source: LMDZ6/branches/Amaury_dev/libf/phylmd/surf_landice_mod.F90 @ 5137

Last change on this file since 5137 was 5137, checked in by abarral, 3 months ago

Put gradsdef.h, tracstoke.h, clesphys.h into modules

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 27.9 KB
Line 
1MODULE surf_landice_mod
2
3
4  IMPLICIT NONE
5
6CONTAINS
7
8  !****************************************************************************************
9
10  SUBROUTINE surf_landice(itime, dtime, knon, knindex, &
11            rlon, rlat, debut, lafin, &
12            rmu0, lwdownm, albedo, pphi1, &
13            swnet, lwnet, tsurf, p1lay, &
14            cdragh, cdragm, precip_rain, precip_snow, precip_bs, temp_air, spechum, &
15            AcoefH, AcoefQ, BcoefH, BcoefQ, &
16            AcoefU, AcoefV, BcoefU, BcoefV, &
17            AcoefQBS, BcoefQBS, &
18            ps, u1, v1, gustiness, rugoro, pctsrf, &
19            snow, qsurf, qsol, qbs1, agesno, &
20            tsoil, z0m, z0h, SFRWL, alb_dir, alb_dif, evap, fluxsens, fluxlat, fluxbs, &
21            tsurf_new, dflux_s, dflux_l, &
22            alt, slope, cloudf, &
23            snowhgt, qsnow, to_ice, sissnow, &
24            alb3, runoff, &
25            flux_u1, flux_v1 &
26#ifdef ISO
27        ,xtprecip_rain, xtprecip_snow,xtspechum,Rland_ice &
28        ,xtsnow,xtsol,xtevap &
29#endif               
30            )
31
32    USE dimphy
33    USE lmdz_geometry, ONLY: longitude, latitude
34    USE surface_data, ONLY: type_ocean, calice, calsno, landice_opt, iflag_albcalc
35    USE fonte_neige_mod, ONLY: fonte_neige, run_off_lic, fqcalving_global, ffonte_global, fqfonte_global, runofflic_global
36    USE cpl_mod, ONLY: cpl_send_landice_fields
37    USE calcul_fluxs_mod
38    USE phys_local_var_mod, ONLY: zxrhoslic, zxustartlic, zxqsaltlic
39    USE phys_output_var_mod, ONLY: snow_o, zfra_o
40#ifdef ISO
41    USE fonte_neige_mod,  ONLY: xtrun_off_lic
42    USE infotrac_phy,     ONLY: ntiso,niso
43    USE isotopes_routines_mod, ONLY: calcul_iso_surf_lic_vectall
44#ifdef ISOVERIF
45    USE isotopes_mod, ONLY: iso_eau,ridicule
46    USE isotopes_verif_mod
47#endif
48#endif
49
50    !FC
51    USE lmdz_ioipsl_getin_p, ONLY: getin_p
52    USE lmdz_blowing_snow_ini, ONLY: c_esalt_bs, zeta_bs, pbst_bs, prt_bs, rhoice_bs, rhohard_bs
53    USE lmdz_blowing_snow_ini, ONLY: rhofresh_bs, tau_eqsalt_bs, tau_dens0_bs, tau_densmin_bs
54    USE surf_inlandsis_mod, ONLY: surf_inlandsis
55    USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_INLANDSIS
56    USE lmdz_abort_physic, ONLY: abort_physic
57
58    USE indice_sol_mod
59  USE lmdz_clesphys
60
61    !    INCLUDE "indicesol.h"
62    INCLUDE "dimsoil.h"
63    INCLUDE "YOMCST.h"
64
65    ! Input variables
66    !****************************************************************************************
67    INTEGER, INTENT(IN) :: itime, knon
68    INTEGER, DIMENSION(klon), INTENT(IN) :: knindex
69    REAL, INTENT(IN) :: dtime
70    REAL, DIMENSION(klon), INTENT(IN) :: swnet ! net shortwave radiance
71    REAL, DIMENSION(klon), INTENT(IN) :: lwnet ! net longwave radiance
72    REAL, DIMENSION(klon), INTENT(IN) :: tsurf
73    REAL, DIMENSION(klon), INTENT(IN) :: p1lay
74    REAL, DIMENSION(klon), INTENT(IN) :: cdragh, cdragm
75    REAL, DIMENSION(klon), INTENT(IN) :: precip_rain, precip_snow, precip_bs
76    REAL, DIMENSION(klon), INTENT(IN) :: temp_air, spechum
77    REAL, DIMENSION(klon), INTENT(IN) :: AcoefH, AcoefQ
78    REAL, DIMENSION(klon), INTENT(IN) :: BcoefH, BcoefQ
