[4004] | 1 | ! $Id: lmdz_cv.F90 5158 2024-08-02 12:12:03Z fhourdin $ |
---|
[3927] | 2 | |
---|
[5142] | 3 | MODULE lmdz_cv |
---|
| 4 | !------------------------------------------------------------ |
---|
| 5 | ! Parameters for convectL: |
---|
| 6 | ! (includes - microphysical parameters, |
---|
[5158] | 7 | ! - parameters that control the rate of approach |
---|
[5142] | 8 | ! to quasi-equilibrium) |
---|
[5158] | 9 | ! - noff & minorig (previously in input of convect1) |
---|
[5142] | 10 | !------------------------------------------------------------ |
---|
| 11 | |
---|
| 12 | IMPLICIT NONE; PRIVATE |
---|
| 13 | PUBLIC elcrit, tlcrit, entp, sigs, sigd, omtrain, omtsnow, coeffr, coeffs & |
---|
| 14 | , dtmax, cu, betad, alpha, damp, delta, noff, minorig, nl, nlp, nlm, & |
---|
| 15 | cv_param, cv_prelim, cv_feed, cv_undilute1, cv_trigger, cv_compress, & |
---|
| 16 | cv_undilute2, cv_closure, cv_mixing, cv_unsat, cv_yield, cv_uncompress |
---|
| 17 | |
---|
| 18 | INTEGER noff, minorig, nl, nlp, nlm |
---|
| 19 | REAL elcrit, tlcrit |
---|
| 20 | REAL entp |
---|
| 21 | REAL sigs, sigd |
---|
| 22 | REAL omtrain, omtsnow, coeffr, coeffs |
---|
| 23 | REAL dtmax |
---|
| 24 | REAL cu |
---|
| 25 | REAL betad |
---|
| 26 | REAL alpha, damp |
---|
| 27 | REAL delta |
---|
| 28 | |
---|
| 29 | !$OMP THREADPRIVATE(elcrit, tlcrit, entp, sigs, sigd, omtrain, omtsnow, coeffr, coeffs & |
---|
| 30 | !$OMP , dtmax, cu, betad, alpha, damp, delta, noff, minorig, nl, nlp, nlm) |
---|
| 31 | |
---|
| 32 | CONTAINS |
---|
| 33 | |
---|
[3927] | 34 | SUBROUTINE cv_param(nd) |
---|
| 35 | IMPLICIT NONE |
---|
| 36 | |
---|
| 37 | ! ------------------------------------------------------------ |
---|
| 38 | ! Set parameters for convectL |
---|
| 39 | ! (includes microphysical parameters and parameters that |
---|
| 40 | ! control the rate of approach to quasi-equilibrium) |
---|
| 41 | ! ------------------------------------------------------------ |
---|
| 42 | |
---|
| 43 | ! *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** |
---|
| 44 | ! *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** |
---|
| 45 | ! *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** |
---|
| 46 | ! *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** |
---|
| 47 | ! *** BETWEEN 0 C AND TLCRIT) *** |
---|
| 48 | ! *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** |
---|
| 49 | ! *** FORMULATION *** |
---|
| 50 | ! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
| 51 | ! *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
| 52 | ! *** OF CLOUD *** |
---|
| 53 | ! *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** |
---|
| 54 | ! *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** |
---|
| 55 | ! *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
| 56 | ! *** OF RAIN *** |
---|
| 57 | ! *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
| 58 | ! *** OF SNOW *** |
---|
| 59 | ! *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** |
---|
| 60 | ! *** TRANSPORT *** |
---|
| 61 | ! *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** |
---|
| 62 | ! *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** |
---|
| 63 | ! *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
| 64 | ! *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
| 65 | ! *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** |
---|
| 66 | ! *** (DAMP MUST BE LESS THAN 1) *** |
---|
| 67 | |
---|
[5142] | 68 | INTEGER nd |
---|
[5132] | 69 | CHARACTER (LEN = 20) :: modname = 'cv_routines' |
---|
| 70 | CHARACTER (LEN = 80) :: abort_message |
---|
[3927] | 71 | |
---|
| 72 | ! noff: integer limit for convection (nd-noff) |
---|
| 73 | ! minorig: First level of convection |
---|
| 74 | |
---|
| 75 | noff = 2 |
---|
| 76 | minorig = 2 |
---|
| 77 | |
---|
| 78 | nl = nd - noff |
---|
| 79 | nlp = nl + 1 |
---|
| 80 | nlm = nl - 1 |
---|
| 81 | |
---|
| 82 | elcrit = 0.0011 |
---|
| 83 | tlcrit = -55.0 |
---|
| 84 | entp = 1.5 |
---|
| 85 | sigs = 0.12 |
---|
| 86 | sigd = 0.05 |
---|
| 87 | omtrain = 50.0 |
---|
| 88 | omtsnow = 5.5 |
---|
| 89 | coeffr = 1.0 |
---|
| 90 | coeffs = 0.8 |
---|
| 91 | dtmax = 0.9 |
---|
| 92 | |
---|
| 93 | cu = 0.70 |
---|
| 94 | |
---|
| 95 | betad = 10.0 |
---|
| 96 | |
---|
| 97 | damp = 0.1 |
---|
| 98 | alpha = 0.2 |
---|
| 99 | |
---|
| 100 | delta = 0.01 ! cld |
---|
| 101 | |
---|
| 102 | END SUBROUTINE cv_param |
---|
| 103 | |
---|
| 104 | SUBROUTINE cv_prelim(len, nd, ndp1, t, q, p, ph, lv, cpn, tv, gz, h, hm) |
---|
[5141] | 105 | USE lmdz_cvthermo |
---|
| 106 | |
---|
[3927] | 107 | IMPLICIT NONE |
---|
| 108 | |
---|
| 109 | ! ===================================================================== |
---|
| 110 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
| 111 | ! ===================================================================== |
---|
| 112 | |
---|
| 113 | ! inputs: |
---|
| 114 | INTEGER len, nd, ndp1 |
---|
| 115 | REAL t(len, nd), q(len, nd), p(len, nd), ph(len, ndp1) |
---|
| 116 | |
---|
| 117 | ! outputs: |
---|
| 118 | REAL lv(len, nd), cpn(len, nd), tv(len, nd) |
---|
| 119 | REAL gz(len, nd), h(len, nd), hm(len, nd) |
---|
| 120 | |
---|
| 121 | ! local variables: |
---|
| 122 | INTEGER k, i |
---|
| 123 | REAL cpx(len, nd) |
---|
| 124 | |
---|
[5142] | 125 | |
---|
[3927] | 126 | DO k = 1, nlp |
---|
| 127 | DO i = 1, len |
---|
[5132] | 128 | lv(i, k) = lv0 - clmcpv * (t(i, k) - t0) |
---|
| 129 | cpn(i, k) = cpd * (1.0 - q(i, k)) + cpv * q(i, k) |
---|
| 130 | cpx(i, k) = cpd * (1.0 - q(i, k)) + cl * q(i, k) |
---|
| 131 | tv(i, k) = t(i, k) * (1.0 + q(i, k) * epsim1) |
---|
[3927] | 132 | END DO |
---|
| 133 | END DO |
---|
| 134 | |
---|
| 135 | ! gz = phi at the full levels (same as p). |
---|
| 136 | |
---|
| 137 | DO i = 1, len |
---|
| 138 | gz(i, 1) = 0.0 |
---|
| 139 | END DO |
---|
| 140 | DO k = 2, nlp |
---|
| 141 | DO i = 1, len |
---|
[5132] | 142 | gz(i, k) = gz(i, k - 1) + hrd * (tv(i, k - 1) + tv(i, k)) * (p(i, k - 1) - p(i, k)) / ph(i, & |
---|
| 143 | k) |
---|
[3927] | 144 | END DO |
---|
| 145 | END DO |
---|
| 146 | |
---|
| 147 | ! h = phi + cpT (dry static energy). |
---|
| 148 | ! hm = phi + cp(T-Tbase)+Lq |
---|
| 149 | |
---|
| 150 | DO k = 1, nlp |
---|
| 151 | DO i = 1, len |
---|
[5132] | 152 | h(i, k) = gz(i, k) + cpn(i, k) * t(i, k) |
---|
| 153 | hm(i, k) = gz(i, k) + cpx(i, k) * (t(i, k) - t(i, 1)) + lv(i, k) * q(i, k) |
---|
[3927] | 154 | END DO |
---|
| 155 | END DO |
---|
| 156 | |
---|
| 157 | END SUBROUTINE cv_prelim |
---|
| 158 | |
---|
| 159 | SUBROUTINE cv_feed(len, nd, t, q, qs, p, hm, gz, nk, icb, icbmax, iflag, tnk, & |
---|
[5132] | 160 | qnk, gznk, plcl) |
---|
[3927] | 161 | IMPLICIT NONE |
---|
| 162 | |
---|
| 163 | ! ================================================================ |
---|
| 164 | ! Purpose: CONVECTIVE FEED |
---|
| 165 | ! ================================================================ |
---|
| 166 | |
---|
[5142] | 167 | |
---|
[3927] | 168 | ! inputs: |
---|
| 169 | INTEGER len, nd |
---|
| 170 | REAL t(len, nd), q(len, nd), qs(len, nd), p(len, nd) |
---|
| 171 | REAL hm(len, nd), gz(len, nd) |
---|
| 172 | |
---|
| 173 | ! outputs: |
---|
| 174 | INTEGER iflag(len), nk(len), icb(len), icbmax |
---|
| 175 | REAL tnk(len), qnk(len), gznk(len), plcl(len) |
---|
| 176 | |
---|
| 177 | ! local variables: |
---|
| 178 | INTEGER i, k |
---|
| 179 | INTEGER ihmin(len) |
---|
| 180 | REAL work(len) |
---|
| 181 | REAL pnk(len), qsnk(len), rh(len), chi(len) |
---|
| 182 | |
---|
| 183 | ! ------------------------------------------------------------------- |
---|
| 184 | ! --- Find level of minimum moist static energy |
---|
| 185 | ! --- If level of minimum moist static energy coincides with |
---|
| 186 | ! --- or is lower than minimum allowable parcel origin level, |
---|
| 187 | ! --- set iflag to 6. |
---|
| 188 | ! ------------------------------------------------------------------- |
---|
| 189 | |
---|
| 190 | DO i = 1, len |
---|
| 191 | work(i) = 1.0E12 |
---|
| 192 | ihmin(i) = nl |
---|
| 193 | END DO |
---|
| 194 | DO k = 2, nlp |
---|
| 195 | DO i = 1, len |
---|
[5132] | 196 | IF ((hm(i, k)<work(i)) .AND. (hm(i, k)<hm(i, k - 1))) THEN |
---|
[3927] | 197 | work(i) = hm(i, k) |
---|
| 198 | ihmin(i) = k |
---|
| 199 | END IF |
---|
| 200 | END DO |
---|
| 201 | END DO |
---|
| 202 | DO i = 1, len |
---|
| 203 | ihmin(i) = min(ihmin(i), nlm) |
---|
| 204 | IF (ihmin(i)<=minorig) THEN |
---|
| 205 | iflag(i) = 6 |
---|
| 206 | END IF |
---|
| 207 | END DO |
---|
| 208 | |
---|
| 209 | ! ------------------------------------------------------------------- |
---|
| 210 | ! --- Find that model level below the level of minimum moist static |
---|
| 211 | ! --- energy that has the maximum value of moist static energy |
---|
| 212 | ! ------------------------------------------------------------------- |
---|
| 213 | |
---|
| 214 | DO i = 1, len |
---|
| 215 | work(i) = hm(i, minorig) |
---|
| 216 | nk(i) = minorig |
---|
| 217 | END DO |
---|
| 218 | DO k = minorig + 1, nl |
---|
| 219 | DO i = 1, len |
---|
[5132] | 220 | IF ((hm(i, k)>work(i)) .AND. (k<=ihmin(i))) THEN |
---|
[3927] | 221 | work(i) = hm(i, k) |
---|
| 222 | nk(i) = k |
---|
| 223 | END IF |
---|
| 224 | END DO |
---|
| 225 | END DO |
---|
