[996] | 1 | ! $Header$ |
---|
[5099] | 2 | |
---|
[3974] | 3 | SUBROUTINE soil(ptimestep, indice, knon, snow, ptsrf, qsol, & |
---|
[5111] | 4 | lon, lat, ptsoil, pcapcal, pfluxgrd) |
---|
| 5 | |
---|
[996] | 6 | USE dimphy |
---|
[5110] | 7 | USE lmdz_phys_para |
---|
[1785] | 8 | USE indice_sol_mod |
---|
[5112] | 9 | USE lmdz_print_control, ONLY: lunout |
---|
[5111] | 10 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
[5140] | 11 | USE lmdz_comsoil, ONLY: inertie_sol, inertie_sno, inertie_sic, inertie_lic, iflag_sic, iflag_inertie |
---|
[5144] | 12 | USE lmdz_yomcst |
---|
[1785] | 13 | |
---|
[996] | 14 | IMPLICIT NONE |
---|
| 15 | |
---|
[5111] | 16 | !======================================================================= |
---|
[5099] | 17 | |
---|
[5111] | 18 | ! Auteur: Frederic Hourdin 30/01/92 |
---|
| 19 | ! ------- |
---|
[5099] | 20 | |
---|
[5111] | 21 | ! Object: Computation of : the soil temperature evolution |
---|
| 22 | ! ------- the surfacic heat capacity "Capcal" |
---|
| 23 | ! the surface conduction flux pcapcal |
---|
[5099] | 24 | |
---|
[5111] | 25 | ! Update: 2021/07 : soil thermal inertia, formerly a constant value, |
---|
| 26 | ! ------ can also be now a function of soil moisture (F Cheruy's idea) |
---|
| 27 | ! depending on iflag_inertie, read from physiq.def via conf_phys_m.F90 |
---|
| 28 | ! ("Stage L3" Eve Rebouillat, with E Vignon, A Sima, F Cheruy) |
---|
[5099] | 29 | |
---|
[5111] | 30 | ! Method: Implicit time integration |
---|
| 31 | ! ------- |
---|
| 32 | ! Consecutive ground temperatures are related by: |
---|
| 33 | ! T(k+1) = C(k) + D(k)*T(k) (*) |
---|
| 34 | ! The coefficients C and D are computed at the t-dt time-step. |
---|
| 35 | ! Routine structure: |
---|
| 36 | ! 1) C and D coefficients are computed from the old temperature |
---|
| 37 | ! 2) new temperatures are computed using (*) |
---|
| 38 | ! 3) C and D coefficients are computed from the new temperature |
---|
| 39 | ! profile for the t+dt time-step |
---|
| 40 | ! 4) the coefficients A and B are computed where the diffusive |
---|
| 41 | ! fluxes at the t+dt time-step is given by |
---|
| 42 | ! Fdiff = A + B Ts(t+dt) |
---|
| 43 | ! or Fdiff = F0 + Capcal (Ts(t+dt)-Ts(t))/dt |
---|
| 44 | ! with F0 = A + B (Ts(t)) |
---|
| 45 | ! Capcal = B*dt |
---|
[5099] | 46 | |
---|
[5111] | 47 | ! Interface: |
---|
| 48 | ! ---------- |
---|
[5099] | 49 | |
---|
[5111] | 50 | ! Arguments: |
---|
| 51 | ! ---------- |
---|
| 52 | ! ptimestep physical timestep (s) |
---|
| 53 | ! indice sub-surface index |
---|
| 54 | ! snow(klon) snow |
---|
| 55 | ! ptsrf(klon) surface temperature at time-step t (K) |
---|
| 56 | ! qsol(klon) soil moisture (kg/m2 or mm) |
---|
| 57 | ! lon(klon) longitude in radian |
---|
| 58 | ! lat(klon) latitude in radian |
---|
| 59 | ! ptsoil(klon,nsoilmx) temperature inside the ground (K) |
---|
| 60 | ! pcapcal(klon) surfacic specific heat (W*m-2*s*K-1) |
