1 | |
---|
2 | ! $Header$ |
---|
3 | |
---|
4 | SUBROUTINE yamada_c(ngrid,timestep,plev,play & |
---|
5 | ,pu,pv,pt,d_u,d_v,d_t,cd,q2,km,kn,kq,d_t_diss,ustar & |
---|
6 | ,iflag_pbl) |
---|
7 | USE dimphy, ONLY: klon, klev |
---|
8 | USE print_control_mod, ONLY: prt_level |
---|
9 | USE ioipsl_getin_p_mod, ONLY: getin_p |
---|
10 | |
---|
11 | IMPLICIT NONE |
---|
12 | INCLUDE "YOMCST.h" |
---|
13 | |
---|
14 | ! timestep : pas de temps |
---|
15 | ! g : g |
---|
16 | ! zlev : altitude a chaque niveau (interface inferieure de la couche |
---|
17 | ! de meme indice) |
---|
18 | ! zlay : altitude au centre de chaque couche |
---|
19 | ! u,v : vitesse au centre de chaque couche |
---|
20 | ! (en entree : la valeur au debut du pas de temps) |
---|
21 | ! teta : temperature potentielle au centre de chaque couche |
---|
22 | ! (en entree : la valeur au debut du pas de temps) |
---|
23 | ! cd : cdrag |
---|
24 | ! (en entree : la valeur au debut du pas de temps) |
---|
25 | ! q2 : $q^2$ au bas de chaque couche |
---|
26 | ! (en entree : la valeur au debut du pas de temps) |
---|
27 | ! (en sortie : la valeur a la fin du pas de temps) |
---|
28 | ! km : diffusivite turbulente de quantite de mouvement (au bas de chaque |
---|
29 | ! couche) |
---|
30 | ! (en sortie : la valeur a la fin du pas de temps) |
---|
31 | ! kn : diffusivite turbulente des scalaires (au bas de chaque couche) |
---|
32 | ! (en sortie : la valeur a la fin du pas de temps) |
---|
33 | |
---|
34 | ! iflag_pbl doit valoir entre 6 et 9 |
---|
35 | ! l=6, on prend systematiquement une longueur d'equilibre |
---|
36 | ! iflag_pbl=6 : MY 2.0 |
---|
37 | ! iflag_pbl=7 : MY 2.0.Fournier |
---|
38 | ! iflag_pbl=8/9 : MY 2.5 |
---|
39 | ! iflag_pbl=8 with special obsolete treatments for convergence |
---|
40 | ! with Cmpi5 NPv3.1 simulations |
---|
41 | ! iflag_pbl=10/11 : New scheme M2 and N2 explicit and dissiptation exact |
---|
42 | ! iflag_pbl=12 = 11 with vertical diffusion off q2 |
---|
43 | |
---|
44 | ! 2013/04/01 (FH hourdin@lmd.jussieu.fr) |
---|
45 | ! Correction for very stable PBLs (iflag_pbl=10 and 11) |
---|
46 | ! iflag_pbl=8 converges numerically with NPv3.1 |
---|
47 | ! iflag_pbl=11 -> the model starts with NP from start files created by ce0l |
---|
48 | ! -> the model can run with longer time-steps. |
---|
49 | !....................................................................... |
---|
50 | |
---|
51 | REAL, DIMENSION(klon,klev) :: d_u,d_v,d_t |
---|
52 | REAL, DIMENSION(klon,klev) :: pu,pv,pt |
---|
53 | REAL, DIMENSION(klon,klev) :: d_t_diss |
---|
54 | |
---|
55 | REAL timestep |
---|
56 | real plev(klon,klev+1) |
---|
57 | real play(klon,klev) |
---|
58 | real ustar(klon) |