79    REAL, DIMENSION(klon), INTENT(IN) :: AcoefU, AcoefV, BcoefU, BcoefV
80    REAL, DIMENSION(klon), INTENT(IN) :: AcoefQBS, BcoefQBS
81    REAL, DIMENSION(klon), INTENT(IN) :: ps
82    REAL, DIMENSION(klon), INTENT(IN) :: u1, v1, gustiness, qbs1
83    REAL, DIMENSION(klon), INTENT(IN) :: rugoro
84    REAL, DIMENSION(klon, nbsrf), INTENT(IN) :: pctsrf
85#ifdef ISO
86    REAL, DIMENSION(ntiso,klon), INTENT(IN)       :: xtprecip_rain, xtprecip_snow
87    REAL, DIMENSION(ntiso,klon), INTENT(IN)       :: xtspechum
88#endif
89
90
91    LOGICAL, INTENT(IN) :: debut   !true if first step
92    LOGICAL, INTENT(IN) :: lafin   !true if last step
93    REAL, DIMENSION(klon), INTENT(IN) :: rlon, rlat
94    REAL, DIMENSION(klon), INTENT(IN) :: rmu0
95    REAL, DIMENSION(klon), INTENT(IN) :: lwdownm !ylwdown
96    REAL, DIMENSION(klon), INTENT(IN) :: albedo  !mean albedo
97    REAL, DIMENSION(klon), INTENT(IN) :: pphi1
98    REAL, DIMENSION(klon), INTENT(IN) :: alt   !mean altitude of the grid box
99    REAL, DIMENSION(klon), INTENT(IN) :: slope   !mean slope in grid box
100    REAL, DIMENSION(klon), INTENT(IN) :: cloudf  !total cloud fraction
101
102    ! In/Output variables
103    !****************************************************************************************
104    REAL, DIMENSION(klon), INTENT(INOUT) :: snow, qsol
105    REAL, DIMENSION(klon), INTENT(INOUT) :: agesno
106    REAL, DIMENSION(klon, nsoilmx), INTENT(INOUT) :: tsoil
107#ifdef ISO
108    REAL, DIMENSION(niso,klon), INTENT(INOUT)     :: xtsnow, xtsol
109    REAL, DIMENSION(niso,klon), INTENT(INOUT)     :: Rland_ice
110#endif
111
112
113    ! Output variables
114    !****************************************************************************************
115    REAL, DIMENSION(klon), INTENT(OUT) :: qsurf
116    REAL, DIMENSION(klon), INTENT(OUT) :: z0m, z0h
117    !albedo SB >>>
118    !    REAL, DIMENSION(klon), INTENT(OUT)            :: alb1  ! new albedo in visible SW interval
119    !    REAL, DIMENSION(klon), INTENT(OUT)            :: alb2  ! new albedo in near IR interval
120    REAL, DIMENSION(6), INTENT(IN) :: SFRWL
121    REAL, DIMENSION(klon, nsw), INTENT(OUT) :: alb_dir, alb_dif
122    !albedo SB <<<
123    REAL, DIMENSION(klon), INTENT(OUT) :: evap, fluxsens, fluxlat
124    REAL, DIMENSION(klon), INTENT(OUT) :: fluxbs
125    REAL, DIMENSION(klon), INTENT(OUT) :: tsurf_new
126    REAL, DIMENSION(klon), INTENT(OUT) :: dflux_s, dflux_l
127    REAL, DIMENSION(klon), INTENT(OUT) :: flux_u1, flux_v1
128
129    REAL, DIMENSION(klon), INTENT(OUT) :: alb3
130    REAL, DIMENSION(klon), INTENT(OUT) :: qsnow   !column water in snow [kg/m2]
131    REAL, DIMENSION(klon), INTENT(OUT) :: snowhgt !Snow height (m)
132    REAL, DIMENSION(klon), INTENT(OUT) :: to_ice
133    REAL, DIMENSION(klon), INTENT(OUT) :: sissnow
134    REAL, DIMENSION(klon), INTENT(OUT) :: runoff  !Land ice runoff
135#ifdef ISO
136    REAL, DIMENSION(ntiso,klon), INTENT(OUT)     :: xtevap     
137!    REAL, DIMENSION(niso,klon) :: xtrun_off_lic_0_diag ! est une variable globale de
138!    fonte_neige
139#endif
140
141
142    ! Local variables
143    !****************************************************************************************
144    REAL, DIMENSION(klon) :: soilcap, soilflux
145    REAL, DIMENSION(klon) :: cal, beta, dif_grnd
146    REAL, DIMENSION(klon) :: zfra, alb_neig
147    REAL, DIMENSION(klon) :: radsol
148    REAL, DIMENSION(klon) :: u0, v0, u1_lay, v1_lay, ustar
149    INTEGER :: i, j, nt