| 226 | ! ------------------------------------------------------------------- |
---|
| 227 | ! --- Check whether parcel level temperature and specific humidity |
---|
| 228 | ! --- are reasonable |
---|
| 229 | ! ------------------------------------------------------------------- |
---|
| 230 | DO i = 1, len |
---|
[5132] | 231 | IF (((t(i, nk(i))<250.0) .OR. (q(i, nk(i))<=0.0) .OR. (p(i, ihmin(i))< & |
---|
| 232 | 400.0)) .AND. (iflag(i)==0)) iflag(i) = 7 |
---|
[3927] | 233 | END DO |
---|
| 234 | ! ------------------------------------------------------------------- |
---|
| 235 | ! --- Calculate lifted condensation level of air at parcel origin level |
---|
| 236 | ! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
---|
| 237 | ! ------------------------------------------------------------------- |
---|
| 238 | DO i = 1, len |
---|
| 239 | tnk(i) = t(i, nk(i)) |
---|
| 240 | qnk(i) = q(i, nk(i)) |
---|
| 241 | gznk(i) = gz(i, nk(i)) |
---|
| 242 | pnk(i) = p(i, nk(i)) |
---|
| 243 | qsnk(i) = qs(i, nk(i)) |
---|
| 244 | |
---|
[5132] | 245 | rh(i) = qnk(i) / qsnk(i) |
---|
[3927] | 246 | rh(i) = min(1.0, rh(i)) |
---|
[5132] | 247 | chi(i) = tnk(i) / (1669.0 - 122.0 * rh(i) - tnk(i)) |
---|
| 248 | plcl(i) = pnk(i) * (rh(i)**chi(i)) |
---|
[3927] | 249 | IF (((plcl(i)<200.0) .OR. (plcl(i)>=2000.0)) .AND. (iflag(i)==0)) iflag(i & |
---|
[5132] | 250 | ) = 8 |
---|
[3927] | 251 | END DO |
---|
| 252 | ! ------------------------------------------------------------------- |
---|
| 253 | ! --- Calculate first level above lcl (=icb) |
---|
| 254 | ! ------------------------------------------------------------------- |
---|
| 255 | DO i = 1, len |
---|
| 256 | icb(i) = nlm |
---|
| 257 | END DO |
---|
| 258 | |
---|
| 259 | DO k = minorig, nl |
---|
| 260 | DO i = 1, len |
---|
[5132] | 261 | IF ((k>=(nk(i) + 1)) .AND. (p(i, k)<plcl(i))) icb(i) = min(icb(i), k) |
---|
[3927] | 262 | END DO |
---|
| 263 | END DO |
---|
| 264 | |
---|
| 265 | DO i = 1, len |
---|
| 266 | IF ((icb(i)>=nlm) .AND. (iflag(i)==0)) iflag(i) = 9 |
---|
| 267 | END DO |
---|
| 268 | |
---|
| 269 | ! Compute icbmax. |
---|
| 270 | |
---|
| 271 | icbmax = 2 |
---|
| 272 | DO i = 1, len |
---|
| 273 | icbmax = max(icbmax, icb(i)) |
---|
| 274 | END DO |
---|
| 275 | |
---|
| 276 | END SUBROUTINE cv_feed |
---|
| 277 | |
---|
| 278 | SUBROUTINE cv_undilute1(len, nd, t, q, qs, gz, p, nk, icb, icbmax, tp, tvp, & |
---|
[5132] | 279 | clw) |
---|
[5141] | 280 | USE lmdz_cvthermo |
---|
| 281 | |
---|
[3927] | 282 | IMPLICIT NONE |
---|
| 283 | |
---|
[5142] | 284 | |
---|
[3927] | 285 | ! inputs: |
---|
| 286 | INTEGER len, nd |
---|
| 287 | INTEGER nk(len), icb(len), icbmax |
---|
| 288 | REAL t(len, nd), q(len, nd), qs(len, nd), gz(len, nd) |
---|
| 289 | REAL p(len, nd) |
---|
| 290 | |
---|
| 291 | ! outputs: |
---|
| 292 | REAL tp(len, nd), tvp(len, nd), clw(len, nd) |
---|
| 293 | |
---|
| 294 | ! local variables: |
---|
| 295 | INTEGER i, k |
---|
| 296 | REAL tg, qg, alv, s, ahg, tc, denom, es, rg |
---|
| 297 | REAL ah0(len), cpp(len) |
---|
| 298 | REAL tnk(len), qnk(len), gznk(len), ticb(len), gzicb(len) |
---|
| 299 | |
---|
| 300 | ! ------------------------------------------------------------------- |
---|
| 301 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
| 302 | ! --- the actual temperature, and the adiabatic |
---|
| 303 | ! --- liquid water content. The procedure is to solve the equation. |
---|
| 304 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
| 305 | ! ------------------------------------------------------------------- |
---|
| 306 | |
---|
| 307 | DO i = 1, len |
---|
| 308 | tnk(i) = t(i, nk(i)) |
---|
| 309 | qnk(i) = q(i, nk(i)) |
---|
| 310 | gznk(i) = gz(i, nk(i)) |
---|
| 311 | ticb(i) = t(i, icb(i)) |
---|
| 312 | gzicb(i) = gz(i, icb(i)) |
---|
| 313 | END DO |
---|
| 314 | |
---|
| 315 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
| 316 | |
---|
| 317 | DO i = 1, len |
---|
[5132] | 318 | ah0(i) = (cpd * (1. - qnk(i)) + cl * qnk(i)) * tnk(i) + qnk(i) * (lv0 - clmcpv * (tnk(i) - & |
---|
| 319 | 273.15)) + gznk(i) |
---|
| 320 | cpp(i) = cpd * (1. - qnk(i)) + qnk(i) * cpv |
---|
[3927] | 321 | END DO |
---|
| 322 | |
---|
| 323 | ! *** Calculate lifted parcel quantities below cloud base *** |
---|
| 324 | |
---|
| 325 | DO k = minorig, icbmax - 1 |
---|
| 326 | DO i = 1, len |
---|
[5132] | 327 | tp(i, k) = tnk(i) - (gz(i, k) - gznk(i)) / cpp(i) |
---|
| 328 | tvp(i, k) = tp(i, k) * (1. + qnk(i) * epsi) |
---|
[3927] | 329 | END DO |
---|
| 330 | END DO |
---|
| 331 | |
---|
| 332 | ! *** Find lifted parcel quantities above cloud base *** |
---|
| 333 | |
---|
| 334 | DO i = 1, len |
---|
| 335 | tg = ticb(i) |
---|
| 336 | qg = qs(i, icb(i)) |
---|
[5132] | 337 | alv = lv0 - clmcpv * (ticb(i) - t0) |
---|
[3927] | 338 | |
---|
| 339 | ! First iteration. |
---|
| 340 | |
---|
[5132] | 341 | s = cpd + alv * alv * qg / (rrv * ticb(i) * ticb(i)) |
---|
| 342 | s = 1. / s |
---|
| 343 | ahg = cpd * tg + (cl - cpd) * qnk(i) * ticb(i) + alv * qg + gzicb(i) |
---|
| 344 | tg = tg + s * (ah0(i) - ahg) |
---|
[3927] | 345 | tg = max(tg, 35.0) |
---|
| 346 | tc = tg - t0 |
---|
| 347 | denom = 243.5 + tc |
---|
| 348 | IF (tc>=0.0) THEN |
---|
[5132] | 349 | es = 6.112 * exp(17.67 * tc / denom) |
---|
[3927] | 350 | ELSE |
---|
[5132] | 351 | es = exp(23.33086 - 6111.72784 / tg + 0.15215 * log(tg)) |
---|
[3927] | 352 | END IF |
---|
[5132] | 353 | qg = eps * es / (p(i, icb(i)) - es * (1. - eps)) |
---|
[3927] | 354 | |
---|
| 355 | ! Second iteration. |
---|
| 356 | |
---|
[5132] | 357 | s = cpd + alv * alv * qg / (rrv * ticb(i) * ticb(i)) |
---|
| 358 | s = 1. / s |
---|
| 359 | ahg = cpd * tg + (cl - cpd) * qnk(i) * ticb(i) + alv * qg + gzicb(i) |
---|
| 360 | tg = tg + s * (ah0(i) - ahg) |
---|
[3927] | 361 | tg = max(tg, 35.0) |
---|
| 362 | tc = tg - t0 |
---|
| 363 | denom = 243.5 + tc |
---|
| 364 | IF (tc>=0.0) THEN |
---|
[5132] | 365 | es = 6.112 * exp(17.67 * tc / denom) |
---|
[3927] | 366 | ELSE |
---|
[5132] | 367 | es = exp(23.33086 - 6111.72784 / tg + 0.15215 * log(tg)) |
---|
[3927] | 368 | END IF |
---|
[5132] | 369 | qg = eps * es / (p(i, icb(i)) - es * (1. - eps)) |
---|
[3927] | 370 | |
---|
[5132] | 371 | alv = lv0 - clmcpv * (ticb(i) - 273.15) |
---|
| 372 | tp(i, icb(i)) = (ah0(i) - (cl - cpd) * qnk(i) * ticb(i) - gz(i, icb(i)) - alv * qg) / cpd |
---|
[3927] | 373 | clw(i, icb(i)) = qnk(i) - qg |
---|
[5132] | 374 | clw(i, icb(i)) = max(0.0, clw(i, icb(i))) |
---|
| 375 | rg = qg / (1. - qnk(i)) |
---|
| 376 | tvp(i, icb(i)) = tp(i, icb(i)) * (1. + rg * epsi) |
---|
[3927] | 377 | END DO |
---|
| 378 | |
---|
| 379 | DO k = minorig, icbmax |
---|
| 380 | DO i = 1, len |
---|
[5132] | 381 | tvp(i, k) = tvp(i, k) - tp(i, k) * qnk(i) |
---|
[3927] | 382 | END DO |
---|
| 383 | END DO |
---|
| 384 | |
---|
| 385 | END SUBROUTINE cv_undilute1 |
---|
| 386 | |
---|
| 387 | SUBROUTINE cv_trigger(len, nd, icb, cbmf, tv, tvp, iflag) |
---|
| 388 | IMPLICIT NONE |
---|
| 389 | |
---|
| 390 | ! ------------------------------------------------------------------- |
---|
| 391 | ! --- Test for instability. |
---|
| 392 | ! --- If there was no convection at last time step and parcel |
---|
| 393 | ! --- is stable at icb, then set iflag to 4. |
---|
| 394 | ! ------------------------------------------------------------------- |
---|
| 395 | |
---|
[5142] | 396 | |
---|
[3927] | 397 | ! inputs: |
---|
| 398 | INTEGER len, nd, icb(len) |
---|
| 399 | REAL cbmf(len), tv(len, nd), tvp(len, nd) |
---|
| 400 | |
---|
| 401 | ! outputs: |
---|
| 402 | INTEGER iflag(len) ! also an input |
---|
| 403 | |
---|
| 404 | ! local variables: |
---|
| 405 | INTEGER i |
---|
| 406 | |
---|
| 407 | DO i = 1, len |
---|
| 408 | IF ((cbmf(i)==0.0) .AND. (iflag(i)==0) .AND. (tvp(i, & |
---|
[5132] | 409 | icb(i))<=(tv(i, icb(i)) - dtmax))) iflag(i) = 4 |
---|
[3927] | 410 | END DO |
---|
| 411 | |
---|
| 412 | END SUBROUTINE cv_trigger |
---|
| 413 | |
---|
| 414 | SUBROUTINE cv_compress(len, nloc, ncum, nd, iflag1, nk1, icb1, cbmf1, plcl1, & |
---|
[5132] | 415 | tnk1, qnk1, gznk1, t1, q1, qs1, u1, v1, gz1, h1, lv1, cpn1, p1, ph1, tv1, & |
---|
| 416 | tp1, tvp1, clw1, iflag, nk, icb, cbmf, plcl, tnk, qnk, gznk, t, q, qs, u, & |
---|
| 417 | v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw, dph) |
---|
[5112] | 418 | USE lmdz_print_control, ONLY: lunout |
---|
[5132] | 419 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
[3927] | 420 | IMPLICIT NONE |
---|
| 421 | |
---|
[5142] | 422 | |
---|
[3927] | 423 | ! inputs: |
---|
| 424 | INTEGER len, ncum, nd, nloc |
---|
| 425 | INTEGER iflag1(len), nk1(len), icb1(len) |
---|
| 426 | REAL cbmf1(len), plcl1(len), tnk1(len), qnk1(len), gznk1(len) |
---|
| 427 | REAL t1(len, nd), q1(len, nd), qs1(len, nd), u1(len, nd), v1(len, nd) |
---|
| 428 | REAL gz1(len, nd), h1(len, nd), lv1(len, nd), cpn1(len, nd) |
---|
[5132] | 429 | REAL p1(len, nd), ph1(len, nd + 1), tv1(len, nd), tp1(len, nd) |
---|
[3927] | 430 | REAL tvp1(len, nd), clw1(len, nd) |
---|
| 431 | |
---|
| 432 | ! outputs: |
---|
| 433 | INTEGER iflag(nloc), nk(nloc), icb(nloc) |
---|
| 434 | REAL cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc) |
---|
| 435 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