---|
| 61 | ! pfluxgrd(klon) surface diffusive flux from ground (Wm-2) |
---|
[5099] | 62 | |
---|
[5111] | 63 | !======================================================================= |
---|
[996] | 64 | INCLUDE "dimsoil.h" |
---|
[5111] | 65 | !----------------------------------------------------------------------- |
---|
| 66 | ! Arguments |
---|
| 67 | ! --------- |
---|
| 68 | REAL, INTENT(IN) :: ptimestep |
---|
| 69 | INTEGER, INTENT(IN) :: indice, knon !, knindex |
---|
| 70 | REAL, DIMENSION(klon), INTENT(IN) :: snow |
---|
| 71 | REAL, DIMENSION(klon), INTENT(IN) :: ptsrf |
---|
| 72 | REAL, DIMENSION(klon), INTENT(IN) :: qsol |
---|
| 73 | REAL, DIMENSION(klon), INTENT(IN) :: lon |
---|
| 74 | REAL, DIMENSION(klon), INTENT(IN) :: lat |
---|
[3974] | 75 | |
---|
[5111] | 76 | REAL, DIMENSION(klon, nsoilmx), INTENT(INOUT) :: ptsoil |
---|
| 77 | REAL, DIMENSION(klon), INTENT(OUT) :: pcapcal |
---|
| 78 | REAL, DIMENSION(klon), INTENT(OUT) :: pfluxgrd |
---|
[996] | 79 | |
---|
[5111] | 80 | !----------------------------------------------------------------------- |
---|
| 81 | ! Local variables |
---|
| 82 | ! --------------- |
---|
| 83 | INTEGER :: ig, jk, ierr |
---|
| 84 | REAL :: min_period, dalph_soil |
---|
| 85 | REAL, DIMENSION(nsoilmx) :: zdz2 |
---|
| 86 | REAL :: z1s |
---|
| 87 | REAL, DIMENSION(klon) :: ztherm_i |
---|
| 88 | REAL, DIMENSION(klon, nsoilmx, nbsrf) :: C_coef, D_coef |
---|
[996] | 89 | |
---|
[5111] | 90 | ! Local saved variables |
---|
| 91 | ! --------------------- |
---|
| 92 | REAL, SAVE :: lambda |
---|
| 93 | !$OMP THREADPRIVATE(lambda) |
---|
[996] | 94 | REAL, DIMENSION(nsoilmx), SAVE :: dz1, dz2 |
---|
[5111] | 95 | !$OMP THREADPRIVATE(dz1,dz2) |
---|
| 96 | LOGICAL, SAVE :: firstcall = .TRUE. |
---|
| 97 | !$OMP THREADPRIVATE(firstcall) |
---|
[996] | 98 | |
---|
[5111] | 99 | !----------------------------------------------------------------------- |
---|
| 100 | ! Depthts: |
---|
| 101 | ! -------- |
---|
| 102 | REAL fz, rk, fz1, rk1, rk2 |
---|
| 103 | fz(rk) = fz1 * (dalph_soil**rk - 1.) / (dalph_soil - 1.) |
---|
[996] | 104 | |
---|
| 105 | |
---|
[5111] | 106 | !----------------------------------------------------------------------- |
---|
| 107 | ! Calculation of some constants |
---|
| 108 | ! NB! These constants do not depend on the sub-surfaces |
---|
| 109 | !----------------------------------------------------------------------- |
---|
| 110 | |
---|
[996] | 111 | IF (firstcall) THEN |
---|
[5111] | 112 | !----------------------------------------------------------------------- |
---|
| 113 | ! ground levels |
---|
| 114 | ! grnd=z/l where l is the skin depth of the diurnal cycle: |
---|
| 115 | !----------------------------------------------------------------------- |
---|
[996] | 116 | |
---|
[5111] | 117 | min_period = 1800. ! en secondes |
---|
| 118 | dalph_soil = 2. ! rapport entre les epaisseurs de 2 couches succ. |