150    REAL, DIMENSION(klon) :: fqfonte, ffonte
151    REAL, DIMENSION(klon) :: run_off_lic_frac
152#ifdef ISO       
153    REAL, PARAMETER          :: t_coup = 273.15
154    REAL, DIMENSION(klon)    :: fqfonte_diag
155    REAL, DIMENSION(klon)    :: fq_fonte_diag
156    REAL, DIMENSION(klon)    ::  snow_evap_diag
157    REAL, DIMENSION(klon)    ::  fqcalving_diag
158    REAL max_eau_sol_diag 
159    REAL, DIMENSION(klon)    ::  runoff_diag
160    REAL, DIMENSION(klon)    ::    run_off_lic_diag
161    REAL                     ::  coeff_rel_diag
162    INTEGER                  :: ixt
163    REAL, DIMENSION(niso,klon) :: xtsnow_prec,xtsol_prec
164    REAL, DIMENSION(klon) :: snow_prec,qsol_prec
165!    REAL, DIMENSION(klon) :: run_off_lic_0_diag
166#endif
167
168
169    REAL, DIMENSION(klon) :: emis_new                  !Emissivity
170    REAL, DIMENSION(klon) :: swdown, lwdown
171    REAL, DIMENSION(klon) :: precip_snow_adv, snow_adv !Snow Drift precip./advection (not used in inlandsis)
172    REAL, DIMENSION(klon) :: erod                      !erosion of surface snow (flux, kg/m2/s like evap)
173    REAL, DIMENSION(klon) :: zsl_height, wind_velo     !surface layer height, wind spd
174    REAL, DIMENSION(klon) :: dens_air, snow_cont_air  !air density; snow content air
175    REAL, DIMENSION(klon) :: alb_soil                  !albedo of underlying ice
176    REAL, DIMENSION(klon) :: pexner                    !Exner potential
177    REAL :: pref
178    REAL, DIMENSION(klon, nsoilmx) :: tsoil0               !modif
179    REAL :: dtis                ! subtimestep
180    LOGICAL :: debut_is, lafin_is  ! debut and lafin for inlandsis
181
182    CHARACTER (len = 20) :: modname = 'surf_landice'
183    CHARACTER (len = 80) :: abort_message
184
185    REAL, DIMENSION(klon) :: alb1, alb2
186    REAL, DIMENSION(klon) :: precip_totsnow, evap_totsnow
187    REAL, DIMENSION (klon, 6) :: alb6
188    REAL :: esalt
189    REAL :: lambdasalt, fluxsalt, csalt, nunu, aa, bb, cc
190    REAL :: tau_dens, maxerosion
191    REAL, DIMENSION(klon) :: ws1, rhod, rhos, ustart0, ustart, qsalt, hsalt
192    REAL, DIMENSION(klon) :: fluxbs_1, fluxbs_2, bsweight_fresh
193    LOGICAL, DIMENSION(klon) :: ok_remaining_freshsnow
194    REAL :: ta1, ta2, ta3, z01, z02, z03, coefa, coefb, coefc, coefd
195
196
197    ! End definition
198    !****************************************************************************************
199    !FC
200    !FC
201    REAL, SAVE :: alb_vis_sno_lic
202    !$OMP THREADPRIVATE(alb_vis_sno_lic)
203    REAL, SAVE :: alb_nir_sno_lic
204    !$OMP THREADPRIVATE(alb_nir_sno_lic)
205    LOGICAL, SAVE :: firstcall = .TRUE.
206    !$OMP THREADPRIVATE(firstcall)
207
208
209    !FC firtscall initializations
210    !******************************************************************************************
211#ifdef ISO
212#ifdef ISOVERIF
213!     WRITE(*,*) 'surf_land_ice 1499'
214  DO i=1,knon
215    IF (iso_eau > 0) THEN
216      CALL iso_verif_egalite_choix(xtsnow(iso_eau,i),snow(i), &
217                                'surf_land_ice 126',errmax,errmaxrel)
218    ENDIF !IF (iso_eau > 0) THEN     
219  ENDDO !DO i=1,knon 
220#endif
221#endif
222
223    IF (firstcall) THEN
224      alb_vis_sno_lic = 0.77
225      CALL getin_p('alb_vis_sno_lic', alb_vis_sno_lic)
226      PRINT*, 'alb_vis_sno_lic', alb_vis_sno_lic
227      alb_nir_sno_lic = 0.77
228      CALL getin_p('alb_nir_sno_lic', alb_nir_sno_lic)
229      PRINT*, 'alb_nir_sno_lic', alb_nir_sno_lic
230
231      firstcall = .FALSE.
