source: LMDZ6/branches/Amaury_dev/libf/phylmd/yamada_c.F90 @ 5159

Last change on this file since 5159 was 5158, checked in by abarral, 7 weeks ago

Add missing klon on strataer_emiss_mod.F90
Correct various missing explicit declarations
Replace tabs by spaces (tabs are not part of the fortran charset)
Continue cleaning modules
Removed unused arguments and variables

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
File size: 15.3 KB
Line 
1! $Header$
2
3SUBROUTINE yamada_c(ngrid, timestep, plev, play &
4        , pu, pv, pt, d_u, d_v, d_t, cd, q2, km, kn, kq, d_t_diss, ustar &
5        , iflag_pbl)
6  USE dimphy, ONLY: klon, klev
7  USE lmdz_print_control, ONLY: prt_level
8  USE lmdz_ioipsl_getin_p, ONLY: getin_p
9  USE lmdz_yomcst
10
11  IMPLICIT NONE
12
13  ! timestep : pas de temps
14  ! g  : g
15  ! zlev : altitude a chaque niveau (interface inferieure de la couche
16  !        de meme indice)
17  ! zlay : altitude au centre de chaque couche
18  ! u,v : vitesse au centre de chaque couche
19  !       (en entree : la valeur au debut du pas de temps)
20  ! teta : temperature potentielle au centre de chaque couche
21  !        (en entree : la valeur au debut du pas de temps)
22  ! cd : cdrag
23  !      (en entree : la valeur au debut du pas de temps)
24  ! q2 : $q^2$ au bas de chaque couche
25  !      (en entree : la valeur au debut du pas de temps)
26  !      (en sortie : la valeur a la fin du pas de temps)
27  ! km : diffusivite turbulente de quantite de mouvement (au bas de chaque
28  !      couche)
29  !      (en sortie : la valeur a la fin du pas de temps)
30  ! kn : diffusivite turbulente des scalaires (au bas de chaque couche)
31  !      (en sortie : la valeur a la fin du pas de temps)
32
33  !  iflag_pbl doit valoir entre 6 et 9
34  !      l=6, on prend  systematiquement une longueur d'equilibre
35  !    iflag_pbl=6 : MY 2.0
36  !    iflag_pbl=7 : MY 2.0.Fournier
37  !    iflag_pbl=8/9 : MY 2.5
38  !       iflag_pbl=8 with special obsolete treatments for convergence
39  !       with Cmpi5 NPv3.1 simulations
40  !    iflag_pbl=10/11 :  New scheme M2 and N2 explicit and dissiptation exact
41  !    iflag_pbl=12 = 11 with vertical diffusion off q2
42
43  !  2013/04/01 (FH hourdin@lmd.jussieu.fr)
44  !     Correction for very stable PBLs (iflag_pbl=10 and 11)
45  !     iflag_pbl=8 converges numerically with NPv3.1
46  !     iflag_pbl=11 -> the model starts with NP from start files created by ce0l
47  !                  -> the model can run with longer time-steps.
48  !.......................................................................