---|
| 119 | !$OMP MASTER |
---|
| 120 | IF (is_mpi_root) THEN |
---|
| 121 | OPEN(99, file = 'soil.def', status = 'old', form = 'formatted', iostat = ierr) |
---|
| 122 | IF (ierr == 0) THEN ! Read file only if it exists |
---|
| 123 | READ(99, *) min_period |
---|
| 124 | READ(99, *) dalph_soil |
---|
| 125 | WRITE(lunout, *)'Discretization for the soil model' |
---|
| 126 | WRITE(lunout, *)'First level e-folding depth', min_period, & |
---|
| 127 | ' dalph', dalph_soil |
---|
| 128 | CLOSE(99) |
---|
| 129 | END IF |
---|
| 130 | ENDIF |
---|
| 131 | !$OMP END MASTER |
---|
| 132 | CALL bcast(min_period) |
---|
| 133 | CALL bcast(dalph_soil) |
---|
[996] | 134 | |
---|
[5111] | 135 | ! la premiere couche represente un dixieme de cycle diurne |
---|
| 136 | fz1 = SQRT(min_period / 3.14) |
---|
[996] | 137 | |
---|
[5111] | 138 | DO jk = 1, nsoilmx |
---|
| 139 | rk1 = jk |
---|
| 140 | rk2 = jk - 1 |
---|
| 141 | dz2(jk) = fz(rk1) - fz(rk2) |
---|
| 142 | ENDDO |
---|
| 143 | DO jk = 1, nsoilmx - 1 |
---|
| 144 | rk1 = jk + .5 |
---|
| 145 | rk2 = jk - .5 |
---|
| 146 | dz1(jk) = 1. / (fz(rk1) - fz(rk2)) |
---|
| 147 | ENDDO |
---|
| 148 | lambda = fz(.5) * dz1(1) |
---|
| 149 | WRITE(lunout, *)'full layers, intermediate layers (seconds)' |
---|
| 150 | DO jk = 1, nsoilmx |
---|
| 151 | rk = jk |
---|
| 152 | rk1 = jk + .5 |
---|
| 153 | rk2 = jk - .5 |
---|
| 154 | WRITE(lunout, *)'fz=', & |
---|
| 155 | fz(rk1) * fz(rk2) * 3.14, fz(rk) * fz(rk) * 3.14 |
---|
| 156 | ENDDO |
---|
| 157 | |
---|
| 158 | firstcall = .FALSE. |
---|
[996] | 159 | END IF |
---|
| 160 | |
---|
| 161 | |
---|
[5111] | 162 | !----------------------------------------------------------------------- |
---|
| 163 | ! Calcul de l'inertie thermique a partir de la variable rnat. |
---|
| 164 | ! on initialise a inertie_sic meme au-dessus d'un point de mer au cas |
---|
| 165 | ! ou le point de mer devienne point de glace au pas suivant |
---|
| 166 | ! on corrige si on a un point de terre avec ou sans glace |
---|
[5099] | 167 | |
---|
[5111] | 168 | ! iophys can be used to write the ztherm_i variable in a phys.nc file |
---|
| 169 | ! and check the results; to do so, add "CALL iophys_ini" in physiq_mod |
---|
| 170 | ! and add knindex to the list of inputs in all the calls to soil.F90 |
---|
| 171 | ! (and to soil.F90 itself !) |
---|
| 172 | !----------------------------------------------------------------------- |
---|
[2915] | 173 | |
---|
[996] | 174 | IF (indice == is_sic) THEN |
---|
[5111] | 175 | DO ig = 1, knon |
---|
| 176 | ztherm_i(ig) = inertie_sic |
---|
| 177 | ENDDO |
---|
| 178 | IF (iflag_sic == 0) THEN |
---|
| 179 | DO ig = 1, knon |
---|
| 180 | IF (snow(ig) > 0.0) ztherm_i(ig) = inertie_sno |
---|
| 181 | ENDDO |
---|
| 182 | ! Otherwise sea-ice keeps the same inertia, even when covered by snow |
---|
| 183 | ENDIF |
---|