232    ENDIF
233    !******************************************************************************************
234
235    ! Initialize output variables
236    alb3(:) = 999999.
237    alb2(:) = 999999.
238    alb1(:) = 999999.
239    fluxbs(:) = 0.
240    runoff(:) = 0.
241    !****************************************************************************************
242    ! Calculate total absorbed radiance at surface
243
244    !****************************************************************************************
245    radsol(:) = 0.0
246    radsol(1:knon) = swnet(1:knon) + lwnet(1:knon)
247
248    !****************************************************************************************
249
250    !****************************************************************************************
251    !  landice_opt = 0 : soil_model, calcul_flux, fonte_neige, ...
252    !  landice_opt = 1  : prepare and CALL INterace Lmdz SISvat (INLANDSIS)
253    !****************************************************************************************
254
255    IF (landice_opt == 1) THEN
256
257      !****************************************************************************************
258      ! CALL to INLANDSIS interface
259      !****************************************************************************************
260      IF (CPPKEY_INLANDSIS) THEN
261
262#ifdef ISO
263        CALL abort_gcm('surf_landice 235','isotopes pas dans INLANDSIS',1)
264#endif
265
266        debut_is = debut
267        lafin_is = .FALSE.
268        ! Suppose zero surface speed
269        u0(:) = 0.0
270        v0(:) = 0.0
271
272        CALL calcul_flux_wind(knon, dtime, &
273                u0, v0, u1, v1, gustiness, cdragm, &
274                AcoefU, AcoefV, BcoefU, BcoefV, &
275                p1lay, temp_air, &
276                flux_u1, flux_v1)
277
278
279        ! Set constants and compute some input for SISVAT
280        ! = 1000 hPa
281        ! and calculate incoming flux for SW and LW interval: swdown, lwdown
282        swdown(:) = 0.0
283        lwdown(:) = 0.0
284        snow_cont_air(:) = 0.  ! the snow content in air is not a prognostic variable of the model
285        alb_soil(:) = 0.4 ! before albedo(:) but here it is the ice albedo that we have to set
286        ustar(:) = 0.
287        pref = 100000.
288        DO i = 1, knon
289          swdown(i) = swnet(i) / (1 - albedo(i))
290          lwdown(i) = lwdownm(i)
291          wind_velo(i) = u1(i)**2 + v1(i)**2
292          wind_velo(i) = wind_velo(i)**0.5
293          pexner(i) = (p1lay(i) / pref)**(RD / RCPD)
294          dens_air(i) = p1lay(i) / RD / temp_air(i)  ! dry air density
295          zsl_height(i) = pphi1(i) / RG
296          tsoil0(i, :) = tsoil(i, :)
297          ustar(i) = (cdragm(i) * (wind_velo(i)**2))**0.5
298        END DO
299
300        dtis = dtime
301
302        IF (lafin) THEN
303          lafin_is = .TRUE.
304        END IF
305
306        CALL surf_inlandsis(knon, rlon, rlat, knindex, itime, dtis, debut_is, lafin_is, &
307                rmu0, swdown, lwdown, albedo, pexner, ps, p1lay, precip_rain, precip_snow, &
308                zsl_height, wind_velo, ustar, temp_air, dens_air, spechum, tsurf, &
309                rugoro, snow_cont_air, alb_soil, alt, slope, cloudf, &
310                radsol, qsol, tsoil0, snow, zfra, snowhgt, qsnow, to_ice, sissnow, agesno, &
311                AcoefH, AcoefQ, BcoefH, BcoefQ, cdragm, cdragh, &
312                run_off_lic, fqfonte, ffonte, evap, erod, fluxsens, fluxlat, dflux_s, dflux_l, &
313                tsurf_new, alb1, alb2, alb3, alb6, &
314                emis_new, z0m, z0h, qsurf)
315
316        debut_is = .FALSE.
317
318
319        ! Treatment of snow melting and calving
320
321        ! for consistency with standard LMDZ, add calving to run_off_lic
322        run_off_lic(:) = run_off_lic(:) + to_ice(:)
323
324        DO i = 1, knon
325          ffonte_global(knindex(i), is_lic) = ffonte(i)
326          fqfonte_global(knindex(i), is_lic) = fqfonte(i)! net melting= melting - refreezing
327          fqcalving_global(knindex(i), is_lic) = to_ice(i) ! flux
328          runofflic_global(knindex(i)) = run_off_lic(i)
329        ENDDO
330        ! Here, we assume that the calving term is equal to the to_ice term
331        ! (no ice accumulation)
332
333      ELSE
334        abort_message = 'Pb de coherence: landice_opt = 1  mais CPP_INLANDSIS = .FALSE.'
