de gravité |
---|
[3927] | 385 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
[5093] | 386 | ! wdens : Densité surfacique de poche froide |
---|
[3927] | 387 | ! ------------------------------------------------------------------------- |
---|
| 388 | |
---|
| 389 | ! cc nrlmd coefgw=10 |
---|
| 390 | ! coefgw=1 |
---|
| 391 | ! wdens0 = 1.0/(alon**2) |
---|
| 392 | ! cc nrlmd wdens = 1.0/(alon**2) |
---|
| 393 | ! cc nrlmd stark = 0.50 |
---|
| 394 | ! CRtest |
---|
| 395 | ! cc nrlmd alpk=0.1 |
---|
| 396 | ! alpk = 1.0 |
---|
| 397 | ! alpk = 0.5 |
---|
| 398 | ! alpk = 0.05 |
---|
| 399 | |
---|
[5117] | 400 | IF (first) THEN |
---|
[3927] | 401 | igout = klon/2+1/klon |
---|
| 402 | |
---|
| 403 | crep_upper = 0.9 |
---|
| 404 | crep_sol = 1.0 |
---|
| 405 | |
---|
| 406 | ! Get wapecut from parameter file |
---|
| 407 | wapecut = 1. |
---|
| 408 | CALL getin_p('wapecut', wapecut) |
---|
| 409 | |
---|
| 410 | ! cc nrlmd Lecture du fichier wake_param.data |
---|
| 411 | stark=0.33 |
---|
| 412 | CALL getin_p('stark',stark) |
---|
| 413 | cstart = stark*sqrt(2.*wapecut) |
---|
| 414 | |
---|
| 415 | alpk=0.25 |
---|
| 416 | CALL getin_p('alpk',alpk) |
---|
| 417 | !jyg< |
---|
| 418 | !! wdens_ref=8.E-12 |
---|
| 419 | !! CALL getin_p('wdens_ref',wdens_ref) |
---|
| 420 | wdens_ref(1)=8.E-12 |
---|
| 421 | wdens_ref(2)=8.E-12 |
---|
| 422 | CALL getin_p('wdens_ref_o',wdens_ref(1)) !wake number per unit area ; ocean |
---|
| 423 | CALL getin_p('wdens_ref_l',wdens_ref(2)) !wake number per unit area ; land |
---|
| 424 | !>jyg |
---|
[5099] | 425 | |
---|
[3927] | 426 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 427 | !!!!!!!!! Population dynamics parameters !!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 428 | !------------------------------------------------------------------------ |
---|
| 429 | |
---|
| 430 | iflag_wk_pop_dyn = 0 |
---|
| 431 | CALL getin_p('iflag_wk_pop_dyn',iflag_wk_pop_dyn) ! switch between wdens prescribed |
---|
| 432 | ! and wdens prognostic |
---|
| 433 | iflag_wk_act = 0 |
---|
| 434 | CALL getin_p('iflag_wk_act',iflag_wk_act) ! 0: act(:)=0. |
---|
| 435 | ! 1: act(:)=1. |
---|
| 436 | ! 2: act(:)=f(Wape) |
---|
| 437 | |
---|
| 438 | rzero = 5000. |
---|
| 439 | CALL getin_p('rzero_wk', rzero) |
---|
| 440 | aa0 = 3.14*rzero*rzero |
---|
[5099] | 441 | |
---|
[3927] | 442 | tau_cv = 4000. |
---|
| 443 | CALL getin_p('tau_cv', tau_cv) |
---|
| 444 | |
---|
| 445 | !------------------------------------------------------------------------ |
---|
| 446 | |
---|
| 447 | coefgw=4. |
---|
| 448 | CALL getin_p('coefgw',coefgw) |
---|
| 449 | |
---|
| 450 | WRITE(*,*) 'stark=', stark |
---|
| 451 | WRITE(*,*) 'alpk=', alpk |
---|
| 452 | !jyg< |
---|
| 453 | !! WRITE(*,*) 'wdens_ref=', wdens_ref |
---|
| 454 | WRITE(*,*) 'wdens_ref_o=', wdens_ref(1) |
---|
| 455 | WRITE(*,*) 'wdens_ref_l=', wdens_ref(2) |
---|
| 456 | !>jyg |
---|
| 457 | WRITE(*,*) 'iflag_wk_pop_dyn=',iflag_wk_pop_dyn |
---|
| 458 | WRITE(*,*) 'iflag_wk_act',iflag_wk_act |
---|
| 459 | WRITE(*,*) 'coefgw=', coefgw |
---|
| 460 | |
---|
[5103] | 461 | flag_wk_check_trgl=.FALSE. |
---|
[3927] | 462 | CALL getin_p('flag_wk_check_trgl ', flag_wk_check_trgl) |
---|
| 463 | WRITE(*,*) 'flag_wk_check_trgl=', flag_wk_check_trgl |
---|
| 464 | WRITE(*,*) 'flag_wk_check_trgl OBSOLETE. Utilisr iflag_wk_check_trgl plutot' |
---|
| 465 | iflag_wk_check_trgl=0 ; IF (flag_wk_check_trgl) iflag_wk_check_trgl=1 |
---|
| 466 | CALL getin_p('iflag_wk_check_trgl ', iflag_wk_check_trgl) |
---|
| 467 | WRITE(*,*) 'iflag_wk_check_trgl=', iflag_wk_check_trgl |
---|
| 468 | |
---|
[5103] | 469 | first=.FALSE. |
---|
[5117] | 470 | END IF |
---|
[3927] | 471 | |
---|
| 472 | IF (iflag_wk_pop_dyn == 0) THEN |
---|
| 473 | ! Initialisation de toutes des densites a wdens_ref. |
---|
| 474 | ! Les densites peuvent evoluer si les poches debordent |
---|
| 475 | ! (voir au tout debut de la boucle sur les substeps) |
---|
| 476 | !jyg< |
---|
| 477 | !! wdens(:) = wdens_ref |
---|
| 478 | DO i = 1,klon |
---|
| 479 | wdens(i) = wdens_ref(znatsurf(i)+1) |
---|
| 480 | ENDDO |
---|
| 481 | !>jyg |
---|
| 482 | ENDIF ! (iflag_wk_pop_dyn == 0) |
---|
| 483 | |
---|
[5103] | 484 | ! PRINT*,'stark',stark |
---|
| 485 | ! PRINT*,'alpk',alpk |
---|
| 486 | ! PRINT*,'wdens',wdens |
---|
| 487 | ! PRINT*,'coefgw',coefgw |
---|
[3927] | 488 | ! cc |
---|
| 489 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
| 490 | ! ------------------------------------------------------------------------- |
---|
| 491 | |
---|
| 492 | delta_t_min = 0.2 |
---|
| 493 | |
---|
| 494 | ! 1. - Save initial values, initialize tendencies, initialize output fields |
---|
| 495 | ! ------------------------------------------------------------------------ |
---|
| 496 | |
---|
| 497 | !jyg< |
---|
| 498 | !! DO k = 1, klev |
---|
| 499 | !! DO i = 1, klon |
---|
| 500 | !! ppi(i, k) = pi(i, k) |
---|
| 501 | !! deltatw0(i, k) = deltatw(i, k) |
---|
| 502 | !! deltaqw0(i, k) = deltaqw(i, k) |
---|
| 503 | !! te(i, k) = te0(i, k) |
---|
| 504 | !! qe(i, k) = qe0(i, k) |
---|
| 505 | !! dtls(i, k) = 0. |
---|
| 506 | !! dqls(i, k) = 0. |
---|
| 507 | !! d_deltat_gw(i, k) = 0. |
---|
| 508 | !! d_te(i, k) = 0. |
---|
| 509 | !! d_qe(i, k) = 0. |
---|
| 510 | !! d_deltatw(i, k) = 0. |
---|
| 511 | !! d_deltaqw(i, k) = 0. |
---|
| 512 | !! ! IM 060508 beg |
---|
| 513 | !! d_deltatw2(i, k) = 0. |
---|
| 514 | !! d_deltaqw2(i, k) = 0. |
---|
| 515 | !! ! IM 060508 end |
---|
| 516 | !! END DO |
---|
| 517 | !! END DO |
---|
| 518 | ppi(:,:) = pi(:,:) |
---|
| 519 | deltatw0(:,:) = deltatw(:,:) |
---|
| 520 | deltaqw0(:,:) = deltaqw(:,:) |
---|
| 521 | te(:,:) = te0(:,:) |
---|
| 522 | qe(:,:) = qe0(:,:) |
---|
| 523 | dtls(:,:) = 0. |
---|
| 524 | dqls(:,:) = 0. |
---|
| 525 | d_deltat_gw(:,:) = 0. |
---|
| 526 | d_te(:,:) = 0. |
---|
| 527 | d_qe(:,:) = 0. |
---|
| 528 | d_deltatw(:,:) = 0. |
---|
| 529 | d_deltaqw(:,:) = 0. |
---|
| 530 | d_deltatw2(:,:) = 0. |
---|
| 531 | d_deltaqw2(:,:) = 0. |
---|
| 532 | #ifdef ISO |
---|
| 533 | deltaxtw0(:,:,:)= deltaxtw(:,:,:) |
---|
| 534 | xte(:,:,:) = xte0(:,:,:) |
---|
| 535 | dxtls(:,:,:) = 0. |
---|
| 536 | d_xte(:,:,:) = 0. |
---|
| 537 | d_deltaxtw(:,:,:) = 0. |
---|
| 538 | d_deltaxtw2(:,:,:)=0. |
---|
| 539 | xt1(:,:,:) = 0. |
---|
| 540 | xt2(:,:,:)=0. |
---|
| 541 | ! init non indispensable mais facilite verif iso |
---|
| 542 | q1(:,:)=0.0 |
---|
| 543 | q2(:,:)=0.0 |
---|
| 544 | #endif |
---|
| 545 | |
---|
| 546 | IF (iflag_wk_act == 0) THEN |
---|
| 547 | act(:) = 0. |
---|
| 548 | ELSEIF (iflag_wk_act == 1) THEN |
---|
| 549 | act(:) = 1. |
---|
| 550 | ENDIF |
---|
| 551 | |
---|
| 552 | !! DO i = 1, klon |
---|
| 553 | !! sigmaw_in(i) = sigmaw(i) |
---|
| 554 | !! END DO |
---|
| 555 | sigmaw_in(:) = sigmaw(:) |
---|
| 556 | !>jyg |
---|
| 557 | |
---|
| 558 | ! sigmaw1=sigmaw |
---|
| 559 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
[5103] | 560 | ! PRINT*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
[3927] | 561 | ! ENDIF |
---|
| 562 | IF (iflag_wk_pop_dyn >=1) THEN |
---|
| 563 | DO i = 1, klon |
---|
| 564 | wdens_targ = max(wdens(i),wdensmin) |
---|
| 565 | d_wdens2(i) = wdens_targ - wdens(i) |
---|
| 566 | wdens(i) = wdens_targ |
---|
| 567 | END DO |
---|
| 568 | ELSE |
---|
| 569 | DO i = 1, klon |
---|
| 570 | d_awdens2(i) = 0. |
---|
| 571 | d_wdens2(i) = 0. |
---|
| 572 | END DO |
---|
| 573 | ENDIF ! (iflag_wk_pop_dyn >=1) |
---|
[5099] | 574 | |
---|
[3927] | 575 | DO i = 1, klon |
---|
| 576 | ! c sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) |
---|
| 577 | !jyg< |
---|
| 578 | !! sigmaw(i) = amax1(sigmaw(i), sigmad) |
---|
| 579 | !! sigmaw(i) = amin1(sigmaw(i), 0.99) |
---|
| 580 | sigmaw_targ = min(max(sigmaw(i), sigmad),0.99) |
---|
| 581 | d_sigmaw2(i) = sigmaw_targ - sigmaw(i) |
---|
| 582 | sigmaw(i) = sigmaw_targ |
---|
| 583 | !>jyg |
---|
| 584 | END DO |
---|
| 585 | |
---|
| 586 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 587 | awdens_in(:) = awdens(:) |
---|
| 588 | wdens_in(:) = wdens(:) |
---|
| 589 | !! wdens(:) = wdens(:) + wgen(:)*dtime |
---|
| 590 | !! d_wdens2(:) = wgen(:)*dtime |
---|
| 591 | !! ELSE |
---|
| 592 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 593 | |
---|
| 594 | wape(:) = 0. |
---|
| 595 | wape2(:) = 0. |
---|
| 596 | d_sigmaw(:) = 0. |
---|
| 597 | ktopw(:) = 0 |
---|
[5099] | 598 | |
---|
[3927] | 599 | !<jyg |
---|
| 600 | dth(:,:) = 0. |
---|
| 601 | tu(:,:) = 0. |
---|
| 602 | qu(:,:) = 0. |
---|
| 603 | dtke(:,:) = 0. |
---|
| 604 | dqke(:,:) = 0. |
---|
| 605 | spread(:,:) = 0. |
---|
| 606 | omgbdth(:,:) = 0. |
---|
| 607 | omg(:,:) = 0. |
---|
| 608 | dp_omgb(:,:) = 0. |
---|
| 609 | dp_deltomg(:,:) = 0. |
---|
| 610 | hw(:) = 0. |
---|
| 611 | wape(:) = 0. |
---|
| 612 | fip(:) = 0. |
---|
| 613 | gfl(:) = 0. |
---|
| 614 | cstar(:) = 0. |
---|
| 615 | ktopw(:) = 0 |
---|
[5099] | 616 | |
---|
[3927] | 617 | ! Vertical advection local variables |
---|
| 618 | omgbw(:,:) = 0. |
---|
| 619 | omgtop(:) = 0 |
---|
| 620 | dp_omgbw(:,:) = 0. |
---|
| 621 | omgbdq(:,:) = 0. |
---|
| 622 | #ifdef ISO |
---|
| 623 | xtu(:,:,:) = 0. |
---|
| 624 | dxtke(:,:,:) = 0. |
---|
| 625 | omgbdxt(:,:,:) = 0. |
---|
| 626 | #endif |
---|
| 627 | !>jyg |
---|
[5099] | 628 | |
---|
[3927] | 629 | IF (prt_level>=10) THEN |
---|
| 630 | PRINT *, 'wake-1, sigmaw(igout) ', sigmaw(igout) |
---|
| 631 | PRINT *, 'wake-1, deltatw(igout,k) ', (k,deltatw(igout,k), k=1,klev) |
---|
| 632 | PRINT *, 'wake-1, deltaqw(igout,k) ', (k,deltaqw(igout,k), k=1,klev) |
---|
| 633 | PRINT *, 'wake-1, dowwdraughts, amdwn(igout,k) ', (k,amdwn(igout,k), k=1,klev) |
---|
| 634 | PRINT *, 'wake-1, dowwdraughts, dtdwn(igout,k) ', (k,dtdwn(igout,k), k=1,klev) |
---|
| 635 | PRINT *, 'wake-1, dowwdraughts, dqdwn(igout,k) ', (k,dqdwn(igout,k), k=1,klev) |
---|
| 636 | PRINT *, 'wake-1, updraughts, amup(igout,k) ', (k,amup(igout,k), k=1,klev) |
---|
| 637 | PRINT *, 'wake-1, updraughts, dta(igout,k) ', (k,dta(igout,k), k=1,klev) |
---|
| 638 | PRINT *, 'wake-1, updraughts, dqa(igout,k) ', (k,dqa(igout,k), k=1,klev) |
---|
| 639 | ENDIF |
---|
| 640 | |
---|
| 641 | ! 2. - Prognostic part |
---|
| 642 | ! -------------------- |
---|
| 643 | |
---|
| 644 | |
---|
| 645 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 646 | ! --------------------------------------------------------- |
---|
| 647 | |
---|
| 648 | DO i = 1, klon |
---|
| 649 | z(i) = 0. |
---|
| 650 | ktop(i) = 0 |
---|
| 651 | kupper(i) = 0 |
---|
| 652 | sum_thu(i) = 0. |
---|
| 653 | sum_tu(i) = 0. |
---|
| 654 | sum_qu(i) = 0. |
---|
| 655 | sum_thvu(i) = 0. |
---|
| 656 | sum_dth(i) = 0. |
---|
| 657 | sum_dq(i) = 0. |
---|
| 658 | sum_rho(i) = 0. |
---|
| 659 | sum_dtdwn(i) = 0. |
---|
| 660 | sum_dqdwn(i) = 0. |
---|
| 661 | |
---|
| 662 | av_thu(i) = 0. |
---|
| 663 | av_tu(i) = 0. |
---|
| 664 | av_qu(i) = 0. |
---|
| 665 | av_thvu(i) = 0. |
---|
| 666 | av_dth(i) = 0. |
---|
| 667 | av_dq(i) = 0. |
---|
| 668 | av_rho(i) = 0. |
---|
| 669 | av_dtdwn(i) = 0. |
---|
| 670 | av_dqdwn(i) = 0. |
---|
| 671 | ! pas besoin d'isos ici |
---|
| 672 | END DO |
---|
| 673 | |
---|
| 674 | |
---|
| 675 | #ifdef ISOVERIF |
---|
| 676 | ! TODO |
---|
| 677 | #endif |
---|