---|
59 | real kmin,qmin,pblhmin(klon),coriol(klon) |
---|
60 | REAL zlev(klon,klev+1) |
---|
61 | REAL zlay(klon,klev) |
---|
62 | REAL zu(klon,klev) |
---|
63 | REAL zv(klon,klev) |
---|
64 | REAL zt(klon,klev) |
---|
65 | REAL teta(klon,klev) |
---|
66 | REAL cd(klon) |
---|
67 | REAL q2(klon,klev+1),qpre |
---|
68 | REAL unsdz(klon,klev) |
---|
69 | REAL unsdzdec(klon,klev+1) |
---|
70 | |
---|
71 | REAL km(klon,klev) |
---|
72 | REAL kmpre(klon,klev+1),tmp2 |
---|
73 | REAL mpre(klon,klev+1) |
---|
74 | REAL kn(klon,klev) |
---|
75 | REAL kq(klon,klev) |
---|
76 | real ff(klon,klev+1),delta(klon,klev+1) |
---|
77 | real aa(klon,klev+1),aa0,aa1 |
---|
78 | integer iflag_pbl,ngrid |
---|
79 | integer nlay,nlev |
---|
80 | |
---|
81 | logical first |
---|
82 | integer ipas |
---|
83 | save first,ipas |
---|
84 | !FH/IM data first,ipas/.true.,0/ |
---|
85 | data first,ipas/.false.,0/ |
---|
86 | !$OMP THREADPRIVATE( first,ipas) |
---|
87 | INTEGER, SAVE :: iflag_tke_diff=0 |
---|
88 | !$OMP THREADPRIVATE(iflag_tke_diff) |
---|
89 | |
---|
90 | |
---|
91 | integer ig,k |
---|
92 | |
---|
93 | |
---|
94 | real ri,zrif,zalpha,zsm,zsn |
---|
95 | real rif(klon,klev+1),sm(klon,klev+1),alpha(klon,klev) |
---|
96 | |
---|
97 | real m2(klon,klev+1),dz(klon,klev+1),zq,n2(klon,klev+1) |
---|
98 | REAL, DIMENSION(klon,klev+1) :: km2,kn2,sqrtq |
---|
99 | real dtetadz(klon,klev+1) |
---|
100 | real m2cstat,mcstat,kmcstat |
---|
101 | real l(klon,klev+1) |
---|
102 | real leff(klon,klev+1) |
---|
103 | real,allocatable,save :: l0(:) |
---|
104 | !$OMP THREADPRIVATE(l0) |
---|
105 | real sq(klon),sqz(klon),zz(klon,klev+1) |
---|
106 | integer iter |
---|
107 | |
---|
108 | real ric,rifc,b1,kap |
---|
109 | save ric,rifc,b1,kap |
---|
110 | data ric,rifc,b1,kap/0.195,0.191,16.6,0.4/ |
---|
111 | !$OMP THREADPRIVATE(ric,rifc,b1,kap) |
---|
112 | real frif,falpha,fsm |
---|
113 | real fl,zzz,zl0,zq2,zn2 |
---|
114 | |
---|
115 | real rino(klon,klev+1),smyam(klon,klev),styam(klon,klev) |
---|
116 | real lyam(klon,klev),knyam(klon,klev) |
---|
117 | real w2yam(klon,klev),t2yam(klon,klev) |
---|
118 | logical,save :: firstcall=.true. |
---|
119 | !$OMP THREADPRIVATE(firstcall) |
---|
120 | CHARACTER(len=20),PARAMETER :: modname="yamada_c" |
---|
121 | REAL, DIMENSION(klon,klev+1) :: fluxu,fluxv,fluxt |
---|
122 | REAL, DIMENSION(klon,klev+1) :: dddu,dddv,dddt |
---|
123 | REAL, DIMENSION(klon,klev) :: exner,masse |
---|
124 | REAL, DIMENSION(klon,klev+1) :: masseb,q2old,q2neg |
---|
125 | LOGICAL okiophys |
---|
126 | |
---|
127 | frif(ri)=0.6588*(ri+0.1776-sqrt(ri*ri-0.3221*ri+0.03156)) |
---|
128 | falpha(ri)=1.318*(0.2231-ri)/(0.2341-ri) |
---|