335        CALL abort_physic(modname, abort_message, 1)
336      END IF
337
338    ELSE
339
340      !****************************************************************************************
341      ! Soil calculations
342
343      !****************************************************************************************
344
345      ! EV: use calbeta
346      CALL calbeta(dtime, is_lic, knon, snow, qsol, beta, cal, dif_grnd)
347
348
349      ! use soil model and recalculate properly cal
350      IF (soil_model) THEN
351        CALL soil(dtime, is_lic, knon, snow, tsurf, qsol, &
352                longitude(knindex(1:knon)), latitude(knindex(1:knon)), tsoil, soilcap, soilflux)
353        cal(1:knon) = RCPD / soilcap(1:knon)
354        radsol(1:knon) = radsol(1:knon) + soilflux(1:knon)
355      ELSE
356        cal = RCPD * calice
357        WHERE (snow > 0.0) cal = RCPD * calsno
358      ENDIF
359
360
361      !****************************************************************************************
362      ! Calulate fluxes
363
364      !****************************************************************************************
365      !    beta(:) = 1.0
366      !    dif_grnd(:) = 0.0
367
368      ! Suppose zero surface speed
369      u0(:) = 0.0
370      v0(:) = 0.0
371      u1_lay(:) = u1(:) - u0(:)
372      v1_lay(:) = v1(:) - v0(:)
373
374      CALL calcul_fluxs(knon, is_lic, dtime, &
375              tsurf, p1lay, cal, beta, cdragh, cdragh, ps, &
376              precip_rain, precip_snow, snow, qsurf, &
377              radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, gustiness, &
378              1., AcoefH, AcoefQ, BcoefH, BcoefQ, &
379              tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l)
380
381#ifdef ISO
382#ifdef ISOVERIF
383     !WRITE(*,*) 'surf_land_ice 1499'
384     DO i=1,knon
385       IF (iso_eau > 0) THEN
386         IF (snow(i) > ridicule) THEN
387           CALL iso_verif_egalite_choix(xtsnow(iso_eau,i),snow(i), &
388                                     'surf_land_ice 1151',errmax,errmaxrel)
389         ENDIF !IF ((snow(i) > ridicule)) THEN
390       ENDIF !IF (iso_eau > 0) THEN
391     ENDDO !DO i=1,knon 
392#endif
393
394    DO i=1,knon
395      snow_prec(i)=snow(i)
396      DO ixt=1,niso
397        xtsnow_prec(ixt,i)=xtsnow(ixt,i)
398      ENDDO !DO ixt=1,niso
399      ! initialisation:
400      fq_fonte_diag(i)=0.0
401      fqfonte_diag(i)=0.0
402      snow_evap_diag(i)=0.0
403    ENDDO !DO i=1,knon
404#endif         
405
406      CALL calcul_flux_wind(knon, dtime, &
407              u0, v0, u1, v1, gustiness, cdragm, &
408              AcoefU, AcoefV, BcoefU, BcoefV, &
409              p1lay, temp_air, &
410              flux_u1, flux_v1)
411
412
413      !****************************************************************************************
414      ! Calculate albedo
415
416      !****************************************************************************************
417
418      !IM: plusieurs choix/tests sur l'albedo des "glaciers continentaux"
419      !       alb1(1 : knon)  = 0.6 !IM cf FH/GK
420      !       alb1(1 : knon)  = 0.82
421      !       alb1(1 : knon)  = 0.77 !211003 Ksta0.77
422      !       alb1(1 : knon)  = 0.8 !KstaTER0.8 & LMD_ARMIP5
423      !IM: KstaTER0.77 & LMD_ARMIP6
424
425      ! Attantion: alb1 and alb2 are not the same!
