1 | MODULE slab_heat_transp_mod |
---|
2 | |
---|
3 | ! Slab ocean : temperature tendencies due to horizontal diffusion |
---|
4 | ! and / or Ekman transport |
---|
5 | |
---|
6 | USE lmdz_grid_phy, ONLY: nbp_lon, nbp_lat, klon_glo |
---|
7 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
8 | IMPLICIT NONE |
---|
9 | |
---|
10 | ! Variables copied over from dyn3d dynamics: |
---|
11 | REAL, SAVE, ALLOCATABLE :: fext(:) ! Coriolis f times cell area |
---|
12 | !$OMP THREADPRIVATE(fext) |
---|
13 | REAL, SAVE, ALLOCATABLE :: beta(:) ! df/dy |
---|
14 | !$OMP THREADPRIVATE(beta) |
---|
15 | REAL, SAVE, ALLOCATABLE :: unsairez(:) ! 1/cell area |
---|
16 | !$OMP THREADPRIVATE(unsairez) |
---|
17 | REAL, SAVE, ALLOCATABLE :: unsaire(:) |
---|
18 | !$OMP THREADPRIVATE(unsaire) |
---|
19 | REAL, SAVE, ALLOCATABLE :: cu(:) ! cell longitude dim (m) |
---|
20 | !$OMP THREADPRIVATE(cu) |
---|
21 | REAL, SAVE, ALLOCATABLE :: cv(:) ! cell latitude dim (m) |
---|
22 | !$OMP THREADPRIVATE(cv) |
---|
23 | REAL, SAVE, ALLOCATABLE :: cuvsurcv(:) ! cu/cv (v points) |
---|
24 | !$OMP THREADPRIVATE(cuvsurcv) |
---|
25 | REAL, SAVE, ALLOCATABLE :: cvusurcu(:) ! cv/cu (u points) |
---|
26 | !$OMP THREADPRIVATE(cvusurcu) |
---|
27 | REAL, SAVE, ALLOCATABLE :: aire(:) ! cell area |
---|
28 | !$OMP THREADPRIVATE(aire) |
---|
29 | REAL, SAVE :: apoln ! area of north pole points |
---|
30 | !$OMP THREADPRIVATE(apoln) |
---|
31 | REAL, SAVE :: apols ! area of south pole points |
---|
32 | !$OMP THREADPRIVATE(apols) |
---|
33 | REAL, SAVE, ALLOCATABLE :: aireu(:) ! area of u cells |
---|
34 | !$OMP THREADPRIVATE(aireu) |
---|
35 | REAL, SAVE, ALLOCATABLE :: airev(:) ! area of v cells |
---|
36 | !$OMP THREADPRIVATE(airev) |
---|
37 | |
---|
38 | ! Local parameters for slab transport |
---|
39 | LOGICAL, SAVE :: alpha_var ! variable coef for deep temp (1 layer) |
---|
40 | !$OMP THREADPRIVATE(alpha_var) |
---|
41 | LOGICAL, SAVE :: slab_upstream ! upstream scheme ? (1 layer) |
---|
42 | !$OMP THREADPRIVATE(slab_upstream) |
---|
43 | LOGICAL, SAVE :: slab_sverdrup ! use wind stress curl at equator |
---|
44 | !$OMP THREADPRIVATE(slab_sverdrup) |
---|
45 | LOGICAL, SAVE :: slab_tyeq ! use merid wind stress at equator |
---|
46 | !$OMP THREADPRIVATE(slab_tyeq) |
---|
47 | LOGICAL, SAVE :: ekman_zonadv ! use zonal advection by Ekman currents |
---|
48 | !$OMP THREADPRIVATE(ekman_zonadv) |
---|
49 | LOGICAL, SAVE :: ekman_zonavg ! zonally average wind stress |
---|
50 | !$OMP THREADPRIVATE(ekman_zonavg) |
---|
51 | |
---|
52 | REAL, SAVE :: alpham |
---|
53 | !$OMP THREADPRIVATE(alpham) |
---|
54 | REAL, SAVE :: gmkappa |
---|
55 | !$OMP THREADPRIVATE(gmkappa) |
---|
56 | REAL, SAVE :: gm_smax |
---|
57 | !$OMP THREADPRIVATE(gm_smax) |
---|
58 | |
---|