49
50  REAL, DIMENSION(klon, klev) :: d_u, d_v, d_t
51  REAL, DIMENSION(klon, klev) :: pu, pv, pt
52  REAL, DIMENSION(klon, klev) :: d_t_diss
53
54  REAL timestep
55  REAL plev(klon, klev + 1)
56  REAL play(klon, klev)
57  REAL ustar(klon)
58  REAL kmin, qmin, pblhmin(klon), coriol(klon)
59  REAL zlev(klon, klev + 1)
60  REAL zlay(klon, klev)
61  REAL zu(klon, klev)
62  REAL zv(klon, klev)
63  REAL zt(klon, klev)
64  REAL teta(klon, klev)
65  REAL cd(klon)
66  REAL q2(klon, klev + 1), qpre
67  REAL unsdz(klon, klev)
68  REAL unsdzdec(klon, klev + 1)
69
70  REAL km(klon, klev)
71  REAL kmpre(klon, klev + 1), tmp2
72  REAL mpre(klon, klev + 1)
73  REAL kn(klon, klev)
74  REAL kq(klon, klev)
75  REAL ff(klon, klev + 1), delta(klon, klev + 1)
76  REAL aa(klon, klev + 1), aa0, aa1
77  INTEGER iflag_pbl, ngrid
78  INTEGER nlay, nlev
79
80  LOGICAL first
81  INTEGER ipas
82  save first, ipas
83  !FH/IM     data first,ipas/.TRUE.,0/
84  data first, ipas/.FALSE., 0/
85  !$OMP THREADPRIVATE( first,ipas)
86  INTEGER, SAVE :: iflag_tke_diff = 0
87  !$OMP THREADPRIVATE(iflag_tke_diff)
88
89  INTEGER ig, k
90
91  REAL ri, zrif, zalpha, zsm, zsn
92  REAL rif(klon, klev + 1), sm(klon, klev + 1), alpha(klon, klev)
93
94  REAL m2(klon, klev + 1), dz(klon, klev + 1), zq, n2(klon, klev + 1)
95  REAL, DIMENSION(klon, klev + 1) :: km2, kn2, sqrtq
96  REAL dtetadz(klon, klev + 1)
97  REAL m2cstat, mcstat, kmcstat
98  REAL l(klon, klev + 1)
99  REAL leff(klon, klev + 1)
100  REAL, ALLOCATABLE, save :: l0(:)
101  !$OMP THREADPRIVATE(l0)
102  REAL sq(klon), sqz(klon), zz(klon, klev + 1)
103  INTEGER iter
104
105  REAL ric, rifc, b1, kap
106  save ric, rifc, b1, kap
107  data ric, rifc, b1, kap/0.195, 0.191, 16.6, 0.4/
108  !$OMP THREADPRIVATE(ric,rifc,b1,kap)
109  REAL frif, falpha, fsm
110  REAL fl, zzz, zl0, zq2, zn2
111
112  REAL rino(klon, klev + 1), smyam(klon, klev), styam(klon, klev)
113  REAL lyam(klon, klev), knyam(klon, klev)
114  REAL w2yam(klon, klev), t2yam(klon, klev)
115  logical, save :: firstcall = .TRUE.
116  !$OMP THREADPRIVATE(firstcall)
117  CHARACTER(len = 20), PARAMETER :: modname = "yamada_c"
118  REAL, DIMENSION(klon, klev + 1) :: fluxu, fluxv, fluxt
119  REAL, DIMENSION(klon, klev + 1) :: dddu, dddv, dddt
120  REAL, DIMENSION(klon, klev) :: exner, masse
121  REAL, DIMENSION(klon, klev + 1) :: masseb, q2old, q2neg
122  LOGICAL okiophys
123
124  frif(ri) = 0.6588 * (ri + 0.1776 - sqrt(ri * ri - 0.3221 * ri + 0.03156))
125  falpha(ri) = 1.318 * (0.2231 - ri) / (0.2341 - ri)
126  fsm(ri) = 1.96 * (0.1912 - ri) * (0.2341 - ri) / ((1. - ri) * (0.2231 - ri))
127  fl(zzz, zl0, zq2, zn2) = &
128          max(min(l0(ig) * kap * zlev(ig, k) / (kap * zlev(ig, k) + l0(ig)) &
129                  , 0.5 * sqrt(q2(ig, k)) / sqrt(max(n2(ig, k), 1.e-10))), 1.)
130
131  okiophys = klon==1
132  IF (firstcall) THEN
133    CALL getin_p('iflag_tke_diff', iflag_tke_diff)
134    allocate(l0(klon))
135#define IOPHYS
136#ifdef IOPHYS
137    !        CALL iophys_ini(timestep)
138#endif
139    firstcall = .FALSE.
