1 | ! $Header$ |
---|
2 | |
---|
3 | SUBROUTINE yamada_c(ngrid, timestep, plev, play & |
---|
4 | , pu, pv, pt, d_u, d_v, d_t, cd, q2, km, kn, kq, d_t_diss, ustar & |
---|
5 | , iflag_pbl) |
---|
6 | USE dimphy, ONLY: klon, klev |
---|
7 | USE lmdz_print_control, ONLY: prt_level |
---|
8 | USE lmdz_ioipsl_getin_p, ONLY: getin_p |
---|
9 | USE lmdz_yomcst |
---|
10 | |
---|
11 | IMPLICIT NONE |
---|
12 | |
---|
13 | ! timestep : pas de temps |
---|
14 | ! g : g |
---|
15 | ! zlev : altitude a chaque niveau (interface inferieure de la couche |
---|
16 | ! de meme indice) |
---|
17 | ! zlay : altitude au centre de chaque couche |
---|
18 | ! u,v : vitesse au centre de chaque couche |
---|
19 | ! (en entree : la valeur au debut du pas de temps) |
---|
20 | ! teta : temperature potentielle au centre de chaque couche |
---|
21 | ! (en entree : la valeur au debut du pas de temps) |
---|
22 | ! cd : cdrag |
---|
23 | ! (en entree : la valeur au debut du pas de temps) |
---|
24 | ! q2 : $q^2$ au bas de chaque couche |
---|
25 | ! (en entree : la valeur au debut du pas de temps) |
---|
26 | ! (en sortie : la valeur a la fin du pas de temps) |
---|
27 | ! km : diffusivite turbulente de quantite de mouvement (au bas de chaque |
---|
28 | ! couche) |
---|
29 | ! (en sortie : la valeur a la fin du pas de temps) |
---|
30 | ! kn : diffusivite turbulente des scalaires (au bas de chaque couche) |
---|
31 | ! (en sortie : la valeur a la fin du pas de temps) |
---|
32 | |
---|
33 | ! iflag_pbl doit valoir entre 6 et 9 |
---|
34 | ! l=6, on prend systematiquement une longueur d'equilibre |
---|
35 | ! iflag_pbl=6 : MY 2.0 |
---|
36 | ! iflag_pbl=7 : MY 2.0.Fournier |
---|
37 | ! iflag_pbl=8/9 : MY 2.5 |
---|
38 | ! iflag_pbl=8 with special obsolete treatments for convergence |
---|
39 | ! with Cmpi5 NPv3.1 simulations |
---|
40 | ! iflag_pbl=10/11 : New scheme M2 and N2 explicit and dissiptation exact |
---|
41 | ! iflag_pbl=12 = 11 with vertical diffusion off q2 |
---|
42 | |
---|
43 | ! 2013/04/01 (FH hourdin@lmd.jussieu.fr) |
---|
44 | ! Correction for very stable PBLs (iflag_pbl=10 and 11) |
---|
45 | ! iflag_pbl=8 converges numerically with NPv3.1 |
---|
46 | ! iflag_pbl=11 -> the model starts with NP from start files created by ce0l |
---|
47 | ! -> the model can run with longer time-steps. |
---|
48 | !....................................................................... |
---|
49 | |
---|
50 | REAL, DIMENSION(klon, klev) :: d_u, d_v, d_t |
---|
51 | REAL, DIMENSION(klon, klev) :: pu, pv, pt |
---|
52 | REAL, DIMENSION(klon, klev) :: d_t_diss |
---|
53 | |
---|
54 | REAL timestep |
---|
55 | REAL plev(klon, klev + 1) |
---|
56 | REAL play(klon, klev) |
---|
57 | REAL ustar(klon) |
---|
58 | REAL kmin, qmin, pblhmin(klon), coriol(klon) |
---|
59 | REAL zlev(klon, klev + 1) |
---|
60 | REAL zlay(klon, klev) |
---|