| 678 | |
---|
| 679 | ! Distance between wakes |
---|
| 680 | DO i = 1, klon |
---|
| 681 | ll(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) |
---|
| 682 | END DO |
---|
| 683 | ! Potential temperatures and humidity |
---|
| 684 | ! ---------------------------------------------------------- |
---|
| 685 | DO k = 1, klev |
---|
| 686 | DO i = 1, klon |
---|
[5116] | 687 | ! WRITE(*,*)'wake 1',i,k,rd,te(i,k) |
---|
[3927] | 688 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
[5116] | 689 | ! WRITE(*,*)'wake 2',rho(i,k) |
---|
[3927] | 690 | IF (k==1) THEN |
---|
[5116] | 691 | ! WRITE(*,*)'wake 3',i,k,rd,te(i,k) |
---|
[3927] | 692 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
[5116] | 693 | ! WRITE(*,*)'wake 4',i,k,rd,te(i,k) |
---|
[3927] | 694 | zhh(i, k) = 0 |
---|
| 695 | ELSE |
---|
[5116] | 696 | ! WRITE(*,*)'wake 5',rd,(te(i,k)+te(i,k-1)) |
---|
[3927] | 697 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
[5116] | 698 | ! WRITE(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
[3927] | 699 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
| 700 | END IF |
---|
[5116] | 701 | ! WRITE(*,*)'wake 7',ppi(i,k) |
---|
[3927] | 702 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 703 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
| 704 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
| 705 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
[5116] | 706 | ! WRITE(*,*)'wake 8',(rd*(te(i,k)+deltatw(i,k))) |
---|
[3927] | 707 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 708 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 709 | #ifdef ISO |
---|
[5158] | 710 | DO ixt=1,ntraciso |
---|
[3927] | 711 | xtu(ixt,i,k) = xte(ixt,i,k) - deltaxtw(ixt,i,k)*sigmaw(i) |
---|
| 712 | enddo !do ixt=1,ntraciso |
---|
[4491] | 713 | #ifdef ISOVERIF |
---|
[5117] | 714 | IF (iso_eau.gt.0) THEN |
---|
[5103] | 715 | CALL iso_verif_egalite(deltaqw(i,k),deltaxtw(iso_eau,i,k),'wake 723a') |
---|
| 716 | CALL iso_verif_egalite(qu(i,k),xtu(iso_eau,i,k),'wake 723b') |
---|
[4491] | 717 | endif |
---|
[5117] | 718 | IF (iso_HDO.gt.0) THEN |
---|
| 719 | IF (iso_verif_aberrant_enc_choix_nostop(xtu(iso_hdo,i,k),qu(i,k),ridicule,deltalim, & |
---|
| 720 | 'wake 723c xtu').EQ.1) THEN |
---|
[4491] | 721 | stop |
---|
| 722 | endif |
---|
| 723 | endif |
---|
[3927] | 724 | #endif |
---|
[4491] | 725 | #endif |
---|
[3927] | 726 | END DO |
---|
| 727 | END DO |
---|
| 728 | |
---|
| 729 | |
---|
| 730 | |
---|
| 731 | DO k = 1, klev - 1 |
---|
| 732 | DO i = 1, klon |
---|
| 733 | IF (k==1) THEN |
---|
| 734 | n2(i, k) = 0 |
---|
| 735 | ELSE |
---|
| 736 | n2(i, k) = amax1(0., -rg**2/the(i,k)*rho(i,k)*(the(i,k+1)-the(i,k-1))/ & |
---|
| 737 | (p(i,k+1)-p(i,k-1))) |
---|
| 738 | END IF |
---|
| 739 | zh(i, k) = (zhh(i,k)+zhh(i,k+1))/2 |
---|
| 740 | |
---|
| 741 | cgw(i, k) = sqrt(n2(i,k))*zh(i, k) |
---|
| 742 | tgw(i, k) = coefgw*cgw(i, k)/ll(i) |
---|
| 743 | END DO |
---|
| 744 | END DO |
---|
| 745 | |
---|
| 746 | DO i = 1, klon |
---|
| 747 | n2(i, klev) = 0 |
---|
| 748 | zh(i, klev) = 0 |
---|
| 749 | cgw(i, klev) = 0 |
---|
| 750 | tgw(i, klev) = 0 |
---|
| 751 | END DO |
---|
| 752 | |
---|
| 753 | ! Calcul de la masse volumique moyenne de la colonne (bdlmd) |
---|
| 754 | ! ----------------------------------------------------------------- |
---|
| 755 | |
---|
| 756 | DO k = 1, klev |
---|
| 757 | DO i = 1, klon |
---|
| 758 | epaisseur1(i, k) = 0. |
---|
| 759 | epaisseur2(i, k) = 0. |
---|
| 760 | END DO |
---|
| 761 | END DO |
---|
| 762 | |
---|
| 763 | DO i = 1, klon |
---|
| 764 | epaisseur1(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
| 765 | epaisseur2(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
| 766 | rhow_moyen(i, 1) = rhow(i, 1) |
---|
| 767 | END DO |
---|
| 768 | |
---|
| 769 | DO k = 2, klev |
---|
| 770 | DO i = 1, klon |
---|
| 771 | epaisseur1(i, k) = -(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg) + 1. |
---|
| 772 | epaisseur2(i, k) = epaisseur2(i, k-1) + epaisseur1(i, k) |
---|
| 773 | rhow_moyen(i, k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+rhow(i,k)* & |
---|
| 774 | epaisseur1(i,k))/epaisseur2(i, k) |
---|
| 775 | END DO |
---|
| 776 | END DO |
---|
| 777 | |
---|
| 778 | |
---|
| 779 | ! Choose an integration bound well above wake top |
---|
| 780 | ! ----------------------------------------------------------------- |
---|
| 781 | |
---|
| 782 | ! Pupper = 50000. ! melting level |
---|
| 783 | ! Pupper = 60000. |
---|
| 784 | ! Pupper = 80000. ! essais pour case_e |
---|
| 785 | DO i = 1, klon |
---|
| 786 | pupper(i) = 0.6*ph(i, 1) |
---|
| 787 | pupper(i) = max(pupper(i), 45000.) |
---|
| 788 | ! cc Pupper(i) = 60000. |
---|
| 789 | END DO |
---|
| 790 | |
---|
| 791 | |
---|
| 792 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
---|
| 793 | ! -------------------------------------------------------- |
---|
| 794 | |
---|
| 795 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
| 796 | |
---|
| 797 | DO i = 1, klon |
---|
| 798 | ptop_provis(i) = ph(i, 1) |
---|
| 799 | END DO |
---|
| 800 | DO k = 2, klev |
---|
| 801 | DO i = 1, klon |
---|
| 802 | |
---|
| 803 | ! IM v3JYG; ptop_provis(i).LT. ph(i,1) |
---|
| 804 | |
---|
| 805 | IF (dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min .AND. & |
---|
| 806 | ptop_provis(i)==ph(i,1)) THEN |
---|
| 807 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)- & |
---|
| 808 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 809 | END IF |
---|
| 810 | END DO |
---|
| 811 | END DO |
---|
| 812 | |
---|
| 813 | ! -2/ dth integral |
---|
| 814 | |
---|
| 815 | DO i = 1, klon |
---|
| 816 | sum_dth(i) = 0. |
---|
| 817 | dthmin(i) = -delta_t_min |
---|
| 818 | z(i) = 0. |
---|
| 819 | END DO |
---|
| 820 | |
---|
| 821 | DO k = 1, klev |
---|
| 822 | DO i = 1, klon |
---|
| 823 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 824 | IF (dz(i)>0) THEN |
---|
| 825 | z(i) = z(i) + dz(i) |
---|
| 826 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 827 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
| 828 | END IF |
---|
| 829 | END DO |
---|
| 830 | END DO |
---|
| 831 | |
---|
| 832 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 833 | |
---|
| 834 | DO i = 1, klon |
---|
| 835 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
| 836 | hw0(i) = amax1(hwmin, hw0(i)) |
---|
| 837 | END DO |
---|
| 838 | |
---|
| 839 | ! -4/ now, get Ptop |
---|
| 840 | |
---|
| 841 | DO i = 1, klon |
---|
| 842 | z(i) = 0. |
---|
| 843 | ptop(i) = ph(i, 1) |
---|
| 844 | END DO |
---|
| 845 | |
---|
| 846 | DO k = 1, klev |
---|
| 847 | DO i = 1, klon |
---|
| 848 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw0(i)-z(i)) |
---|
| 849 | IF (dz(i)>0) THEN |
---|
| 850 | z(i) = z(i) + dz(i) |
---|
| 851 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
| 852 | END IF |
---|
| 853 | END DO |
---|
| 854 | END DO |
---|
| 855 | |
---|
| 856 | IF (prt_level>=10) THEN |
---|
| 857 | PRINT *, 'wake-2, ptop_provis(igout), ptop(igout) ', ptop_provis(igout), ptop(igout) |
---|
| 858 | ENDIF |
---|
| 859 | |
---|
| 860 | |
---|
| 861 | ! -5/ Determination de ktop et kupper |
---|
| 862 | |
---|
| 863 | DO k = klev, 1, -1 |
---|
| 864 | DO i = 1, klon |
---|
| 865 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 866 | IF (ph(i,k+1)<pupper(i)) kupper(i) = k |
---|
| 867 | END DO |
---|
| 868 | END DO |
---|
| 869 | |
---|
| 870 | ! On evite kupper = 1 et kupper = klev |
---|
| 871 | DO i = 1, klon |
---|
| 872 | kupper(i) = max(kupper(i), 2) |
---|
| 873 | kupper(i) = min(kupper(i), klev-1) |
---|
| 874 | END DO |
---|
| 875 | |
---|
| 876 | |
---|
| 877 | ! -6/ Correct ktop and ptop |
---|
| 878 | |
---|
| 879 | DO i = 1, klon |
---|
| 880 | ptop_new(i) = ptop(i) |
---|
| 881 | END DO |
---|
| 882 | DO k = klev, 2, -1 |
---|
| 883 | DO i = 1, klon |
---|
| 884 | IF (k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
| 885 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 886 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 887 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 888 | END IF |
---|
| 889 | END DO |
---|
| 890 | END DO |
---|
| 891 | |
---|
| 892 | DO i = 1, klon |
---|
| 893 | ptop(i) = ptop_new(i) |
---|
| 894 | END DO |
---|
| 895 | |
---|
| 896 | DO k = klev, 1, -1 |
---|
| 897 | DO i = 1, klon |
---|
| 898 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 899 | END DO |
---|
| 900 | END DO |
---|
| 901 | |
---|
| 902 | IF (prt_level>=10) THEN |
---|
| 903 | PRINT *, 'wake-3, ktop(igout), kupper(igout) ', ktop(igout), kupper(igout) |
---|
| 904 | ENDIF |
---|
| 905 | |
---|
| 906 | ! -5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 907 | |
---|
| 908 | DO k = 1, klev |
---|
| 909 | DO i = 1, klon |
---|
| 910 | IF (k>=kupper(i)) THEN |
---|
| 911 | deltatw(i, k) = 0. |
---|
| 912 | deltaqw(i, k) = 0. |
---|
| 913 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 914 | #ifdef ISO |
---|
[5158] | 915 | DO ixt=1,ntraciso |
---|
[3927] | 916 | deltaxtw(ixt,i, k) = 0. |
---|
| 917 | d_deltaxtw2(ixt,i,k) = -deltaxtw0(ixt,i,k) |
---|
| 918 | enddo |
---|
| 919 | #endif |
---|
| 920 | END IF |
---|
| 921 | END DO |
---|
| 922 | END DO |
---|
| 923 | |
---|
| 924 | |
---|
| 925 | ! Vertical gradient of LS omega |
---|
| 926 | |
---|
| 927 | DO k = 1, klev |
---|
| 928 | DO i = 1, klon |
---|
| 929 | IF (k<=kupper(i)) THEN |
---|
| 930 | dp_omgb(i, k) = (omgb(i,k+1)-omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 931 | END IF |
---|
| 932 | END DO |
---|
| 933 | END DO |
---|
| 934 | |
---|
| 935 | ! Integrals (and wake top level number) |
---|
| 936 | ! -------------------------------------- |
---|
| 937 | |
---|
| 938 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 939 | |
---|
| 940 | DO i = 1, klon |
---|
| 941 | z(i) = 1. |
---|
| 942 | dz(i) = 1. |
---|
| 943 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
| 944 | sum_dth(i) = 0. |
---|
| 945 | END DO |
---|
| 946 | |
---|
| 947 | DO k = 1, klev |
---|
| 948 | DO i = 1, klon |
---|
| 949 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 950 | IF (dz(i)>0) THEN |
---|
| 951 | z(i) = z(i) + dz(i) |
---|
| 952 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 953 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 954 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 955 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
| 956 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 957 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 958 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 959 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 960 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 961 | END IF |
---|
| 962 | END DO |
---|
| 963 | END DO |
---|
| 964 | |
---|
| 965 | DO i = 1, klon |
---|
| 966 | hw0(i) = z(i) |
---|
| 967 | END DO |
---|
| 968 | |
---|
| 969 | |
---|
| 970 | ! 2.1 - WAPE and mean forcing computation |
---|
| 971 | ! --------------------------------------- |
---|
| 972 | |
---|
| 973 | ! --------------------------------------- |
---|
| 974 | |
---|
| 975 | ! Means |
---|
| 976 | |
---|
| 977 | DO i = 1, klon |
---|