140  endif
141
142  IF (ngrid<=0) RETURN ! Bizarre : on n a pas ce probeleme pour coef_diff_turb
143
144#ifdef IOPHYS
145  IF (okiophys) THEN
146    CALL iophys_ecrit('q2i', klev, 'q2 debut my', 'm2/s2', q2(:, 1:klev))
147    CALL iophys_ecrit('kmi', klev, 'Kz debut my', 'm/s2', km(:, 1:klev))
148  END IF
149#endif
150
151  nlay = klev
152  nlev = klev + 1
153
154
155  !-------------------------------------------------------------------------
156  ! Computation of conservative source terms from the turbulent tendencies
157  !-------------------------------------------------------------------------
158
159  zalpha = 0.5 ! Anciennement 0.5. Essayer de voir pourquoi ?
160  zu(:, :) = pu(:, :) + zalpha * d_u(:, :)
161  zv(:, :) = pv(:, :) + zalpha * d_v(:, :)
162  zt(:, :) = pt(:, :) + zalpha * d_t(:, :)
163
164  DO k = 1, klev
165    exner(:, k) = (play(:, k) / plev(:, 1))**RKAPPA
166    masse(:, k) = (plev(:, k) - plev(:, k + 1)) / RG
167    teta(:, k) = zt(:, k) / exner(:, k)
168  enddo
169
170  ! Atmospheric mass at layer interfaces, where the TKE is computed
171  masseb(:, :) = 0.
172  DO k = 1, klev
173    masseb(:, k) = masseb(:, k) + masse(:, k)
174    masseb(:, k + 1) = masseb(:, k + 1) + masse(:, k)
175  enddo
176  masseb(:, :) = 0.5 * masseb(:, :)
177
178  zlev(:, 1) = 0.
179  zlay(:, 1) = RCPD * teta(:, 1) * (1. - exner(:, 1))
180  DO k = 1, klev - 1
181    zlay(:, k + 1) = zlay(:, k) + 0.5 * RCPD * (teta(:, k) + teta(:, k + 1)) * (exner(:, k) - exner(:, k + 1)) / RG
182    zlev(:, k) = 0.5 * (zlay(:, k) + zlay(:, k + 1)) ! PASBO
183  enddo
184
185  fluxu(:, klev + 1) = 0.
186  fluxv(:, klev + 1) = 0.
187  fluxt(:, klev + 1) = 0.
188
189  DO k = klev, 1, -1
190    fluxu(:, k) = fluxu(:, k + 1) + masse(:, k) * d_u(:, k)
191    fluxv(:, k) = fluxv(:, k + 1) + masse(:, k) * d_v(:, k)
192    fluxt(:, k) = fluxt(:, k + 1) + masse(:, k) * d_t(:, k) / exner(:, k) ! Flux de theta
193  enddo
194
195  dddu(:, 1) = 2 * zu(:, 1) * fluxu(:, 1)
196  dddv(:, 1) = 2 * zv(:, 1) * fluxv(:, 1)
197  dddt(:, 1) = (exner(:, 1) - 1.) * fluxt(:, 1)
198
199  DO k = 2, klev
200    dddu(:, k) = (zu(:, k) - zu(:, k - 1)) * fluxu(:, k)
201    dddv(:, k) = (zv(:, k) - zv(:, k - 1)) * fluxv(:, k)
202    dddt(:, k) = (exner(:, k) - exner(:, k - 1)) * fluxt(:, k)
203  enddo
204  dddu(:, klev + 1) = 0.
205  dddv(:, klev + 1) = 0.
206  dddt(:, klev + 1) = 0.
207
208#ifdef IOPHYS
209  IF (okiophys) THEN
210    CALL iophys_ecrit('zlay', klev, 'Geop', 'm', zlay)
211    CALL iophys_ecrit('teta', klev, 'teta', 'K', teta)
212    CALL iophys_ecrit('temp', klev, 'temp', 'K', zt)
213    CALL iophys_ecrit('pt', klev, 'temp', 'K', pt)
214    CALL iophys_ecrit('pu', klev, 'u', 'm/s', pu)
215    CALL iophys_ecrit('pv', klev, 'v', 'm/s', pv)
216    CALL iophys_ecrit('d_u', klev, 'd_u', 'm/s2', d_u)
217    CALL iophys_ecrit('d_v', klev, 'd_v', 'm/s2', d_v)
218    CALL iophys_ecrit('d_t', klev, 'd_t', 'K/s', d_t)
219    CALL iophys_ecrit('exner', klev, 'exner', '', exner)
220    CALL iophys_ecrit('masse', klev, 'masse', '', masse)
221    CALL iophys_ecrit('masseb', klev, 'masseb', '', masseb)
222  END IF
223#endif
224
225
226
227  ipas = ipas + 1
228
229
230  !.......................................................................