426      alb1(1:knon) = alb_vis_sno_lic
427      alb2(1:knon) = alb_nir_sno_lic
428
429
430      !****************************************************************************************
431      ! Rugosity
432
433      !****************************************************************************************
434
435      IF (z0m_landice > 0.) THEN
436        z0m(1:knon) = z0m_landice
437        z0h(1:knon) = z0h_landice
438      else
439        ! parameterization of z0=f(T) following measurements in Adelie Land by Amory et al 2018
440        coefa = 0.1658 !0.1862 !Ant
441        coefb = -50.3869 !-55.7718 !Ant
442        ta1 = 253.15 !255. Ant
443        ta2 = 273.15
444        ta3 = 273.15 + 3
445        z01 = exp(coefa * ta1 + coefb) !~0.2 ! ~0.25 mm
446        z02 = exp(coefa * ta2 + coefb) !~6  !~7 mm
447        z03 = z01
448        coefc = log(z03 / z02) / (ta3 - ta2)
449        coefd = log(z03) - coefc * ta3
450        do j = 1, knon
451          IF (temp_air(j) < ta1) THEN
452            z0m(j) = z01
453          ELSE IF (temp_air(j)>=ta1 .AND. temp_air(j)<ta2) THEN
454            z0m(j) = exp(coefa * temp_air(j) + coefb)
455          ELSE IF (temp_air(j)>=ta2 .AND. temp_air(j)<ta3) THEN
456            ! if st > 0, melting induce smooth surface
457            z0m(j) = exp(coefc * temp_air(j) + coefd)
458          else
459            z0m(j) = z03
460          endif
461          z0h(j) = z0m(j)
462        enddo
463
464      endif
465
466
467      !****************************************************************************************
468      ! Simple blowing snow param
469      !****************************************************************************************
470      ! we proceed in 2 steps:
471      ! first we erode - if possible -the accumulated snow during the time step
472      ! then we update the density of the underlying layer and see if we can also erode
473      ! this layer
474
475      IF (ok_bs) THEN
476        fluxbs(:) = 0.
477        do j = 1, knon
478          ws1(j) = (u1(j)**2 + v1(j)**2)**0.5
479          ustar(j) = (cdragm(j) * (u1(j)**2 + v1(j)**2))**0.5
480          rhod(j) = p1lay(j) / RD / temp_air(j)
481          ustart0(j) = (log(2.868) - log(1.625)) / 0.085 * sqrt(cdragm(j))
482        enddo
483
484        ! 1st step: erosion of fresh snow accumulated during the time step
485        do j = 1, knon
486          IF (precip_snow(j) > 0.) THEN
487            rhos(j) = rhofresh_bs
488            ! blowing snow flux formula used in MAR
489            ustart(j) = ustart0(j) * exp(max(rhoice_bs / rhofresh_bs - rhoice_bs / rhos(j), 0.)) * exp(max(0., rhos(j) - rhohard_bs))
490            ! we have multiplied by exp to prevent erosion when rhos>rhohard_bs
491            ! computation of qbs at the top of the saltation layer
492            ! default formulation from MAR model (Amory et al. 2021, Gallee et al. 2001)
493            esalt = 1. / (c_esalt_bs * max(1.e-6, ustar(j)))
494            hsalt(j) = 0.08436 * (max(1.e-6, ustar(j))**1.27)
495            qsalt(j) = (max(ustar(j)**2 - ustart(j)**2, 0.)) / (RG * hsalt(j)) * esalt
496            ! calculation of erosion (flux positive towards the surface here)
497            ! consistent with implicit resolution of turbulent mixing equation
498            ! Nemoto and Nishimura 2004 show that steady-state saltation is achieved within a time tau_eqsalt_bs of about 10s
499            ! we thus prevent snowerosion (snow particle transfer from the saltation layer to the first model level)
500            ! integrated over tau_eqsalt_bs to exceed the total mass of snow particle in the saltation layer
501            ! (rho*qsalt*hsalt)
502            ! during this first step we also lower bound the erosion to the amount of fresh snow accumulated during the time step
503            maxerosion = min(precip_snow(j), hsalt(j) * qsalt(j) * rhod(j) / tau_eqsalt_bs)
504
505            fluxbs_1(j) = rhod(j) * ws1(j) * cdragh(j) * zeta_bs * (AcoefQBS(j) - qsalt(j)) &
506                    / (1. - rhod(j) * ws1(j) * cdragh(j) * zeta_bs * BcoefQBS(j) * dtime)
507            fluxbs_1(j) = max(-maxerosion, fluxbs_1(j))
508
509            IF (precip_snow(j) > abs(fluxbs_1(j))) THEN
510              ok_remaining_freshsnow(j) = .TRUE.
511              bsweight_fresh(j) = 1.
512            else
513              ok_remaining_freshsnow(j) = .FALSE.
514              bsweight_fresh(j) = exp(-(abs(fluxbs_1(j)) - precip_snow(j)) / precip_snow(j))
515            endif
516          else
517            ok_remaining_freshsnow(j) = .FALSE.
518            fluxbs_1(j) = 0.
519            bsweight_fresh(j) = 0.