129 | fsm(ri)=1.96*(0.1912-ri)*(0.2341-ri)/((1.-ri)*(0.2231-ri)) |
---|
130 | fl(zzz,zl0,zq2,zn2)= & |
---|
131 | max(min(l0(ig)*kap*zlev(ig,k)/(kap*zlev(ig,k)+l0(ig)) & |
---|
132 | ,0.5*sqrt(q2(ig,k))/sqrt(max(n2(ig,k),1.e-10))) ,1.) |
---|
133 | |
---|
134 | |
---|
135 | okiophys=klon==1 |
---|
136 | if (firstcall) then |
---|
137 | CALL getin_p('iflag_tke_diff',iflag_tke_diff) |
---|
138 | allocate(l0(klon)) |
---|
139 | #define IOPHYS |
---|
140 | #ifdef IOPHYS |
---|
141 | ! call iophys_ini(timestep) |
---|
142 | #endif |
---|
143 | firstcall=.false. |
---|
144 | endif |
---|
145 | |
---|
146 | IF (ngrid<=0) RETURN ! Bizarre : on n a pas ce probeleme pour coef_diff_turb |
---|
147 | |
---|
148 | #ifdef IOPHYS |
---|
149 | if (okiophys) then |
---|
150 | call iophys_ecrit('q2i',klev,'q2 debut my','m2/s2',q2(:,1:klev)) |
---|
151 | call iophys_ecrit('kmi',klev,'Kz debut my','m/s2',km(:,1:klev)) |
---|
152 | endif |
---|
153 | #endif |
---|
154 | |
---|
155 | nlay=klev |
---|
156 | nlev=klev+1 |
---|
157 | |
---|
158 | |
---|
159 | !------------------------------------------------------------------------- |
---|
160 | ! Computation of conservative source terms from the turbulent tendencies |
---|
161 | !------------------------------------------------------------------------- |
---|
162 | |
---|
163 | |
---|
164 | zalpha=0.5 ! Anciennement 0.5. Essayer de voir pourquoi ? |
---|
165 | zu(:,:)=pu(:,:)+zalpha*d_u(:,:) |
---|
166 | zv(:,:)=pv(:,:)+zalpha*d_v(:,:) |
---|
167 | zt(:,:)=pt(:,:)+zalpha*d_t(:,:) |
---|
168 | |
---|
169 | do k=1,klev |
---|
170 | exner(:,k)=(play(:,k)/plev(:,1))**RKAPPA |
---|
171 | masse(:,k)=(plev(:,k)-plev(:,k+1))/RG |
---|
172 | teta(:,k)=zt(:,k)/exner(:,k) |
---|
173 | enddo |
---|
174 | |
---|
175 | ! Atmospheric mass at layer interfaces, where the TKE is computed |
---|
176 | masseb(:,:)=0. |
---|
177 | do k=1,klev |
---|
178 | masseb(:,k)=masseb(:,k)+masse(:,k) |
---|
179 | masseb(:,k+1)=masseb(:,k+1)+masse(:,k) |
---|
180 | enddo |
---|
181 | masseb(:,:)=0.5*masseb(:,:) |
---|
182 | |
---|
183 | zlev(:,1)=0. |
---|
184 | zlay(:,1)=RCPD*teta(:,1)*(1.-exner(:,1)) |
---|
185 | do k=1,klev-1 |
---|
186 | zlay(:,k+1)=zlay(:,k)+0.5*RCPD*(teta(:,k)+teta(:,k+1))*(exner(:,k)-exner(:,k+1))/RG |
---|
187 | zlev(:,k)=0.5*(zlay(:,k)+zlay(:,k+1)) ! PASBO |
---|
188 | enddo |
---|
189 | |
---|
190 | fluxu(:,klev+1)=0. |
---|
191 | fluxv(:,klev+1)=0. |
---|
192 | fluxt(:,klev+1)=0. |
---|
193 | |
---|
194 | do k=klev,1,-1 |
---|
195 | fluxu(:,k)=fluxu(:,k+1)+masse(:,k)*d_u(:,k) |
---|
196 | fluxv(:,k)=fluxv(:,k+1)+masse(:,k)*d_v(:,k) |
---|
197 | fluxt(:,k)=fluxt(:,k+1)+masse(:,k)*d_t(:,k)/exner(:,k) ! Flux de theta |
---|
198 | enddo |
---|
199 | |
---|