| 436 | REAL gz(nloc, nd), h(nloc, nd), lv(nloc, nd), cpn(nloc, nd) |
---|
[5132] | 437 | REAL p(nloc, nd), ph(nloc, nd + 1), tv(nloc, nd), tp(nloc, nd) |
---|
[3927] | 438 | REAL tvp(nloc, nd), clw(nloc, nd) |
---|
| 439 | REAL dph(nloc, nd) |
---|
| 440 | |
---|
| 441 | ! local variables: |
---|
| 442 | INTEGER i, k, nn |
---|
[5132] | 443 | CHARACTER (LEN = 20) :: modname = 'cv_compress' |
---|
| 444 | CHARACTER (LEN = 80) :: abort_message |
---|
[3927] | 445 | |
---|
| 446 | DO k = 1, nl + 1 |
---|
| 447 | nn = 0 |
---|
| 448 | DO i = 1, len |
---|
| 449 | IF (iflag1(i)==0) THEN |
---|
| 450 | nn = nn + 1 |
---|
| 451 | t(nn, k) = t1(i, k) |
---|
| 452 | q(nn, k) = q1(i, k) |
---|
| 453 | qs(nn, k) = qs1(i, k) |
---|
| 454 | u(nn, k) = u1(i, k) |
---|
| 455 | v(nn, k) = v1(i, k) |
---|
| 456 | gz(nn, k) = gz1(i, k) |
---|
| 457 | h(nn, k) = h1(i, k) |
---|
| 458 | lv(nn, k) = lv1(i, k) |
---|
| 459 | cpn(nn, k) = cpn1(i, k) |
---|
| 460 | p(nn, k) = p1(i, k) |
---|
| 461 | ph(nn, k) = ph1(i, k) |
---|
| 462 | tv(nn, k) = tv1(i, k) |
---|
| 463 | tp(nn, k) = tp1(i, k) |
---|
| 464 | tvp(nn, k) = tvp1(i, k) |
---|
| 465 | clw(nn, k) = clw1(i, k) |
---|
| 466 | END IF |
---|
| 467 | END DO |
---|
| 468 | END DO |
---|
| 469 | |
---|
| 470 | IF (nn/=ncum) THEN |
---|
| 471 | WRITE (lunout, *) 'strange! nn not equal to ncum: ', nn, ncum |
---|
| 472 | abort_message = '' |
---|
| 473 | CALL abort_physic(modname, abort_message, 1) |
---|
| 474 | END IF |
---|
| 475 | |
---|
| 476 | nn = 0 |
---|
| 477 | DO i = 1, len |
---|
| 478 | IF (iflag1(i)==0) THEN |
---|
| 479 | nn = nn + 1 |
---|
| 480 | cbmf(nn) = cbmf1(i) |
---|
| 481 | plcl(nn) = plcl1(i) |
---|
| 482 | tnk(nn) = tnk1(i) |
---|
| 483 | qnk(nn) = qnk1(i) |
---|
| 484 | gznk(nn) = gznk1(i) |
---|
| 485 | nk(nn) = nk1(i) |
---|
| 486 | icb(nn) = icb1(i) |
---|
| 487 | iflag(nn) = iflag1(i) |
---|
| 488 | END IF |
---|
| 489 | END DO |
---|
| 490 | |
---|
| 491 | DO k = 1, nl |
---|
| 492 | DO i = 1, ncum |
---|
[5132] | 493 | dph(i, k) = ph(i, k) - ph(i, k + 1) |
---|
[3927] | 494 | END DO |
---|
| 495 | END DO |
---|
| 496 | |
---|
| 497 | END SUBROUTINE cv_compress |
---|
| 498 | |
---|
| 499 | SUBROUTINE cv_undilute2(nloc, ncum, nd, icb, nk, tnk, qnk, gznk, t, q, qs, & |
---|
[5132] | 500 | gz, p, dph, h, tv, lv, inb, inb1, tp, tvp, clw, hp, ep, sigp, frac) |
---|
[5141] | 501 | USE lmdz_cvthermo |
---|
| 502 | |
---|
[3927] | 503 | IMPLICIT NONE |
---|
| 504 | |
---|
| 505 | ! --------------------------------------------------------------------- |
---|
| 506 | ! Purpose: |
---|
| 507 | ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 508 | ! & |
---|
| 509 | ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
| 510 | ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 511 | ! & |
---|
| 512 | ! FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
| 513 | ! --------------------------------------------------------------------- |
---|
| 514 | |
---|
[5142] | 515 | |
---|
[3927] | 516 | ! inputs: |
---|
| 517 | INTEGER ncum, nd, nloc |
---|
| 518 | INTEGER icb(nloc), nk(nloc) |
---|
| 519 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), gz(nloc, nd) |
---|
| 520 | REAL p(nloc, nd), dph(nloc, nd) |
---|
| 521 | REAL tnk(nloc), qnk(nloc), gznk(nloc) |
---|
| 522 | REAL lv(nloc, nd), tv(nloc, nd), h(nloc, nd) |
---|
| 523 | |
---|
| 524 | ! outputs: |
---|
| 525 | INTEGER inb(nloc), inb1(nloc) |
---|
| 526 | REAL tp(nloc, nd), tvp(nloc, nd), clw(nloc, nd) |
---|
| 527 | REAL ep(nloc, nd), sigp(nloc, nd), hp(nloc, nd) |
---|
| 528 | REAL frac(nloc) |
---|
| 529 | |
---|
| 530 | ! local variables: |
---|
| 531 | INTEGER i, k |
---|
| 532 | REAL tg, qg, ahg, alv, s, tc, es, denom, rg, tca, elacrit |
---|
| 533 | REAL by, defrac |
---|
| 534 | REAL ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
---|
| 535 | LOGICAL lcape(nloc) |
---|
| 536 | |
---|
| 537 | ! ===================================================================== |
---|
| 538 | ! --- SOME INITIALIZATIONS |
---|
| 539 | ! ===================================================================== |
---|
| 540 | |
---|
| 541 | DO k = 1, nl |
---|
| 542 | DO i = 1, ncum |
---|
| 543 | ep(i, k) = 0.0 |
---|
| 544 | sigp(i, k) = sigs |
---|
| 545 | END DO |
---|
| 546 | END DO |
---|
| 547 | |
---|
| 548 | ! ===================================================================== |
---|
| 549 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 550 | ! ===================================================================== |
---|
| 551 | |
---|
| 552 | ! --- The procedure is to solve the equation. |
---|
| 553 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
| 554 | |
---|
| 555 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
| 556 | |
---|
| 557 | DO i = 1, ncum |
---|
[5132] | 558 | ah0(i) = (cpd * (1. - qnk(i)) + cl * qnk(i)) * tnk(i) + qnk(i) * (lv0 - clmcpv * (tnk(i) - & |
---|
| 559 | t0)) + gznk(i) |
---|
[3927] | 560 | END DO |
---|
| 561 | |
---|
| 562 | |
---|
| 563 | ! *** Find lifted parcel quantities above cloud base *** |
---|
| 564 | |
---|
| 565 | DO k = minorig + 1, nl |
---|
| 566 | DO i = 1, ncum |
---|
[5132] | 567 | IF (k>=(icb(i) + 1)) THEN |
---|
[3927] | 568 | tg = t(i, k) |
---|
| 569 | qg = qs(i, k) |
---|
[5132] | 570 | alv = lv0 - clmcpv * (t(i, k) - t0) |
---|
[3927] | 571 | |
---|
| 572 | ! First iteration. |
---|
| 573 | |
---|
[5132] | 574 | s = cpd + alv * alv * qg / (rrv * t(i, k) * t(i, k)) |
---|
| 575 | s = 1. / s |
---|
| 576 | ahg = cpd * tg + (cl - cpd) * qnk(i) * t(i, k) + alv * qg + gz(i, k) |
---|
| 577 | tg = tg + s * (ah0(i) - ahg) |
---|
[3927] | 578 | tg = max(tg, 35.0) |
---|
| 579 | tc = tg - t0 |
---|
| 580 | denom = 243.5 + tc |
---|
| 581 | IF (tc>=0.0) THEN |
---|
[5132] | 582 | es = 6.112 * exp(17.67 * tc / denom) |
---|
[3927] | 583 | ELSE |
---|
[5132] | 584 | es = exp(23.33086 - 6111.72784 / tg + 0.15215 * log(tg)) |
---|
[3927] | 585 | END IF |
---|
[5132] | 586 | qg = eps * es / (p(i, k) - es * (1. - eps)) |
---|
[3927] | 587 | |
---|
| 588 | ! Second iteration. |
---|
| 589 | |
---|
[5132] | 590 | s = cpd + alv * alv * qg / (rrv * t(i, k) * t(i, k)) |
---|
| 591 | s = 1. / s |
---|
| 592 | ahg = cpd * tg + (cl - cpd) * qnk(i) * t(i, k) + alv * qg + gz(i, k) |
---|
| 593 | tg = tg + s * (ah0(i) - ahg) |
---|
[3927] | 594 | tg = max(tg, 35.0) |
---|
| 595 | tc = tg - t0 |
---|
| 596 | denom = 243.5 + tc |
---|
| 597 | IF (tc>=0.0) THEN |
---|
[5132] | 598 | es = 6.112 * exp(17.67 * tc / denom) |
---|
[3927] | 599 | ELSE |
---|
[5132] | 600 | es = exp(23.33086 - 6111.72784 / tg + 0.15215 * log(tg)) |
---|
[3927] | 601 | END IF |
---|
[5132] | 602 | qg = eps * es / (p(i, k) - es * (1. - eps)) |
---|
[3927] | 603 | |
---|
[5132] | 604 | alv = lv0 - clmcpv * (t(i, k) - t0) |
---|
[5103] | 605 | ! PRINT*,'cpd dans convect2 ',cpd |
---|
| 606 | ! PRINT*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
| 607 | ! PRINT*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
[5132] | 608 | tp(i, k) = (ah0(i) - (cl - cpd) * qnk(i) * t(i, k) - gz(i, k) - alv * qg) / cpd |
---|
[5117] | 609 | ! if (.NOT.cpd.gt.1000.) THEN |
---|
[5103] | 610 | ! PRINT*,'CPD=',cpd |
---|
[3927] | 611 | ! stop |
---|
[5117] | 612 | ! END IF |
---|
[3927] | 613 | clw(i, k) = qnk(i) - qg |
---|
[5132] | 614 | clw(i, k) = max(0.0, clw(i, k)) |
---|
| 615 | rg = qg / (1. - qnk(i)) |
---|
| 616 | tvp(i, k) = tp(i, k) * (1. + rg * epsi) |
---|
[3927] | 617 | END IF |
---|
| 618 | END DO |
---|
| 619 | END DO |
---|
| 620 | |
---|
| 621 | ! ===================================================================== |
---|
| 622 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
| 623 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 624 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
| 625 | ! ===================================================================== |
---|
| 626 | |
---|
| 627 | DO k = minorig + 1, nl |
---|
| 628 | DO i = 1, ncum |
---|
[5132] | 629 | IF (k>=(nk(i) + 1)) THEN |
---|
[3927] | 630 | tca = tp(i, k) - t0 |
---|
| 631 | IF (tca>=0.0) THEN |
---|
| 632 | elacrit = elcrit |
---|
| 633 | ELSE |
---|
[5132] | 634 | elacrit = elcrit * (1.0 - tca / tlcrit) |
---|
[3927] | 635 | END IF |
---|
| 636 | elacrit = max(elacrit, 0.0) |
---|
[5132] | 637 | ep(i, k) = 1.0 - elacrit / max(clw(i, k), 1.0E-8) |
---|
| 638 | ep(i, k) = max(ep(i, k), 0.0) |
---|
| 639 | ep(i, k) = min(ep(i, k), 1.0) |
---|
[3927] | 640 | sigp(i, k) = sigs |
---|
| 641 | END IF |
---|
| 642 | END DO |
---|
| 643 | END DO |
---|
| 644 | |
---|
| 645 | ! ===================================================================== |
---|
| 646 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
| 647 | ! --- VIRTUAL TEMPERATURE |
---|
| 648 | ! ===================================================================== |
---|
| 649 | |
---|
| 650 | DO k = minorig + 1, nl |
---|
| 651 | DO i = 1, ncum |
---|
[5132] | 652 | IF (k>=(icb(i) + 1)) THEN |
---|
| 653 | tvp(i, k) = tvp(i, k) * (1.0 - qnk(i) + ep(i, k) * clw(i, k)) |
---|
[5103] | 654 | ! PRINT*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
| 655 | ! PRINT*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
[3927] | 656 | END IF |
---|
| 657 | END DO |
---|
| 658 | END DO |
---|
| 659 | DO i = 1, ncum |
---|
[5132] | 660 | tvp(i, nlp) = tvp(i, nl) - (gz(i, nlp) - gz(i, nl)) / cpd |