231  !  les increments verticaux
232  !.......................................................................
233
234  !!!!!! allerte !!!!!c
235  !!!!!! zlev n'est pas declare a nlev !!!!!c
236  !!!!!! ---->
237  DO ig = 1, ngrid
238    zlev(ig, nlev) = zlay(ig, nlay) &
239            + (zlay(ig, nlay) - zlev(ig, nlev - 1))
240  ENDDO
241  !!!!!! <----
242  !!!!!! allerte !!!!!c
243
244  DO k = 1, nlay
245    DO ig = 1, ngrid
246      unsdz(ig, k) = 1.E+0 / (zlev(ig, k + 1) - zlev(ig, k))
247    ENDDO
248  ENDDO
249  DO ig = 1, ngrid
250    unsdzdec(ig, 1) = 1.E+0 / (zlay(ig, 1) - zlev(ig, 1))
251  ENDDO
252  DO k = 2, nlay
253    DO ig = 1, ngrid
254      unsdzdec(ig, k) = 1.E+0 / (zlay(ig, k) - zlay(ig, k - 1))
255    ENDDO
256  ENDDO
257  DO ig = 1, ngrid
258    unsdzdec(ig, nlay + 1) = 1.E+0 / (zlev(ig, nlay + 1) - zlay(ig, nlay))
259  ENDDO
260
261  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
262  ! Computing M^2, N^2, Richardson numbers, stability functions
263  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
264
265  DO k = 2, klev
266    DO ig = 1, ngrid
267      dz(ig, k) = zlay(ig, k) - zlay(ig, k - 1)
268      m2(ig, k) = ((zu(ig, k) - zu(ig, k - 1))**2 + (zv(ig, k) - zv(ig, k - 1))**2) / (dz(ig, k) * dz(ig, k))
269      dtetadz(ig, k) = (teta(ig, k) - teta(ig, k - 1)) / dz(ig, k)
270      n2(ig, k) = RG * 2. * dtetadz(ig, k) / (teta(ig, k - 1) + teta(ig, k))
271      !        n2(ig,k)=0.
272      ri = n2(ig, k) / max(m2(ig, k), 1.e-10)
273      IF (ri<ric) THEN
274        rif(ig, k) = frif(ri)
275      else
276        rif(ig, k) = rifc
277      endif
278      IF(rif(ig, k)<0.16) THEN
279        alpha(ig, k) = falpha(rif(ig, k))
280        sm(ig, k) = fsm(rif(ig, k))
281      else
282        alpha(ig, k) = 1.12
283        sm(ig, k) = 0.085
284      endif
285      zz(ig, k) = b1 * m2(ig, k) * (1. - rif(ig, k)) * sm(ig, k)
286    enddo
287  enddo
288
289
290
291  !====================================================================
292  !  Computing the mixing length
293  !====================================================================
294
295  !   Mise a jour de l0
296  IF (iflag_pbl==8.OR.iflag_pbl==10) THEN
297    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
298    ! Iterative computation of l0
299    ! This version is kept for iflag_pbl only for convergence
300    ! with NPv3.1 Cmip5 simulations
301    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
302
303    DO ig = 1, ngrid
304      sq(ig) = 1.e-10
305      sqz(ig) = 1.e-10
306    enddo
307    DO k = 2, klev - 1
308      DO ig = 1, ngrid
309        zq = sqrt(q2(ig, k))
310        sqz(ig) = sqz(ig) + zq * zlev(ig, k) * (zlay(ig, k) - zlay(ig, k - 1))
311        sq(ig) = sq(ig) + zq * (zlay(ig, k) - zlay(ig, k - 1))
312      enddo
313    enddo
314    DO ig = 1, ngrid
315      l0(ig) = 0.2 * sqz(ig) / sq(ig)
316    enddo
317    DO k = 2, klev
318      DO ig = 1, ngrid
319        l(ig, k) = fl(zlev(ig, k), l0(ig), q2(ig, k), n2(ig, k))
320      enddo
321    enddo
322    !     PRINT*,'L0 cas 8 ou 10 ',l0
323
324  else
325
326    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
327    ! In all other case, the assymptotic mixing length l0 is imposed (100m)
328    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
329
330    l0(:) = 150.