| 978 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 979 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 980 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 981 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 982 | ! av_thve = sum_thve/hw0 |
---|
| 983 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 984 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 985 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 986 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 987 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 988 | |
---|
| 989 | wape(i) = -rg*hw0(i)*(av_dth(i)+ & |
---|
| 990 | epsim1*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 991 | |
---|
| 992 | END DO |
---|
| 993 | |
---|
| 994 | ! 2.2 Prognostic variable update |
---|
| 995 | ! ------------------------------ |
---|
| 996 | |
---|
| 997 | ! Filter out bad wakes |
---|
| 998 | |
---|
| 999 | DO k = 1, klev |
---|
| 1000 | DO i = 1, klon |
---|
| 1001 | IF (wape(i)<0.) THEN |
---|
| 1002 | deltatw(i, k) = 0. |
---|
| 1003 | deltaqw(i, k) = 0. |
---|
| 1004 | dth(i, k) = 0. |
---|
| 1005 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 1006 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
| 1007 | #ifdef ISO |
---|
[5158] | 1008 | DO ixt=1,ntraciso |
---|
[3927] | 1009 | deltaxtw(ixt,i, k) = 0. |
---|
| 1010 | d_deltaxtw2(ixt,i,k) = -deltaxtw0(ixt,i,k) |
---|
| 1011 | enddo |
---|
| 1012 | #endif |
---|
| 1013 | END IF |
---|
| 1014 | END DO |
---|
| 1015 | END DO |
---|
| 1016 | |
---|
| 1017 | DO i = 1, klon |
---|
| 1018 | IF (wape(i)<0.) THEN |
---|
| 1019 | wape(i) = 0. |
---|
| 1020 | cstar(i) = 0. |
---|
| 1021 | hw(i) = hwmin |
---|
| 1022 | !jyg< |
---|
| 1023 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
| 1024 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
| 1025 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 1026 | sigmaw(i) = sigmaw_targ |
---|
| 1027 | !>jyg |
---|
| 1028 | fip(i) = 0. |
---|
| 1029 | gwake(i) = .FALSE. |
---|
| 1030 | ELSE |
---|
| 1031 | hw(i) = hw0(i) |
---|
| 1032 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 1033 | gwake(i) = .TRUE. |
---|
| 1034 | END IF |
---|
| 1035 | END DO |
---|
| 1036 | |
---|
| 1037 | |
---|
| 1038 | ! Check qx and qw positivity |
---|
| 1039 | ! -------------------------- |
---|
| 1040 | DO i = 1, klon |
---|
| 1041 | q0_min(i) = min((qe(i,1)-sigmaw(i)*deltaqw(i,1)), & |
---|
| 1042 | (qe(i,1)+(1.-sigmaw(i))*deltaqw(i,1))) |
---|
| 1043 | END DO |
---|
| 1044 | DO k = 2, klev |
---|
| 1045 | DO i = 1, klon |
---|
| 1046 | q1_min(i) = min((qe(i,k)-sigmaw(i)*deltaqw(i,k)), & |
---|
| 1047 | (qe(i,k)+(1.-sigmaw(i))*deltaqw(i,k))) |
---|
| 1048 | IF (q1_min(i)<=q0_min(i)) THEN |
---|
| 1049 | q0_min(i) = q1_min(i) |
---|
| 1050 | END IF |
---|
| 1051 | END DO |
---|
| 1052 | END DO |
---|
| 1053 | |
---|
| 1054 | DO i = 1, klon |
---|
| 1055 | ok_qx_qw(i) = q0_min(i) >= 0. |
---|
| 1056 | alpha(i) = 1. |
---|
| 1057 | END DO |
---|
| 1058 | |
---|
| 1059 | IF (prt_level>=10) THEN |
---|
| 1060 | PRINT *, 'wake-4, sigmaw(igout), cstar(igout), wape(igout), ktop(igout) ', & |
---|
| 1061 | sigmaw(igout), cstar(igout), wape(igout), ktop(igout) |
---|
| 1062 | ENDIF |
---|
| 1063 | |
---|
| 1064 | |
---|
| 1065 | ! C ----------------------------------------------------------------- |
---|
| 1066 | ! Sub-time-stepping |
---|
| 1067 | ! ----------------- |
---|
| 1068 | |
---|
| 1069 | nsub = 10 |
---|
| 1070 | dtimesub = dtime/nsub |
---|
| 1071 | |
---|
| 1072 | ! ------------------------------------------------------------ |
---|
| 1073 | DO isubstep = 1, nsub |
---|
| 1074 | ! ------------------------------------------------------------ |
---|
| 1075 | |
---|
[5117] | 1076 | ! wk_adv is the LOGICAL flag enabling wake evolution in the time advance |
---|
[3927] | 1077 | ! loop |
---|
| 1078 | DO i = 1, klon |
---|
| 1079 | wk_adv(i) = ok_qx_qw(i) .AND. alpha(i) >= 1. |
---|
| 1080 | END DO |
---|
| 1081 | IF (prt_level>=10) THEN |
---|
| 1082 | PRINT *, 'wake-4.1, isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) ', & |
---|
| 1083 | isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) |
---|
| 1084 | ENDIF |
---|
| 1085 | |
---|
| 1086 | ! cc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement |
---|
[5093] | 1087 | ! négatif de ktop à kupper -------- |
---|
| 1088 | ! cc On calcule pour cela une densité wdens0 pour laquelle on |
---|
[3927] | 1089 | ! aurait un entrainement nul --- |
---|
| 1090 | !jyg< |
---|
| 1091 | ! Dans la configuration avec wdens prognostique, il s'agit d'un cas ou |
---|
| 1092 | ! les poches sont insuffisantes pour accueillir tout le flux de masse |
---|
| 1093 | ! des descentes unsaturees. Nous faisons alors l'hypothese que la |
---|
| 1094 | ! convection profonde cree directement de nouvelles poches, sans passer |
---|
[5093] | 1095 | ! par les thermiques. La nouvelle valeur de wdens est alors imposée. |
---|
[3927] | 1096 | |
---|
| 1097 | DO i = 1, klon |
---|
[5160] | 1098 | ! c PRINT *,' isubstep,wk_adv(i),cstar(i),wape(i) ', |
---|
[3927] | 1099 | ! c $ isubstep,wk_adv(i),cstar(i),wape(i) |
---|
| 1100 | IF (wk_adv(i) .AND. cstar(i)>0.01) THEN |
---|
| 1101 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
| 1102 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 1103 | wdens0 = (sigmaw(i)/(4.*3.14))* & |
---|
| 1104 | ((1.-sigmaw(i))*omg(i,kupper(i)+1)/((ph(i,1)-pupper(i))*cstar(i)))**(2) |
---|
| 1105 | IF (prt_level >= 10) THEN |
---|
[5103] | 1106 | PRINT*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i), ph(i,1)-pupper(i)', & |
---|
[3927] | 1107 | omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i), ph(i,1)-pupper(i) |
---|
| 1108 | ENDIF |
---|
| 1109 | IF (wdens(i)<=wdens0*1.1) THEN |
---|
| 1110 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 1111 | d_wdens2(i) = d_wdens2(i) + wdens0 - wdens(i) |
---|
| 1112 | ENDIF |
---|
| 1113 | wdens(i) = wdens0 |
---|
| 1114 | END IF |
---|
| 1115 | END IF |
---|
| 1116 | END DO |
---|
| 1117 | |
---|
| 1118 | DO i = 1, klon |
---|
| 1119 | IF (wk_adv(i)) THEN |
---|
| 1120 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
| 1121 | rad_wk(i) = sqrt(sigmaw(i)/(3.14*wdens(i))) |
---|
| 1122 | !jyg< |
---|
| 1123 | !! sigmaw(i) = amin1(sigmaw(i), sigmaw_max) |
---|
| 1124 | sigmaw_targ = min(sigmaw(i), sigmaw_max) |
---|
| 1125 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 1126 | sigmaw(i) = sigmaw_targ |
---|
| 1127 | !>jyg |
---|
| 1128 | END IF |
---|
| 1129 | END DO |
---|
| 1130 | |
---|
| 1131 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 1132 | ! The variable "death_rate" is significant only when iflag_wk_pop_dyn = 0. |
---|
| 1133 | ! Here, it has to be set to zero. |
---|
| 1134 | death_rate(:) = 0. |
---|
| 1135 | |
---|
| 1136 | IF (iflag_wk_act ==2) THEN |
---|
| 1137 | DO i = 1, klon |
---|
| 1138 | IF (wk_adv(i)) THEN |
---|
| 1139 | wape1_act(i) = abs(cin(i)) |
---|
| 1140 | wape2_act(i) = 2.*wape1_act(i) + 1. |
---|
| 1141 | act(i) = min(1., max(0., (wape(i)-wape1_act(i)) / (wape2_act(i)-wape1_act(i)) )) |
---|
| 1142 | ENDIF ! (wk_adv(i)) |
---|
| 1143 | ENDDO |
---|
| 1144 | ENDIF ! (iflag_wk_act ==2) |
---|
| 1145 | |
---|
| 1146 | |
---|
| 1147 | DO i = 1, klon |
---|
| 1148 | IF (wk_adv(i)) THEN |
---|
| 1149 | !! tau_wk(i) = max(rad_wk(i)/(3.*cstar(i))*((cstar(i)/cstart)**1.5 - 1), 100.) |
---|
| 1150 | tau_wk_inv(i) = max( (3.*cstar(i))/(rad_wk(i)*((cstar(i)/cstart)**1.5 - 1)), 0.) |
---|
| 1151 | tau_wk_inv_min = min(tau_wk_inv(i), 1./dtimesub) |
---|
| 1152 | drdt(i) = (cstar(i) - wgen(i)*(sigmaw(i)/wdens(i)-aa0)/gfl(i)) / & |
---|
| 1153 | (1 + 2*f_shear(i)*(2.*sigmaw(i)-aa0*wdens(i)) - 2.*sigmaw(i)) |
---|
| 1154 | !! (1 - 2*sigmaw(i)*(1.-f_shear(i))) |
---|
| 1155 | drdt_pos=max(drdt(i),0.) |
---|
| 1156 | |
---|
| 1157 | !! d_wdens(i) = ( wgen(i)*(1.+2.*(sigmaw(i)-sigmad)) & |
---|
| 1158 | !! - wdens(i)*tau_wk_inv_min & |
---|
| 1159 | !! - 2.*gfl(i)*wdens(i)*Cstar(i) )*dtimesub |
---|
| 1160 | d_awdens(i) = ( wgen(i) - (1./tau_cv)*(awdens(i) - act(i)*wdens(i)) )*dtimesub |
---|
| 1161 | d_wdens(i) = ( wgen(i) - (wdens(i)-awdens(i))*tau_wk_inv_min - & |
---|
| 1162 | 2.*wdens(i)*gfl(i)*drdt_pos )*dtimesub |
---|
| 1163 | d_wdens(i) = max(d_wdens(i), wdensmin-wdens(i)) |
---|
| 1164 | |
---|
| 1165 | !! d_sigmaw(i) = ( (1.-2*f_shear(i)*sigmaw(i))*(gfl(i)*Cstar(i)+wgen(i)*sigmad/wdens(i)) & |
---|
| 1166 | !! + 2.*f_shear(i)*wgen(i)*sigmaw(i)**2/wdens(i) & |
---|
| 1167 | !! - sigmaw(i)*tau_wk_inv_min )*dtimesub |
---|
| 1168 | d_sig_gen(i) = wgen(i)*aa0 |
---|
| 1169 | d_sig_death(i) = - sigmaw(i)*(1.-awdens(i)/wdens(i))*tau_wk_inv_min |
---|
| 1170 | !! d_sig_col(i) = - 2*f_shear(i)*sigmaw(i)*gfl(i)*drdt_pos |
---|
| 1171 | d_sig_col(i) = - 2*f_shear(i)*(2.*sigmaw(i)-wdens(i)*aa0)*gfl(i)*drdt_pos |
---|
| 1172 | d_sigmaw(i) = ( d_sig_gen(i) + d_sig_death(i) + d_sig_col(i) + gfl(i)*cstar(i) )*dtimesub |
---|
| 1173 | d_sigmaw(i) = max(d_sigmaw(i), sigmad-sigmaw(i)) |
---|
| 1174 | ENDIF |
---|
| 1175 | ENDDO |
---|
| 1176 | |
---|
| 1177 | IF (prt_level >= 10) THEN |
---|
[5160] | 1178 | PRINT *,'wake, cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), drdt(1) ', & |
---|
[3927] | 1179 | cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), drdt(1) |
---|
[5160] | 1180 | PRINT *,'wake, wdens(1), awdens(1), act(1), d_awdens(1) ', & |
---|
[3927] | 1181 | wdens(1), awdens(1), act(1), d_awdens(1) |
---|
[5160] | 1182 | PRINT *,'wake, wgen, -(wdens-awdens)*tau_wk_inv, -2.*wdens*gfl*drdt_pos, d_wdens ', & |
---|
[3927] | 1183 | wgen(1), -(wdens(1)-awdens(1))*tau_wk_inv(1), -2.*wdens(1)*gfl(1)*drdt_pos, d_wdens(1) |
---|
[5160] | 1184 | PRINT *,'wake, d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) ', & |
---|
[3927] | 1185 | d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) |
---|
| 1186 | ENDIF |
---|
| 1187 | |
---|
| 1188 | ELSE ! (iflag_wk_pop_dyn >= 1) |
---|
| 1189 | |
---|
| 1190 | ! cc nrlmd |
---|
| 1191 | |
---|
| 1192 | DO i = 1, klon |
---|
| 1193 | IF (wk_adv(i)) THEN |
---|
[5093] | 1194 | ! cc nrlmd Introduction du taux de mortalité des poches et |
---|
[3927] | 1195 | ! test sur sigmaw_max=0.4 |
---|
| 1196 | ! cc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
---|
| 1197 | IF (sigmaw(i)>=sigmaw_max) THEN |
---|
| 1198 | death_rate(i) = gfl(i)*cstar(i)/sigmaw(i) |
---|
| 1199 | ELSE |
---|
| 1200 | death_rate(i) = 0. |
---|
| 1201 | END IF |
---|
| 1202 | |
---|
| 1203 | d_sigmaw(i) = gfl(i)*cstar(i)*dtimesub - death_rate(i)*sigmaw(i)* & |
---|
| 1204 | dtimesub |
---|
| 1205 | ! $ - nat_rate(i)*sigmaw(i)*dtimesub |
---|
[5103] | 1206 | ! c PRINT*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
[3927] | 1207 | ! c $ death_rate(i),ktop(i),kupper(i)', |
---|
[5158] | 1208 | ! c $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
[3927] | 1209 | ! c $ death_rate(i),ktop(i),kupper(i) |
---|
| 1210 | |
---|
| 1211 | ! sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
---|
| 1212 | ! sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! |
---|
| 1213 | ! wdens = wdens0/(10.*sigmaw) |
---|
| 1214 | ! sigmaw =max(sigmaw,sigd_con) |
---|
| 1215 | ! sigmaw =max(sigmaw,sigmad) |
---|
| 1216 | END IF |
---|
| 1217 | END DO |
---|
| 1218 | |
---|
| 1219 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 1220 | |
---|
| 1221 | |
---|
| 1222 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