---|
[3927] | 661 | END DO |
---|
| 662 | |
---|
| 663 | ! ===================================================================== |
---|
| 664 | ! --- FIND THE FIRST MODEL LEVEL (INB1) ABOVE THE PARCEL'S |
---|
| 665 | ! --- HIGHEST LEVEL OF NEUTRAL BUOYANCY |
---|
| 666 | ! --- AND THE HIGHEST LEVEL OF POSITIVE CAPE (INB) |
---|
| 667 | ! ===================================================================== |
---|
| 668 | |
---|
| 669 | DO i = 1, ncum |
---|
| 670 | cape(i) = 0.0 |
---|
| 671 | capem(i) = 0.0 |
---|
| 672 | inb(i) = icb(i) + 1 |
---|
| 673 | inb1(i) = inb(i) |
---|
| 674 | END DO |
---|
| 675 | |
---|
| 676 | ! Originial Code |
---|
| 677 | |
---|
| 678 | ! do 530 k=minorig+1,nl-1 |
---|
| 679 | ! do 520 i=1,ncum |
---|
[5116] | 680 | ! IF(k.ge.(icb(i)+1))THEN |
---|
[3927] | 681 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 682 | ! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 683 | ! cape(i)=cape(i)+by |
---|
[5116] | 684 | ! IF(by.ge.0.0)inb1(i)=k+1 |
---|
| 685 | ! IF(cape(i).gt.0.0)THEN |
---|
[3927] | 686 | ! inb(i)=k+1 |
---|
| 687 | ! capem(i)=cape(i) |
---|
[5117] | 688 | ! END IF |
---|
| 689 | ! END IF |
---|
[3927] | 690 | ! 520 continue |
---|
| 691 | ! 530 continue |
---|
| 692 | ! do 540 i=1,ncum |
---|
| 693 | ! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
| 694 | ! cape(i)=capem(i)+byp |
---|
| 695 | ! defrac=capem(i)-cape(i) |
---|
| 696 | ! defrac=max(defrac,0.001) |
---|
| 697 | ! frac(i)=-cape(i)/defrac |
---|
| 698 | ! frac(i)=min(frac(i),1.0) |
---|
| 699 | ! frac(i)=max(frac(i),0.0) |
---|
| 700 | ! 540 continue |
---|
| 701 | |
---|
| 702 | ! K Emanuel fix |
---|
| 703 | |
---|
[5103] | 704 | ! CALL zilch(byp,ncum) |
---|
[3927] | 705 | ! do 530 k=minorig+1,nl-1 |
---|
| 706 | ! do 520 i=1,ncum |
---|
[5116] | 707 | ! IF(k.ge.(icb(i)+1))THEN |
---|
[3927] | 708 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 709 | ! cape(i)=cape(i)+by |
---|
[5116] | 710 | ! IF(by.ge.0.0)inb1(i)=k+1 |
---|
| 711 | ! IF(cape(i).gt.0.0)THEN |
---|
[3927] | 712 | ! inb(i)=k+1 |
---|
| 713 | ! capem(i)=cape(i) |
---|
| 714 | ! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
[5117] | 715 | ! END IF |
---|
| 716 | ! END IF |
---|
[3927] | 717 | ! 520 continue |
---|
| 718 | ! 530 continue |
---|
| 719 | ! do 540 i=1,ncum |
---|
| 720 | ! inb(i)=max(inb(i),inb1(i)) |
---|
| 721 | ! cape(i)=capem(i)+byp(i) |
---|
| 722 | ! defrac=capem(i)-cape(i) |
---|
| 723 | ! defrac=max(defrac,0.001) |
---|
| 724 | ! frac(i)=-cape(i)/defrac |
---|
| 725 | ! frac(i)=min(frac(i),1.0) |
---|
| 726 | ! frac(i)=max(frac(i),0.0) |
---|
| 727 | ! 540 continue |
---|
| 728 | |
---|
| 729 | ! J Teixeira fix |
---|
| 730 | |
---|
| 731 | CALL zilch(byp, ncum) |
---|
| 732 | DO i = 1, ncum |
---|
| 733 | lcape(i) = .TRUE. |
---|
| 734 | END DO |
---|
| 735 | DO k = minorig + 1, nl - 1 |
---|
| 736 | DO i = 1, ncum |
---|
| 737 | IF (cape(i)<0.0) lcape(i) = .FALSE. |
---|
[5132] | 738 | IF ((k>=(icb(i) + 1)) .AND. lcape(i)) THEN |
---|
| 739 | by = (tvp(i, k) - tv(i, k)) * dph(i, k) / p(i, k) |
---|
| 740 | byp(i) = (tvp(i, k + 1) - tv(i, k + 1)) * dph(i, k + 1) / p(i, k + 1) |
---|
[3927] | 741 | cape(i) = cape(i) + by |
---|
| 742 | IF (by>=0.0) inb1(i) = k + 1 |
---|
| 743 | IF (cape(i)>0.0) THEN |
---|
| 744 | inb(i) = k + 1 |
---|
| 745 | capem(i) = cape(i) |
---|
| 746 | END IF |
---|
| 747 | END IF |
---|
| 748 | END DO |
---|
| 749 | END DO |
---|
| 750 | DO i = 1, ncum |
---|
| 751 | cape(i) = capem(i) + byp(i) |
---|
| 752 | defrac = capem(i) - cape(i) |
---|
| 753 | defrac = max(defrac, 0.001) |
---|
[5132] | 754 | frac(i) = -cape(i) / defrac |
---|
[3927] | 755 | frac(i) = min(frac(i), 1.0) |
---|
| 756 | frac(i) = max(frac(i), 0.0) |
---|
| 757 | END DO |
---|
| 758 | |
---|
| 759 | ! ===================================================================== |
---|
| 760 | ! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
| 761 | ! ===================================================================== |
---|
| 762 | |
---|
| 763 | ! initialization: |
---|
[5132] | 764 | DO i = 1, ncum * nlp |
---|
[3927] | 765 | hp(i, 1) = h(i, 1) |
---|
| 766 | END DO |
---|
| 767 | |
---|
| 768 | DO k = minorig + 1, nl |
---|
| 769 | DO i = 1, ncum |
---|
| 770 | IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
---|
[5132] | 771 | hp(i, k) = h(i, nk(i)) + (lv(i, k) + (cpd - cpv) * t(i, k)) * ep(i, k) * clw(i, k & |
---|
| 772 | ) |
---|
[3927] | 773 | END IF |
---|
| 774 | END DO |
---|
| 775 | END DO |
---|
| 776 | |
---|
| 777 | END SUBROUTINE cv_undilute2 |
---|
| 778 | |
---|
| 779 | SUBROUTINE cv_closure(nloc, ncum, nd, nk, icb, tv, tvp, p, ph, dph, plcl, & |
---|
[5132] | 780 | cpn, iflag, cbmf) |
---|
[5141] | 781 | USE lmdz_cvthermo |
---|
| 782 | |
---|
[3927] | 783 | IMPLICIT NONE |
---|
| 784 | |
---|
| 785 | ! inputs: |
---|
| 786 | INTEGER ncum, nd, nloc |
---|
| 787 | INTEGER nk(nloc), icb(nloc) |
---|
| 788 | REAL tv(nloc, nd), tvp(nloc, nd), p(nloc, nd), dph(nloc, nd) |
---|
[5132] | 789 | REAL ph(nloc, nd + 1) ! caution nd instead ndp1 to be consistent... |
---|
[3927] | 790 | REAL plcl(nloc), cpn(nloc, nd) |
---|
| 791 | |
---|
| 792 | ! outputs: |
---|
| 793 | INTEGER iflag(nloc) |
---|
| 794 | REAL cbmf(nloc) ! also an input |
---|
| 795 | |
---|
| 796 | ! local variables: |
---|
| 797 | INTEGER i, k, icbmax |
---|
| 798 | REAL dtpbl(nloc), dtmin(nloc), tvpplcl(nloc), tvaplcl(nloc) |
---|
| 799 | REAL work(nloc) |
---|
| 800 | |
---|
[5142] | 801 | |
---|
[3927] | 802 | ! ------------------------------------------------------------------- |
---|
| 803 | ! Compute icbmax. |
---|
| 804 | ! ------------------------------------------------------------------- |
---|
| 805 | |
---|
| 806 | icbmax = 2 |
---|
| 807 | DO i = 1, ncum |
---|
| 808 | icbmax = max(icbmax, icb(i)) |
---|
| 809 | END DO |
---|
| 810 | |
---|
| 811 | ! ===================================================================== |
---|
| 812 | ! --- CALCULATE CLOUD BASE MASS FLUX |
---|
| 813 | ! ===================================================================== |
---|
| 814 | |
---|
| 815 | ! tvpplcl = parcel temperature lifted adiabatically from level |
---|
| 816 | ! icb-1 to the LCL. |
---|
| 817 | ! tvaplcl = virtual temperature at the LCL. |
---|
| 818 | |
---|
| 819 | DO i = 1, ncum |
---|
| 820 | dtpbl(i) = 0.0 |
---|
[5132] | 821 | tvpplcl(i) = tvp(i, icb(i) - 1) - rrd * tvp(i, icb(i) - 1) * (p(i, icb(i) - 1) - plcl(& |
---|
| 822 | i)) / (cpn(i, icb(i) - 1) * p(i, icb(i) - 1)) |
---|
| 823 | tvaplcl(i) = tv(i, icb(i)) + (tvp(i, icb(i)) - tvp(i, icb(i) + 1)) * (plcl(i) - p(i & |
---|
| 824 | , icb(i))) / (p(i, icb(i)) - p(i, icb(i) + 1)) |
---|
[3927] | 825 | END DO |
---|
| 826 | |
---|
| 827 | ! ------------------------------------------------------------------- |
---|
| 828 | ! --- Interpolate difference between lifted parcel and |
---|
| 829 | ! --- environmental temperatures to lifted condensation level |
---|
| 830 | ! ------------------------------------------------------------------- |
---|
| 831 | |
---|
| 832 | ! dtpbl = average of tvp-tv in the PBL (k=nk to icb-1). |
---|
| 833 | |
---|
| 834 | DO k = minorig, icbmax |
---|
| 835 | DO i = 1, ncum |
---|
[5132] | 836 | IF ((k>=nk(i)) .AND. (k<=(icb(i) - 1))) THEN |
---|
| 837 | dtpbl(i) = dtpbl(i) + (tvp(i, k) - tv(i, k)) * dph(i, k) |
---|
[3927] | 838 | END IF |
---|
| 839 | END DO |
---|
| 840 | END DO |
---|
| 841 | DO i = 1, ncum |
---|
[5132] | 842 | dtpbl(i) = dtpbl(i) / (ph(i, nk(i)) - ph(i, icb(i))) |
---|
[3927] | 843 | dtmin(i) = tvpplcl(i) - tvaplcl(i) + dtmax + dtpbl(i) |
---|
| 844 | END DO |
---|
| 845 | |
---|
| 846 | ! ------------------------------------------------------------------- |
---|
| 847 | ! --- Adjust cloud base mass flux |
---|
| 848 | ! ------------------------------------------------------------------- |
---|
| 849 | |
---|
| 850 | DO i = 1, ncum |
---|
| 851 | work(i) = cbmf(i) |
---|
[5132] | 852 | cbmf(i) = max(0.0, (1.0 - damp) * cbmf(i) + 0.1 * alpha * dtmin(i)) |
---|
[3927] | 853 | IF ((work(i)==0.0) .AND. (cbmf(i)==0.0)) THEN |
---|
| 854 | iflag(i) = 3 |
---|
| 855 | END IF |
---|
| 856 | END DO |
---|
| 857 | |
---|
| 858 | END SUBROUTINE cv_closure |
---|
| 859 | |
---|
| 860 | SUBROUTINE cv_mixing(nloc, ncum, nd, icb, nk, inb, inb1, ph, t, q, qs, u, v, & |
---|
[5132] | 861 | h, lv, qnk, hp, tv, tvp, ep, clw, cbmf, m, ment, qent, uent, vent, nent, & |
---|
| 862 | sij, elij) |
---|
[5141] | 863 | USE lmdz_cvthermo |
---|
| 864 | |
---|
[3927] | 865 | IMPLICIT NONE |
---|
| 866 | |
---|
[5142] | 867 | |
---|
[3927] | 868 | ! inputs: |
---|
| 869 | INTEGER ncum, nd, nloc |
---|
| 870 | INTEGER icb(nloc), inb(nloc), inb1(nloc), nk(nloc) |
---|
| 871 | REAL cbmf(nloc), qnk(nloc) |
---|
[5132] | 872 | REAL ph(nloc, nd + 1) |
---|
[3927] | 873 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), lv(nloc, nd) |
---|
| 874 | REAL u(nloc, nd), v(nloc, nd), h(nloc, nd), hp(nloc, nd) |
---|
| 875 | REAL tv(nloc, nd), tvp(nloc, nd), ep(nloc, nd), clw(nloc, nd) |
---|
| 876 | |
---|
| 877 | ! outputs: |
---|
| 878 | INTEGER nent(nloc, nd) |
---|
| 879 | REAL m(nloc, nd), ment(nloc, nd, nd), qent(nloc, nd, nd) |
---|
| 880 | REAL uent(nloc, nd, nd), vent(nloc, nd, nd) |
---|
| 881 | REAL sij(nloc, nd, nd), elij(nloc, nd, nd) |