331    DO k = 2, klev
332      DO ig = 1, ngrid
333        l(ig, k) = fl(zlev(ig, k), l0(ig), q2(ig, k), n2(ig, k))
334      enddo
335    enddo
336    !     PRINT*,'L0 cas autres ',l0
337
338  endif
339
340
341#ifdef IOPHYS
342  IF (okiophys) THEN
343    CALL iophys_ecrit('rif', klev, 'Flux Richardson', 'm', rif(:, 1:klev))
344    CALL iophys_ecrit('m2', klev, 'm2 ', 'm/s', m2(:, 1:klev))
345    CALL iophys_ecrit('Km2app', klev, 'm2 conserv', 'm/s', km(:, 1:klev) * m2(:, 1:klev))
346    CALL iophys_ecrit('Km', klev, 'Km', 'm2/s', km(:, 1:klev))
347  END IF
348#endif
349
350
351  IF (iflag_pbl<20) THEN
352    ! For diagnostics only
353    RETURN
354
355  ELSE
356
357    !  PRINT*,'OK1'
358
359    ! Evolution of TKE under source terms K M2 and K N2
360    leff(:, :) = max(l(:, :), 1.)
361
362    !##################################################################
363    !#  IF (iflag_pbl==29) THEN
364    !#     stop 'Ne pas utiliser iflag_pbl=29'
365    !#     km2(:,:)=km(:,:)*m2(:,:)
366    !#     kn2(:,:)=kn2(:,:)*rif(:,:)
367    !#  ELSEIF (iflag_pbl==25) THEN
368    ! VERSION AVEC LA TKE EN MILIEU DE COUCHE
369    !#     stop 'Ne pas utiliser iflag_pbl=25'
370    !#     DO k=1,klev
371    !#        km2(:,k)=-0.5*(dddu(:,k)+dddv(:,k)+dddu(:,k+1)+dddv(:,k+1)) &
372    !#        &        /(masse(:,k)*timestep)
373    !#        kn2(:,k)=rcpd*0.5*(dddt(:,k)+dddt(:,k+1))/(masse(:,k)*timestep)
374    !#        leff(:,k)=0.5*(leff(:,k)+leff(:,k+1))
375    !#     ENDDO
376    !#     km2(:,klev+1)=0. ; kn2(:,klev+1)=0.
377    !#  ELSE
378    !#################################################################
379
380    km2(:, :) = -(dddu(:, :) + dddv(:, :)) / (masseb(:, :) * timestep)
381    kn2(:, :) = rcpd * dddt(:, :) / (masseb(:, :) * timestep)
382    !   ENDIF
383    q2neg(:, :) = q2(:, :) + timestep * (km2(:, :) - kn2(:, :))
384    q2(:, :) = min(max(q2neg(:, :), 1.e-10), 1.e4)
385
386
387#ifdef IOPHYS
388    IF (okiophys) THEN
389      CALL iophys_ecrit('km2', klev, 'm2 conserv', 'm/s', km2(:, 1:klev))
390      CALL iophys_ecrit('kn2', klev, 'n2 conserv', 'm/s', kn2(:, 1:klev))
391    END IF
392#endif
393
394    ! Dissipation of TKE
395    q2old(:, :) = q2(:, :)
396    q2(:, :) = 1. / (1. / sqrt(q2(:, :)) + timestep / (2 * leff(:, :) * b1))
397    q2(:, :) = q2(:, :) * q2(:, :)
398    !  IF (iflag_pbl<=24) THEN
399    DO k = 1, klev
400      d_t_diss(:, k) = (masseb(:, k) * (q2neg(:, k) - q2(:, k)) + masseb(:, k + 1) * (q2neg(:, k + 1) - q2(:, k + 1))) / (2. * rcpd * masse(:, k))
401    ENDDO
402
403    !###################################################################
404    !  ELSE IF (iflag_pbl<=27) THEN
405    !     DO k=1,klev
406    !        d_t_diss(:,k)=(q2neg(:,k)-q2(:,k))/rcpd
407    !     ENDDO
408    !  ENDIF
409    !  PRINT*,'iflag_pbl ',d_t_diss
410    !###################################################################
411
412
413    ! Compuation of stability functions
414    !   IF (iflag_pbl/=29) THEN
415    DO k = 1, klev
416      DO ig = 1, ngrid
417        IF (ABS(km2(ig, k))<=1.e-20) THEN
418          rif(ig, k) = 0.