| 1223 | ! IM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
---|
| 1224 | ! IM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on definit |
---|
| 1225 | ! IM 060208 au niveau k=1..? |
---|
| 1226 | !JYG 161013 Correction : maintenant omg est dimensionne a klev. |
---|
| 1227 | DO k = 1, klev |
---|
| 1228 | DO i = 1, klon |
---|
| 1229 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1230 | dp_deltomg(i, k) = 0. |
---|
| 1231 | END IF |
---|
| 1232 | END DO |
---|
| 1233 | END DO |
---|
| 1234 | DO k = 1, klev |
---|
| 1235 | DO i = 1, klon |
---|
| 1236 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1237 | omg(i, k) = 0. |
---|
| 1238 | END IF |
---|
| 1239 | END DO |
---|
| 1240 | END DO |
---|
| 1241 | |
---|
| 1242 | DO i = 1, klon |
---|
| 1243 | IF (wk_adv(i)) THEN |
---|
| 1244 | z(i) = 0. |
---|
| 1245 | omg(i, 1) = 0. |
---|
| 1246 | dp_deltomg(i, 1) = -(gfl(i)*cstar(i))/(sigmaw(i)*(1-sigmaw(i))) |
---|
| 1247 | END IF |
---|
| 1248 | END DO |
---|
| 1249 | |
---|
| 1250 | DO k = 2, klev |
---|
| 1251 | DO i = 1, klon |
---|
| 1252 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
| 1253 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*rg) |
---|
| 1254 | z(i) = z(i) + dz(i) |
---|
| 1255 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
| 1256 | omg(i, k) = dp_deltomg(i, 1)*z(i) |
---|
| 1257 | END IF |
---|
| 1258 | END DO |
---|
| 1259 | END DO |
---|
| 1260 | |
---|
| 1261 | DO i = 1, klon |
---|
| 1262 | IF (wk_adv(i)) THEN |
---|
| 1263 | dztop(i) = -(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*rg) |
---|
| 1264 | ztop(i) = z(i) + dztop(i) |
---|
| 1265 | omgtop(i) = dp_deltomg(i, 1)*ztop(i) |
---|
| 1266 | END IF |
---|
| 1267 | END DO |
---|
| 1268 | |
---|
| 1269 | IF (prt_level>=10) THEN |
---|
| 1270 | PRINT *, 'wake-4.2, omg(igout,k) ', (k,omg(igout,k), k=1,klev) |
---|
| 1271 | PRINT *, 'wake-4.2, omgtop(igout), ptop(igout), ktop(igout) ', & |
---|
| 1272 | omgtop(igout), ptop(igout), ktop(igout) |
---|
| 1273 | ENDIF |
---|
| 1274 | |
---|
| 1275 | ! ----------------- |
---|
| 1276 | ! From m/s to Pa/s |
---|
| 1277 | ! ----------------- |
---|
| 1278 | |
---|
| 1279 | DO i = 1, klon |
---|
| 1280 | IF (wk_adv(i)) THEN |
---|
| 1281 | omgtop(i) = -rho(i, ktop(i))*rg*omgtop(i) |
---|
| 1282 | dp_deltomg(i, 1) = omgtop(i)/(ptop(i)-ph(i,1)) |
---|
| 1283 | END IF |
---|
| 1284 | END DO |
---|
| 1285 | |
---|
| 1286 | DO k = 1, klev |
---|
| 1287 | DO i = 1, klon |
---|
| 1288 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
| 1289 | omg(i, k) = -rho(i, k)*rg*omg(i, k) |
---|
| 1290 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
| 1291 | END IF |
---|
| 1292 | END DO |
---|
| 1293 | END DO |
---|
| 1294 | |
---|
| 1295 | ! raccordement lineaire de omg de ptop a pupper |
---|
| 1296 | |
---|
| 1297 | DO i = 1, klon |
---|
| 1298 | IF (wk_adv(i) .AND. kupper(i)>ktop(i)) THEN |
---|
| 1299 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
| 1300 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 1301 | dp_deltomg(i, kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ & |
---|
| 1302 | (ptop(i)-pupper(i)) |
---|
| 1303 | END IF |
---|
| 1304 | END DO |
---|
| 1305 | |
---|
| 1306 | ! c DO i=1,klon |
---|
[5103] | 1307 | ! c PRINT*,'Pente entre 0 et kupper (référence)' |
---|
[5158] | 1308 | ! c $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) |
---|
[5103] | 1309 | ! c PRINT*,'Pente entre ktop et kupper' |
---|
[5158] | 1310 | ! c $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) |
---|
[3927] | 1311 | ! c ENDDO |
---|
| 1312 | ! c |
---|
| 1313 | DO k = 1, klev |
---|
| 1314 | DO i = 1, klon |
---|
| 1315 | IF (wk_adv(i) .AND. k>ktop(i) .AND. k<=kupper(i)) THEN |
---|
| 1316 | dp_deltomg(i, k) = dp_deltomg(i, kupper(i)) |
---|
| 1317 | omg(i, k) = omgtop(i) + (ph(i,k)-ptop(i))*dp_deltomg(i, kupper(i)) |
---|
| 1318 | END IF |
---|
| 1319 | END DO |
---|
| 1320 | END DO |
---|
[5160] | 1321 | !! PRINT *,'omg(igout,k) ', (k,omg(igout,k),k=1,klev) |
---|
[3927] | 1322 | ! cc nrlmd |
---|
| 1323 | ! c DO i=1,klon |
---|
[5103] | 1324 | ! c PRINT*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) |
---|
[3927] | 1325 | ! c END DO |
---|
| 1326 | ! cc |
---|
| 1327 | |
---|
| 1328 | |
---|
| 1329 | ! -- Compute wake average vertical velocity omgbw |
---|
| 1330 | |
---|
| 1331 | |
---|
| 1332 | DO k = 1, klev |
---|
| 1333 | DO i = 1, klon |
---|
| 1334 | IF (wk_adv(i)) THEN |
---|
| 1335 | omgbw(i, k) = omgb(i, k) + (1.-sigmaw(i))*omg(i, k) |
---|
| 1336 | END IF |
---|
| 1337 | END DO |
---|
| 1338 | END DO |
---|
| 1339 | ! -- and its vertical gradient dp_omgbw |
---|
| 1340 | |
---|
| 1341 | DO k = 1, klev-1 |
---|
| 1342 | DO i = 1, klon |
---|
| 1343 | IF (wk_adv(i)) THEN |
---|
| 1344 | dp_omgbw(i, k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 1345 | END IF |
---|
| 1346 | END DO |
---|
| 1347 | END DO |
---|
| 1348 | DO i = 1, klon |
---|
| 1349 | IF (wk_adv(i)) THEN |
---|
| 1350 | dp_omgbw(i, klev) = 0. |
---|
| 1351 | END IF |
---|
| 1352 | END DO |
---|
| 1353 | |
---|
| 1354 | ! -- Upstream coefficients for omgb velocity |
---|
| 1355 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
---|
| 1356 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
| 1357 | DO k = 1, klev |
---|
| 1358 | DO i = 1, klon |
---|
| 1359 | IF (wk_adv(i)) THEN |
---|
| 1360 | alpha_up(i, k) = 0. |
---|
| 1361 | IF (omgb(i,k)>0.) alpha_up(i, k) = 1. |
---|
| 1362 | END IF |
---|
| 1363 | END DO |
---|
| 1364 | END DO |
---|
| 1365 | |
---|
| 1366 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
| 1367 | |
---|
| 1368 | DO i = 1, klon |
---|
| 1369 | IF (wk_adv(i)) THEN |
---|
| 1370 | rre1(i) = 1. - sigmaw(i) |
---|
| 1371 | rre2(i) = sigmaw(i) |
---|
| 1372 | END IF |
---|
| 1373 | END DO |
---|
| 1374 | rrd1 = -1. |
---|
| 1375 | rrd2 = 1. |
---|
| 1376 | |
---|
| 1377 | ! -- Get [Th1,Th2], dth and [q1,q2] |
---|
| 1378 | |
---|
| 1379 | DO k = 1, klev |
---|
| 1380 | DO i = 1, klon |
---|
| 1381 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
| 1382 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1383 | th1(i, k) = the(i, k) - sigmaw(i)*dth(i, k) ! undisturbed area |
---|
| 1384 | th2(i, k) = the(i, k) + (1.-sigmaw(i))*dth(i, k) ! wake |
---|
| 1385 | q1(i, k) = qe(i, k) - sigmaw(i)*deltaqw(i, k) ! undisturbed area |
---|
| 1386 | q2(i, k) = qe(i, k) + (1.-sigmaw(i))*deltaqw(i, k) ! wake |
---|
| 1387 | #ifdef ISO |
---|
[5158] | 1388 | DO ixt=1,ntraciso |
---|
[3927] | 1389 | xt1(ixt,i,k) = xte(ixt,i,k) -sigmaw(i) *deltaxtw(ixt,i,k) ! undisturbed area |
---|
| 1390 | xt2(ixt,i,k) = xte(ixt,i,k) +(1.-sigmaw(i))*deltaxtw(ixt,i,k) ! wake |
---|
| 1391 | enddo |
---|
| 1392 | #endif |
---|
| 1393 | END IF |
---|
| 1394 | END DO |
---|
| 1395 | END DO |
---|
| 1396 | |
---|
| 1397 | DO i = 1, klon |
---|
| 1398 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1399 | d_th1(i, 1) = 0. |
---|
| 1400 | d_th2(i, 1) = 0. |
---|
| 1401 | d_dth(i, 1) = 0. |
---|
| 1402 | d_q1(i, 1) = 0. |
---|
| 1403 | d_q2(i, 1) = 0. |
---|
| 1404 | d_dq(i, 1) = 0. |
---|
| 1405 | #ifdef ISO |
---|
[5158] | 1406 | DO ixt=1,ntraciso |
---|
[3927] | 1407 | d_xt1(ixt,i,1) = 0. |
---|
| 1408 | d_xt2(ixt,i,1) = 0. |
---|
| 1409 | d_dxt(ixt,i,1) = 0. |
---|
| 1410 | enddo !do ixt=1,ntraciso |
---|
| 1411 | #endif |
---|
| 1412 | END IF |
---|
| 1413 | END DO |
---|
| 1414 | |
---|
| 1415 | DO k = 2, klev |
---|
| 1416 | DO i = 1, klon |
---|
| 1417 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
| 1418 | d_th1(i, k) = th1(i, k-1) - th1(i, k) |
---|
| 1419 | d_th2(i, k) = th2(i, k-1) - th2(i, k) |
---|
| 1420 | d_dth(i, k) = dth(i, k-1) - dth(i, k) |
---|
| 1421 | d_q1(i, k) = q1(i, k-1) - q1(i, k) |
---|
| 1422 | d_q2(i, k) = q2(i, k-1) - q2(i, k) |
---|
| 1423 | d_dq(i, k) = deltaqw(i, k-1) - deltaqw(i, k) |
---|
| 1424 | #ifdef ISO |
---|
[5158] | 1425 | DO ixt=1,ntraciso |
---|
[3927] | 1426 | d_xt1(ixt,i,k) = xt1(ixt,i,k-1)-xt1(ixt,i,k) |
---|
| 1427 | d_xt2(ixt,i,k) = xt2(ixt,i,k-1)-xt2(ixt,i,k) |
---|
| 1428 | d_dxt(ixt,i,k) = deltaxtw(ixt,i,k-1)-deltaxtw(ixt,i,k) |
---|
| 1429 | enddo !do ixt=1,ntraciso |
---|
| 1430 | #endif |
---|
| 1431 | END IF |
---|
| 1432 | END DO |
---|
| 1433 | END DO |
---|
| 1434 | |
---|
| 1435 | DO i = 1, klon |
---|
| 1436 | IF (wk_adv(i)) THEN |
---|
| 1437 | omgbdth(i, 1) = 0. |
---|
| 1438 | omgbdq(i, 1) = 0. |
---|
| 1439 | #ifdef ISO |
---|
[5158] | 1440 | DO ixt=1,ntraciso |
---|
[3927] | 1441 | omgbdxt(ixt,i,1) = 0. |
---|
| 1442 | enddo !do ixt=1,ntraciso |
---|
| 1443 | #endif |
---|
| 1444 | END IF |
---|
| 1445 | END DO |
---|
| 1446 | |
---|
| 1447 | DO k = 2, klev |
---|
| 1448 | DO i = 1, klon |
---|
| 1449 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN ! loop on interfaces |
---|
| 1450 | omgbdth(i, k) = omgb(i, k)*(dth(i,k-1)-dth(i,k)) |
---|
| 1451 | omgbdq(i, k) = omgb(i, k)*(deltaqw(i,k-1)-deltaqw(i,k)) |
---|
| 1452 | #ifdef ISO |
---|
[5158] | 1453 | DO ixt=1,ntraciso |
---|
[3927] | 1454 | omgbdxt(ixt,i,k) = omgb(i,k)*(deltaxtw(ixt,i,k-1) - deltaxtw(ixt,i,k)) |
---|
| 1455 | enddo !do ixt=1,ntraciso |
---|
| 1456 | #ifdef ISOVERIF |
---|
[5117] | 1457 | IF (iso_eau.gt.0) THEN |
---|
[5103] | 1458 | CALL iso_verif_egalite(deltaqw(i,k-1),deltaxtw(iso_eau,i,k-1),'wake 1460a') |
---|
| 1459 | CALL iso_verif_egalite(deltaqw(i,k),deltaxtw(iso_eau,i,k),'wake 1460b') |
---|
| 1460 | CALL iso_verif_egalite(omgbdq(i,k),omgbdxt(iso_eau,i,k),'wake 1460c') |
---|
[3927] | 1461 | endif |
---|
| 1462 | #endif |
---|
| 1463 | #endif |
---|
| 1464 | END IF |
---|
| 1465 | END DO |
---|
| 1466 | END DO |
---|
| 1467 | |
---|
| 1468 | IF (prt_level>=10) THEN |
---|
| 1469 | PRINT *, 'wake-4.3, th1(igout,k) ', (k,th1(igout,k), k=1,klev) |
---|
| 1470 | PRINT *, 'wake-4.3, th2(igout,k) ', (k,th2(igout,k), k=1,klev) |
---|
| 1471 | PRINT *, 'wake-4.3, dth(igout,k) ', (k,dth(igout,k), k=1,klev) |
---|
| 1472 | PRINT *, 'wake-4.3, omgbdth(igout,k) ', (k,omgbdth(igout,k), k=1,klev) |
---|
| 1473 | ENDIF |
---|
| 1474 | |
---|
| 1475 | ! ----------------------------------------------------------------- |
---|
| 1476 | DO k = 1, klev-1 |
---|
| 1477 | DO i = 1, klon |
---|
| 1478 | IF (wk_adv(i) .AND. k<=kupper(i)-1) THEN |
---|
| 1479 | ! ----------------------------------------------------------------- |
---|
| 1480 | |
---|
| 1481 | ! Compute redistribution (advective) term |
---|
| 1482 | |
---|
| 1483 | d_deltatw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
| 1484 | (rrd1*omg(i,k)*sigmaw(i)*d_th1(i,k) - & |
---|
| 1485 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1)- & |
---|
| 1486 | (1.-alpha_up(i,k))*omgbdth(i,k)- & |
---|
| 1487 | alpha_up(i,k+1)*omgbdth(i,k+1))*ppi(i, k) |
---|
[5103] | 1488 | ! PRINT*,'d_deltatw=', k, d_deltatw(i,k) |
---|
[3927] | 1489 | |
---|
| 1490 | d_deltaqw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
| 1491 | (rrd1*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
---|
| 1492 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1)- & |
---|
| 1493 | (1.-alpha_up(i,k))*omgbdq(i,k)- & |
---|
| 1494 | alpha_up(i,k+1)*omgbdq(i,k+1)) |
---|
[5103] | 1495 | ! PRINT*,'d_deltaqw=', k, d_deltaqw(i,k) |
---|
[3927] | 1496 | #ifdef ISO |
---|
[5158] | 1497 | DO ixt=1,ntraciso |
---|