---|
| 882 | |
---|
| 883 | ! local variables: |
---|
| 884 | INTEGER i, j, k, ij |
---|
| 885 | INTEGER num1, num2 |
---|
| 886 | REAL dbo, qti, bf2, anum, denom, dei, altem, cwat, stemp |
---|
| 887 | REAL alt, qp1, smid, sjmin, sjmax, delp, delm |
---|
| 888 | REAL work(nloc), asij(nloc), smin(nloc), scrit(nloc) |
---|
| 889 | REAL bsum(nloc, nd) |
---|
| 890 | LOGICAL lwork(nloc) |
---|
| 891 | |
---|
| 892 | ! ===================================================================== |
---|
| 893 | ! --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
| 894 | ! ===================================================================== |
---|
| 895 | |
---|
[5132] | 896 | DO i = 1, ncum * nlp |
---|
[3927] | 897 | nent(i, 1) = 0 |
---|
| 898 | m(i, 1) = 0.0 |
---|
| 899 | END DO |
---|
| 900 | |
---|
| 901 | DO k = 1, nlp |
---|
| 902 | DO j = 1, nlp |
---|
| 903 | DO i = 1, ncum |
---|
| 904 | qent(i, k, j) = q(i, j) |
---|
| 905 | uent(i, k, j) = u(i, j) |
---|
| 906 | vent(i, k, j) = v(i, j) |
---|
| 907 | elij(i, k, j) = 0.0 |
---|
| 908 | ment(i, k, j) = 0.0 |
---|
| 909 | sij(i, k, j) = 0.0 |
---|
| 910 | END DO |
---|
| 911 | END DO |
---|
| 912 | END DO |
---|
| 913 | |
---|
| 914 | ! ------------------------------------------------------------------- |
---|
| 915 | ! --- Calculate rates of mixing, m(i) |
---|
| 916 | ! ------------------------------------------------------------------- |
---|
| 917 | |
---|
| 918 | CALL zilch(work, ncum) |
---|
| 919 | |
---|
| 920 | DO j = minorig + 1, nl |
---|
| 921 | DO i = 1, ncum |
---|
[5132] | 922 | IF ((j>=(icb(i) + 1)) .AND. (j<=inb(i))) THEN |
---|
[3927] | 923 | k = min(j, inb1(i)) |
---|
[5132] | 924 | dbo = abs(tv(i, k + 1) - tvp(i, k + 1) - tv(i, k - 1) + tvp(i, k - 1)) + & |
---|
| 925 | entp * 0.04 * (ph(i, k) - ph(i, k + 1)) |
---|
[3927] | 926 | work(i) = work(i) + dbo |
---|
[5132] | 927 | m(i, j) = cbmf(i) * dbo |
---|
[3927] | 928 | END IF |
---|
| 929 | END DO |
---|
| 930 | END DO |
---|
| 931 | DO k = minorig + 1, nl |
---|
| 932 | DO i = 1, ncum |
---|
[5132] | 933 | IF ((k>=(icb(i) + 1)) .AND. (k<=inb(i))) THEN |
---|
| 934 | m(i, k) = m(i, k) / work(i) |
---|
[3927] | 935 | END IF |
---|
| 936 | END DO |
---|
| 937 | END DO |
---|
| 938 | |
---|
| 939 | |
---|
| 940 | ! ===================================================================== |
---|
| 941 | ! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
| 942 | ! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
| 943 | ! --- FRACTION (sij) |
---|
| 944 | ! ===================================================================== |
---|
| 945 | |
---|
| 946 | DO i = minorig + 1, nl |
---|
| 947 | DO j = minorig + 1, nl |
---|
| 948 | DO ij = 1, ncum |
---|
[5132] | 949 | IF ((i>=(icb(ij) + 1)) .AND. (j>=icb(ij)) .AND. (i<=inb(ij)) .AND. (j<= & |
---|
| 950 | inb(ij))) THEN |
---|
| 951 | qti = qnk(ij) - ep(ij, i) * clw(ij, i) |
---|
| 952 | bf2 = 1. + lv(ij, j) * lv(ij, j) * qs(ij, j) / (rrv * t(ij, j) * t(ij, j) * cpd) |
---|
| 953 | anum = h(ij, j) - hp(ij, i) + (cpv - cpd) * t(ij, j) * (qti - q(ij, j)) |
---|
| 954 | denom = h(ij, i) - hp(ij, i) + (cpd - cpv) * (q(ij, i) - qti) * t(ij, j) |
---|
[3927] | 955 | dei = denom |
---|
| 956 | IF (abs(dei)<0.01) dei = 0.01 |
---|
[5132] | 957 | sij(ij, i, j) = anum / dei |
---|
[3927] | 958 | sij(ij, i, i) = 1.0 |
---|
[5132] | 959 | altem = sij(ij, i, j) * q(ij, i) + (1. - sij(ij, i, j)) * qti - qs(ij, j) |
---|
| 960 | altem = altem / bf2 |
---|
| 961 | cwat = clw(ij, j) * (1. - ep(ij, j)) |
---|
[3927] | 962 | stemp = sij(ij, i, j) |
---|
| 963 | IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
---|
[5132] | 964 | anum = anum - lv(ij, j) * (qti - qs(ij, j) - cwat * bf2) |
---|
| 965 | denom = denom + lv(ij, j) * (q(ij, i) - qti) |
---|
[3927] | 966 | IF (abs(denom)<0.01) denom = 0.01 |
---|
[5132] | 967 | sij(ij, i, j) = anum / denom |
---|
| 968 | altem = sij(ij, i, j) * q(ij, i) + (1. - sij(ij, i, j)) * qti - qs(ij, j) |
---|
| 969 | altem = altem - (bf2 - 1.) * cwat |
---|
[3927] | 970 | END IF |
---|
[5132] | 971 | IF (sij(ij, i, j)>0.0 .AND. sij(ij, i, j)<0.9) THEN |
---|
| 972 | qent(ij, i, j) = sij(ij, i, j) * q(ij, i) + (1. - sij(ij, i, j)) * qti |
---|
| 973 | uent(ij, i, j) = sij(ij, i, j) * u(ij, i) + & |
---|
| 974 | (1. - sij(ij, i, j)) * u(ij, nk(ij)) |
---|
| 975 | vent(ij, i, j) = sij(ij, i, j) * v(ij, i) + & |
---|
| 976 | (1. - sij(ij, i, j)) * v(ij, nk(ij)) |
---|
[3927] | 977 | elij(ij, i, j) = altem |
---|
[5132] | 978 | elij(ij, i, j) = max(0.0, elij(ij, i, j)) |
---|
| 979 | ment(ij, i, j) = m(ij, i) / (1. - sij(ij, i, j)) |
---|
[3927] | 980 | nent(ij, i) = nent(ij, i) + 1 |
---|
| 981 | END IF |
---|
[5132] | 982 | sij(ij, i, j) = max(0.0, sij(ij, i, j)) |
---|
| 983 | sij(ij, i, j) = min(1.0, sij(ij, i, j)) |
---|
[3927] | 984 | END IF |
---|
| 985 | END DO |
---|
| 986 | END DO |
---|
| 987 | |
---|
| 988 | ! *** If no air can entrain at level i assume that updraft detrains |
---|
| 989 | ! *** |
---|
| 990 | ! *** at that level and calculate detrained air flux and properties |
---|
| 991 | ! *** |
---|
| 992 | |
---|
| 993 | DO ij = 1, ncum |
---|
[5132] | 994 | IF ((i>=(icb(ij) + 1)) .AND. (i<=inb(ij)) .AND. (nent(ij, i)==0)) THEN |
---|
[3927] | 995 | ment(ij, i, i) = m(ij, i) |
---|
[5132] | 996 | qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i) * clw(ij, i) |
---|
[3927] | 997 | uent(ij, i, i) = u(ij, nk(ij)) |
---|
| 998 | vent(ij, i, i) = v(ij, nk(ij)) |
---|
| 999 | elij(ij, i, i) = clw(ij, i) |
---|
| 1000 | sij(ij, i, i) = 1.0 |
---|
| 1001 | END IF |
---|
| 1002 | END DO |
---|
| 1003 | END DO |
---|
| 1004 | |
---|
| 1005 | DO i = 1, ncum |
---|
| 1006 | sij(i, inb(i), inb(i)) = 1.0 |
---|
| 1007 | END DO |
---|
| 1008 | |
---|
| 1009 | ! ===================================================================== |
---|
| 1010 | ! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
| 1011 | ! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
| 1012 | ! ===================================================================== |
---|
| 1013 | |
---|
[5132] | 1014 | CALL zilch(bsum, ncum * nlp) |
---|
[3927] | 1015 | DO ij = 1, ncum |
---|
| 1016 | lwork(ij) = .FALSE. |
---|
| 1017 | END DO |
---|
| 1018 | DO i = minorig + 1, nl |
---|
| 1019 | |
---|
| 1020 | num1 = 0 |
---|
| 1021 | DO ij = 1, ncum |
---|
[5132] | 1022 | IF ((i>=icb(ij) + 1) .AND. (i<=inb(ij))) num1 = num1 + 1 |
---|
[3927] | 1023 | END DO |
---|
| 1024 | IF (num1<=0) GO TO 789 |
---|
| 1025 | |
---|
| 1026 | DO ij = 1, ncum |
---|
[5132] | 1027 | IF ((i>=icb(ij) + 1) .AND. (i<=inb(ij))) THEN |
---|
| 1028 | lwork(ij) = (nent(ij, i)/=0) |
---|
| 1029 | qp1 = q(ij, nk(ij)) - ep(ij, i) * clw(ij, i) |
---|
| 1030 | anum = h(ij, i) - hp(ij, i) - lv(ij, i) * (qp1 - qs(ij, i)) |
---|
| 1031 | denom = h(ij, i) - hp(ij, i) + lv(ij, i) * (q(ij, i) - qp1) |
---|
[3927] | 1032 | IF (abs(denom)<0.01) denom = 0.01 |
---|
[5132] | 1033 | scrit(ij) = anum / denom |
---|
| 1034 | alt = qp1 - qs(ij, i) + scrit(ij) * (q(ij, i) - qp1) |
---|
[3927] | 1035 | IF (scrit(ij)<0.0 .OR. alt<0.0) scrit(ij) = 1.0 |
---|
| 1036 | asij(ij) = 0.0 |
---|
| 1037 | smin(ij) = 1.0 |
---|
| 1038 | END IF |
---|
| 1039 | END DO |
---|
| 1040 | DO j = minorig, nl |
---|
| 1041 | |
---|
| 1042 | num2 = 0 |
---|
| 1043 | DO ij = 1, ncum |
---|
[5132] | 1044 | IF ((i>=icb(ij) + 1) .AND. (i<=inb(ij)) .AND. (j>=icb(& |
---|
| 1045 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) num2 = num2 + 1 |
---|
[3927] | 1046 | END DO |
---|
| 1047 | IF (num2<=0) GO TO 783 |
---|
| 1048 | |
---|
| 1049 | DO ij = 1, ncum |
---|
[5132] | 1050 | IF ((i>=icb(ij) + 1) .AND. (i<=inb(ij)) .AND. (j>=icb(& |
---|
| 1051 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
---|
| 1052 | IF (sij(ij, i, j)>0.0 .AND. sij(ij, i, j)<0.9) THEN |
---|
[3927] | 1053 | IF (j>i) THEN |
---|
[5132] | 1054 | smid = min(sij(ij, i, j), scrit(ij)) |
---|
[3927] | 1055 | sjmax = smid |
---|
| 1056 | sjmin = smid |
---|
[5132] | 1057 | IF (smid<smin(ij) .AND. sij(ij, i, j + 1)<smid) THEN |
---|
[3927] | 1058 | smin(ij) = smid |
---|
[5132] | 1059 | sjmax = min(sij(ij, i, j + 1), sij(ij, i, j), scrit(ij)) |
---|
| 1060 | sjmin = max(sij(ij, i, j - 1), sij(ij, i, j)) |
---|
[3927] | 1061 | sjmin = min(sjmin, scrit(ij)) |
---|
| 1062 | END IF |
---|
| 1063 | ELSE |
---|
[5132] | 1064 | sjmax = max(sij(ij, i, j + 1), scrit(ij)) |
---|
| 1065 | smid = max(sij(ij, i, j), scrit(ij)) |
---|
[3927] | 1066 | sjmin = 0.0 |
---|
[5132] | 1067 | IF (j>1) sjmin = sij(ij, i, j - 1) |
---|
[3927] | 1068 | sjmin = max(sjmin, scrit(ij)) |
---|
| 1069 | END IF |
---|
[5132] | 1070 | delp = abs(sjmax - smid) |
---|
| 1071 | delm = abs(sjmin - smid) |
---|
| 1072 | asij(ij) = asij(ij) + (delp + delm) * (ph(ij, j) - ph(ij, j + 1)) |
---|
| 1073 | ment(ij, i, j) = ment(ij, i, j) * (delp + delm) * (ph(ij, j) - ph(ij, j + 1)) |
---|
[3927] | 1074 | END IF |
---|
| 1075 | END IF |
---|
| 1076 | END DO |
---|
[5132] | 1077 | 783 END DO |
---|
[3927] | 1078 | DO ij = 1, ncum |
---|
[5132] | 1079 | IF ((i>=icb(ij) + 1) .AND. (i<=inb(ij)) .AND. lwork(ij)) THEN |
---|
[3927] | 1080 | asij(ij) = max(1.0E-21, asij(ij)) |
---|
[5132] | 1081 | asij(ij) = 1.0 / asij(ij) |
---|
[3927] | 1082 | bsum(ij, i) = 0.0 |
---|
| 1083 | END IF |
---|
| 1084 | END DO |
---|