61 | REAL zu(klon, klev) |
---|
62 | REAL zv(klon, klev) |
---|
63 | REAL zt(klon, klev) |
---|
64 | REAL teta(klon, klev) |
---|
65 | REAL cd(klon) |
---|
66 | REAL q2(klon, klev + 1), qpre |
---|
67 | REAL unsdz(klon, klev) |
---|
68 | REAL unsdzdec(klon, klev + 1) |
---|
69 | |
---|
70 | REAL km(klon, klev) |
---|
71 | REAL kmpre(klon, klev + 1), tmp2 |
---|
72 | REAL mpre(klon, klev + 1) |
---|
73 | REAL kn(klon, klev) |
---|
74 | REAL kq(klon, klev) |
---|
75 | REAL ff(klon, klev + 1), delta(klon, klev + 1) |
---|
76 | REAL aa(klon, klev + 1), aa0, aa1 |
---|
77 | INTEGER iflag_pbl, ngrid |
---|
78 | INTEGER nlay, nlev |
---|
79 | |
---|
80 | LOGICAL first |
---|
81 | INTEGER ipas |
---|
82 | save first, ipas |
---|
83 | !FH/IM data first,ipas/.TRUE.,0/ |
---|
84 | data first, ipas/.FALSE., 0/ |
---|
85 | !$OMP THREADPRIVATE( first,ipas) |
---|
86 | INTEGER, SAVE :: iflag_tke_diff = 0 |
---|
87 | !$OMP THREADPRIVATE(iflag_tke_diff) |
---|
88 | |
---|
89 | INTEGER ig, k |
---|
90 | |
---|
91 | REAL ri, zrif, zalpha, zsm, zsn |
---|
92 | REAL rif(klon, klev + 1), sm(klon, klev + 1), alpha(klon, klev) |
---|
93 | |
---|
94 | REAL m2(klon, klev + 1), dz(klon, klev + 1), zq, n2(klon, klev + 1) |
---|
95 | REAL, DIMENSION(klon, klev + 1) :: km2, kn2, sqrtq |
---|
96 | REAL dtetadz(klon, klev + 1) |
---|
97 | REAL m2cstat, mcstat, kmcstat |
---|
98 | REAL l(klon, klev + 1) |
---|
99 | REAL leff(klon, klev + 1) |
---|
100 | REAL, ALLOCATABLE, save :: l0(:) |
---|
101 | !$OMP THREADPRIVATE(l0) |
---|
102 | REAL sq(klon), sqz(klon), zz(klon, klev + 1) |
---|
103 | INTEGER iter |
---|
104 | |
---|
105 | REAL ric, rifc, b1, kap |
---|
106 | save ric, rifc, b1, kap |
---|
107 | data ric, rifc, b1, kap/0.195, 0.191, 16.6, 0.4/ |
---|
108 | !$OMP THREADPRIVATE(ric,rifc,b1,kap) |
---|
109 | REAL frif, falpha, fsm |
---|
110 | REAL fl, zzz, zl0, zq2, zn2 |
---|
111 | |
---|
112 | REAL rino(klon, klev + 1), smyam(klon, klev), styam(klon, klev) |
---|
113 | REAL lyam(klon, klev), knyam(klon, klev) |
---|
114 | REAL w2yam(klon, klev), t2yam(klon, klev) |
---|
115 | logical, save :: firstcall = .TRUE. |
---|
116 | !$OMP THREADPRIVATE(firstcall) |
---|
117 | CHARACTER(len = 20), PARAMETER :: modname = "yamada_c" |
---|
118 | REAL, DIMENSION(klon, klev + 1) :: fluxu, fluxv, fluxt |
---|
119 | REAL, DIMENSION(klon, klev + 1) :: dddu, dddv, dddt |
---|
120 | REAL, DIMENSION(klon, klev) :: exner, masse |
---|
121 | REAL, DIMENSION(klon, klev + 1) :: masseb, q2old, q2neg |
---|
122 | LOGICAL okiophys |
---|
123 | |
---|
124 | frif(ri) = 0.6588 * (ri + 0.1776 - sqrt(ri * ri - 0.3221 * ri + 0.03156)) |
---|
125 | falpha(ri) = 1.318 * (0.2231 - ri) / (0.2341 - ri) |
---|
126 | fsm(ri) = 1.96 * (0.1912 - ri) * (0.2341 - ri) / ((1. - ri) * (0.2231 - ri)) |
---|
127 | fl(zzz, zl0, zq2, zn2) = & |
---|