59 | ! geometry variables : f, beta, mask... |
---|
60 | REAL, SAVE, ALLOCATABLE :: zmasqu(:) ! continent mask for zonal mass flux |
---|
61 | !$OMP THREADPRIVATE(zmasqu) |
---|
62 | REAL, SAVE, ALLOCATABLE :: zmasqv(:) ! continent mask for merid mass flux |
---|
63 | !$OMP THREADPRIVATE(zmasqv) |
---|
64 | REAL, SAVE, ALLOCATABLE :: unsfv(:) ! 1/f, v points |
---|
65 | !$OMP THREADPRIVATE(unsfv) |
---|
66 | REAL, SAVE, ALLOCATABLE :: unsbv(:) ! 1/beta |
---|
67 | !$OMP THREADPRIVATE(unsbv) |
---|
68 | REAL, SAVE, ALLOCATABLE :: unsev(:) ! 1/epsilon (drag) |
---|
69 | !$OMP THREADPRIVATE(unsev) |
---|
70 | REAL, SAVE, ALLOCATABLE :: unsfu(:) ! 1/F, u points |
---|
71 | !$OMP THREADPRIVATE(unsfu) |
---|
72 | REAL, SAVE, ALLOCATABLE :: unseu(:) |
---|
73 | !$OMP THREADPRIVATE(unseu) |
---|
74 | |
---|
75 | ! Routines from dyn3d, valid on global dynamics grid only: |
---|
76 | PRIVATE :: gr_fi_dyn, gr_dyn_fi ! to go between 1D nd 2D horiz grid |
---|
77 | PRIVATE :: gr_scal_v, gr_v_scal, gr_scal_u ! change on 2D grid U,V, T points |
---|
78 | PRIVATE :: grad, diverg |
---|
79 | |
---|
80 | CONTAINS |
---|
81 | |
---|
82 | SUBROUTINE ini_slab_transp_geom(ip1jm, ip1jmp1, unsairez_, fext_, unsaire_, & |
---|
83 | cu_, cuvsurcv_, cv_, cvusurcu_, & |
---|
84 | aire_, apoln_, apols_, & |
---|
85 | aireu_, airev_, rlatv, rad, omeg) |
---|
86 | ! number of points in lon, lat |
---|
87 | IMPLICIT NONE |
---|
88 | ! Routine copies some geometry variables from the dynamical core |
---|
89 | ! see global vars for meaning |
---|
90 | INTEGER, INTENT(IN) :: ip1jm |
---|
91 | INTEGER, INTENT(IN) :: ip1jmp1 |
---|
92 | REAL, INTENT(IN) :: unsairez_(ip1jm) |
---|
93 | REAL, INTENT(IN) :: fext_(ip1jm) |
---|
94 | REAL, INTENT(IN) :: unsaire_(ip1jmp1) |
---|
95 | REAL, INTENT(IN) :: cu_(ip1jmp1) |
---|
96 | REAL, INTENT(IN) :: cuvsurcv_(ip1jm) |
---|
97 | REAL, INTENT(IN) :: cv_(ip1jm) |
---|
98 | REAL, INTENT(IN) :: cvusurcu_(ip1jmp1) |
---|
99 | REAL, INTENT(IN) :: aire_(ip1jmp1) |
---|
100 | REAL, INTENT(IN) :: apoln_ |
---|
101 | REAL, INTENT(IN) :: apols_ |
---|
102 | REAL, INTENT(IN) :: aireu_(ip1jmp1) |
---|
103 | REAL, INTENT(IN) :: airev_(ip1jm) |
---|
104 | REAL, INTENT(IN) :: rlatv(nbp_lat - 1) |
---|
105 | REAL, INTENT(IN) :: rad |
---|
106 | REAL, INTENT(IN) :: omeg |
---|
107 | |
---|
108 | CHARACTER (len = 20) :: modname = 'slab_heat_transp' |
---|
109 | CHARACTER (len = 80) :: abort_message |
---|
110 | |
---|
111 | ! Sanity check on dimensions |
---|
112 | IF ((ip1jm/=((nbp_lon + 1) * (nbp_lat - 1))).OR. & |
---|
113 | (ip1jmp1/=((nbp_lon + 1) * nbp_lat))) THEN |
---|
114 | abort_message = "ini_slab_transp_geom Error: wrong array sizes" |
---|
115 | CALL abort_physic(modname, abort_message, 1) |
---|
116 | endif |
---|
117 | ! Allocations could be done only on master process/thread... |