[3927] | 1498 | d_deltaxtw(ixt,i,k) = dtimesub/(Ph(i,k)-Ph(i,k+1))* & |
---|
| 1499 | (rrd1*omg(i,k )*sigmaw(i) *d_xt1(ixt,i,k)- & |
---|
| 1500 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_xt2(ixt,i,k+1)- & |
---|
| 1501 | (1.-alpha_up(i,k))*omgbdxt(ixt,i,k)- & |
---|
| 1502 | alpha_up(i,k+1)*omgbdxt(ixt,i,k+1)) |
---|
| 1503 | enddo !do ixt=1,ntraciso |
---|
| 1504 | #ifdef ISOVERIF |
---|
[5117] | 1505 | IF (iso_eau.gt.0) THEN |
---|
[5103] | 1506 | CALL iso_verif_egalite(d_q1(i,k),d_xt1(iso_eau,i,k),'wake 1502a') |
---|
| 1507 | CALL iso_verif_egalite(d_q2(i,k),d_xt2(iso_eau,i,k),'wake 1502b') |
---|
| 1508 | CALL iso_verif_egalite(omgbdq(i,k),omgbdxt(iso_eau,i,k),'wake 1502c') |
---|
| 1509 | CALL iso_verif_egalite(omgbdq(i,k+1),omgbdxt(iso_eau,i,k+1),'wake 1502d') |
---|
| 1510 | CALL iso_verif_egalite(d_deltaqw(i,k),d_deltaxtw(iso_eau,i,k),'wake 1502e') |
---|
[3927] | 1511 | endif |
---|
| 1512 | #endif |
---|
| 1513 | #endif |
---|
| 1514 | |
---|
| 1515 | ! and increment large scale tendencies |
---|
| 1516 | |
---|
| 1517 | |
---|
| 1518 | |
---|
| 1519 | |
---|
| 1520 | ! C |
---|
| 1521 | ! ----------------------------------------------------------------- |
---|
| 1522 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)- & |
---|
| 1523 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1))/ & |
---|
| 1524 | (ph(i,k)-ph(i,k+1)) & |
---|
| 1525 | -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*(omg(i,k)-omg(i,k+1))/ & |
---|
| 1526 | (ph(i,k)-ph(i,k+1)) )*ppi(i, k) |
---|
| 1527 | |
---|
| 1528 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
---|
| 1529 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1))/ & |
---|
| 1530 | (ph(i,k)-ph(i,k+1)) & |
---|
| 1531 | -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*(omg(i,k)-omg(i,k+1))/ & |
---|
| 1532 | (ph(i,k)-ph(i,k+1)) ) |
---|
| 1533 | #ifdef ISO |
---|
[5158] | 1534 | DO ixt=1,ntraciso |
---|
[3927] | 1535 | d_xte(ixt,i,k) = dtimesub*( & |
---|
| 1536 | ( rre1(i)*omg(i,k )*sigmaw(i) *d_xt1(ixt,i,k) & |
---|
| 1537 | -rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_xt2(ixt,i,k+1) ) & |
---|
| 1538 | /(Ph(i,k)-Ph(i,k+1)) & |
---|
| 1539 | -sigmaw(i)*(1.-sigmaw(i))*deltaxtw(ixt,i,k) & |
---|
| 1540 | *(omg(i,k)-omg(i,k+1))/(Ph(i,k)-Ph(i,k+1)) & |
---|
| 1541 | ) |
---|
| 1542 | enddo !do ixt=1,ntraciso |
---|
| 1543 | #endif |
---|
| 1544 | ELSE IF (wk_adv(i) .AND. k==kupper(i)) THEN |
---|
| 1545 | d_te(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)/(ph(i,k)-ph(i,k+1)))*ppi(i, k) |
---|
| 1546 | |
---|
| 1547 | d_qe(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)/(ph(i,k)-ph(i,k+1))) |
---|
| 1548 | |
---|
| 1549 | #ifdef ISO |
---|
[5158] | 1550 | DO ixt=1,ntraciso |
---|
[3927] | 1551 | d_xte(ixt,i,k) = dtimesub*( & |
---|
| 1552 | ( rre1(i)*omg(i,k )*sigmaw(i) *d_xt1(ixt,i,k) & |
---|
| 1553 | /(Ph(i,k)-Ph(i,k+1))) & |
---|
| 1554 | ) |
---|
| 1555 | enddo !do ixt=1,ntraciso |
---|
| 1556 | #endif |
---|
| 1557 | END IF |
---|
| 1558 | ! cc |
---|
| 1559 | END DO |
---|
| 1560 | END DO |
---|
| 1561 | ! ------------------------------------------------------------------ |
---|
| 1562 | |
---|
| 1563 | IF (prt_level>=10) THEN |
---|
| 1564 | PRINT *, 'wake-4.3, d_deltatw(igout,k) ', (k,d_deltatw(igout,k), k=1,klev) |
---|
| 1565 | PRINT *, 'wake-4.3, d_deltaqw(igout,k) ', (k,d_deltaqw(igout,k), k=1,klev) |
---|
| 1566 | ENDIF |
---|
| 1567 | |
---|
| 1568 | ! Increment state variables |
---|
| 1569 | !jyg< |
---|
| 1570 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 1571 | DO k = 1, klev |
---|
| 1572 | DO i = 1, klon |
---|
| 1573 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1574 | detr(i,k) = - d_sig_death(i) - d_sig_col(i) |
---|
| 1575 | entr(i,k) = d_sig_gen(i) |
---|
| 1576 | ENDIF |
---|
| 1577 | ENDDO |
---|
| 1578 | ENDDO |
---|
| 1579 | ELSE ! (iflag_wk_pop_dyn >= 1) |
---|
| 1580 | DO k = 1, klev |
---|
| 1581 | DO i = 1, klon |
---|
| 1582 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1583 | detr(i, k) = 0. |
---|
| 1584 | |
---|
| 1585 | entr(i, k) = 0. |
---|
| 1586 | ENDIF |
---|
| 1587 | ENDDO |
---|
| 1588 | ENDDO |
---|
| 1589 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 1590 | |
---|
| 1591 | |
---|
| 1592 | |
---|
| 1593 | DO k = 1, klev |
---|
| 1594 | DO i = 1, klon |
---|
| 1595 | ! cc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
---|
| 1596 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1597 | ! cc |
---|
| 1598 | |
---|
| 1599 | |
---|
| 1600 | |
---|
[5093] | 1601 | ! Coefficient de répartition |
---|
[3927] | 1602 | |
---|
| 1603 | crep(i, k) = crep_sol*(ph(i,kupper(i))-ph(i,k))/ & |
---|
| 1604 | (ph(i,kupper(i))-ph(i,1)) |
---|
| 1605 | crep(i, k) = crep(i, k) + crep_upper*(ph(i,1)-ph(i,k))/ & |
---|
| 1606 | (p(i,1)-ph(i,kupper(i))) |
---|
| 1607 | |
---|
| 1608 | |
---|
| 1609 | ! Reintroduce compensating subsidence term. |
---|
| 1610 | |
---|
| 1611 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
| 1612 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
| 1613 | ! . /(1-sigmaw) |
---|
| 1614 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
| 1615 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
| 1616 | ! . /(1-sigmaw) |
---|
| 1617 | |
---|
| 1618 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
| 1619 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
| 1620 | ! . /(1-sigmaw) |
---|
| 1621 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
| 1622 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
| 1623 | ! . /(1-sigmaw) |
---|
| 1624 | |
---|
| 1625 | dtke(i, k) = (dtdwn(i,k)/sigmaw(i)-dta(i,k)/(1.-sigmaw(i))) |
---|
| 1626 | dqke(i, k) = (dqdwn(i,k)/sigmaw(i)-dqa(i,k)/(1.-sigmaw(i))) |
---|
| 1627 | #ifdef ISO |
---|
[5158] | 1628 | DO ixt=1,ntraciso |
---|
[3927] | 1629 | dxtke(ixt,i,k)=(dxtdwn(ixt,i,k)/sigmaw(i) - dxta(ixt,i,k) & |
---|
| 1630 | /(1.-sigmaw(i))) |
---|
| 1631 | enddo !do ixt=1,ntraciso |
---|
| 1632 | #ifdef ISOVERIF |
---|
[5117] | 1633 | IF (iso_eau.gt.0) THEN |
---|
[5103] | 1634 | CALL iso_verif_egalite(dqke(i,k),dxtKE(iso_eau,i,k),'wake 1621a') |
---|
| 1635 | CALL iso_verif_egalite(dqdwn(i,k),dxtdwn(iso_eau,i,k),'wake 1621b') |
---|
| 1636 | CALL iso_verif_egalite(dqa(i,k),dxta(iso_eau,i,k),'wake 1621c') |
---|
| 1637 | CALL iso_verif_egalite(d_deltaqw(i,k),d_deltaxtw(iso_eau,i,k),'wake 1621d') |
---|
[3927] | 1638 | endif |
---|
| 1639 | #endif |
---|
| 1640 | #endif |
---|
[5103] | 1641 | ! PRINT*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) |
---|
[3927] | 1642 | |
---|
[5093] | 1643 | ! cc nrlmd Prise en compte du taux de mortalité |
---|
| 1644 | ! cc Définitions de entr, detr |
---|
[3927] | 1645 | !jyg< |
---|
| 1646 | !! detr(i, k) = 0. |
---|
| 1647 | !! |
---|
| 1648 | !! entr(i, k) = detr(i, k) + gfl(i)*cstar(i) + & |
---|
| 1649 | !! sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
| 1650 | !! |
---|
| 1651 | entr(i, k) = entr(i,k) + gfl(i)*cstar(i) + & |
---|
| 1652 | sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
| 1653 | !>jyg |
---|
| 1654 | spread(i, k) = (entr(i,k)-detr(i,k))/sigmaw(i) |
---|
| 1655 | |
---|
| 1656 | ! cc spread(i,k) = |
---|
| 1657 | ! (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
---|
| 1658 | ! cc $ sigmaw(i) |
---|
| 1659 | |
---|
| 1660 | |
---|
[5093] | 1661 | ! ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU |
---|
[3927] | 1662 | ! Jingmei |
---|
| 1663 | |
---|
[5116] | 1664 | ! WRITE(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), |
---|
[3927] | 1665 | ! & Tgw(i,k),deltatw(i,k) |
---|
| 1666 | d_deltat_gw(i, k) = d_deltat_gw(i, k) - tgw(i, k)*deltatw(i, k)* & |
---|
| 1667 | dtimesub |
---|
[5116] | 1668 | ! WRITE(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) |
---|
[3927] | 1669 | ff(i) = d_deltatw(i, k)/dtimesub |
---|
| 1670 | |
---|
| 1671 | ! Sans GW |
---|
| 1672 | |
---|
| 1673 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
| 1674 | |
---|
| 1675 | ! GW formule 1 |
---|
| 1676 | |
---|
| 1677 | ! deltatw(k) = deltatw(k)+dtimesub* |
---|
| 1678 | ! $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
| 1679 | |
---|
| 1680 | ! GW formule 2 |
---|
| 1681 | |
---|
| 1682 | IF (dtimesub*tgw(i,k)<1.E-10) THEN |
---|
| 1683 | d_deltatw(i, k) = dtimesub*(ff(i)+dtke(i,k) - & |
---|
| 1684 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
---|
| 1685 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & ! cc |
---|
| 1686 | tgw(i,k)*deltatw(i,k) ) |
---|
| 1687 | ELSE |
---|
| 1688 | d_deltatw(i, k) = 1/tgw(i, k)*(1-exp(-dtimesub*tgw(i,k)))* & |
---|
| 1689 | (ff(i)+dtke(i,k) - & |
---|
| 1690 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
---|
| 1691 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & |
---|
| 1692 | tgw(i,k)*deltatw(i,k) ) |
---|
| 1693 | END IF |
---|
| 1694 | |
---|
| 1695 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1696 | |
---|
| 1697 | gg(i) = d_deltaqw(i, k)/dtimesub |
---|
| 1698 | |
---|
| 1699 | d_deltaqw(i, k) = dtimesub*(gg(i)+dqke(i,k) - & |
---|
| 1700 | entr(i,k)*deltaqw(i,k)/sigmaw(i) - & |
---|
| 1701 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltaqw(i,k)/(1.-sigmaw(i))) |
---|
| 1702 | #ifdef ISO |
---|
[5158] | 1703 | DO ixt=1,ntraciso |
---|
[3927] | 1704 | gg(i)=d_deltaxtw(ixt,i,k)/dtimesub |
---|
| 1705 | d_deltaxtw(ixt,i,k) = dtimesub*(gg(i) + dxtKE(ixt,i,k) - & |
---|
| 1706 | entr(i,k)*deltaxtw(ixt,i,k)/sigmaw(i) - & |
---|
| 1707 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltaxtw(ixt,i,k)/(1.-sigmaw(i))) |
---|
| 1708 | enddo !do ixt=1,ntraciso |
---|
| 1709 | #ifdef ISOVERIF |
---|
[5117] | 1710 | IF (iso_eau.gt.0) THEN |
---|
[5103] | 1711 | CALL iso_verif_egalite(dqke(i,k),dxtKE(iso_eau,i,k),'wake 1692a') |
---|
| 1712 | CALL iso_verif_egalite(deltaqw(i,k),deltaxtw(iso_eau,i,k),'wake 1692b') |
---|
| 1713 | CALL iso_verif_egalite(d_deltaqw(i,k),d_deltaxtw(iso_eau,i,k),'wake 1692c') |
---|
[3927] | 1714 | endif |
---|
| 1715 | #endif |
---|
| 1716 | #endif |
---|
| 1717 | ! cc |
---|
| 1718 | |
---|
| 1719 | ! cc nrlmd |
---|
| 1720 | ! cc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
---|
| 1721 | ! cc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
---|
| 1722 | ! cc |
---|
| 1723 | END IF |
---|
| 1724 | END DO |
---|
| 1725 | END DO |
---|
| 1726 | |
---|
| 1727 | #ifdef ISO |
---|
| 1728 | #ifdef ISOVERIF |
---|
[5117] | 1729 | IF (iso_eau.gt.0) THEN |
---|
[5103] | 1730 | CALL iso_verif_egalite_vect2D(d_deltaxtw,d_deltaqw, & |
---|
[3927] | 1731 | 'wake 1359',ntraciso,klon,klev) |
---|
| 1732 | endif |
---|
| 1733 | #endif |
---|
| 1734 | #endif |
---|
| 1735 | |
---|
| 1736 | ! Scale tendencies so that water vapour remains positive in w and x. |
---|
| 1737 | |
---|
| 1738 | CALL wake_vec_modulation(klon, klev, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
| 1739 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
| 1740 | |
---|
| 1741 | ! cc nrlmd |
---|
[5103] | 1742 | ! c PRINT*,'alpha' |
---|
[3927] | 1743 | ! c do i=1,klon |
---|
[5103] | 1744 | ! c PRINT*,alpha(i) |
---|
[5086] | 1745 | ! c END DO |
---|
[3927] | 1746 | ! cc |
---|
| 1747 | DO k = 1, klev |
---|
| 1748 | DO i = 1, klon |
---|
| 1749 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1750 | d_te(i, k) = alpha(i)*d_te(i, k) |
---|
| 1751 | d_qe(i, k) = alpha(i)*d_qe(i, k) |