128 | max(min(l0(ig) * kap * zlev(ig, k) / (kap * zlev(ig, k) + l0(ig)) & |
---|
129 | , 0.5 * sqrt(q2(ig, k)) / sqrt(max(n2(ig, k), 1.e-10))), 1.) |
---|
130 | |
---|
131 | okiophys = klon==1 |
---|
132 | IF (firstcall) THEN |
---|
133 | CALL getin_p('iflag_tke_diff', iflag_tke_diff) |
---|
134 | allocate(l0(klon)) |
---|
135 | #define IOPHYS |
---|
136 | #ifdef IOPHYS |
---|
137 | ! CALL iophys_ini(timestep) |
---|
138 | #endif |
---|
139 | firstcall = .FALSE. |
---|
140 | endif |
---|
141 | |
---|
142 | IF (ngrid<=0) RETURN ! Bizarre : on n a pas ce probeleme pour coef_diff_turb |
---|
143 | |
---|
144 | #ifdef IOPHYS |
---|
145 | IF (okiophys) THEN |
---|
146 | CALL iophys_ecrit('q2i', klev, 'q2 debut my', 'm2/s2', q2(:, 1:klev)) |
---|
147 | CALL iophys_ecrit('kmi', klev, 'Kz debut my', 'm/s2', km(:, 1:klev)) |
---|
148 | END IF |
---|
149 | #endif |
---|
150 | |
---|
151 | nlay = klev |
---|
152 | nlev = klev + 1 |
---|
153 | |
---|
154 | |
---|
155 | !------------------------------------------------------------------------- |
---|
156 | ! Computation of conservative source terms from the turbulent tendencies |
---|
157 | !------------------------------------------------------------------------- |
---|
158 | |
---|
159 | zalpha = 0.5 ! Anciennement 0.5. Essayer de voir pourquoi ? |
---|
160 | zu(:, :) = pu(:, :) + zalpha * d_u(:, :) |
---|
161 | zv(:, :) = pv(:, :) + zalpha * d_v(:, :) |
---|
162 | zt(:, :) = pt(:, :) + zalpha * d_t(:, :) |
---|
163 | |
---|
164 | DO k = 1, klev |
---|
165 | exner(:, k) = (play(:, k) / plev(:, 1))**RKAPPA |
---|
166 | masse(:, k) = (plev(:, k) - plev(:, k + 1)) / RG |
---|
167 | teta(:, k) = zt(:, k) / exner(:, k) |
---|
168 | enddo |
---|
169 | |
---|
170 | ! Atmospheric mass at layer interfaces, where the TKE is computed |
---|
171 | masseb(:, :) = 0. |
---|
172 | DO k = 1, klev |
---|
173 | masseb(:, k) = masseb(:, k) + masse(:, k) |
---|
174 | masseb(:, k + 1) = masseb(:, k + 1) + masse(:, k) |
---|
175 | enddo |
---|
176 | masseb(:, :) = 0.5 * masseb(:, :) |
---|
177 | |
---|
178 | zlev(:, 1) = 0. |
---|
179 | zlay(:, 1) = RCPD * teta(:, 1) * (1. - exner(:, 1)) |
---|
180 | DO k = 1, klev - 1 |
---|
181 | zlay(:, k + 1) = zlay(:, k) + 0.5 * RCPD * (teta(:, k) + teta(:, k + 1)) * (exner(:, k) - exner(:, k + 1)) / RG |
---|
182 | zlev(:, k) = 0.5 * (zlay(:, k) + zlay(:, k + 1)) ! PASBO |
---|
183 | enddo |
---|
184 | |
---|
185 | fluxu(:, klev + 1) = 0. |
---|
186 | fluxv(:, klev + 1) = 0. |
---|
187 | fluxt(:, klev + 1) = 0. |
---|
188 | |
---|
189 | DO k = klev, 1, -1 |
---|
190 | fluxu(:, k) = fluxu(:, k + 1) + masse(:, k) * d_u(:, k) |
---|
191 | fluxv(:, k) = fluxv(:, k + 1) + masse(:, k) * d_v(:, k) |
---|
192 | fluxt(:, k) = fluxt(:, k + 1) + masse(:, k) * d_t(:, k) / exner(:, k) ! Flux de theta |
---|
193 | enddo |
---|
194 | |
---|
195 | dddu(:, 1) = 2 * zu(:, 1) * fluxu(:, 1) |