| 184 | ! CALL iophys_ecrit_index('ztherm_sic', 1, 'ztherm_sic', 'USI', & |
---|
| 185 | ! knon, knindex, ztherm_i) |
---|
[996] | 186 | ELSE IF (indice == is_lic) THEN |
---|
[5111] | 187 | DO ig = 1, knon |
---|
| 188 | ztherm_i(ig) = inertie_lic |
---|
| 189 | IF (snow(ig) > 0.0) ztherm_i(ig) = inertie_sno |
---|
| 190 | ENDDO |
---|
| 191 | ! CALL iophys_ecrit_index('ztherm_lic', 1, 'ztherm_lic', 'USI', & |
---|
| 192 | ! knon, knindex, ztherm_i) |
---|
[996] | 193 | ELSE IF (indice == is_ter) THEN |
---|
[5099] | 194 | |
---|
[5111] | 195 | ! La relation entre l'inertie thermique du sol et qsol change d'apres |
---|
[5140] | 196 | ! iflag_inertie, defini dans physiq.def, et appele via lmdz_comsoil |
---|
[5099] | 197 | |
---|
[5111] | 198 | DO ig = 1, knon |
---|
| 199 | ! iflag_inertie=0 correspond au cas inertie=constant, comme avant |
---|
| 200 | IF (iflag_inertie==0) THEN |
---|
| 201 | ztherm_i(ig) = inertie_sol |
---|
| 202 | ELSE IF (iflag_inertie == 1) THEN |
---|
| 203 | ! I = a_qsol * qsol + b modele lineaire deduit d'une |
---|
| 204 | ! regression lineaire I = a_mrsos * mrsos + b obtenue sur |
---|
| 205 | ! sorties MO d'une simulation LMDZOR(CMIP6) sur l'annee 2000 |
---|
| 206 | ! sur tous les points avec frac_snow=0 |
---|
| 207 | ! Difference entre qsol et mrsos prise en compte par un |
---|
| 208 | ! facteur d'echelle sur le coefficient directeur de regression: |
---|
| 209 | ! fact = 35./150. = mrsos_max/qsol_max |
---|
| 210 | ! et a_qsol = a_mrsos * fact (car a = dI/dHumidite) |
---|
| 211 | ztherm_i(ig) = 30.0 * 35.0 / 150.0 * qsol(ig) + 770.0 |
---|
| 212 | ! AS : pour qsol entre 0 - 150, on a I entre 770 - 1820 |
---|
| 213 | ELSE IF (iflag_inertie == 2) THEN |
---|
| 214 | ! deux regressions lineaires, sur les memes sorties, |
---|
| 215 | ! distinguant le type de sol : sable ou autre (limons/argile) |
---|
| 216 | ! Implementation simple : regression type "sable" seulement pour |
---|
| 217 | ! Sahara, defini par une "boite" lat/lon (NB : en radians !! ) |
---|
| 218 | IF (lon(ig)>-0.35 .AND. lon(ig)<0.70 .AND. lat(ig)>0.17 .AND. lat(ig)<0.52) THEN |
---|
| 219 | ! Valeurs theoriquement entre 728 et 2373 ; qsol valeurs basses |
---|
| 220 | ztherm_i(ig) = 47. * 35.0 / 150.0 * qsol(ig) + 728. ! boite type "sable" pour Sahara |
---|
| 221 | ELSE |
---|
| 222 | ! Valeurs theoriquement entre 550 et 1940 ; qsol valeurs moyennes et hautes |
---|
| 223 | ztherm_i(ig) = 41. * 35.0 / 150.0 * qsol(ig) + 505. |
---|
[3974] | 224 | ENDIF |
---|
[5111] | 225 | ELSE IF (iflag_inertie == 3) THEN |
---|
| 226 | ! AS : idee a tester : |
---|
| 227 | ! si la relation doit etre une droite, |
---|
| 228 | ! definissons-la en fonction des valeurs min et max de qsol (0:150), |
---|
| 229 | ! et de l'inertie (900 : 2000 ou 2400 ; choix ici: 2000) |
---|
| 230 | ! I = I_min + qsol * (I_max - I_min)/(qsol_max - qsol_min) |
---|
| 231 | ztherm_i(ig) = 900. + qsol(ig) * (2000. - 900.) / 150. |
---|
| 232 | ELSE |