200 | dddu(:,1)=2*zu(:,1)*fluxu(:,1) |
---|
201 | dddv(:,1)=2*zv(:,1)*fluxv(:,1) |
---|
202 | dddt(:,1)=(exner(:,1)-1.)*fluxt(:,1) |
---|
203 | |
---|
204 | do k=2,klev |
---|
205 | dddu(:,k)=(zu(:,k)-zu(:,k-1))*fluxu(:,k) |
---|
206 | dddv(:,k)=(zv(:,k)-zv(:,k-1))*fluxv(:,k) |
---|
207 | dddt(:,k)=(exner(:,k)-exner(:,k-1))*fluxt(:,k) |
---|
208 | enddo |
---|
209 | dddu(:,klev+1)=0. |
---|
210 | dddv(:,klev+1)=0. |
---|
211 | dddt(:,klev+1)=0. |
---|
212 | |
---|
213 | #ifdef IOPHYS |
---|
214 | if (okiophys) then |
---|
215 | call iophys_ecrit('zlay',klev,'Geop','m',zlay) |
---|
216 | call iophys_ecrit('teta',klev,'teta','K',teta) |
---|
217 | call iophys_ecrit('temp',klev,'temp','K',zt) |
---|
218 | call iophys_ecrit('pt',klev,'temp','K',pt) |
---|
219 | call iophys_ecrit('pu',klev,'u','m/s',pu) |
---|
220 | call iophys_ecrit('pv',klev,'v','m/s',pv) |
---|
221 | call iophys_ecrit('d_u',klev,'d_u','m/s2',d_u) |
---|
222 | call iophys_ecrit('d_v',klev,'d_v','m/s2',d_v) |
---|
223 | call iophys_ecrit('d_t',klev,'d_t','K/s',d_t) |
---|
224 | call iophys_ecrit('exner',klev,'exner','',exner) |
---|
225 | call iophys_ecrit('masse',klev,'masse','',masse) |
---|
226 | call iophys_ecrit('masseb',klev,'masseb','',masseb) |
---|
227 | endif |
---|
228 | #endif |
---|
229 | |
---|
230 | |
---|
231 | |
---|
232 | ipas=ipas+1 |
---|
233 | |
---|
234 | |
---|
235 | !....................................................................... |
---|
236 | ! les increments verticaux |
---|
237 | !....................................................................... |
---|
238 | |
---|
239 | !!!!!! allerte !!!!!c |
---|
240 | !!!!!! zlev n'est pas declare a nlev !!!!!c |
---|
241 | !!!!!! ----> |
---|
242 | DO ig=1,ngrid |
---|
243 | zlev(ig,nlev)=zlay(ig,nlay) & |
---|
244 | +( zlay(ig,nlay) - zlev(ig,nlev-1) ) |
---|
245 | ENDDO |
---|
246 | !!!!!! <---- |
---|
247 | !!!!!! allerte !!!!!c |
---|
248 | |
---|
249 | DO k=1,nlay |
---|
250 | DO ig=1,ngrid |
---|
251 | unsdz(ig,k)=1.E+0/(zlev(ig,k+1)-zlev(ig,k)) |
---|
252 | ENDDO |
---|
253 | ENDDO |
---|
254 | DO ig=1,ngrid |
---|
255 | unsdzdec(ig,1)=1.E+0/(zlay(ig,1)-zlev(ig,1)) |
---|
256 | ENDDO |
---|
257 | DO k=2,nlay |
---|
258 | DO ig=1,ngrid |
---|
259 | unsdzdec(ig,k)=1.E+0/(zlay(ig,k)-zlay(ig,k-1)) |
---|
260 | ENDDO |
---|
261 | ENDDO |
---|
262 | DO ig=1,ngrid |
---|
263 | unsdzdec(ig,nlay+1)=1.E+0/(zlev(ig,nlay+1)-zlay(ig,nlay)) |
---|
264 | ENDDO |
---|
265 | |
---|
266 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
267 | ! Computing M^2, N^2, Richardson numbers, stability functions |
---|
268 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
269 | |
---|
270 | |
---|
271 | do k=2,klev |
---|