---|
196 | dddv(:, 1) = 2 * zv(:, 1) * fluxv(:, 1) |
---|
197 | dddt(:, 1) = (exner(:, 1) - 1.) * fluxt(:, 1) |
---|
198 | |
---|
199 | DO k = 2, klev |
---|
200 | dddu(:, k) = (zu(:, k) - zu(:, k - 1)) * fluxu(:, k) |
---|
201 | dddv(:, k) = (zv(:, k) - zv(:, k - 1)) * fluxv(:, k) |
---|
202 | dddt(:, k) = (exner(:, k) - exner(:, k - 1)) * fluxt(:, k) |
---|
203 | enddo |
---|
204 | dddu(:, klev + 1) = 0. |
---|
205 | dddv(:, klev + 1) = 0. |
---|
206 | dddt(:, klev + 1) = 0. |
---|
207 | |
---|
208 | #ifdef IOPHYS |
---|
209 | IF (okiophys) THEN |
---|
210 | CALL iophys_ecrit('zlay', klev, 'Geop', 'm', zlay) |
---|
211 | CALL iophys_ecrit('teta', klev, 'teta', 'K', teta) |
---|
212 | CALL iophys_ecrit('temp', klev, 'temp', 'K', zt) |
---|
213 | CALL iophys_ecrit('pt', klev, 'temp', 'K', pt) |
---|
214 | CALL iophys_ecrit('pu', klev, 'u', 'm/s', pu) |
---|
215 | CALL iophys_ecrit('pv', klev, 'v', 'm/s', pv) |
---|
216 | CALL iophys_ecrit('d_u', klev, 'd_u', 'm/s2', d_u) |
---|
217 | CALL iophys_ecrit('d_v', klev, 'd_v', 'm/s2', d_v) |
---|
218 | CALL iophys_ecrit('d_t', klev, 'd_t', 'K/s', d_t) |
---|
219 | CALL iophys_ecrit('exner', klev, 'exner', '', exner) |
---|
220 | CALL iophys_ecrit('masse', klev, 'masse', '', masse) |
---|
221 | CALL iophys_ecrit('masseb', klev, 'masseb', '', masseb) |
---|
222 | END IF |
---|
223 | #endif |
---|
224 | |
---|
225 | |
---|
226 | |
---|
227 | ipas = ipas + 1 |
---|
228 | |
---|
229 | |
---|
230 | !....................................................................... |
---|
231 | ! les increments verticaux |
---|
232 | !....................................................................... |
---|
233 | |
---|
234 | !!!!!! allerte !!!!!c |
---|
235 | !!!!!! zlev n'est pas declare a nlev !!!!!c |
---|
236 | !!!!!! ----> |
---|
237 | DO ig = 1, ngrid |
---|
238 | zlev(ig, nlev) = zlay(ig, nlay) & |
---|
239 | + (zlay(ig, nlay) - zlev(ig, nlev - 1)) |
---|
240 | ENDDO |
---|
241 | !!!!!! <---- |
---|
242 | !!!!!! allerte !!!!!c |
---|
243 | |
---|
244 | DO k = 1, nlay |
---|
245 | DO ig = 1, ngrid |
---|
246 | unsdz(ig, k) = 1.E+0 / (zlev(ig, k + 1) - zlev(ig, k)) |
---|
247 | ENDDO |
---|
248 | ENDDO |
---|
249 | DO ig = 1, ngrid |
---|
250 | unsdzdec(ig, 1) = 1.E+0 / (zlay(ig, 1) - zlev(ig, 1)) |
---|
251 | ENDDO |
---|
252 | DO k = 2, nlay |
---|
253 | DO ig = 1, ngrid |
---|
254 | unsdzdec(ig, k) = 1.E+0 / (zlay(ig, k) - zlay(ig, k - 1)) |
---|
255 | ENDDO |
---|
256 | ENDDO |
---|
257 | DO ig = 1, ngrid |
---|
258 | unsdzdec(ig, nlay + 1) = 1.E+0 / (zlev(ig, nlay + 1) - zlay(ig, nlay)) |
---|
259 | ENDDO |
---|
260 | |
---|
261 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
262 | ! Computing M^2, N^2, Richardson numbers, stability functions |
---|
263 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
264 | |
---|
265 | DO k = 2, klev |
---|