419        ELSE
420          rif(ig, k) = min(kn2(ig, k) / km2(ig, k), rifc)
421        ENDIF
422        IF (rif(ig, k)<0.16) THEN
423          alpha(ig, k) = falpha(rif(ig, k))
424          sm(ig, k) = fsm(rif(ig, k))
425        else
426          alpha(ig, k) = 1.12
427          sm(ig, k) = 0.085
428        endif
429      ENDDO
430    ENDDO
431    !    ENDIF
432
433    ! Computation of turbulent diffusivities
434    !  IF (25<=iflag_pbl.AND.iflag_pbl<=28) THEN
435    !    DO k=2,klev
436    !       sqrtq(:,k)=sqrt(0.5*(q2(:,k)+q2(:,k-1)))
437    !    ENDDO
438    !  ELSE
439    kq(:, :) = 0.
440    DO k = 1, klev
441      ! Coefficient au milieu des couches pour diffuser la TKE
442      kq(:, k) = 0.5 * leff(:, k) * sqrt(q2(:, k)) * 0.2
443    ENDDO
444
445#ifdef IOPHYS
446    IF (okiophys) THEN
447      CALL iophys_ecrit('q2b', klev, 'KTE inter', 'm2/s', q2(:, 1:klev))
448    END IF
449#endif
450
451    IF (iflag_tke_diff==1) THEN
452      CALL vdif_q2(timestep, RG, RD, ngrid, plev, pt, kq, q2)
453    ENDIF
454
455    km(:, :) = 0.
456    kn(:, :) = 0.
457    DO k = 1, klev
458      km(:, k) = leff(:, k) * sqrt(q2(:, k)) * sm(:, k)
459      kn(:, k) = km(:, k) * alpha(:, k)
460    ENDDO
461
462
463#ifdef IOPHYS
464    IF (okiophys) THEN
465      CALL iophys_ecrit('mixingl', klev, 'Mixing length', 'm', leff(:, 1:klev))
466      CALL iophys_ecrit('rife', klev, 'Flux Richardson', 'm', rif(:, 1:klev))
467      CALL iophys_ecrit('q2f', klev, 'KTE finale', 'm2/s', q2(:, 1:klev))
468      CALL iophys_ecrit('q2neg', klev, 'KTE non bornee', 'm2/s', q2neg(:, 1:klev))
469      CALL iophys_ecrit('alpha', klev, 'alpha', '', alpha(:, 1:klev))
470      CALL iophys_ecrit('sm', klev, 'sm', '', sm(:, 1:klev))
471      CALL iophys_ecrit('q2f', klev, 'KTE finale', 'm2/s', q2(:, 1:klev))
472      CALL iophys_ecrit('kmf', klev, 'Kz final', 'm2/s', km(:, 1:klev))
473      CALL iophys_ecrit('knf', klev, 'Kz final', 'm2/s', kn(:, 1:klev))
474      CALL iophys_ecrit('kqf', klev, 'Kz final', 'm2/s', kq(:, 1:klev))
475    END IF
476#endif
477
478  ENDIF
479
480
481  !  PRINT*,'OK2'
482  RETURN
483END
Note: See TracBrowser for help on using the repository browser.