520          endif
521        enddo
522
523
524        ! we now compute the snow age of the overlying layer (snow surface after erosion of the fresh snow accumulated during the time step)
525        ! this is done through the routine albsno
526        CALL albsno(klon, knon, dtime, agesno(:), alb_neig(:), precip_snow(:) + fluxbs_1(:))
527
528        ! 2nd step:
529        ! computation of threshold friction velocity
530        ! which depends on surface snow density
531        do j = 1, knon
532          IF (ok_remaining_freshsnow(j)) THEN
533            fluxbs_2(j) = 0.
534          else
535            ! we start eroding the underlying layer
536            ! estimation of snow density
537            ! snow density increases with snow age and
538            ! increases even faster in case of sedimentation of blowing snow or rain
539            tau_dens = max(tau_densmin_bs, tau_dens0_bs * exp(-abs(precip_bs(j)) / pbst_bs - &
540                    abs(precip_rain(j)) / prt_bs) * exp(-max(tsurf(j) - RTT, 0.)))
541            rhos(j) = rhofresh_bs + (rhohard_bs - rhofresh_bs) * (1. - exp(-agesno(j) * 86400.0 / tau_dens))
542            ! blowing snow flux formula used in MAR
543            ustart(j) = ustart0(j) * exp(max(rhoice_bs / rhofresh_bs - rhoice_bs / rhos(j), 0.)) * exp(max(0., rhos(j) - rhohard_bs))
544            ! we have multiplied by exp to prevent erosion when rhos>rhohard_bs
545            ! computation of qbs at the top of the saltation layer
546            ! default formulation from MAR model (Amory et al. 2021, Gallee et al. 2001)
547            esalt = 1. / (c_esalt_bs * max(1.e-6, ustar(j)))
548            hsalt(j) = 0.08436 * (max(1.e-6, ustar(j))**1.27)
549            qsalt(j) = (max(ustar(j)**2 - ustart(j)**2, 0.)) / (RG * hsalt(j)) * esalt
550            ! calculation of erosion (flux positive towards the surface here)
551            ! consistent with implicit resolution of turbulent mixing equation
552            ! Nemoto and Nishimura 2004 show that steady-state saltation is achieved within a time tau_eqsalt_bs of about 10s
553            ! we thus prevent snowerosion (snow particle transfer from the saltation layer to the first model level)
554            ! integrated over tau_eqsalt_bs to exceed the total mass of snow particle in the saltation layer
555            ! (rho*qsalt*hsalt)
556            maxerosion = hsalt(j) * qsalt(j) * rhod(j) / tau_eqsalt_bs
557            fluxbs_2(j) = rhod(j) * ws1(j) * cdragh(j) * zeta_bs * (AcoefQBS(j) - qsalt(j)) &
558                    / (1. - rhod(j) * ws1(j) * cdragh(j) * zeta_bs * BcoefQBS(j) * dtime)
559            fluxbs_2(j) = max(-maxerosion, fluxbs_2(j))
560          endif
561        enddo
562
563
564
565
566        ! final flux and outputs
567        do j = 1, knon
568          ! total flux is the erosion of fresh snow +
569          ! a fraction of the underlying snow (if all the fresh snow has been eroded)
570          ! the calculation of the fraction is quite delicate since we do not know
571          ! how much time was needed to erode the fresh snow. We assume that this time
572          ! is dt*exp(-(abs(fluxbs1)-precipsnow)/precipsnow)=dt*bsweight_fresh
573
574          fluxbs(j) = fluxbs_1(j) + fluxbs_2(j) * (1. - bsweight_fresh(j))
575          i = knindex(j)
576          zxustartlic(i) = ustart(j)
577          zxrhoslic(i) = rhos(j)
578          zxqsaltlic(i) = qsalt(j)
579        enddo
580
581      else ! not ok_bs
582        ! those lines are useful to calculate the snow age
583        CALL albsno(klon, knon, dtime, agesno(:), alb_neig(:), precip_snow(:))
584
585      endif ! if ok_bs
586
587
588
589      !****************************************************************************************
590      ! Calculate snow amount
591
592      !****************************************************************************************
593      IF (ok_bs) THEN
594        precip_totsnow(:) = precip_snow(:) + precip_bs(:)