266 | DO ig = 1, ngrid |
---|
267 | dz(ig, k) = zlay(ig, k) - zlay(ig, k - 1) |
---|
268 | m2(ig, k) = ((zu(ig, k) - zu(ig, k - 1))**2 + (zv(ig, k) - zv(ig, k - 1))**2) / (dz(ig, k) * dz(ig, k)) |
---|
269 | dtetadz(ig, k) = (teta(ig, k) - teta(ig, k - 1)) / dz(ig, k) |
---|
270 | n2(ig, k) = RG * 2. * dtetadz(ig, k) / (teta(ig, k - 1) + teta(ig, k)) |
---|
271 | ! n2(ig,k)=0. |
---|
272 | ri = n2(ig, k) / max(m2(ig, k), 1.e-10) |
---|
273 | IF (ri<ric) THEN |
---|
274 | rif(ig, k) = frif(ri) |
---|
275 | else |
---|
276 | rif(ig, k) = rifc |
---|
277 | endif |
---|
278 | IF(rif(ig, k)<0.16) THEN |
---|
279 | alpha(ig, k) = falpha(rif(ig, k)) |
---|
280 | sm(ig, k) = fsm(rif(ig, k)) |
---|
281 | else |
---|
282 | alpha(ig, k) = 1.12 |
---|
283 | sm(ig, k) = 0.085 |
---|
284 | endif |
---|
285 | zz(ig, k) = b1 * m2(ig, k) * (1. - rif(ig, k)) * sm(ig, k) |
---|
286 | enddo |
---|
287 | enddo |
---|
288 | |
---|
289 | |
---|
290 | |
---|
291 | !==================================================================== |
---|
292 | ! Computing the mixing length |
---|
293 | !==================================================================== |
---|
294 | |
---|
295 | ! Mise a jour de l0 |
---|
296 | IF (iflag_pbl==8.OR.iflag_pbl==10) THEN |
---|
297 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
298 | ! Iterative computation of l0 |
---|
299 | ! This version is kept for iflag_pbl only for convergence |
---|
300 | ! with NPv3.1 Cmip5 simulations |
---|
301 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
302 | |
---|
303 | DO ig = 1, ngrid |
---|
304 | sq(ig) = 1.e-10 |
---|
305 | sqz(ig) = 1.e-10 |
---|
306 | enddo |
---|
307 | DO k = 2, klev - 1 |
---|
308 | DO ig = 1, ngrid |
---|
309 | zq = sqrt(q2(ig, k)) |
---|
310 | sqz(ig) = sqz(ig) + zq * zlev(ig, k) * (zlay(ig, k) - zlay(ig, k - 1)) |
---|
311 | sq(ig) = sq(ig) + zq * (zlay(ig, k) - zlay(ig, k - 1)) |
---|
312 | enddo |
---|
313 | enddo |
---|
314 | DO ig = 1, ngrid |
---|
315 | l0(ig) = 0.2 * sqz(ig) / sq(ig) |
---|
316 | enddo |
---|
317 | DO k = 2, klev |
---|
318 | DO ig = 1, ngrid |
---|
319 | l(ig, k) = fl(zlev(ig, k), l0(ig), q2(ig, k), n2(ig, k)) |
---|
320 | enddo |
---|
321 | enddo |
---|
322 | ! PRINT*,'L0 cas 8 ou 10 ',l0 |
---|
323 | |
---|
324 | else |
---|
325 | |
---|
326 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
327 | ! In all other case, the assymptotic mixing length l0 is imposed (100m) |
---|
328 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
329 | |
---|
330 | l0(:) = 150. |
---|
331 | DO k = 2, klev |
---|
332 | DO ig = 1, ngrid |
---|
333 | l(ig, k) = fl(zlev(ig, k), l0(ig), q2(ig, k), n2(ig, k)) |
---|
334 | enddo |
---|
335 | enddo |
---|
336 | ! PRINT*,'L0 cas autres ',l0 |
---|
337 | |
---|
338 | endif |
---|
339 | |
---|
340 | |
---|
341 | #ifdef IOPHYS |
---|
342 | IF (okiophys) THEN |
---|