---|
| 233 | WRITE (lunout, *) "Le choix iflag_inertie = ", iflag_inertie, " n'est pas defini. Veuillez choisir un entier entre 0 et 3" |
---|
| 234 | ENDIF |
---|
[5099] | 235 | |
---|
[5111] | 236 | ! Fin de l'introduction de la relation entre l'inertie thermique du sol et qsol |
---|
| 237 | !------------------------------------------- |
---|
| 238 | !AS : donc le moindre flocon de neige sur un point de grid |
---|
| 239 | ! fait que l'inertie du point passe a la valeur pour neige ! |
---|
| 240 | IF (snow(ig) > 0.0) ztherm_i(ig) = inertie_sno |
---|
| 241 | |
---|
| 242 | ENDDO |
---|
| 243 | ! CALL iophys_ecrit_index('ztherm_ter', 1, 'ztherm_ter', 'USI', & |
---|
| 244 | ! knon, knindex, ztherm_i) |
---|
[996] | 245 | ELSE IF (indice == is_oce) THEN |
---|
[5111] | 246 | DO ig = 1, knon |
---|
| 247 | ! This is just in case, but SST should be used by the model anyway |
---|
| 248 | ztherm_i(ig) = inertie_sic |
---|
| 249 | ENDDO |
---|
| 250 | ! CALL iophys_ecrit_index('ztherm_oce', 1, 'ztherm_oce', 'USI', & |
---|
| 251 | ! knon, knindex, ztherm_i) |
---|
[996] | 252 | ELSE |
---|
[5111] | 253 | WRITE(lunout, *) "valeur d indice non prevue", indice |
---|
| 254 | CALL abort_physic("soil", "", 1) |
---|
[996] | 255 | ENDIF |
---|
| 256 | |
---|
| 257 | |
---|
[5111] | 258 | !----------------------------------------------------------------------- |
---|
| 259 | ! 1) |
---|
| 260 | ! Calculation of Cgrf and Dgrd coefficients using soil temperature from |
---|
| 261 | ! previous time step. |
---|
[5099] | 262 | |
---|
[5111] | 263 | ! These variables are recalculated on the local compressed grid instead |
---|
| 264 | ! of saved in restart file. |
---|
| 265 | !----------------------------------------------------------------------- |
---|
| 266 | DO jk = 1, nsoilmx |
---|
| 267 | zdz2(jk) = dz2(jk) / ptimestep |
---|
[996] | 268 | ENDDO |
---|
[5111] | 269 | |
---|
| 270 | DO ig = 1, knon |
---|
| 271 | z1s = zdz2(nsoilmx) + dz1(nsoilmx - 1) |
---|
| 272 | C_coef(ig, nsoilmx - 1, indice) = & |
---|
| 273 | zdz2(nsoilmx) * ptsoil(ig, nsoilmx) / z1s |
---|
| 274 | D_coef(ig, nsoilmx - 1, indice) = dz1(nsoilmx - 1) / z1s |
---|
[996] | 275 | ENDDO |
---|
[5111] | 276 | |
---|
| 277 | DO jk = nsoilmx - 1, 2, -1 |
---|
| 278 | DO ig = 1, knon |
---|
| 279 | z1s = 1. / (zdz2(jk) + dz1(jk - 1) + dz1(jk) & |
---|
| 280 | * (1. - D_coef(ig, jk, indice))) |
---|
| 281 | C_coef(ig, jk - 1, indice) = & |
---|
| 282 | (ptsoil(ig, jk) * zdz2(jk) + dz1(jk) * C_coef(ig, jk, indice)) * z1s |
---|
| 283 | D_coef(ig, jk - 1, indice) = dz1(jk - 1) * z1s |
---|
| 284 | ENDDO |
---|
[996] | 285 | ENDDO |
---|
| 286 | |
---|
[5111] | 287 | !----------------------------------------------------------------------- |
---|
| 288 | ! 2) |
---|
| 289 | ! Computation of the soil temperatures using the Cgrd and Dgrd |
---|
| 290 | ! coefficient computed above |
---|
[5099] | 291 | |
---|