---|
| 1752 | d_deltatw(i, k) = alpha(i)*d_deltatw(i, k) |
---|
| 1753 | d_deltaqw(i, k) = alpha(i)*d_deltaqw(i, k) |
---|
| 1754 | d_deltat_gw(i, k) = alpha(i)*d_deltat_gw(i, k) |
---|
| 1755 | #ifdef ISO |
---|
[5158] | 1756 | DO ixt=1,ntraciso |
---|
[3927] | 1757 | d_xte(ixt,i,k)=alpha(i)*d_xte(ixt,i,k) |
---|
| 1758 | d_deltaxtw(ixt,i,k)=alpha(i)*d_deltaxtw(ixt,i,k) |
---|
| 1759 | enddo !do ixt=1,ntraciso |
---|
| 1760 | #endif |
---|
| 1761 | END IF |
---|
| 1762 | END DO |
---|
| 1763 | END DO |
---|
| 1764 | DO i = 1, klon |
---|
| 1765 | IF (wk_adv(i)) THEN |
---|
| 1766 | d_sigmaw(i) = alpha(i)*d_sigmaw(i) |
---|
| 1767 | END IF |
---|
| 1768 | END DO |
---|
| 1769 | |
---|
| 1770 | ! Update large scale variables and wake variables |
---|
| 1771 | ! IM 060208 manque DO i + remplace DO k=1,kupper(i) |
---|
| 1772 | ! IM 060208 DO k = 1,kupper(i) |
---|
| 1773 | DO k = 1, klev |
---|
| 1774 | DO i = 1, klon |
---|
| 1775 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1776 | dtls(i, k) = dtls(i, k) + d_te(i, k) |
---|
| 1777 | dqls(i, k) = dqls(i, k) + d_qe(i, k) |
---|
| 1778 | #ifdef ISO |
---|
[5158] | 1779 | DO ixt=1,ntraciso |
---|
[3927] | 1780 | dxtls(ixt,i,k)=dxtls(ixt,i,k)+d_xte(ixt,i,k) |
---|
| 1781 | enddo !do ixt=1,ntraciso |
---|
| 1782 | #endif |
---|
| 1783 | ! cc nrlmd |
---|
| 1784 | d_deltatw2(i, k) = d_deltatw2(i, k) + d_deltatw(i, k) |
---|
| 1785 | d_deltaqw2(i, k) = d_deltaqw2(i, k) + d_deltaqw(i, k) |
---|
| 1786 | #ifdef ISO |
---|
[5158] | 1787 | DO ixt=1,ntraciso |
---|
[3927] | 1788 | d_deltaxtw2(ixt,i,k)=d_deltaxtw2(ixt,i,k)+d_deltaxtw(ixt,i,k) |
---|
| 1789 | enddo !do ixt=1,ntraciso |
---|
| 1790 | #endif |
---|
| 1791 | ! cc |
---|
| 1792 | END IF |
---|
| 1793 | END DO |
---|
| 1794 | END DO |
---|
| 1795 | |
---|
| 1796 | |
---|
| 1797 | #ifdef ISO |
---|
| 1798 | #ifdef ISOVERIF |
---|
[5117] | 1799 | IF (iso_eau.gt.0) THEN |
---|
[3927] | 1800 | DO k= 1,klev |
---|
| 1801 | DO i = 1,klon |
---|
[5103] | 1802 | CALL iso_verif_egalite_choix(dxtls(iso_eau,i,k), & |
---|
[3927] | 1803 | dqls(i,k),'wake 1379',errmax,errmaxrel) |
---|
| 1804 | enddo ! DO i = 1,klon |
---|
| 1805 | enddo ! DO k= 1,klev |
---|
[5116] | 1806 | endif !if (iso_eau.gt.0) THEN |
---|
[3927] | 1807 | #endif |
---|
| 1808 | #endif |
---|
| 1809 | |
---|
| 1810 | |
---|
| 1811 | DO k = 1, klev |
---|
| 1812 | DO i = 1, klon |
---|
| 1813 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1814 | te(i, k) = te0(i, k) + dtls(i, k) |
---|
| 1815 | qe(i, k) = qe0(i, k) + dqls(i, k) |
---|
| 1816 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 1817 | deltatw(i, k) = deltatw(i, k) + d_deltatw(i, k) |
---|
| 1818 | deltaqw(i, k) = deltaqw(i, k) + d_deltaqw(i, k) |
---|
| 1819 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
[5103] | 1820 | ! c PRINT*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) |
---|
[3927] | 1821 | ! c $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) |
---|
| 1822 | #ifdef ISO |
---|
[5158] | 1823 | DO ixt=1,ntraciso |
---|
[3927] | 1824 | xte(ixt,i,k) = xte0(ixt,i,k) + dxtls(ixt,i,k) |
---|
| 1825 | deltaxtw(ixt,i,k) = deltaxtw(ixt,i,k)+d_deltaxtw(ixt,i,k) |
---|
| 1826 | enddo !do ixt=1,ntraciso |
---|
| 1827 | #endif |
---|
| 1828 | END IF |
---|
| 1829 | END DO |
---|
| 1830 | END DO |
---|
[5099] | 1831 | |
---|
[3927] | 1832 | DO i = 1, klon |
---|
| 1833 | IF (wk_adv(i)) THEN |
---|
| 1834 | sigmaw(i) = sigmaw(i) + d_sigmaw(i) |
---|
| 1835 | d_sigmaw2(i) = d_sigmaw2(i) + d_sigmaw(i) |
---|
| 1836 | END IF |
---|
| 1837 | END DO |
---|
| 1838 | |
---|
| 1839 | #ifdef ISO |
---|
| 1840 | #ifdef ISOVERIF |
---|
[5116] | 1841 | WRITE(*,*) 'wake 1859' |
---|
[5117] | 1842 | IF (iso_eau.gt.0) THEN |
---|
[3927] | 1843 | DO k= 1,klev |
---|
| 1844 | DO i = 1,klon |
---|
[5103] | 1845 | CALL iso_verif_egalite_choix(xte(iso_eau,i,k), & |
---|
[3927] | 1846 | qe(i,k),'wake 1379',errmax,errmaxrel) |
---|
| 1847 | enddo ! DO i = 1,klon |
---|
| 1848 | enddo ! DO k= 1,klev |
---|
[5116] | 1849 | endif !if (iso_eau.gt.0) THEN |
---|
[5117] | 1850 | IF (iso_hdo.gt.0) THEN |
---|
[5103] | 1851 | CALL iso_verif_aberrant_enc_vect2D( & |
---|
[3927] | 1852 | xte,qe, & |
---|
| 1853 | 'wake 1456, xte apres modifs',ntraciso,klon,klev) |
---|
[5103] | 1854 | ! CALL iso_verif_aberrant_enc_vect2D_ns( |
---|
[3927] | 1855 | ! : deltaxtw,deltaqw, |
---|
| 1856 | ! : 'wake 1518, deltaqw apres modifs',ntraciso,klon,klev) |
---|
| 1857 | endif |
---|
| 1858 | #endif |
---|
| 1859 | #endif |
---|
| 1860 | |
---|
| 1861 | !jyg< |
---|
| 1862 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 1863 | DO i = 1, klon |
---|
| 1864 | IF (wk_adv(i)) THEN |
---|
| 1865 | awdens(i) = awdens(i) + d_awdens(i) |
---|
| 1866 | wdens(i) = wdens(i) + d_wdens(i) |
---|
| 1867 | d_awdens2(i) = d_awdens2(i) + d_awdens(i) |
---|
| 1868 | d_wdens2(i) = d_wdens2(i) + d_wdens(i) |
---|
| 1869 | END IF |
---|
| 1870 | END DO |
---|
| 1871 | DO i = 1, klon |
---|
| 1872 | IF (wk_adv(i)) THEN |
---|
| 1873 | wdens_targ = max(wdens(i),wdensmin) |
---|
| 1874 | d_wdens2(i) = d_wdens2(i) + wdens_targ - wdens(i) |
---|
| 1875 | wdens(i) = wdens_targ |
---|
[5099] | 1876 | |
---|
[3927] | 1877 | wdens_targ = min( max(awdens(i),0.), wdens(i) ) |
---|
| 1878 | d_awdens2(i) = d_awdens2(i) + wdens_targ - awdens(i) |
---|
| 1879 | awdens(i) = wdens_targ |
---|
| 1880 | END IF |
---|
| 1881 | END DO |
---|
| 1882 | DO i = 1, klon |
---|
| 1883 | IF (wk_adv(i)) THEN |
---|
| 1884 | sigmaw_targ = max(sigmaw(i),sigmad) |
---|
| 1885 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 1886 | sigmaw(i) = sigmaw_targ |
---|
| 1887 | END IF |
---|
| 1888 | END DO |
---|
| 1889 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 1890 | !>jyg |
---|
| 1891 | |
---|
| 1892 | |
---|
| 1893 | ! Determine Ptop from buoyancy integral |
---|
| 1894 | ! --------------------------------------- |
---|
| 1895 | |
---|
| 1896 | ! - 1/ Pressure of the level where dth changes sign. |
---|
| 1897 | |
---|
| 1898 | DO i = 1, klon |
---|
| 1899 | IF (wk_adv(i)) THEN |
---|
| 1900 | ptop_provis(i) = ph(i, 1) |
---|
| 1901 | END IF |
---|
| 1902 | END DO |
---|
| 1903 | |
---|
| 1904 | DO k = 2, klev |
---|
| 1905 | DO i = 1, klon |
---|
| 1906 | IF (wk_adv(i) .AND. ptop_provis(i)==ph(i,1) .AND. & |
---|
| 1907 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 1908 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
---|
| 1909 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 1910 | END IF |
---|
| 1911 | END DO |
---|
| 1912 | END DO |
---|
| 1913 | |
---|
| 1914 | ! - 2/ dth integral |
---|
| 1915 | |
---|
| 1916 | DO i = 1, klon |
---|
| 1917 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1918 | sum_dth(i) = 0. |
---|
| 1919 | dthmin(i) = -delta_t_min |
---|
| 1920 | z(i) = 0. |
---|
| 1921 | END IF |
---|
| 1922 | END DO |
---|
| 1923 | |
---|
| 1924 | DO k = 1, klev |
---|
| 1925 | DO i = 1, klon |
---|
| 1926 | IF (wk_adv(i)) THEN |
---|
| 1927 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1928 | IF (dz(i)>0) THEN |
---|
| 1929 | z(i) = z(i) + dz(i) |
---|
| 1930 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1931 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
| 1932 | END IF |
---|
| 1933 | END IF |
---|
| 1934 | END DO |
---|
| 1935 | END DO |
---|
| 1936 | |
---|
| 1937 | ! - 3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 1938 | |
---|
| 1939 | DO i = 1, klon |
---|
| 1940 | IF (wk_adv(i)) THEN |
---|
| 1941 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
| 1942 | hw(i) = amax1(hwmin, hw(i)) |
---|
| 1943 | END IF |
---|
| 1944 | END DO |
---|
| 1945 | |
---|
| 1946 | ! - 4/ now, get Ptop |
---|
| 1947 | |
---|
| 1948 | DO i = 1, klon |
---|
| 1949 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1950 | ktop(i) = 0 |
---|
| 1951 | z(i) = 0. |
---|
| 1952 | END IF |
---|
| 1953 | END DO |
---|
| 1954 | |
---|
| 1955 | DO k = 1, klev |
---|
| 1956 | DO i = 1, klon |
---|
| 1957 | IF (wk_adv(i)) THEN |
---|
| 1958 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw(i)-z(i)) |
---|
| 1959 | IF (dz(i)>0) THEN |
---|
| 1960 | z(i) = z(i) + dz(i) |
---|
| 1961 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
| 1962 | ktop(i) = k |
---|
| 1963 | END IF |
---|
| 1964 | END IF |
---|
| 1965 | END DO |
---|
| 1966 | END DO |
---|
| 1967 | |
---|
| 1968 | ! 4.5/Correct ktop and ptop |
---|
| 1969 | |
---|
| 1970 | DO i = 1, klon |
---|
| 1971 | IF (wk_adv(i)) THEN |
---|
| 1972 | ptop_new(i) = ptop(i) |
---|
| 1973 | END IF |
---|
| 1974 | END DO |
---|
| 1975 | |
---|
| 1976 | DO k = klev, 2, -1 |
---|
| 1977 | DO i = 1, klon |
---|
| 1978 | ! IM v3JYG; IF (k .GE. ktop(i) |
---|
| 1979 | IF (wk_adv(i) .AND. k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
| 1980 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 1981 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
---|
| 1982 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 1983 | END IF |
---|
| 1984 | END DO |
---|
| 1985 | END DO |
---|
| 1986 | |
---|
| 1987 | |
---|
| 1988 | DO i = 1, klon |
---|
| 1989 | IF (wk_adv(i)) THEN |
---|
| 1990 | ptop(i) = ptop_new(i) |
---|
| 1991 | END IF |
---|
| 1992 | END DO |
---|
| 1993 | |
---|
| 1994 | DO k = klev, 1, -1 |
---|
| 1995 | DO i = 1, klon |
---|
| 1996 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1997 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 1998 | END IF |
---|
| 1999 | END DO |
---|
| 2000 | END DO |
---|
| 2001 | |
---|
| 2002 | ! 5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 2003 | |
---|
| 2004 | DO k = 1, klev |
---|
| 2005 | DO i = 1, klon |
---|
| 2006 | IF (wk_adv(i) .AND. k>=kupper(i)) THEN |
---|
| 2007 | deltatw(i, k) = 0. |
---|
| 2008 | deltaqw(i, k) = 0. |
---|
| 2009 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 2010 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
| 2011 | #ifdef ISO |
---|
[5158] | 2012 | DO ixt=1,ntraciso |
---|
[3927] | 2013 | deltaxtw(ixt,i,k) = 0. |
---|
| 2014 | d_deltaxtw2(ixt,i,k) = -deltaxtw0(ixt,i,k) |
---|
| 2015 | enddo !do ixt=1,ntraciso |
---|
| 2016 | #endif |
---|
| 2017 | END IF |
---|
| 2018 | END DO |
---|
| 2019 | END DO |
---|
| 2020 | |
---|
| 2021 | |
---|
| 2022 | ! -------------Cstar computation--------------------------------- |
---|
| 2023 | DO i = 1, klon |
---|
| 2024 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2025 | sum_thu(i) = 0. |
---|
| 2026 | sum_tu(i) = 0. |
---|
| 2027 | sum_qu(i) = 0. |
---|
| 2028 | sum_thvu(i) = 0. |
---|
| 2029 | sum_dth(i) = 0. |
---|
| 2030 | sum_dq(i) = 0. |
---|
| 2031 | sum_rho(i) = 0. |
---|
| 2032 | sum_dtdwn(i) = 0. |
---|
| 2033 | sum_dqdwn(i) = 0. |
---|
| 2034 | |
---|
| 2035 | av_thu(i) = 0. |
---|
| 2036 | av_tu(i) = 0. |
---|
| 2037 | av_qu(i) = 0. |
---|
| 2038 | av_thvu(i) = 0. |
---|
| 2039 | av_dth(i) = 0. |
---|
| 2040 | av_dq(i) = 0. |
---|
| 2041 | av_rho(i) = 0. |
---|
| 2042 | av_dtdwn(i) = 0. |
---|
| 2043 | av_dqdwn(i) = 0. |
---|
| 2044 | END IF |
---|
| 2045 | END DO |
---|
| 2046 | |
---|
| 2047 | ! Integrals (and wake top level number) |
---|
| 2048 | ! -------------------------------------- |
---|
| 2049 | |
---|
| 2050 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 2051 | |
---|
| 2052 | DO i = 1, klon |
---|
| 2053 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2054 | z(i) = 1. |