595        evap_totsnow(:) = evap(:) - fluxbs(:) ! flux bs is positive towards the surface (snow erosion)
596      ELSE
597        precip_totsnow(:) = precip_snow(:)
598        evap_totsnow(:) = evap(:)
599      ENDIF
600
601      CALL fonte_neige(knon, is_lic, knindex, dtime, &
602      tsurf, precip_rain, precip_totsnow, &
603      snow, qsol, tsurf_new, evap_totsnow &
604#ifdef ISO   
605    ,fq_fonte_diag,fqfonte_diag,snow_evap_diag,fqcalving_diag     &
606    ,max_eau_sol_diag,runoff_diag,run_off_lic_diag,coeff_rel_diag &
607#endif
608      )
609
610
611#ifdef ISO
612#ifdef ISOVERIF
613    DO i=1,knon 
614      IF (iso_eau > 0) THEN 
615        CALL iso_verif_egalite_choix(Rland_ice(iso_eau,i),1.0, &
616                                 'surf_landice_mod 217',errmax,errmaxrel)
617      ENDIF !IF (iso_eau > 0) THEN
618    ENDDO !DO i=1,knon
619#endif
620
621    CALL calcul_iso_surf_lic_vectall(klon,knon, &
622      evap,snow_evap_diag,Tsurf_new,snow, &
623      fq_fonte_diag,fqfonte_diag,dtime,t_coup, &
624      precip_snow,xtprecip_snow,precip_rain,xtprecip_rain, snow_prec,xtsnow_prec, &
625      xtspechum,spechum,ps,Rland_ice, &
626      xtevap,xtsnow,fqcalving_diag, &
627      knindex,is_lic,run_off_lic_diag,coeff_rel_diag &
628     )
629
630!        CALL fonte_neige_export_xtrun_off_lic_0(knon,xtrun_off_lic_0_diag)
631
632#endif
633
634      WHERE (snow(1:knon) < 0.0001) agesno(1:knon) = 0.
635      zfra(1:knon) = MAX(0.0, MIN(1.0, snow(1:knon) / (snow(1:knon) + 10.0)))
636
637    END IF ! landice_opt
638
639
640    !****************************************************************************************
641    ! Send run-off on land-ice to coupler if coupled ocean.
642    ! run_off_lic has been calculated in fonte_neige or surf_inlandsis
643    ! If landice_opt>=2, corresponding CALL is done from surf_land_orchidee
644    !****************************************************************************************
645    IF (type_ocean=='couple' .AND. landice_opt < 2) THEN
646      ! Compress fraction where run_off_lic is active (here all pctsrf(is_lic))
647      run_off_lic_frac(:) = 0.0
648      DO j = 1, knon
649        i = knindex(j)
650        run_off_lic_frac(j) = pctsrf(i, is_lic)
651      ENDDO
652
653      CALL cpl_send_landice_fields(itime, knon, knindex, run_off_lic, run_off_lic_frac)
654    ENDIF
655
656    ! transfer runoff rate [kg/m2/s](!) to physiq for output
657    runoff(1:knon) = run_off_lic(1:knon) / dtime
658
659    snow_o = 0.
660    zfra_o = 0.
661    DO j = 1, knon
662      i = knindex(j)
663      snow_o(i) = snow(j)
664      zfra_o(i) = zfra(j)
665    ENDDO
666
667
668    !albedo SB >>>
669    select case(NSW)
670    case(2)
671      alb_dir(1:knon, 1) = alb1(1:knon)
672      alb_dir(1:knon, 2) = alb2(1:knon)
673    case(4)
674      alb_dir(1:knon, 1) = alb1(1:knon)
675      alb_dir(1:knon, 2) = alb2(1:knon)
676      alb_dir(1:knon, 3) = alb2(1:knon)
677      alb_dir(1:knon, 4) = alb2(1:knon)
678    case(6)
679      alb_dir(1:knon, 1) = alb1(1:knon)
680      alb_dir(1:knon, 2) = alb1(1:knon)
681      alb_dir(1:knon, 3) = alb1(1:knon)
682      alb_dir(1:knon, 4) = alb2(1:knon)
683      alb_dir(1:knon, 5) = alb2(1:knon)
684      alb_dir(1:knon, 6) = alb2(1:knon)
685
686      IF ((landice_opt == 1) .AND. (iflag_albcalc == 2)) THEN
687        alb_dir(1:knon, 1) = alb6(1:knon, 1)
688        alb_dir(1:knon, 2) = alb6(1:knon, 2)
689        alb_dir(1:knon, 3) = alb6(1:knon, 3)
690        alb_dir(1:knon, 4) = alb6(1:knon, 4)
691        alb_dir(1:knon, 5) = alb6(1:knon, 5)
692        alb_dir(1:knon, 6) = alb6(1:knon, 6)
693      ENDIF
694
695    end select
696    alb_dif = alb_dir
697    !albedo SB <<<
698
699  END SUBROUTINE surf_landice
700
701  !****************************************************************************************
702
703END MODULE surf_landice_mod
704
705
706
Note: See TracBrowser for help on using the repository browser.