| 1085 | DO j = minorig, nl + 1 |
---|
| 1086 | DO ij = 1, ncum |
---|
[5132] | 1087 | IF ((i>=icb(ij) + 1) .AND. (i<=inb(ij)) .AND. (j>=icb(& |
---|
| 1088 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
---|
| 1089 | ment(ij, i, j) = ment(ij, i, j) * asij(ij) |
---|
[3927] | 1090 | bsum(ij, i) = bsum(ij, i) + ment(ij, i, j) |
---|
| 1091 | END IF |
---|
| 1092 | END DO |
---|
| 1093 | END DO |
---|
| 1094 | DO ij = 1, ncum |
---|
[5132] | 1095 | IF ((i>=icb(ij) + 1) .AND. (i<=inb(ij)) .AND. (bsum(ij, & |
---|
| 1096 | i)<1.0E-18) .AND. lwork(ij)) THEN |
---|
[3927] | 1097 | nent(ij, i) = 0 |
---|
| 1098 | ment(ij, i, i) = m(ij, i) |
---|
[5132] | 1099 | qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i) * clw(ij, i) |
---|
[3927] | 1100 | uent(ij, i, i) = u(ij, nk(ij)) |
---|
| 1101 | vent(ij, i, i) = v(ij, nk(ij)) |
---|
| 1102 | elij(ij, i, i) = clw(ij, i) |
---|
| 1103 | sij(ij, i, i) = 1.0 |
---|
| 1104 | END IF |
---|
| 1105 | END DO |
---|
[5132] | 1106 | 789 END DO |
---|
[3927] | 1107 | |
---|
| 1108 | END SUBROUTINE cv_mixing |
---|
| 1109 | |
---|
| 1110 | SUBROUTINE cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph, h, lv, & |
---|
[5132] | 1111 | ep, sigp, clw, m, ment, elij, iflag, mp, qp, up, vp, wt, water, evap) |
---|
[5141] | 1112 | USE lmdz_cvthermo |
---|
| 1113 | |
---|
[3927] | 1114 | IMPLICIT NONE |
---|
| 1115 | |
---|
[5142] | 1116 | |
---|
[3927] | 1117 | ! inputs: |
---|
| 1118 | INTEGER ncum, nd, nloc |
---|
| 1119 | INTEGER inb(nloc) |
---|
| 1120 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd) |
---|
| 1121 | REAL gz(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
[5132] | 1122 | REAL p(nloc, nd), ph(nloc, nd + 1), h(nloc, nd) |
---|
[3927] | 1123 | REAL lv(nloc, nd), ep(nloc, nd), sigp(nloc, nd), clw(nloc, nd) |
---|
| 1124 | REAL m(nloc, nd), ment(nloc, nd, nd), elij(nloc, nd, nd) |
---|
| 1125 | |
---|
| 1126 | ! outputs: |
---|
| 1127 | INTEGER iflag(nloc) ! also an input |
---|
| 1128 | REAL mp(nloc, nd), qp(nloc, nd), up(nloc, nd), vp(nloc, nd) |
---|
| 1129 | REAL water(nloc, nd), evap(nloc, nd), wt(nloc, nd) |
---|
| 1130 | |
---|
| 1131 | ! local variables: |
---|
| 1132 | INTEGER i, j, k, ij, num1 |
---|
| 1133 | INTEGER jtt(nloc) |
---|
| 1134 | REAL awat, coeff, qsm, afac, sigt, b6, c6, revap |
---|
| 1135 | REAL dhdp, fac, qstm, rat |
---|
| 1136 | REAL wdtrain(nloc) |
---|
| 1137 | LOGICAL lwork(nloc) |
---|
| 1138 | |
---|
| 1139 | ! ===================================================================== |
---|
| 1140 | ! --- PRECIPITATING DOWNDRAFT CALCULATION |
---|
| 1141 | ! ===================================================================== |
---|
| 1142 | |
---|
| 1143 | ! Initializations: |
---|
| 1144 | |
---|
| 1145 | DO i = 1, ncum |
---|
| 1146 | DO k = 1, nl + 1 |
---|
| 1147 | wt(i, k) = omtsnow |
---|
| 1148 | mp(i, k) = 0.0 |
---|
| 1149 | evap(i, k) = 0.0 |
---|
| 1150 | water(i, k) = 0.0 |
---|
| 1151 | END DO |
---|
| 1152 | END DO |
---|
| 1153 | |
---|
| 1154 | DO i = 1, ncum |
---|
| 1155 | qp(i, 1) = q(i, 1) |
---|
| 1156 | up(i, 1) = u(i, 1) |
---|
| 1157 | vp(i, 1) = v(i, 1) |
---|
| 1158 | END DO |
---|
| 1159 | |
---|
| 1160 | DO k = 2, nl + 1 |
---|
| 1161 | DO i = 1, ncum |
---|
[5132] | 1162 | qp(i, k) = q(i, k - 1) |
---|
| 1163 | up(i, k) = u(i, k - 1) |
---|
| 1164 | vp(i, k) = v(i, k - 1) |
---|
[3927] | 1165 | END DO |
---|
| 1166 | END DO |
---|
| 1167 | |
---|
| 1168 | |
---|
| 1169 | ! *** Check whether ep(inb)=0, if so, skip precipitating *** |
---|
| 1170 | ! *** downdraft calculation *** |
---|
| 1171 | |
---|
| 1172 | |
---|
| 1173 | ! *** Integrate liquid water equation to find condensed water *** |
---|
| 1174 | ! *** and condensed water flux *** |
---|
| 1175 | |
---|
| 1176 | DO i = 1, ncum |
---|
| 1177 | jtt(i) = 2 |
---|
[5132] | 1178 | IF (ep(i, inb(i))<=0.0001) iflag(i) = 2 |
---|
[3927] | 1179 | IF (iflag(i)==0) THEN |
---|
| 1180 | lwork(i) = .TRUE. |
---|
| 1181 | ELSE |
---|
| 1182 | lwork(i) = .FALSE. |
---|
| 1183 | END IF |
---|
| 1184 | END DO |
---|
| 1185 | |
---|
| 1186 | ! *** Begin downdraft loop *** |
---|
| 1187 | |
---|
| 1188 | CALL zilch(wdtrain, ncum) |
---|
| 1189 | DO i = nl + 1, 1, -1 |
---|
| 1190 | |
---|
| 1191 | num1 = 0 |
---|
| 1192 | DO ij = 1, ncum |
---|
| 1193 | IF ((i<=inb(ij)) .AND. lwork(ij)) num1 = num1 + 1 |
---|
| 1194 | END DO |
---|
| 1195 | IF (num1<=0) GO TO 899 |
---|
| 1196 | |
---|
| 1197 | |
---|
| 1198 | ! *** Calculate detrained precipitation *** |
---|
| 1199 | |
---|
| 1200 | DO ij = 1, ncum |
---|
| 1201 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
[5132] | 1202 | wdtrain(ij) = g * ep(ij, i) * m(ij, i) * clw(ij, i) |
---|
[3927] | 1203 | END IF |
---|
| 1204 | END DO |
---|
| 1205 | |
---|
| 1206 | IF (i>1) THEN |
---|
| 1207 | DO j = 1, i - 1 |
---|
| 1208 | DO ij = 1, ncum |
---|
| 1209 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
[5132] | 1210 | awat = elij(ij, j, i) - (1. - ep(ij, i)) * clw(ij, i) |
---|
[3927] | 1211 | awat = max(0.0, awat) |
---|
[5132] | 1212 | wdtrain(ij) = wdtrain(ij) + g * awat * ment(ij, j, i) |
---|
[3927] | 1213 | END IF |
---|
| 1214 | END DO |
---|
| 1215 | END DO |
---|
| 1216 | END IF |
---|
| 1217 | |
---|
| 1218 | ! *** Find rain water and evaporation using provisional *** |
---|
| 1219 | ! *** estimates of qp(i)and qp(i-1) *** |
---|
| 1220 | |
---|
| 1221 | |
---|
| 1222 | ! *** Value of terminal velocity and coeffecient of evaporation for snow |
---|
| 1223 | ! *** |
---|
| 1224 | |
---|
| 1225 | DO ij = 1, ncum |
---|
| 1226 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
| 1227 | coeff = coeffs |
---|
| 1228 | wt(ij, i) = omtsnow |
---|
| 1229 | |
---|
| 1230 | ! *** Value of terminal velocity and coeffecient of evaporation for |
---|
| 1231 | ! rain *** |
---|
| 1232 | |
---|
[5132] | 1233 | IF (t(ij, i)>273.0) THEN |
---|
[3927] | 1234 | coeff = coeffr |
---|
| 1235 | wt(ij, i) = omtrain |
---|
| 1236 | END IF |
---|
[5132] | 1237 | qsm = 0.5 * (q(ij, i) + qp(ij, i + 1)) |
---|
| 1238 | afac = coeff * ph(ij, i) * (qs(ij, i) - qsm) / (1.0E4 + 2.0E3 * ph(ij, i) * qs(ij, i)) |
---|
[3927] | 1239 | afac = max(afac, 0.0) |
---|
| 1240 | sigt = sigp(ij, i) |
---|
| 1241 | sigt = max(0.0, sigt) |
---|
| 1242 | sigt = min(1.0, sigt) |
---|
[5132] | 1243 | b6 = 100. * (ph(ij, i) - ph(ij, i + 1)) * sigt * afac / wt(ij, i) |
---|
| 1244 | c6 = (water(ij, i + 1) * wt(ij, i + 1) + wdtrain(ij) / sigd) / wt(ij, i) |
---|
| 1245 | revap = 0.5 * (-b6 + sqrt(b6 * b6 + 4. * c6)) |
---|
| 1246 | evap(ij, i) = sigt * afac * revap |
---|
| 1247 | water(ij, i) = revap * revap |
---|
[3927] | 1248 | |
---|
| 1249 | ! *** Calculate precipitating downdraft mass flux under *** |
---|
| 1250 | ! *** hydrostatic approximation *** |
---|
| 1251 | |
---|
| 1252 | IF (i>1) THEN |
---|
[5132] | 1253 | dhdp = (h(ij, i) - h(ij, i - 1)) / (p(ij, i - 1) - p(ij, i)) |
---|
[3927] | 1254 | dhdp = max(dhdp, 10.0) |
---|
[5132] | 1255 | mp(ij, i) = 100. * ginv * lv(ij, i) * sigd * evap(ij, i) / dhdp |
---|
| 1256 | mp(ij, i) = max(mp(ij, i), 0.0) |
---|
[3927] | 1257 | |
---|
| 1258 | ! *** Add small amount of inertia to downdraft *** |
---|
| 1259 | |
---|
[5132] | 1260 | fac = 20.0 / (ph(ij, i - 1) - ph(ij, i)) |
---|
| 1261 | mp(ij, i) = (fac * mp(ij, i + 1) + mp(ij, i)) / (1. + fac) |
---|
[3927] | 1262 | |
---|
| 1263 | ! *** Force mp to decrease linearly to zero |
---|
| 1264 | ! *** |
---|
| 1265 | ! *** between about 950 mb and the surface |
---|
| 1266 | ! *** |
---|
| 1267 | |
---|
[5132] | 1268 | IF (p(ij, i)>(0.949 * p(ij, 1))) THEN |
---|
[3927] | 1269 | jtt(ij) = max(jtt(ij), i) |
---|
[5132] | 1270 | mp(ij, i) = mp(ij, jtt(ij)) * (p(ij, 1) - p(ij, i)) / & |
---|
| 1271 | (p(ij, 1) - p(ij, jtt(ij))) |
---|
[3927] | 1272 | END IF |
---|
| 1273 | END IF |
---|
| 1274 | |
---|
| 1275 | ! *** Find mixing ratio of precipitating downdraft *** |
---|
| 1276 | |
---|
| 1277 | IF (i/=inb(ij)) THEN |
---|
| 1278 | IF (i==1) THEN |
---|
| 1279 | qstm = qs(ij, 1) |
---|
| 1280 | ELSE |
---|
[5132] | 1281 | qstm = qs(ij, i - 1) |
---|
[3927] | 1282 | END IF |
---|
[5132] | 1283 | IF (mp(ij, i)>mp(ij, i + 1)) THEN |
---|
| 1284 | rat = mp(ij, i + 1) / mp(ij, i) |
---|
| 1285 | qp(ij, i) = qp(ij, i + 1) * rat + q(ij, i) * (1.0 - rat) + & |
---|
| 1286 | 100. * ginv * sigd * (ph(ij, i) - ph(ij, i + 1)) * (evap(ij, i) / mp(ij, i)) |
---|
| 1287 | up(ij, i) = up(ij, i + 1) * rat + u(ij, i) * (1. - rat) |
---|
| 1288 | vp(ij, i) = vp(ij, i + 1) * rat + v(ij, i) * (1. - rat) |
---|
[3927] | 1289 | ELSE |
---|
[5132] | 1290 | IF (mp(ij, i + 1)>0.0) THEN |
---|
| 1291 | qp(ij, i) = (gz(ij, i + 1) - gz(ij, i) + qp(ij, i + 1) * (lv(ij, i + 1) + t(ij, & |
---|
| 1292 | i + 1) * (cl - cpd)) + cpd * (t(ij, i + 1) - t(ij, & |
---|
| 1293 | i))) / (lv(ij, i) + t(ij, i) * (cl - cpd)) |
---|
| 1294 | up(ij, i) = up(ij, i + 1) |
---|
| 1295 | vp(ij, i) = vp(ij, i + 1) |
---|
[3927] | 1296 | END IF |
---|
| 1297 | END IF |
---|
[5132] | 1298 | qp(ij, i) = min(qp(ij, i), qstm) |
---|
| 1299 | qp(ij, i) = max(qp(ij, i), 0.0) |
---|
[3927] | 1300 | END IF |
---|
| 1301 | END IF |
---|
| 1302 | END DO |
---|
[5132] | 1303 | 899 END DO |
---|
[3927] | 1304 | |
---|
| 1305 | END SUBROUTINE cv_unsat |
---|
| 1306 | |
---|
| 1307 | SUBROUTINE cv_yield(nloc, ncum, nd, nk, icb, inb, delt, t, q, u, v, gz, p, & |