---|
| 2055 | dz(i) = 1. |
---|
| 2056 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
| 2057 | sum_dth(i) = 0. |
---|
| 2058 | END IF |
---|
| 2059 | END DO |
---|
| 2060 | |
---|
| 2061 | DO k = 1, klev |
---|
| 2062 | DO i = 1, klon |
---|
| 2063 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2064 | dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 2065 | IF (dz(i)>0) THEN |
---|
| 2066 | z(i) = z(i) + dz(i) |
---|
| 2067 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 2068 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 2069 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 2070 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
| 2071 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 2072 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 2073 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 2074 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 2075 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 2076 | END IF |
---|
| 2077 | END IF |
---|
| 2078 | END DO |
---|
| 2079 | END DO |
---|
| 2080 | |
---|
| 2081 | DO i = 1, klon |
---|
| 2082 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2083 | hw0(i) = z(i) |
---|
| 2084 | END IF |
---|
| 2085 | END DO |
---|
| 2086 | |
---|
| 2087 | |
---|
| 2088 | ! - WAPE and mean forcing computation |
---|
| 2089 | ! --------------------------------------- |
---|
| 2090 | |
---|
| 2091 | ! --------------------------------------- |
---|
| 2092 | |
---|
| 2093 | ! Means |
---|
| 2094 | |
---|
| 2095 | DO i = 1, klon |
---|
| 2096 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2097 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 2098 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 2099 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 2100 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 2101 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 2102 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 2103 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 2104 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 2105 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 2106 | |
---|
| 2107 | wape(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
---|
| 2108 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 2109 | END IF |
---|
| 2110 | END DO |
---|
| 2111 | |
---|
| 2112 | ! Filter out bad wakes |
---|
| 2113 | |
---|
| 2114 | DO k = 1, klev |
---|
| 2115 | DO i = 1, klon |
---|
| 2116 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2117 | IF (wape(i)<0.) THEN |
---|
| 2118 | deltatw(i, k) = 0. |
---|
| 2119 | deltaqw(i, k) = 0. |
---|
| 2120 | dth(i, k) = 0. |
---|
| 2121 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 2122 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
| 2123 | #ifdef ISO |
---|
[5158] | 2124 | DO ixt=1,ntraciso |
---|
[3927] | 2125 | deltaxtw(ixt,i,k) = 0. |
---|
| 2126 | d_deltaxtw2(ixt,i,k) = -deltaxtw0(ixt,i,k) |
---|
| 2127 | enddo !do ixt=1,ntraciso |
---|
| 2128 | #endif |
---|
| 2129 | END IF |
---|
| 2130 | END IF |
---|
| 2131 | END DO |
---|
| 2132 | END DO |
---|
| 2133 | |
---|
| 2134 | DO i = 1, klon |
---|
| 2135 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2136 | IF (wape(i)<0.) THEN |
---|
| 2137 | wape(i) = 0. |
---|
| 2138 | cstar(i) = 0. |
---|
| 2139 | hw(i) = hwmin |
---|
| 2140 | !jyg< |
---|
| 2141 | !! sigmaw(i) = max(sigmad, sigd_con(i)) |
---|
| 2142 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
| 2143 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 2144 | sigmaw(i) = sigmaw_targ |
---|
| 2145 | !>jyg |
---|
| 2146 | fip(i) = 0. |
---|
| 2147 | gwake(i) = .FALSE. |
---|
| 2148 | ELSE |
---|
| 2149 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 2150 | gwake(i) = .TRUE. |
---|
| 2151 | END IF |
---|
| 2152 | END IF |
---|
| 2153 | END DO |
---|
| 2154 | |
---|
| 2155 | END DO ! end sub-timestep loop |
---|
| 2156 | |
---|
| 2157 | IF (prt_level>=10) THEN |
---|
| 2158 | PRINT *, 'wake-5, sigmaw(igout), cstar(igout), wape(igout), ptop(igout) ', & |
---|
| 2159 | sigmaw(igout), cstar(igout), wape(igout), ptop(igout) |
---|
| 2160 | ENDIF |
---|
| 2161 | |
---|
| 2162 | |
---|
| 2163 | ! ---------------------------------------------------------- |
---|
| 2164 | ! Determine wake final state; recompute wape, cstar, ktop; |
---|
| 2165 | ! filter out bad wakes. |
---|
| 2166 | ! ---------------------------------------------------------- |
---|
| 2167 | |
---|
| 2168 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 2169 | ! --------------------------------------------------------- |
---|
| 2170 | |
---|
| 2171 | DO i = 1, klon |
---|
| 2172 | ! cc nrlmd if (wk_adv(i)) then !!! nrlmd |
---|
| 2173 | IF (ok_qx_qw(i)) THEN |
---|
| 2174 | ! cc |
---|
| 2175 | z(i) = 0. |
---|
| 2176 | sum_thu(i) = 0. |
---|
| 2177 | sum_tu(i) = 0. |
---|
| 2178 | sum_qu(i) = 0. |
---|
| 2179 | sum_thvu(i) = 0. |
---|
| 2180 | sum_dth(i) = 0. |
---|
| 2181 | sum_half_dth(i) = 0. |
---|
| 2182 | sum_dq(i) = 0. |
---|
| 2183 | sum_rho(i) = 0. |
---|
| 2184 | sum_dtdwn(i) = 0. |
---|
| 2185 | sum_dqdwn(i) = 0. |
---|
| 2186 | |
---|
| 2187 | av_thu(i) = 0. |
---|
| 2188 | av_tu(i) = 0. |
---|
| 2189 | av_qu(i) = 0. |
---|
| 2190 | av_thvu(i) = 0. |
---|
| 2191 | av_dth(i) = 0. |
---|
| 2192 | av_dq(i) = 0. |
---|
| 2193 | av_rho(i) = 0. |
---|
| 2194 | av_dtdwn(i) = 0. |
---|
| 2195 | av_dqdwn(i) = 0. |
---|
| 2196 | |
---|
| 2197 | dthmin(i) = -delta_t_min |
---|
| 2198 | END IF |
---|
| 2199 | END DO |
---|
| 2200 | ! Potential temperatures and humidity |
---|
| 2201 | ! ---------------------------------------------------------- |
---|
| 2202 | |
---|
| 2203 | DO k = 1, klev |
---|
| 2204 | DO i = 1, klon |
---|
| 2205 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2206 | IF (ok_qx_qw(i)) THEN |
---|
| 2207 | ! cc |
---|
| 2208 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
| 2209 | IF (k==1) THEN |
---|
| 2210 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
| 2211 | zhh(i, k) = 0 |
---|
| 2212 | ELSE |
---|
| 2213 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 2214 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
| 2215 | END IF |
---|
| 2216 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 2217 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
| 2218 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
| 2219 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
| 2220 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 2221 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 2222 | #ifdef ISO |
---|
[5158] | 2223 | DO ixt=1,ntraciso |
---|
[3927] | 2224 | xtu(ixt,i,k) = xte(ixt,i,k) - deltaxtw(ixt,i,k)*sigmaw(i) |
---|
| 2225 | enddo !do ixt=1,ntraciso |
---|
| 2226 | #endif |
---|
| 2227 | END IF |
---|
| 2228 | END DO |
---|
| 2229 | END DO |
---|
| 2230 | |
---|
| 2231 | #ifdef ISO |
---|
| 2232 | #ifdef ISOVERIF |
---|
[5117] | 2233 | IF (iso_hdo.gt.0) THEN |
---|
[5103] | 2234 | CALL iso_verif_aberrant_enc_vect2D( & |
---|
[3927] | 2235 | xtu,qu, & |
---|
| 2236 | 'wake 1834, apres modifs',ntraciso,klon,klev) |
---|
| 2237 | endif |
---|
| 2238 | #endif |
---|
| 2239 | #endif |
---|
| 2240 | |
---|
| 2241 | ! Integrals (and wake top level number) |
---|
| 2242 | ! ----------------------------------------------------------- |
---|
| 2243 | |
---|
| 2244 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 2245 | |
---|
| 2246 | DO i = 1, klon |
---|
| 2247 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2248 | IF (ok_qx_qw(i)) THEN |
---|
| 2249 | ! cc |
---|
| 2250 | z(i) = 1. |
---|
| 2251 | dz(i) = 1. |
---|
| 2252 | dz_half(i) = 1. |
---|
| 2253 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
| 2254 | sum_dth(i) = 0. |
---|
| 2255 | END IF |
---|
| 2256 | END DO |
---|
| 2257 | |
---|
| 2258 | DO k = 1, klev |
---|
| 2259 | DO i = 1, klon |
---|
| 2260 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2261 | IF (ok_qx_qw(i)) THEN |
---|
| 2262 | ! cc |
---|
| 2263 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 2264 | dz_half(i) = -(amax1(ph(i,k+1),0.5*(ptop(i)+ph(i,1)))-ph(i,k))/(rho(i,k)*rg) |
---|
| 2265 | IF (dz(i)>0) THEN |
---|
| 2266 | z(i) = z(i) + dz(i) |
---|
| 2267 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 2268 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 2269 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 2270 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
| 2271 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 2272 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 2273 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 2274 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 2275 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
[5099] | 2276 | |
---|
[3927] | 2277 | dthmin(i) = min(dthmin(i), dth(i,k)) |
---|
| 2278 | END IF |
---|
| 2279 | IF (dz_half(i)>0) THEN |
---|
| 2280 | sum_half_dth(i) = sum_half_dth(i) + dth(i, k)*dz_half(i) |
---|
| 2281 | END IF |
---|
| 2282 | END IF |
---|
| 2283 | END DO |
---|
| 2284 | END DO |
---|
| 2285 | |
---|
| 2286 | DO i = 1, klon |
---|
| 2287 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2288 | IF (ok_qx_qw(i)) THEN |
---|
| 2289 | ! cc |
---|
| 2290 | hw0(i) = z(i) |
---|
| 2291 | END IF |
---|
| 2292 | END DO |
---|
| 2293 | |
---|
| 2294 | ! - WAPE and mean forcing computation |
---|
| 2295 | ! ------------------------------------------------------------- |
---|
| 2296 | |
---|
| 2297 | ! Means |
---|
| 2298 | |
---|
| 2299 | DO i = 1, klon |
---|
| 2300 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2301 | IF (ok_qx_qw(i)) THEN |
---|
| 2302 | ! cc |
---|
| 2303 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 2304 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 2305 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 2306 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 2307 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 2308 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 2309 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 2310 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 2311 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 2312 | |
---|
| 2313 | wape2(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
---|
| 2314 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 2315 | END IF |
---|
| 2316 | END DO |
---|
| 2317 | |
---|
| 2318 | |
---|
| 2319 | |
---|
| 2320 | ! Prognostic variable update |
---|
| 2321 | ! ------------------------------------------------------------ |
---|
| 2322 | |
---|
| 2323 | ! Filter out bad wakes |
---|
| 2324 | |
---|
| 2325 | IF (iflag_wk_check_trgl>=1) THEN |
---|
| 2326 | ! Check triangular shape of dth profile |
---|
| 2327 | DO i = 1, klon |
---|
| 2328 | IF (ok_qx_qw(i)) THEN |
---|
[5160] | 2329 | !! PRINT *,'wake, hw0(i), dthmin(i) ', hw0(i), dthmin(i) |
---|
| 2330 | !! PRINT *,'wake, 2.*sum_dth(i)/(hw0(i)*dthmin(i)) ', & |
---|
[3927] | 2331 | !! 2.*sum_dth(i)/(hw0(i)*dthmin(i)) |
---|
[5160] | 2332 | !! PRINT *,'wake, sum_half_dth(i), sum_dth(i) ', & |
---|
[3927] | 2333 | !! sum_half_dth(i), sum_dth(i) |
---|
[5117] | 2334 | IF ((hw0(i) < 1.) .OR. (dthmin(i) >= -delta_t_min) ) THEN |
---|
[3927] | 2335 | wape2(i) = -1. |
---|