272 | do ig=1,ngrid |
---|
273 | dz(ig,k)=zlay(ig,k)-zlay(ig,k-1) |
---|
274 | m2(ig,k)=((zu(ig,k)-zu(ig,k-1))**2+(zv(ig,k)-zv(ig,k-1))**2)/(dz(ig,k)*dz(ig,k)) |
---|
275 | dtetadz(ig,k)=(teta(ig,k)-teta(ig,k-1))/dz(ig,k) |
---|
276 | n2(ig,k)=RG*2.*dtetadz(ig,k)/(teta(ig,k-1)+teta(ig,k)) |
---|
277 | ! n2(ig,k)=0. |
---|
278 | ri=n2(ig,k)/max(m2(ig,k),1.e-10) |
---|
279 | if (ri<ric) then |
---|
280 | rif(ig,k)=frif(ri) |
---|
281 | else |
---|
282 | rif(ig,k)=rifc |
---|
283 | endif |
---|
284 | if(rif(ig,k)<0.16) then |
---|
285 | alpha(ig,k)=falpha(rif(ig,k)) |
---|
286 | sm(ig,k)=fsm(rif(ig,k)) |
---|
287 | else |
---|
288 | alpha(ig,k)=1.12 |
---|
289 | sm(ig,k)=0.085 |
---|
290 | endif |
---|
291 | zz(ig,k)=b1*m2(ig,k)*(1.-rif(ig,k))*sm(ig,k) |
---|
292 | enddo |
---|
293 | enddo |
---|
294 | |
---|
295 | |
---|
296 | |
---|
297 | !==================================================================== |
---|
298 | ! Computing the mixing length |
---|
299 | !==================================================================== |
---|
300 | |
---|
301 | ! Mise a jour de l0 |
---|
302 | if (iflag_pbl==8.or.iflag_pbl==10) then |
---|
303 | |
---|
304 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
305 | ! Iterative computation of l0 |
---|
306 | ! This version is kept for iflag_pbl only for convergence |
---|
307 | ! with NPv3.1 Cmip5 simulations |
---|
308 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
309 | |
---|
310 | do ig=1,ngrid |
---|
311 | sq(ig)=1.e-10 |
---|
312 | sqz(ig)=1.e-10 |
---|
313 | enddo |
---|
314 | do k=2,klev-1 |
---|
315 | do ig=1,ngrid |
---|
316 | zq=sqrt(q2(ig,k)) |
---|
317 | sqz(ig)=sqz(ig)+zq*zlev(ig,k)*(zlay(ig,k)-zlay(ig,k-1)) |
---|
318 | sq(ig)=sq(ig)+zq*(zlay(ig,k)-zlay(ig,k-1)) |
---|
319 | enddo |
---|
320 | enddo |
---|
321 | do ig=1,ngrid |
---|
322 | l0(ig)=0.2*sqz(ig)/sq(ig) |
---|
323 | enddo |
---|
324 | do k=2,klev |
---|
325 | do ig=1,ngrid |
---|
326 | l(ig,k)=fl(zlev(ig,k),l0(ig),q2(ig,k),n2(ig,k)) |
---|
327 | enddo |
---|
328 | enddo |
---|
329 | ! print*,'L0 cas 8 ou 10 ',l0 |
---|
330 | |
---|
331 | else |
---|
332 | |
---|
333 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
334 | ! In all other case, the assymptotic mixing length l0 is imposed (100m) |
---|
335 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
336 | |
---|
337 | l0(:)=150. |
---|
338 | do k=2,klev |
---|
339 | do ig=1,ngrid |
---|
340 | l(ig,k)=fl(zlev(ig,k),l0(ig),q2(ig,k),n2(ig,k)) |
---|
341 | enddo |
---|
342 | enddo |
---|
343 | ! print*,'L0 cas autres ',l0 |
---|
344 | |
---|
345 | endif |
---|
346 | |
---|
347 | |
---|
348 | #ifdef IOPHYS |
---|
349 | if (okiophys) then |
---|