[5111] | 292 | !----------------------------------------------------------------------- |
---|
[996] | 293 | |
---|
[5111] | 294 | ! Surface temperature |
---|
| 295 | DO ig = 1, knon |
---|
| 296 | ptsoil(ig, 1) = (lambda * C_coef(ig, 1, indice) + ptsrf(ig)) / & |
---|
| 297 | (lambda * (1. - D_coef(ig, 1, indice)) + 1.) |
---|
[996] | 298 | ENDDO |
---|
[5111] | 299 | |
---|
| 300 | ! Other temperatures |
---|
| 301 | DO jk = 1, nsoilmx - 1 |
---|
| 302 | DO ig = 1, knon |
---|
| 303 | ptsoil(ig, jk + 1) = C_coef(ig, jk, indice) + D_coef(ig, jk, indice) & |
---|
| 304 | * ptsoil(ig, jk) |
---|
| 305 | ENDDO |
---|
[996] | 306 | ENDDO |
---|
| 307 | |
---|
| 308 | IF (indice == is_sic) THEN |
---|
[5111] | 309 | DO ig = 1, knon |
---|
| 310 | ptsoil(ig, nsoilmx) = RTT - 1.8 |
---|
| 311 | END DO |
---|
[996] | 312 | ENDIF |
---|
| 313 | |
---|
[5111] | 314 | !----------------------------------------------------------------------- |
---|
| 315 | ! 3) |
---|
| 316 | ! Calculate the Cgrd and Dgrd coefficient corresponding to actual soil |
---|
| 317 | ! temperature |
---|
| 318 | !----------------------------------------------------------------------- |
---|
| 319 | DO ig = 1, knon |
---|
| 320 | z1s = zdz2(nsoilmx) + dz1(nsoilmx - 1) |
---|
| 321 | C_coef(ig, nsoilmx - 1, indice) = zdz2(nsoilmx) * ptsoil(ig, nsoilmx) / z1s |
---|
| 322 | D_coef(ig, nsoilmx - 1, indice) = dz1(nsoilmx - 1) / z1s |
---|
[996] | 323 | ENDDO |
---|
[5111] | 324 | |
---|
| 325 | DO jk = nsoilmx - 1, 2, -1 |
---|
| 326 | DO ig = 1, knon |
---|
| 327 | z1s = 1. / (zdz2(jk) + dz1(jk - 1) + dz1(jk) & |
---|
| 328 | * (1. - D_coef(ig, jk, indice))) |
---|
| 329 | C_coef(ig, jk - 1, indice) = & |
---|
| 330 | (ptsoil(ig, jk) * zdz2(jk) + dz1(jk) * C_coef(ig, jk, indice)) * z1s |
---|
| 331 | D_coef(ig, jk - 1, indice) = dz1(jk - 1) * z1s |
---|
| 332 | ENDDO |
---|
[996] | 333 | ENDDO |
---|
| 334 | |
---|
[5111] | 335 | !----------------------------------------------------------------------- |
---|
| 336 | ! 4) |
---|
| 337 | ! Computation of the surface diffusive flux from ground and |
---|
| 338 | ! calorific capacity of the ground |
---|
| 339 | !----------------------------------------------------------------------- |
---|
| 340 | DO ig = 1, knon |
---|
| 341 | pfluxgrd(ig) = ztherm_i(ig) * dz1(1) * & |
---|
| 342 | (C_coef(ig, 1, indice) + (D_coef(ig, 1, indice) - 1.) * ptsoil(ig, 1)) |
---|
| 343 | pcapcal(ig) = ztherm_i(ig) * & |
---|
| 344 | (dz2(1) + ptimestep * (1. - D_coef(ig, 1, indice)) * dz1(1)) |
---|
| 345 | z1s = lambda * (1. - D_coef(ig, 1, indice)) + 1. |
---|
| 346 | pcapcal(ig) = pcapcal(ig) / z1s |
---|
| 347 | pfluxgrd(ig) = pfluxgrd(ig) & |
---|
| 348 | + pcapcal(ig) * (ptsoil(ig, 1) * z1s & |
---|
| 349 | - lambda * C_coef(ig, 1, indice) & |
---|
| 350 | - ptsrf(ig)) & |
---|
| 351 | / ptimestep |
---|
[996] | 352 | ENDDO |
---|
[5111] | 353 | |
---|
[996] | 354 | END SUBROUTINE soil |
---|