[5160] | 2336 | !! PRINT *,'wake, rej 1' |
---|
[3927] | 2337 | ELSE IF (iflag_wk_check_trgl==1.AND.abs(2.*sum_dth(i)/(hw0(i)*dthmin(i)) - 1.) > 0.5) THEN |
---|
| 2338 | wape2(i) = -1. |
---|
[5160] | 2339 | !! PRINT *,'wake, rej 2' |
---|
[3927] | 2340 | ELSE IF (abs(sum_half_dth(i)) < 0.5*abs(sum_dth(i)) ) THEN |
---|
| 2341 | wape2(i) = -1. |
---|
[5160] | 2342 | !! PRINT *,'wake, rej 3' |
---|
[3927] | 2343 | END IF |
---|
| 2344 | END IF |
---|
| 2345 | END DO |
---|
| 2346 | END IF |
---|
| 2347 | |
---|
| 2348 | |
---|
| 2349 | DO k = 1, klev |
---|
| 2350 | DO i = 1, klon |
---|
| 2351 | ! cc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN |
---|
| 2352 | IF (ok_qx_qw(i) .AND. wape2(i)<0.) THEN |
---|
| 2353 | ! cc |
---|
| 2354 | deltatw(i, k) = 0. |
---|
| 2355 | deltaqw(i, k) = 0. |
---|
| 2356 | dth(i, k) = 0. |
---|
| 2357 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 2358 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
| 2359 | #ifdef ISO |
---|
[5158] | 2360 | DO ixt=1,ntraciso |
---|
[3927] | 2361 | deltaxtw(ixt,i,k) = 0. |
---|
| 2362 | d_deltaxtw2(ixt,i,k) = -deltaxtw0(ixt,i,k) |
---|
| 2363 | enddo !do ixt=1,ntraciso |
---|
| 2364 | #endif |
---|
| 2365 | END IF |
---|
| 2366 | END DO |
---|
| 2367 | END DO |
---|
| 2368 | |
---|
| 2369 | |
---|
| 2370 | DO i = 1, klon |
---|
| 2371 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2372 | IF (ok_qx_qw(i)) THEN |
---|
| 2373 | ! cc |
---|
| 2374 | IF (wape2(i)<0.) THEN |
---|
| 2375 | wape2(i) = 0. |
---|
| 2376 | cstar2(i) = 0. |
---|
| 2377 | hw(i) = hwmin |
---|
| 2378 | !jyg< |
---|
| 2379 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
| 2380 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
| 2381 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 2382 | sigmaw(i) = sigmaw_targ |
---|
| 2383 | !>jyg |
---|
| 2384 | fip(i) = 0. |
---|
| 2385 | gwake(i) = .FALSE. |
---|
| 2386 | ELSE |
---|
| 2387 | IF (prt_level>=10) PRINT *, 'wape2>0' |
---|
| 2388 | cstar2(i) = stark*sqrt(2.*wape2(i)) |
---|
| 2389 | gwake(i) = .TRUE. |
---|
| 2390 | END IF |
---|
| 2391 | END IF |
---|
| 2392 | END DO |
---|
| 2393 | |
---|
| 2394 | DO i = 1, klon |
---|
| 2395 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2396 | IF (ok_qx_qw(i)) THEN |
---|
| 2397 | ! cc |
---|
| 2398 | ktopw(i) = ktop(i) |
---|
| 2399 | END IF |
---|
| 2400 | END DO |
---|
| 2401 | |
---|
| 2402 | DO i = 1, klon |
---|
| 2403 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2404 | IF (ok_qx_qw(i)) THEN |
---|
| 2405 | ! cc |
---|
| 2406 | IF (ktopw(i)>0 .AND. gwake(i)) THEN |
---|
| 2407 | |
---|
| 2408 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
| 2409 | ! cc heff = 600. |
---|
| 2410 | ! Utilisation de la hauteur hw |
---|
| 2411 | ! c heff = 0.7*hw |
---|
| 2412 | heff(i) = hw(i) |
---|
| 2413 | |
---|
| 2414 | fip(i) = 0.5*rho(i, ktopw(i))*cstar2(i)**3*heff(i)*2* & |
---|
| 2415 | sqrt(sigmaw(i)*wdens(i)*3.14) |
---|
| 2416 | fip(i) = alpk*fip(i) |
---|
| 2417 | ! jyg2 |
---|
| 2418 | ELSE |
---|
| 2419 | fip(i) = 0. |
---|
| 2420 | END IF |
---|
| 2421 | END IF |
---|
| 2422 | END DO |
---|
| 2423 | |
---|
| 2424 | ! Limitation de sigmaw |
---|
| 2425 | |
---|
| 2426 | ! cc nrlmd |
---|
| 2427 | ! DO i=1,klon |
---|
| 2428 | ! IF (OK_qx_qw(i)) THEN |
---|
| 2429 | ! IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max |
---|
| 2430 | ! ENDIF |
---|
| 2431 | ! ENDDO |
---|
| 2432 | ! cc |
---|
| 2433 | |
---|
| 2434 | !jyg< |
---|
| 2435 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 2436 | DO i = 1, klon |
---|
| 2437 | kill_wake(i) = ((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 2438 | .NOT. ok_qx_qw(i) .OR. (wdens(i) < 2.*wdensmin) |
---|
| 2439 | ENDDO |
---|
| 2440 | ELSE ! (iflag_wk_pop_dyn >= 1) |
---|
| 2441 | DO i = 1, klon |
---|
| 2442 | kill_wake(i) = ((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 2443 | .NOT. ok_qx_qw(i) |
---|
| 2444 | ENDDO |
---|
| 2445 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 2446 | !>jyg |
---|
| 2447 | |
---|
| 2448 | DO k = 1, klev |
---|
| 2449 | DO i = 1, klon |
---|
| 2450 | !!jyg IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 2451 | !!jyg .NOT. ok_qx_qw(i)) THEN |
---|
| 2452 | IF (kill_wake(i)) THEN |
---|
| 2453 | ! cc |
---|
| 2454 | dtls(i, k) = 0. |
---|
| 2455 | dqls(i, k) = 0. |
---|
| 2456 | deltatw(i, k) = 0. |
---|
| 2457 | deltaqw(i, k) = 0. |
---|
| 2458 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 2459 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
| 2460 | #ifdef ISO |
---|
[5158] | 2461 | DO ixt=1,ntraciso |
---|
[3927] | 2462 | dxtls(ixt,i,k) = 0. |
---|
| 2463 | deltaxtw(ixt,i,k) = 0. |
---|
| 2464 | d_deltaxtw2(ixt,i,k) = -deltaxtw0(ixt,i,k) |
---|
| 2465 | enddo !do ixt=1,ntraciso |
---|
| 2466 | #endif |
---|
| 2467 | END IF ! (kill_wake(i)) |
---|
| 2468 | END DO |
---|
| 2469 | END DO |
---|
| 2470 | |
---|
| 2471 | DO i = 1, klon |
---|
| 2472 | !!jyg IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 2473 | !!jyg .NOT. ok_qx_qw(i)) THEN |
---|
| 2474 | IF (kill_wake(i)) THEN |
---|
| 2475 | ktopw(i) = 0 |
---|
| 2476 | wape(i) = 0. |
---|
| 2477 | cstar(i) = 0. |
---|
[5103] | 2478 | !!jyg Outside SUBROUTINE "Wake" hw, wdens and sigmaw are zero when there are no wakes |
---|
[3927] | 2479 | !! hw(i) = hwmin !jyg |
---|
| 2480 | !! sigmaw(i) = sigmad !jyg |
---|
| 2481 | hw(i) = 0. !jyg |
---|
| 2482 | fip(i) = 0. |
---|
| 2483 | !! sigmaw(i) = 0. !jyg |
---|
| 2484 | sigmaw_targ = 0. |
---|
| 2485 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 2486 | sigmaw(i) = sigmaw_targ |
---|
| 2487 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 2488 | !! awdens(i) = 0. |
---|
| 2489 | !! wdens(i) = 0. |
---|
| 2490 | wdens_targ = 0. |
---|
| 2491 | d_wdens2(i) = wdens_targ - wdens(i) |
---|
| 2492 | wdens(i) = wdens_targ |
---|
| 2493 | wdens_targ = 0. |
---|
| 2494 | d_awdens2(i) = wdens_targ - awdens(i) |
---|
| 2495 | awdens(i) = wdens_targ |
---|
| 2496 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 2497 | ELSE ! (kill_wake(i)) |
---|
| 2498 | wape(i) = wape2(i) |
---|
| 2499 | cstar(i) = cstar2(i) |
---|
| 2500 | END IF ! (kill_wake(i)) |
---|
[5103] | 2501 | ! c PRINT*,'wape wape2 ktopw OK_qx_qw =', |
---|
[3927] | 2502 | ! c $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) |
---|
| 2503 | END DO |
---|
| 2504 | |
---|
| 2505 | IF (prt_level>=10) THEN |
---|
| 2506 | PRINT *, 'wake-6, wape wape2 ktopw OK_qx_qw =', & |
---|
| 2507 | wape(igout),wape2(igout),ktopw(igout),OK_qx_qw(igout) |
---|
| 2508 | ENDIF |
---|
| 2509 | |
---|
| 2510 | |
---|
| 2511 | ! ----------------------------------------------------------------- |
---|
| 2512 | ! Get back to tendencies per second |
---|
| 2513 | |
---|
| 2514 | DO k = 1, klev |
---|
| 2515 | DO i = 1, klon |
---|
| 2516 | |
---|
| 2517 | ! cc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
| 2518 | !jyg< |
---|
| 2519 | !! IF (ok_qx_qw(i) .AND. k<=kupper(i)) THEN |
---|
| 2520 | IF (ok_qx_qw(i)) THEN |
---|
| 2521 | !>jyg |
---|
| 2522 | ! cc |
---|
| 2523 | dtls(i, k) = dtls(i, k)/dtime |
---|
| 2524 | dqls(i, k) = dqls(i, k)/dtime |
---|
| 2525 | d_deltatw2(i, k) = d_deltatw2(i, k)/dtime |
---|
| 2526 | d_deltaqw2(i, k) = d_deltaqw2(i, k)/dtime |
---|
| 2527 | d_deltat_gw(i, k) = d_deltat_gw(i, k)/dtime |
---|
[5103] | 2528 | ! c PRINT*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) |
---|
[3927] | 2529 | ! c $ ,death_rate(i)*sigmaw(i) |
---|
| 2530 | #ifdef ISO |
---|
[5158] | 2531 | DO ixt=1,ntraciso |
---|
[3927] | 2532 | dxtls(ixt,i, k) = dxtls(ixt,i, k)/dtime |
---|
| 2533 | d_deltaxtw2(ixt,i, k) = d_deltaxtw2(ixt,i, k)/dtime |
---|
| 2534 | enddo |
---|
| 2535 | #endif |
---|
| 2536 | END IF |
---|
| 2537 | END DO |
---|
| 2538 | END DO |
---|
| 2539 | !jyg< |
---|
| 2540 | DO i = 1, klon |
---|
| 2541 | d_sigmaw2(i) = d_sigmaw2(i)/dtime |
---|
| 2542 | d_awdens2(i) = d_awdens2(i)/dtime |
---|
| 2543 | d_wdens2(i) = d_wdens2(i)/dtime |
---|
| 2544 | ENDDO |
---|
| 2545 | !>jyg |
---|
| 2546 | |
---|
| 2547 | |
---|
| 2548 | |
---|
[5105] | 2549 | |
---|
[3927] | 2550 | END SUBROUTINE wake |
---|
| 2551 | |
---|
| 2552 | SUBROUTINE wake_vec_modulation(nlon, nl, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
| 2553 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
| 2554 | ! ------------------------------------------------------ |
---|
[4374] | 2555 | ! D\'etermination du coefficient alpha tel que les tendances |
---|
[3927] | 2556 | ! corriges alpha*d_G, pour toutes les grandeurs G, correspondent |
---|
| 2557 | ! a une humidite positive dans la zone (x) et dans la zone (w). |
---|
| 2558 | ! ------------------------------------------------------ |
---|
| 2559 | IMPLICIT NONE |
---|
| 2560 | |
---|
| 2561 | ! Input |
---|
| 2562 | REAL qe(nlon, nl), d_qe(nlon, nl) |
---|
| 2563 | REAL deltaqw(nlon, nl), d_deltaqw(nlon, nl) |
---|
| 2564 | REAL sigmaw(nlon), d_sigmaw(nlon) |
---|
| 2565 | LOGICAL wk_adv(nlon) |
---|
| 2566 | INTEGER nl, nlon |
---|
| 2567 | ! Output |
---|
| 2568 | REAL alpha(nlon) |
---|
| 2569 | ! Internal variables |
---|
| 2570 | REAL zeta(nlon, nl) |
---|
| 2571 | REAL alpha1(nlon) |
---|
| 2572 | REAL x, a, b, c, discrim |
---|
| 2573 | REAL epsilon |
---|
| 2574 | ! DATA epsilon/1.e-15/ |
---|
| 2575 | INTEGER i,k |
---|
| 2576 | |
---|
| 2577 | DO k = 1, nl |
---|
| 2578 | DO i = 1, nlon |
---|
| 2579 | IF (wk_adv(i)) THEN |
---|
| 2580 | IF ((deltaqw(i,k)+d_deltaqw(i,k))>=0.) THEN |
---|
| 2581 | zeta(i, k) = 0. |
---|
| 2582 | ELSE |
---|
| 2583 | zeta(i, k) = 1. |
---|
| 2584 | END IF |
---|
| 2585 | END IF |
---|
| 2586 | END DO |
---|
| 2587 | DO i = 1, nlon |
---|
| 2588 | IF (wk_adv(i)) THEN |
---|
| 2589 | x = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + d_qe(i, k) + & |
---|
| 2590 | (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - d_sigmaw(i) * & |
---|
| 2591 | (deltaqw(i,k)+d_deltaqw(i,k)) |
---|
| 2592 | a = -d_sigmaw(i)*d_deltaqw(i, k) |
---|
| 2593 | b = d_qe(i, k) + (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - & |
---|
| 2594 | deltaqw(i, k)*d_sigmaw(i) |
---|
| 2595 | c = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + epsilon |
---|
| 2596 | discrim = b*b - 4.*a*c |
---|
[5103] | 2597 | ! PRINT*, 'x, a, b, c, discrim', x, a, b, c, discrim |
---|
[5093] | 2598 | IF (a+b>=0.) THEN !! Condition suffisante pour la positivité de ovap |
---|
[3927] | 2599 | alpha1(i) = 1. |
---|
| 2600 | ELSE |
---|
| 2601 | IF (x>=0.) THEN |
---|
| 2602 | alpha1(i) = 1. |
---|
| 2603 | ELSE |
---|
| 2604 | IF (a>0.) THEN |
---|
| 2605 | alpha1(i) = 0.9*min( (2.*c)/(-b+sqrt(discrim)), & |
---|
| 2606 | (-b+sqrt(discrim))/(2.*a) ) |
---|
| 2607 | ELSE IF (a==0.) THEN |
---|
| 2608 | alpha1(i) = 0.9*(-c/b) |
---|
| 2609 | ELSE |
---|
[5103] | 2610 | ! PRINT*,'a,b,c discrim',a,b,c discrim |
---|
[3927] | 2611 | alpha1(i) = 0.9*max( (2.*c)/(-b+sqrt(discrim)), & |
---|
| 2612 | (-b+sqrt(discrim))/(2.*a)) |
---|
| 2613 | END IF |
---|
| 2614 | END IF |
---|
| 2615 | END IF |
---|
| 2616 | alpha(i) = min(alpha(i), alpha1(i)) |
---|
| 2617 | END IF |
---|
| 2618 | END DO |
---|
| 2619 | END DO |
---|
| 2620 | |
---|
[5105] | 2621 | |
---|
[3927] | 2622 | END SUBROUTINE wake_vec_modulation |
---|
| 2623 | |
---|
[4594] | 2624 | END MODULE lmdz_wake |
---|