350 | call iophys_ecrit('rif',klev,'Flux Richardson','m',rif(:,1:klev)) |
---|
351 | call iophys_ecrit('m2',klev,'m2 ','m/s',m2(:,1:klev)) |
---|
352 | call iophys_ecrit('Km2app',klev,'m2 conserv','m/s',km(:,1:klev)*m2(:,1:klev)) |
---|
353 | call iophys_ecrit('Km',klev,'Km','m2/s',km(:,1:klev)) |
---|
354 | endif |
---|
355 | #endif |
---|
356 | |
---|
357 | |
---|
358 | IF (iflag_pbl<20) then |
---|
359 | ! For diagnostics only |
---|
360 | RETURN |
---|
361 | |
---|
362 | ELSE |
---|
363 | |
---|
364 | ! print*,'OK1' |
---|
365 | |
---|
366 | ! Evolution of TKE under source terms K M2 and K N2 |
---|
367 | leff(:,:)=max(l(:,:),1.) |
---|
368 | |
---|
369 | !################################################################## |
---|
370 | !# IF (iflag_pbl==29) THEN |
---|
371 | !# STOP'Ne pas utiliser iflag_pbl=29' |
---|
372 | !# km2(:,:)=km(:,:)*m2(:,:) |
---|
373 | !# kn2(:,:)=kn2(:,:)*rif(:,:) |
---|
374 | !# ELSEIF (iflag_pbl==25) THEN |
---|
375 | ! VERSION AVEC LA TKE EN MILIEU DE COUCHE |
---|
376 | !# STOP'Ne pas utiliser iflag_pbl=25' |
---|
377 | !# DO k=1,klev |
---|
378 | !# km2(:,k)=-0.5*(dddu(:,k)+dddv(:,k)+dddu(:,k+1)+dddv(:,k+1)) & |
---|
379 | !# & /(masse(:,k)*timestep) |
---|
380 | !# kn2(:,k)=rcpd*0.5*(dddt(:,k)+dddt(:,k+1))/(masse(:,k)*timestep) |
---|
381 | !# leff(:,k)=0.5*(leff(:,k)+leff(:,k+1)) |
---|
382 | !# ENDDO |
---|
383 | !# km2(:,klev+1)=0. ; kn2(:,klev+1)=0. |
---|
384 | !# ELSE |
---|
385 | !################################################################# |
---|
386 | |
---|
387 | km2(:,:)=-(dddu(:,:)+dddv(:,:))/(masseb(:,:)*timestep) |
---|
388 | kn2(:,:)=rcpd*dddt(:,:)/(masseb(:,:)*timestep) |
---|
389 | ! ENDIF |
---|
390 | q2neg(:,:)=q2(:,:)+timestep*(km2(:,:)-kn2(:,:)) |
---|
391 | q2(:,:)=min(max(q2neg(:,:),1.e-10),1.e4) |
---|
392 | |
---|
393 | |
---|
394 | #ifdef IOPHYS |
---|
395 | if (okiophys) then |
---|
396 | call iophys_ecrit('km2',klev,'m2 conserv','m/s',km2(:,1:klev)) |
---|
397 | call iophys_ecrit('kn2',klev,'n2 conserv','m/s',kn2(:,1:klev)) |
---|
398 | endif |
---|
399 | #endif |
---|
400 | |
---|
401 | ! Dissipation of TKE |
---|
402 | q2old(:,:)=q2(:,:) |
---|
403 | q2(:,:)=1./(1./sqrt(q2(:,:))+timestep/(2*leff(:,:)*b1)) |
---|
404 | q2(:,:)=q2(:,:)*q2(:,:) |
---|
405 | ! IF (iflag_pbl<=24) THEN |
---|
406 | DO k=1,klev |
---|
407 | d_t_diss(:,k)=(masseb(:,k)*(q2neg(:,k)-q2(:,k))+masseb(:,k+1)*(q2neg(:,k+1)-q2(:,k+1)))/(2.*rcpd*masse(:,k)) |
---|
408 | ENDDO |
---|
409 | |
---|
410 | !################################################################### |
---|
411 | ! ELSE IF (iflag_pbl<=27) THEN |
---|
412 | ! DO k=1,klev |
---|
413 | ! d_t_diss(:,k)=(q2neg(:,k)-q2(:,k))/rcpd |
---|
414 | ! ENDDO |
---|
415 | ! ENDIF |
---|