---|
118 | allocate(unsairez(ip1jm)) |
---|
119 | unsairez(:) = unsairez_(:) |
---|
120 | allocate(fext(ip1jm)) |
---|
121 | fext(:) = fext_(:) |
---|
122 | allocate(unsaire(ip1jmp1)) |
---|
123 | unsaire(:) = unsaire_(:) |
---|
124 | allocate(cu(ip1jmp1)) |
---|
125 | cu(:) = cu_(:) |
---|
126 | allocate(cuvsurcv(ip1jm)) |
---|
127 | cuvsurcv(:) = cuvsurcv_(:) |
---|
128 | allocate(cv(ip1jm)) |
---|
129 | cv(:) = cv_(:) |
---|
130 | allocate(cvusurcu(ip1jmp1)) |
---|
131 | cvusurcu(:) = cvusurcu_(:) |
---|
132 | allocate(aire(ip1jmp1)) |
---|
133 | aire(:) = aire_(:) |
---|
134 | apoln = apoln_ |
---|
135 | apols = apols_ |
---|
136 | allocate(aireu(ip1jmp1)) |
---|
137 | aireu(:) = aireu_(:) |
---|
138 | allocate(airev(ip1jm)) |
---|
139 | airev(:) = airev_(:) |
---|
140 | allocate(beta(nbp_lat - 1)) |
---|
141 | beta(:) = 2 * omeg * cos(rlatv(:)) / rad |
---|
142 | |
---|
143 | END SUBROUTINE ini_slab_transp_geom |
---|
144 | |
---|
145 | SUBROUTINE ini_slab_transp(zmasq) |
---|
146 | |
---|
147 | ! USE lmdz_ioipsl_getin_p, ONLY: getin_p |
---|
148 | USE IOIPSL, ONLY: getin |
---|
149 | IMPLICIT NONE |
---|
150 | |
---|
151 | REAL zmasq(klon_glo) ! ocean / continent mask, 1=continent |
---|
152 | REAL zmasq_2d((nbp_lon + 1) * nbp_lat) |
---|
153 | REAL ff((nbp_lon + 1) * (nbp_lat - 1)) ! Coriolis parameter |
---|
154 | REAL eps ! epsilon friction timescale (s-1) |
---|
155 | INTEGER :: slab_ekman |
---|
156 | INTEGER i |
---|
157 | INTEGER :: iim, iip1, jjp1, ip1jm, ip1jmp1 |
---|
158 | |
---|
159 | ! Some definition for grid size |
---|
160 | ip1jm = (nbp_lon + 1) * (nbp_lat - 1) |
---|
161 | ip1jmp1 = (nbp_lon + 1) * nbp_lat |
---|
162 | iim = nbp_lon |
---|
163 | iip1 = nbp_lon + 1 |
---|
164 | jjp1 = nbp_lat |
---|
165 | ip1jm = (nbp_lon + 1) * (nbp_lat - 1) |
---|
166 | ip1jmp1 = (nbp_lon + 1) * nbp_lat |
---|
167 | |
---|
168 | ! Options for Heat transport |
---|
169 | ! Alpha variable? |
---|
170 | alpha_var = .FALSE. |
---|
171 | CALL getin('slab_alphav', alpha_var) |
---|
172 | print *, 'alpha variable', alpha_var |
---|
173 | ! centered ou upstream scheme for meridional transport |
---|
174 | slab_upstream = .FALSE. |
---|
175 | CALL getin('slab_upstream', slab_upstream) |
---|
176 | print *, 'upstream slab scheme', slab_upstream |
---|
177 | ! Sverdrup balance at equator ? |
---|
178 | slab_sverdrup = .TRUE. |
---|
179 | CALL getin('slab_sverdrup', slab_sverdrup) |
---|
180 | print *, 'Sverdrup balance', slab_sverdrup |
---|
181 | ! Use tauy for meridional flux at equator ? |
---|
182 | slab_tyeq = .TRUE. |
---|
183 | CALL getin('slab_tyeq', slab_tyeq) |
---|
184 | print *, 'Tauy forcing at equator', slab_tyeq |
---|
185 | ! Use tauy for meridional flux at equator ? |
---|