---|
[5132] | 1308 | ph, h, hp, lv, cpn, ep, clw, frac, m, mp, qp, up, vp, wt, water, evap, & |
---|
| 1309 | ment, qent, uent, vent, nent, elij, tv, tvp, iflag, wd, qprime, tprime, & |
---|
| 1310 | precip, cbmf, ft, fq, fu, fv, ma, qcondc) |
---|
[5141] | 1311 | USE lmdz_cvthermo |
---|
| 1312 | |
---|
[3927] | 1313 | IMPLICIT NONE |
---|
| 1314 | |
---|
[5142] | 1315 | |
---|
[3927] | 1316 | ! inputs |
---|
| 1317 | INTEGER ncum, nd, nloc |
---|
| 1318 | INTEGER nk(nloc), icb(nloc), inb(nloc) |
---|
| 1319 | INTEGER nent(nloc, nd) |
---|
| 1320 | REAL delt |
---|
| 1321 | REAL t(nloc, nd), q(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
| 1322 | REAL gz(nloc, nd) |
---|
[5132] | 1323 | REAL p(nloc, nd), ph(nloc, nd + 1), h(nloc, nd) |
---|
[3927] | 1324 | REAL hp(nloc, nd), lv(nloc, nd) |
---|
| 1325 | REAL cpn(nloc, nd), ep(nloc, nd), clw(nloc, nd), frac(nloc) |
---|
| 1326 | REAL m(nloc, nd), mp(nloc, nd), qp(nloc, nd) |
---|
| 1327 | REAL up(nloc, nd), vp(nloc, nd) |
---|
| 1328 | REAL wt(nloc, nd), water(nloc, nd), evap(nloc, nd) |
---|
| 1329 | REAL ment(nloc, nd, nd), qent(nloc, nd, nd), elij(nloc, nd, nd) |
---|
| 1330 | REAL uent(nloc, nd, nd), vent(nloc, nd, nd) |
---|
| 1331 | REAL tv(nloc, nd), tvp(nloc, nd) |
---|
| 1332 | |
---|
| 1333 | ! outputs |
---|
| 1334 | INTEGER iflag(nloc) ! also an input |
---|
| 1335 | REAL cbmf(nloc) ! also an input |
---|
| 1336 | REAL wd(nloc), tprime(nloc), qprime(nloc) |
---|
| 1337 | REAL precip(nloc) |
---|
| 1338 | REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
| 1339 | REAL ma(nloc, nd) |
---|
| 1340 | REAL qcondc(nloc, nd) |
---|
| 1341 | |
---|
| 1342 | ! local variables |
---|
| 1343 | INTEGER i, j, ij, k, num1 |
---|
| 1344 | REAL dpinv, cpinv, awat, fqold, ftold, fuold, fvold, delti |
---|
| 1345 | REAL work(nloc), am(nloc), amp1(nloc), ad(nloc) |
---|
| 1346 | REAL ents(nloc), uav(nloc), vav(nloc), lvcp(nloc, nd) |
---|
| 1347 | REAL qcond(nloc, nd), nqcond(nloc, nd), wa(nloc, nd) ! cld |
---|
| 1348 | REAL siga(nloc, nd), ax(nloc, nd), mac(nloc, nd) ! cld |
---|
| 1349 | |
---|
| 1350 | |
---|
| 1351 | ! -- initializations: |
---|
| 1352 | |
---|
[5132] | 1353 | delti = 1.0 / delt |
---|
[3927] | 1354 | |
---|
| 1355 | DO i = 1, ncum |
---|
| 1356 | precip(i) = 0.0 |
---|
| 1357 | wd(i) = 0.0 |
---|
| 1358 | tprime(i) = 0.0 |
---|
| 1359 | qprime(i) = 0.0 |
---|
| 1360 | DO k = 1, nl + 1 |
---|
| 1361 | ft(i, k) = 0.0 |
---|
| 1362 | fu(i, k) = 0.0 |
---|
| 1363 | fv(i, k) = 0.0 |
---|
| 1364 | fq(i, k) = 0.0 |
---|
[5132] | 1365 | lvcp(i, k) = lv(i, k) / cpn(i, k) |
---|
[3927] | 1366 | qcondc(i, k) = 0.0 ! cld |
---|
| 1367 | qcond(i, k) = 0.0 ! cld |
---|
| 1368 | nqcond(i, k) = 0.0 ! cld |
---|
| 1369 | END DO |
---|
| 1370 | END DO |
---|
| 1371 | |
---|
| 1372 | |
---|
| 1373 | ! *** Calculate surface precipitation in mm/day *** |
---|
| 1374 | |
---|
| 1375 | DO i = 1, ncum |
---|
| 1376 | IF (iflag(i)<=1) THEN |
---|
| 1377 | ! c precip(i)=precip(i)+wt(i,1)*sigd*water(i,1)*3600.*24000. |
---|
| 1378 | ! c & /(rowl*g) |
---|
| 1379 | ! c precip(i)=precip(i)*delt/86400. |
---|
[5132] | 1380 | precip(i) = wt(i, 1) * sigd * water(i, 1) * 86400 / g |
---|
[3927] | 1381 | END IF |
---|
| 1382 | END DO |
---|
| 1383 | |
---|
| 1384 | |
---|
| 1385 | ! *** Calculate downdraft velocity scale and surface temperature and *** |
---|
| 1386 | ! *** water vapor fluctuations *** |
---|
| 1387 | |
---|
| 1388 | DO i = 1, ncum |
---|
[5132] | 1389 | wd(i) = betad * abs(mp(i, icb(i))) * 0.01 * rrd * t(i, icb(i)) / (sigd * p(i, icb(i))) |
---|
| 1390 | qprime(i) = 0.5 * (qp(i, 1) - q(i, 1)) |
---|
| 1391 | tprime(i) = lv0 * qprime(i) / cpd |
---|
[3927] | 1392 | END DO |
---|
| 1393 | |
---|
| 1394 | ! *** Calculate tendencies of lowest level potential temperature *** |
---|
| 1395 | ! *** and mixing ratio *** |
---|
| 1396 | |
---|
| 1397 | DO i = 1, ncum |
---|
[5132] | 1398 | work(i) = 0.01 / (ph(i, 1) - ph(i, 2)) |
---|
[3927] | 1399 | am(i) = 0.0 |
---|
| 1400 | END DO |
---|
| 1401 | DO k = 2, nl |
---|
| 1402 | DO i = 1, ncum |
---|
| 1403 | IF ((nk(i)==1) .AND. (k<=inb(i)) .AND. (nk(i)==1)) THEN |
---|
| 1404 | am(i) = am(i) + m(i, k) |
---|
| 1405 | END IF |
---|
| 1406 | END DO |
---|
| 1407 | END DO |
---|
| 1408 | DO i = 1, ncum |
---|
[5132] | 1409 | IF ((g * work(i) * am(i))>=delti) iflag(i) = 1 |
---|
| 1410 | ft(i, 1) = ft(i, 1) + g * work(i) * am(i) * (t(i, 2) - t(i, 1) + (gz(i, 2) - gz(i, & |
---|
| 1411 | 1)) / cpn(i, 1)) |
---|
| 1412 | ft(i, 1) = ft(i, 1) - lvcp(i, 1) * sigd * evap(i, 1) |
---|
| 1413 | ft(i, 1) = ft(i, 1) + sigd * wt(i, 2) * (cl - cpd) * water(i, 2) * (t(i, 2) - t(i, 1)) * & |
---|
| 1414 | work(i) / cpn(i, 1) |
---|
| 1415 | fq(i, 1) = fq(i, 1) + g * mp(i, 2) * (qp(i, 2) - q(i, 1)) * work(i) + & |
---|
| 1416 | sigd * evap(i, 1) |
---|
| 1417 | fq(i, 1) = fq(i, 1) + g * am(i) * (q(i, 2) - q(i, 1)) * work(i) |
---|
| 1418 | fu(i, 1) = fu(i, 1) + g * work(i) * (mp(i, 2) * (up(i, 2) - u(i, 1)) + am(i) * (u(i, & |
---|
| 1419 | 2) - u(i, 1))) |
---|
| 1420 | fv(i, 1) = fv(i, 1) + g * work(i) * (mp(i, 2) * (vp(i, 2) - v(i, 1)) + am(i) * (v(i, & |
---|
| 1421 | 2) - v(i, 1))) |
---|
[3927] | 1422 | END DO |
---|
| 1423 | DO j = 2, nl |
---|
| 1424 | DO i = 1, ncum |
---|
| 1425 | IF (j<=inb(i)) THEN |
---|
[5132] | 1426 | fq(i, 1) = fq(i, 1) + g * work(i) * ment(i, j, 1) * (qent(i, j, 1) - q(i, 1)) |
---|
| 1427 | fu(i, 1) = fu(i, 1) + g * work(i) * ment(i, j, 1) * (uent(i, j, 1) - u(i, 1)) |
---|
| 1428 | fv(i, 1) = fv(i, 1) + g * work(i) * ment(i, j, 1) * (vent(i, j, 1) - v(i, 1)) |
---|
[3927] | 1429 | END IF |
---|
| 1430 | END DO |
---|
| 1431 | END DO |
---|
| 1432 | |
---|
| 1433 | ! *** Calculate tendencies of potential temperature and mixing ratio *** |
---|
| 1434 | ! *** at levels above the lowest level *** |
---|
| 1435 | |
---|
| 1436 | ! *** First find the net saturated updraft and downdraft mass fluxes *** |
---|
| 1437 | ! *** through each level *** |
---|
| 1438 | |
---|
| 1439 | DO i = 2, nl + 1 |
---|
| 1440 | |
---|
| 1441 | num1 = 0 |
---|
| 1442 | DO ij = 1, ncum |
---|
| 1443 | IF (i<=inb(ij)) num1 = num1 + 1 |
---|
| 1444 | END DO |
---|
| 1445 | IF (num1<=0) GO TO 1500 |
---|
| 1446 | |
---|
| 1447 | CALL zilch(amp1, ncum) |
---|
| 1448 | CALL zilch(ad, ncum) |
---|
| 1449 | |
---|
| 1450 | DO k = i + 1, nl + 1 |
---|
| 1451 | DO ij = 1, ncum |
---|
[5132] | 1452 | IF ((i>=nk(ij)) .AND. (i<=inb(ij)) .AND. (k<=(inb(ij) + 1))) THEN |
---|
[3927] | 1453 | amp1(ij) = amp1(ij) + m(ij, k) |
---|
| 1454 | END IF |
---|
| 1455 | END DO |
---|
| 1456 | END DO |
---|
| 1457 | |
---|
| 1458 | DO k = 1, i |
---|
| 1459 | DO j = i + 1, nl + 1 |
---|
| 1460 | DO ij = 1, ncum |
---|
[5132] | 1461 | IF ((j<=(inb(ij) + 1)) .AND. (i<=inb(ij))) THEN |
---|
[3927] | 1462 | amp1(ij) = amp1(ij) + ment(ij, k, j) |
---|
| 1463 | END IF |
---|
| 1464 | END DO |
---|
| 1465 | END DO |
---|
| 1466 | END DO |
---|
| 1467 | DO k = 1, i - 1 |
---|
| 1468 | DO j = i, nl + 1 |
---|
| 1469 | DO ij = 1, ncum |
---|
| 1470 | IF ((i<=inb(ij)) .AND. (j<=inb(ij))) THEN |
---|
| 1471 | ad(ij) = ad(ij) + ment(ij, j, k) |
---|
| 1472 | END IF |
---|
| 1473 | END DO |
---|
| 1474 | END DO |
---|
| 1475 | END DO |
---|
| 1476 | |
---|
| 1477 | DO ij = 1, ncum |
---|
| 1478 | IF (i<=inb(ij)) THEN |
---|
[5132] | 1479 | dpinv = 0.01 / (ph(ij, i) - ph(ij, i + 1)) |
---|
| 1480 | cpinv = 1.0 / cpn(ij, i) |
---|
[3927] | 1481 | |
---|
[5132] | 1482 | ft(ij, i) = ft(ij, i) + g * dpinv * (amp1(ij) * (t(ij, i + 1) - t(ij, & |
---|
| 1483 | i) + (gz(ij, i + 1) - gz(ij, i)) * cpinv) - ad(ij) * (t(ij, i) - t(ij, & |
---|
| 1484 | i - 1) + (gz(ij, i) - gz(ij, i - 1)) * cpinv)) - sigd * lvcp(ij, i) * evap(ij, i) |
---|
| 1485 | ft(ij, i) = ft(ij, i) + g * dpinv * ment(ij, i, i) * (hp(ij, i) - h(ij, i) + t(ij & |
---|
| 1486 | , i) * (cpv - cpd) * (q(ij, i) - qent(ij, i, i))) * cpinv |
---|
| 1487 | ft(ij, i) = ft(ij, i) + sigd * wt(ij, i + 1) * (cl - cpd) * water(ij, i + 1) * (t(& |
---|
| 1488 | ij, i + 1) - t(ij, i)) * dpinv * cpinv |
---|
| 1489 | fq(ij, i) = fq(ij, i) + g * dpinv * (amp1(ij) * (q(ij, i + 1) - q(ij, & |
---|
| 1490 | i)) - ad(ij) * (q(ij, i) - q(ij, i - 1))) |
---|
| 1491 | fu(ij, i) = fu(ij, i) + g * dpinv * (amp1(ij) * (u(ij, i + 1) - u(ij, & |
---|
| 1492 | i)) - ad(ij) * (u(ij, i) - u(ij, i - 1))) |
---|
| 1493 | fv(ij, i) = fv(ij, i) + g * dpinv * (amp1(ij) * (v(ij, i + 1) - v(ij, & |
---|
| 1494 | i)) - ad(ij) * (v(ij, i) - v(ij, i - 1))) |
---|
[3927] | 1495 | END IF |
---|
| 1496 | END DO |
---|
| 1497 | DO k = 1, i - 1 |
---|
| 1498 | DO ij = 1, ncum |
---|
| 1499 | IF (i<=inb(ij)) THEN |
---|
[5132] | 1500 | awat = elij(ij, k, i) - (1. - ep(ij, i)) * clw(ij, i) |
---|
[3927] | 1501 | awat = max(awat, 0.0) |
---|
[5132] | 1502 | fq(ij, i) = fq(ij, i) + g * dpinv * ment(ij, k, i) * (qent(ij, k, i) - awat - q & |
---|
| 1503 | (ij, i)) |
---|
| 1504 | fu(ij, i) = fu(ij, i) + g * dpinv * ment(ij, k, i) * (uent(ij, k, i) - u(ij, i & |
---|
| 1505 | )) |
---|
| 1506 | fv(ij, i) = fv(ij, i) + g * dpinv * ment(ij, k, i) * (vent(ij, k, i) - v(ij, i & |
---|
| 1507 | )) |
---|
[3927] | 1508 | ! (saturated updrafts resulting from mixing) ! cld |
---|
[5132] | 1509 | qcond(ij, i) = qcond(ij, i) + (elij(ij, k, i) - awat) ! cld |
---|