416 | ! print*,'iflag_pbl ',d_t_diss |
---|
417 | !################################################################### |
---|
418 | |
---|
419 | |
---|
420 | ! Compuation of stability functions |
---|
421 | ! IF (iflag_pbl/=29) THEN |
---|
422 | DO k=1,klev |
---|
423 | DO ig=1,ngrid |
---|
424 | IF (ABS(km2(ig,k))<=1.e-20) THEN |
---|
425 | rif(ig,k)=0. |
---|
426 | ELSE |
---|
427 | rif(ig,k)=min(kn2(ig,k)/km2(ig,k),rifc) |
---|
428 | ENDIF |
---|
429 | IF (rif(ig,k)<0.16) THEN |
---|
430 | alpha(ig,k)=falpha(rif(ig,k)) |
---|
431 | sm(ig,k)=fsm(rif(ig,k)) |
---|
432 | else |
---|
433 | alpha(ig,k)=1.12 |
---|
434 | sm(ig,k)=0.085 |
---|
435 | endif |
---|
436 | ENDDO |
---|
437 | ENDDO |
---|
438 | ! ENDIF |
---|
439 | |
---|
440 | ! Computation of turbulent diffusivities |
---|
441 | ! IF (25<=iflag_pbl.and.iflag_pbl<=28) THEN |
---|
442 | ! DO k=2,klev |
---|
443 | ! sqrtq(:,k)=sqrt(0.5*(q2(:,k)+q2(:,k-1))) |
---|
444 | ! ENDDO |
---|
445 | ! ELSE |
---|
446 | kq(:,:)=0. |
---|
447 | DO k=1,klev |
---|
448 | ! Coefficient au milieu des couches pour diffuser la TKE |
---|
449 | kq(:,k)=0.5*leff(:,k)*sqrt(q2(:,k))*0.2 |
---|
450 | ENDDO |
---|
451 | |
---|
452 | #ifdef IOPHYS |
---|
453 | if (okiophys) then |
---|
454 | call iophys_ecrit('q2b',klev,'KTE inter','m2/s',q2(:,1:klev)) |
---|
455 | endif |
---|
456 | #endif |
---|
457 | |
---|
458 | IF (iflag_tke_diff==1) THEN |
---|
459 | CALL vdif_q2(timestep, RG, RD, ngrid, plev, pt, kq, q2) |
---|
460 | ENDIF |
---|
461 | |
---|
462 | km(:,:)=0. |
---|
463 | kn(:,:)=0. |
---|
464 | DO k=1,klev |
---|
465 | km(:,k)=leff(:,k)*sqrt(q2(:,k))*sm(:,k) |
---|
466 | kn(:,k)=km(:,k)*alpha(:,k) |
---|
467 | ENDDO |
---|
468 | |
---|
469 | |
---|
470 | #ifdef IOPHYS |
---|
471 | if (okiophys) then |
---|
472 | call iophys_ecrit('mixingl',klev,'Mixing length','m',leff(:,1:klev)) |
---|
473 | call iophys_ecrit('rife',klev,'Flux Richardson','m',rif(:,1:klev)) |
---|
474 | call iophys_ecrit('q2f',klev,'KTE finale','m2/s',q2(:,1:klev)) |
---|
475 | call iophys_ecrit('q2neg',klev,'KTE non bornee','m2/s',q2neg(:,1:klev)) |
---|
476 | call iophys_ecrit('alpha',klev,'alpha','',alpha(:,1:klev)) |
---|
477 | call iophys_ecrit('sm',klev,'sm','',sm(:,1:klev)) |
---|
478 | call iophys_ecrit('q2f',klev,'KTE finale','m2/s',q2(:,1:klev)) |
---|
479 | call iophys_ecrit('kmf',klev,'Kz final','m2/s',km(:,1:klev)) |
---|
480 | call iophys_ecrit('knf',klev,'Kz final','m2/s',kn(:,1:klev)) |
---|
481 | call iophys_ecrit('kqf',klev,'Kz final','m2/s',kq(:,1:klev)) |
---|
482 | endif |
---|
483 | #endif |
---|
484 | |
---|
485 | |
---|
486 | ENDIF |
---|
487 | |
---|
488 | |
---|
489 | ! print*,'OK2' |
---|
490 | RETURN |
---|
491 | END |
---|