186 | ekman_zonadv = .TRUE. |
---|
187 | CALL getin('slab_ekman_zonadv', ekman_zonadv) |
---|
188 | print *, 'Use Ekman flow in zonal direction', ekman_zonadv |
---|
189 | ! Use tauy for meridional flux at equator ? |
---|
190 | ekman_zonavg = .FALSE. |
---|
191 | CALL getin('slab_ekman_zonavg', ekman_zonavg) |
---|
192 | print *, 'Use zonally-averaged wind stress ?', ekman_zonavg |
---|
193 | ! Value of alpha |
---|
194 | alpham = 2. / 3. |
---|
195 | CALL getin('slab_alpha', alpham) |
---|
196 | print *, 'slab_alpha', alpham |
---|
197 | ! GM k coefficient (m2/s) for 2-layers |
---|
198 | gmkappa = 1000. |
---|
199 | CALL getin('slab_gmkappa', gmkappa) |
---|
200 | print *, 'slab_gmkappa', gmkappa |
---|
201 | ! GM k coefficient (m2/s) for 2-layers |
---|
202 | gm_smax = 2e-3 |
---|
203 | CALL getin('slab_gm_smax', gm_smax) |
---|
204 | print *, 'slab_gm_smax', gm_smax |
---|
205 | ! ----------------------------------------------------------- |
---|
206 | ! Define ocean / continent mask (no flux into continent cell) |
---|
207 | allocate(zmasqu(ip1jmp1)) |
---|
208 | allocate(zmasqv(ip1jm)) |
---|
209 | zmasqu = 1. |
---|
210 | zmasqv = 1. |
---|
211 | |
---|
212 | ! convert mask to 2D grid |
---|
213 | CALL gr_fi_dyn(1, iip1, jjp1, zmasq, zmasq_2d) |
---|
214 | ! put flux mask to 0 at boundaries of continent cells |
---|
215 | DO i = 1, ip1jmp1 - 1 |
---|
216 | IF (zmasq_2d(i)>1e-5 .OR. zmasq_2d(i + 1)>1e-5) THEN |
---|
217 | zmasqu(i) = 0. |
---|
218 | ENDIF |
---|
219 | END DO |
---|
220 | DO i = iip1, ip1jmp1, iip1 |
---|
221 | zmasqu(i) = zmasqu(i - iim) |
---|
222 | END DO |
---|
223 | DO i = 1, ip1jm |
---|
224 | IF (zmasq_2d(i)>1e-5 .OR. zmasq_2d(i + iip1)>1e-5) THEN |
---|
225 | zmasqv(i) = 0. |
---|
226 | END IF |
---|
227 | END DO |
---|
228 | |
---|
229 | ! ----------------------------------------------------------- |
---|
230 | ! Coriolis and friction for Ekman transport |
---|
231 | slab_ekman = 2 |
---|
232 | CALL getin("slab_ekman", slab_ekman) |
---|
233 | IF (slab_ekman>0) THEN |
---|
234 | allocate(unsfv(ip1jm)) |
---|
235 | allocate(unsev(ip1jm)) |
---|
236 | allocate(unsfu(ip1jmp1)) |
---|
237 | allocate(unseu(ip1jmp1)) |
---|
238 | allocate(unsbv(ip1jm)) |
---|
239 | |
---|
240 | eps = 1e-5 ! Drag |
---|
241 | CALL getin('slab_eps', eps) |
---|
242 | print *, 'epsilon=', eps |
---|
243 | ff = fext * unsairez ! Coriolis |
---|
244 | ! coefs to convert tau_x, tau_y to Ekman mass fluxes |
---|
245 | ! on 2D grid v points |
---|
246 | ! Compute correction factor [0 1] near the equator (f<<eps) |
---|
247 | IF (slab_sverdrup) THEN |
---|
248 | ! New formulation, sharper near equator, when eps gives Rossby Radius |
---|
249 | DO i = 1, ip1jm |
---|
250 | unsev(i) = exp(-ff(i) * ff(i) / eps**2) |
---|
251 | ENDDO |
---|
252 | ELSE |