343 | CALL iophys_ecrit('rif', klev, 'Flux Richardson', 'm', rif(:, 1:klev)) |
---|
344 | CALL iophys_ecrit('m2', klev, 'm2 ', 'm/s', m2(:, 1:klev)) |
---|
345 | CALL iophys_ecrit('Km2app', klev, 'm2 conserv', 'm/s', km(:, 1:klev) * m2(:, 1:klev)) |
---|
346 | CALL iophys_ecrit('Km', klev, 'Km', 'm2/s', km(:, 1:klev)) |
---|
347 | END IF |
---|
348 | #endif |
---|
349 | |
---|
350 | |
---|
351 | IF (iflag_pbl<20) THEN |
---|
352 | ! For diagnostics only |
---|
353 | RETURN |
---|
354 | |
---|
355 | ELSE |
---|
356 | |
---|
357 | ! PRINT*,'OK1' |
---|
358 | |
---|
359 | ! Evolution of TKE under source terms K M2 and K N2 |
---|
360 | leff(:, :) = max(l(:, :), 1.) |
---|
361 | |
---|
362 | !################################################################## |
---|
363 | !# IF (iflag_pbl==29) THEN |
---|
364 | !# stop 'Ne pas utiliser iflag_pbl=29' |
---|
365 | !# km2(:,:)=km(:,:)*m2(:,:) |
---|
366 | !# kn2(:,:)=kn2(:,:)*rif(:,:) |
---|
367 | !# ELSEIF (iflag_pbl==25) THEN |
---|
368 | ! VERSION AVEC LA TKE EN MILIEU DE COUCHE |
---|
369 | !# stop 'Ne pas utiliser iflag_pbl=25' |
---|
370 | !# DO k=1,klev |
---|
371 | !# km2(:,k)=-0.5*(dddu(:,k)+dddv(:,k)+dddu(:,k+1)+dddv(:,k+1)) & |
---|
372 | !# & /(masse(:,k)*timestep) |
---|
373 | !# kn2(:,k)=rcpd*0.5*(dddt(:,k)+dddt(:,k+1))/(masse(:,k)*timestep) |
---|
374 | !# leff(:,k)=0.5*(leff(:,k)+leff(:,k+1)) |
---|
375 | !# ENDDO |
---|
376 | !# km2(:,klev+1)=0. ; kn2(:,klev+1)=0. |
---|
377 | !# ELSE |
---|
378 | !################################################################# |
---|
379 | |
---|
380 | km2(:, :) = -(dddu(:, :) + dddv(:, :)) / (masseb(:, :) * timestep) |
---|
381 | kn2(:, :) = rcpd * dddt(:, :) / (masseb(:, :) * timestep) |
---|
382 | ! ENDIF |
---|
383 | q2neg(:, :) = q2(:, :) + timestep * (km2(:, :) - kn2(:, :)) |
---|
384 | q2(:, :) = min(max(q2neg(:, :), 1.e-10), 1.e4) |
---|
385 | |
---|
386 | |
---|
387 | #ifdef IOPHYS |
---|
388 | IF (okiophys) THEN |
---|
389 | CALL iophys_ecrit('km2', klev, 'm2 conserv', 'm/s', km2(:, 1:klev)) |
---|
390 | CALL iophys_ecrit('kn2', klev, 'n2 conserv', 'm/s', kn2(:, 1:klev)) |
---|
391 | END IF |
---|
392 | #endif |
---|
393 | |
---|
394 | ! Dissipation of TKE |
---|
395 | q2old(:, :) = q2(:, :) |
---|
396 | q2(:, :) = 1. / (1. / sqrt(q2(:, :)) + timestep / (2 * leff(:, :) * b1)) |
---|
397 | q2(:, :) = q2(:, :) * q2(:, :) |
---|
398 | ! IF (iflag_pbl<=24) THEN |
---|
399 | DO k = 1, klev |
---|
400 | d_t_diss(:, k) = (masseb(:, k) * (q2neg(:, k) - q2(:, k)) + masseb(:, k + 1) * (q2neg(:, k + 1) - q2(:, k + 1))) / (2. * rcpd * masse(:, k)) |
---|
401 | ENDDO |
---|
402 | |
---|
403 | !################################################################### |
---|
404 | ! ELSE IF (iflag_pbl<=27) THEN |
---|
405 | ! DO k=1,klev |
---|
406 | ! d_t_diss(:,k)=(q2neg(:,k)-q2(:,k))/rcpd |
---|
407 | ! ENDDO |