[3927] | 1510 | nqcond(ij, i) = nqcond(ij, i) + 1. ! cld |
---|
| 1511 | END IF |
---|
| 1512 | END DO |
---|
| 1513 | END DO |
---|
| 1514 | DO k = i, nl + 1 |
---|
| 1515 | DO ij = 1, ncum |
---|
| 1516 | IF ((i<=inb(ij)) .AND. (k<=inb(ij))) THEN |
---|
[5132] | 1517 | fq(ij, i) = fq(ij, i) + g * dpinv * ment(ij, k, i) * (qent(ij, k, i) - q(ij, i & |
---|
| 1518 | )) |
---|
| 1519 | fu(ij, i) = fu(ij, i) + g * dpinv * ment(ij, k, i) * (uent(ij, k, i) - u(ij, i & |
---|
| 1520 | )) |
---|
| 1521 | fv(ij, i) = fv(ij, i) + g * dpinv * ment(ij, k, i) * (vent(ij, k, i) - v(ij, i & |
---|
| 1522 | )) |
---|
[3927] | 1523 | END IF |
---|
| 1524 | END DO |
---|
| 1525 | END DO |
---|
| 1526 | DO ij = 1, ncum |
---|
| 1527 | IF (i<=inb(ij)) THEN |
---|
[5132] | 1528 | fq(ij, i) = fq(ij, i) + sigd * evap(ij, i) + g * (mp(ij, i + 1) * (qp(ij, & |
---|
| 1529 | i + 1) - q(ij, i)) - mp(ij, i) * (qp(ij, i) - q(ij, i - 1))) * dpinv |
---|
| 1530 | fu(ij, i) = fu(ij, i) + g * (mp(ij, i + 1) * (up(ij, i + 1) - u(ij, & |
---|
| 1531 | i)) - mp(ij, i) * (up(ij, i) - u(ij, i - 1))) * dpinv |
---|
| 1532 | fv(ij, i) = fv(ij, i) + g * (mp(ij, i + 1) * (vp(ij, i + 1) - v(ij, & |
---|
| 1533 | i)) - mp(ij, i) * (vp(ij, i) - v(ij, i - 1))) * dpinv |
---|
[3927] | 1534 | ! (saturated downdrafts resulting from mixing) ! cld |
---|
| 1535 | DO k = i + 1, inb(ij) ! cld |
---|
| 1536 | qcond(ij, i) = qcond(ij, i) + elij(ij, k, i) ! cld |
---|
| 1537 | nqcond(ij, i) = nqcond(ij, i) + 1. ! cld |
---|
| 1538 | END DO ! cld |
---|
| 1539 | ! (particular case: no detraining level is found) ! cld |
---|
[5132] | 1540 | IF (nent(ij, i)==0) THEN ! cld |
---|
| 1541 | qcond(ij, i) = qcond(ij, i) + (1. - ep(ij, i)) * clw(ij, i) ! cld |
---|
[3927] | 1542 | nqcond(ij, i) = nqcond(ij, i) + 1. ! cld |
---|
| 1543 | END IF ! cld |
---|
[5132] | 1544 | IF (nqcond(ij, i)/=0.) THEN ! cld |
---|
| 1545 | qcond(ij, i) = qcond(ij, i) / nqcond(ij, i) ! cld |
---|
[3927] | 1546 | END IF ! cld |
---|
| 1547 | END IF |
---|
| 1548 | END DO |
---|
[5132] | 1549 | 1500 END DO |
---|
[3927] | 1550 | |
---|
| 1551 | ! *** Adjust tendencies at top of convection layer to reflect *** |
---|
| 1552 | ! *** actual position of the level zero cape *** |
---|
| 1553 | |
---|
| 1554 | DO ij = 1, ncum |
---|
| 1555 | fqold = fq(ij, inb(ij)) |
---|
[5132] | 1556 | fq(ij, inb(ij)) = fq(ij, inb(ij)) * (1. - frac(ij)) |
---|
| 1557 | fq(ij, inb(ij) - 1) = fq(ij, inb(ij) - 1) + frac(ij) * fqold * ((ph(ij, & |
---|
| 1558 | inb(ij)) - ph(ij, inb(ij) + 1)) / (ph(ij, inb(ij) - 1) - ph(ij, & |
---|
| 1559 | inb(ij)))) * lv(ij, inb(ij)) / lv(ij, inb(ij) - 1) |
---|
[3927] | 1560 | ftold = ft(ij, inb(ij)) |
---|
[5132] | 1561 | ft(ij, inb(ij)) = ft(ij, inb(ij)) * (1. - frac(ij)) |
---|
| 1562 | ft(ij, inb(ij) - 1) = ft(ij, inb(ij) - 1) + frac(ij) * ftold * ((ph(ij, & |
---|
| 1563 | inb(ij)) - ph(ij, inb(ij) + 1)) / (ph(ij, inb(ij) - 1) - ph(ij, & |
---|
| 1564 | inb(ij)))) * cpn(ij, inb(ij)) / cpn(ij, inb(ij) - 1) |
---|
[3927] | 1565 | fuold = fu(ij, inb(ij)) |
---|
[5132] | 1566 | fu(ij, inb(ij)) = fu(ij, inb(ij)) * (1. - frac(ij)) |
---|
| 1567 | fu(ij, inb(ij) - 1) = fu(ij, inb(ij) - 1) + frac(ij) * fuold * ((ph(ij, & |
---|
| 1568 | inb(ij)) - ph(ij, inb(ij) + 1)) / (ph(ij, inb(ij) - 1) - ph(ij, inb(ij)))) |
---|
[3927] | 1569 | fvold = fv(ij, inb(ij)) |
---|
[5132] | 1570 | fv(ij, inb(ij)) = fv(ij, inb(ij)) * (1. - frac(ij)) |
---|
| 1571 | fv(ij, inb(ij) - 1) = fv(ij, inb(ij) - 1) + frac(ij) * fvold * ((ph(ij, & |
---|
| 1572 | inb(ij)) - ph(ij, inb(ij) + 1)) / (ph(ij, inb(ij) - 1) - ph(ij, inb(ij)))) |
---|
[3927] | 1573 | END DO |
---|
| 1574 | |
---|
| 1575 | ! *** Very slightly adjust tendencies to force exact *** |
---|
| 1576 | ! *** enthalpy, momentum and tracer conservation *** |
---|
| 1577 | |
---|
| 1578 | DO ij = 1, ncum |
---|
| 1579 | ents(ij) = 0.0 |
---|
| 1580 | uav(ij) = 0.0 |
---|
| 1581 | vav(ij) = 0.0 |
---|
| 1582 | DO i = 1, inb(ij) |
---|
[5132] | 1583 | ents(ij) = ents(ij) + (cpn(ij, i) * ft(ij, i) + lv(ij, i) * fq(ij, i)) * (ph(ij, i) - & |
---|
| 1584 | ph(ij, i + 1)) |
---|
| 1585 | uav(ij) = uav(ij) + fu(ij, i) * (ph(ij, i) - ph(ij, i + 1)) |
---|
| 1586 | vav(ij) = vav(ij) + fv(ij, i) * (ph(ij, i) - ph(ij, i + 1)) |
---|
[3927] | 1587 | END DO |
---|
| 1588 | END DO |
---|
| 1589 | DO ij = 1, ncum |
---|
[5132] | 1590 | ents(ij) = ents(ij) / (ph(ij, 1) - ph(ij, inb(ij) + 1)) |
---|
| 1591 | uav(ij) = uav(ij) / (ph(ij, 1) - ph(ij, inb(ij) + 1)) |
---|
| 1592 | vav(ij) = vav(ij) / (ph(ij, 1) - ph(ij, inb(ij) + 1)) |
---|
[3927] | 1593 | END DO |
---|
| 1594 | DO ij = 1, ncum |
---|
| 1595 | DO i = 1, inb(ij) |
---|
[5132] | 1596 | ft(ij, i) = ft(ij, i) - ents(ij) / cpn(ij, i) |
---|
| 1597 | fu(ij, i) = (1. - cu) * (fu(ij, i) - uav(ij)) |
---|
| 1598 | fv(ij, i) = (1. - cu) * (fv(ij, i) - vav(ij)) |
---|
[3927] | 1599 | END DO |
---|
| 1600 | END DO |
---|
| 1601 | |
---|
| 1602 | DO k = 1, nl + 1 |
---|
| 1603 | DO i = 1, ncum |
---|
[5132] | 1604 | IF ((q(i, k) + delt * fq(i, k))<0.0) iflag(i) = 10 |
---|
[3927] | 1605 | END DO |
---|
| 1606 | END DO |
---|
| 1607 | |
---|
| 1608 | DO i = 1, ncum |
---|
| 1609 | IF (iflag(i)>2) THEN |
---|
| 1610 | precip(i) = 0.0 |
---|
| 1611 | cbmf(i) = 0.0 |
---|
| 1612 | END IF |
---|
| 1613 | END DO |
---|
| 1614 | DO k = 1, nl |
---|
| 1615 | DO i = 1, ncum |
---|
| 1616 | IF (iflag(i)>2) THEN |
---|
| 1617 | ft(i, k) = 0.0 |
---|
| 1618 | fq(i, k) = 0.0 |
---|
| 1619 | fu(i, k) = 0.0 |
---|
| 1620 | fv(i, k) = 0.0 |
---|
| 1621 | qcondc(i, k) = 0.0 ! cld |
---|
| 1622 | END IF |
---|
| 1623 | END DO |
---|
| 1624 | END DO |
---|
| 1625 | |
---|
| 1626 | DO k = 1, nl + 1 |
---|
| 1627 | DO i = 1, ncum |
---|
| 1628 | ma(i, k) = 0. |
---|
| 1629 | END DO |
---|
| 1630 | END DO |
---|
| 1631 | DO k = nl, 1, -1 |
---|
| 1632 | DO i = 1, ncum |
---|
[5132] | 1633 | ma(i, k) = ma(i, k + 1) + m(i, k) |
---|
[3927] | 1634 | END DO |
---|
| 1635 | END DO |
---|
| 1636 | |
---|
| 1637 | |
---|
| 1638 | ! *** diagnose the in-cloud mixing ratio *** ! cld |
---|
| 1639 | ! *** of condensed water *** ! cld |
---|
[5113] | 1640 | ! cld |
---|
[3927] | 1641 | DO ij = 1, ncum ! cld |
---|
| 1642 | DO i = 1, nd ! cld |
---|
| 1643 | mac(ij, i) = 0.0 ! cld |
---|
| 1644 | wa(ij, i) = 0.0 ! cld |
---|
| 1645 | siga(ij, i) = 0.0 ! cld |
---|
| 1646 | END DO ! cld |
---|
| 1647 | DO i = nk(ij), inb(ij) ! cld |
---|
| 1648 | DO k = i + 1, inb(ij) + 1 ! cld |
---|
| 1649 | mac(ij, i) = mac(ij, i) + m(ij, k) ! cld |
---|
| 1650 | END DO ! cld |
---|
| 1651 | END DO ! cld |
---|
| 1652 | DO i = icb(ij), inb(ij) - 1 ! cld |
---|
| 1653 | ax(ij, i) = 0. ! cld |
---|
| 1654 | DO j = icb(ij), i ! cld |
---|
[5132] | 1655 | ax(ij, i) = ax(ij, i) + rrd * (tvp(ij, j) - tv(ij, j)) & ! cld |
---|
| 1656 | * (ph(ij, j) - ph(ij, j + 1)) / p(ij, j) ! cld |
---|
[3927] | 1657 | END DO ! cld |
---|
[5132] | 1658 | IF (ax(ij, i)>0.0) THEN ! cld |
---|
| 1659 | wa(ij, i) = sqrt(2. * ax(ij, i)) ! cld |
---|
[3927] | 1660 | END IF ! cld |
---|
| 1661 | END DO ! cld |
---|
| 1662 | DO i = 1, nl ! cld |
---|
[5132] | 1663 | IF (wa(ij, i)>0.0) & ! cld |
---|
| 1664 | siga(ij, i) = mac(ij, i) / wa(ij, i) & ! cld |
---|
| 1665 | * rrd * tvp(ij, i) / p(ij, i) / 100. / delta ! cld |
---|
| 1666 | siga(ij, i) = min(siga(ij, i), 1.0) ! cld |
---|
| 1667 | qcondc(ij, i) = siga(ij, i) * clw(ij, i) * (1. - ep(ij, i)) & ! cld |
---|
| 1668 | + (1. - siga(ij, i)) * qcond(ij, i) ! cld |
---|
[3927] | 1669 | END DO ! cld |
---|
| 1670 | END DO ! cld |
---|
| 1671 | |
---|
| 1672 | END SUBROUTINE cv_yield |
---|
| 1673 | |
---|
| 1674 | SUBROUTINE cv_uncompress(nloc, len, ncum, nd, idcum, iflag, precip, cbmf, ft, & |
---|
[5132] | 1675 | fq, fu, fv, ma, qcondc, iflag1, precip1, cbmf1, ft1, fq1, fu1, fv1, ma1, & |
---|
| 1676 | qcondc1) |
---|
[3927] | 1677 | IMPLICIT NONE |
---|
| 1678 | |
---|
[5142] | 1679 | |
---|
[3927] | 1680 | ! inputs: |
---|
| 1681 | INTEGER len, ncum, nd, nloc |
---|
| 1682 | INTEGER idcum(nloc) |
---|
| 1683 | INTEGER iflag(nloc) |
---|
| 1684 | REAL precip(nloc), cbmf(nloc) |
---|
| 1685 | REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
| 1686 | REAL ma(nloc, nd) |
---|
| 1687 | REAL qcondc(nloc, nd) !cld |
---|
| 1688 | |
---|
| 1689 | ! outputs: |
---|
| 1690 | INTEGER iflag1(len) |
---|
| 1691 | REAL precip1(len), cbmf1(len) |
---|
| 1692 | REAL ft1(len, nd), fq1(len, nd), fu1(len, nd), fv1(len, nd) |
---|
| 1693 | REAL ma1(len, nd) |
---|
| 1694 | REAL qcondc1(len, nd) !cld |
---|
| 1695 | |
---|
| 1696 | ! local variables: |
---|
| 1697 | INTEGER i, k |
---|
| 1698 | |
---|
| 1699 | DO i = 1, ncum |
---|
| 1700 | precip1(idcum(i)) = precip(i) |
---|
| 1701 | cbmf1(idcum(i)) = cbmf(i) |
---|
| 1702 | iflag1(idcum(i)) = iflag(i) |
---|
| 1703 | END DO |
---|
| 1704 | |
---|
| 1705 | DO k = 1, nl |
---|
| 1706 | DO i = 1, ncum |
---|
| 1707 | ft1(idcum(i), k) = ft(i, k) |
---|
| 1708 | fq1(idcum(i), k) = fq(i, k) |
---|
| 1709 | fu1(idcum(i), k) = fu(i, k) |
---|
| 1710 | fv1(idcum(i), k) = fv(i, k) |
---|
| 1711 | ma1(idcum(i), k) = ma(i, k) |
---|
| 1712 | qcondc1(idcum(i), k) = qcondc(i, k) |
---|
| 1713 | END DO |
---|
| 1714 | END DO |
---|
| 1715 | |
---|
| 1716 | END SUBROUTINE cv_uncompress |
---|
| 1717 | |
---|
[5142] | 1718 | |
---|
| 1719 | END MODULE lmdz_cv |
---|