---|
408 | ! ENDIF |
---|
409 | ! PRINT*,'iflag_pbl ',d_t_diss |
---|
410 | !################################################################### |
---|
411 | |
---|
412 | |
---|
413 | ! Compuation of stability functions |
---|
414 | ! IF (iflag_pbl/=29) THEN |
---|
415 | DO k = 1, klev |
---|
416 | DO ig = 1, ngrid |
---|
417 | IF (ABS(km2(ig, k))<=1.e-20) THEN |
---|
418 | rif(ig, k) = 0. |
---|
419 | ELSE |
---|
420 | rif(ig, k) = min(kn2(ig, k) / km2(ig, k), rifc) |
---|
421 | ENDIF |
---|
422 | IF (rif(ig, k)<0.16) THEN |
---|
423 | alpha(ig, k) = falpha(rif(ig, k)) |
---|
424 | sm(ig, k) = fsm(rif(ig, k)) |
---|
425 | else |
---|
426 | alpha(ig, k) = 1.12 |
---|
427 | sm(ig, k) = 0.085 |
---|
428 | endif |
---|
429 | ENDDO |
---|
430 | ENDDO |
---|
431 | ! ENDIF |
---|
432 | |
---|
433 | ! Computation of turbulent diffusivities |
---|
434 | ! IF (25<=iflag_pbl.AND.iflag_pbl<=28) THEN |
---|
435 | ! DO k=2,klev |
---|
436 | ! sqrtq(:,k)=sqrt(0.5*(q2(:,k)+q2(:,k-1))) |
---|
437 | ! ENDDO |
---|
438 | ! ELSE |
---|
439 | kq(:, :) = 0. |
---|
440 | DO k = 1, klev |
---|
441 | ! Coefficient au milieu des couches pour diffuser la TKE |
---|
442 | kq(:, k) = 0.5 * leff(:, k) * sqrt(q2(:, k)) * 0.2 |
---|
443 | ENDDO |
---|
444 | |
---|
445 | #ifdef IOPHYS |
---|
446 | IF (okiophys) THEN |
---|
447 | CALL iophys_ecrit('q2b', klev, 'KTE inter', 'm2/s', q2(:, 1:klev)) |
---|
448 | END IF |
---|
449 | #endif |
---|
450 | |
---|
451 | IF (iflag_tke_diff==1) THEN |
---|
452 | CALL vdif_q2(timestep, RG, RD, ngrid, plev, pt, kq, q2) |
---|
453 | ENDIF |
---|
454 | |
---|
455 | km(:, :) = 0. |
---|
456 | kn(:, :) = 0. |
---|
457 | DO k = 1, klev |
---|
458 | km(:, k) = leff(:, k) * sqrt(q2(:, k)) * sm(:, k) |
---|
459 | kn(:, k) = km(:, k) * alpha(:, k) |
---|
460 | ENDDO |
---|
461 | |
---|
462 | |
---|
463 | #ifdef IOPHYS |
---|
464 | IF (okiophys) THEN |
---|
465 | CALL iophys_ecrit('mixingl', klev, 'Mixing length', 'm', leff(:, 1:klev)) |
---|
466 | CALL iophys_ecrit('rife', klev, 'Flux Richardson', 'm', rif(:, 1:klev)) |
---|
467 | CALL iophys_ecrit('q2f', klev, 'KTE finale', 'm2/s', q2(:, 1:klev)) |
---|
468 | CALL iophys_ecrit('q2neg', klev, 'KTE non bornee', 'm2/s', q2neg(:, 1:klev)) |
---|
469 | CALL iophys_ecrit('alpha', klev, 'alpha', '', alpha(:, 1:klev)) |
---|
470 | CALL iophys_ecrit('sm', klev, 'sm', '', sm(:, 1:klev)) |
---|
471 | CALL iophys_ecrit('q2f', klev, 'KTE finale', 'm2/s', q2(:, 1:klev)) |
---|
472 | CALL iophys_ecrit('kmf', klev, 'Kz final', 'm2/s', km(:, 1:klev)) |
---|
473 | CALL iophys_ecrit('knf', klev, 'Kz final', 'm2/s', kn(:, 1:klev)) |
---|
474 | CALL iophys_ecrit('kqf', klev, 'Kz final', 'm2/s', kq(:, 1:klev)) |
---|
475 | END IF |
---|
476 | #endif |
---|
477 | |
---|
478 | ENDIF |
---|
479 | |
---|
480 | |
---|
481 | ! PRINT*,'OK2' |
---|
482 | RETURN |
---|
483 | END |
---|