---|
253 | DO i = 1, ip1jm |
---|
254 | unsev(i) = eps**2 / (ff(i) * ff(i) + eps**2) |
---|
255 | ENDDO |
---|
256 | END IF ! slab_sverdrup |
---|
257 | ! 1/beta |
---|
258 | DO i = 1, jjp1 - 1 |
---|
259 | unsbv((i - 1) * iip1 + 1:i * iip1) = unsev((i - 1) * iip1 + 1:i * iip1) / beta(i) |
---|
260 | END DO |
---|
261 | ! 1/f |
---|
262 | ff = SIGN(MAX(ABS(ff), eps / 100.), ff) ! avoid value 0 at equator... |
---|
263 | DO i = 1, ip1jm |
---|
264 | unsfv(i) = (1. - unsev(i)) / ff(i) |
---|
265 | END DO |
---|
266 | ! compute values on 2D u grid |
---|
267 | ! 1/eps |
---|
268 | unsev(:) = unsev(:) / eps |
---|
269 | CALL gr_v_scal(1, unsfv, unsfu) |
---|
270 | CALL gr_v_scal(1, unsev, unseu) |
---|
271 | END IF |
---|
272 | |
---|
273 | END SUBROUTINE ini_slab_transp |
---|
274 | |
---|
275 | SUBROUTINE divgrad_phy(nlevs, temp, delta) |
---|
276 | ! Computes temperature tendency due to horizontal diffusion : |
---|
277 | ! T Laplacian, later multiplied by diffusion coef and time-step |
---|
278 | |
---|
279 | IMPLICIT NONE |
---|
280 | |
---|
281 | INTEGER, INTENT(IN) :: nlevs ! nlevs : slab layers |
---|
282 | REAL, INTENT(IN) :: temp(klon_glo, nlevs) ! slab temperature |
---|
283 | REAL, INTENT(OUT) :: delta(klon_glo, nlevs) ! temp laplacian (heat flux div.) |
---|
284 | REAL :: delta_2d((nbp_lon + 1) * nbp_lat, nlevs) |
---|
285 | REAL ghx((nbp_lon + 1) * nbp_lat, nlevs), ghy((nbp_lon + 1) * (nbp_lat - 1), nlevs) |
---|
286 | INTEGER :: ll, iip1, jjp1 |
---|
287 | |
---|
288 | iip1 = nbp_lon + 1 |
---|
289 | jjp1 = nbp_lat |
---|
290 | |
---|
291 | ! transpose temp to 2D horiz. grid |
---|
292 | CALL gr_fi_dyn(nlevs, iip1, jjp1, temp, delta_2d) |
---|
293 | ! computes gradient (proportional to heat flx) |
---|
294 | CALL grad(nlevs, delta_2d, ghx, ghy) |
---|
295 | ! put flux to 0 at ocean / continent boundary |
---|
296 | DO ll = 1, nlevs |
---|
297 | ghx(:, ll) = ghx(:, ll) * zmasqu |
---|
298 | ghy(:, ll) = ghy(:, ll) * zmasqv |
---|
299 | END DO |
---|
300 | ! flux divergence |
---|
301 | CALL diverg(nlevs, ghx, ghy, delta_2d) |
---|
302 | ! laplacian back to 1D grid |
---|
303 | CALL gr_dyn_fi(nlevs, iip1, jjp1, delta_2d, delta) |
---|
304 | |
---|
305 | END SUBROUTINE divgrad_phy |
---|
306 | |
---|
307 | SUBROUTINE slab_ekman1(tx_phy, ty_phy, ts_phy, dt_phy) |
---|
308 | ! 1.5 Layer Ekman transport temperature tendency |
---|
309 | ! note : tendency dt later multiplied by (delta t)/(rho.H) |
---|
310 | ! to convert from divergence of heat fluxes to T |
---|
311 | |
---|
312 | IMPLICIT NONE |
---|
313 | |
---|
314 | ! tx, ty : wind stress (different grids) |
---|
315 | ! fluxm, fluz : mass *or heat* fluxes |
---|
316 | ! dt : temperature tendency |
---|
317 | INTEGER ij |
---|
318 | |
---|
319 | ! ts surface temp, td deep temp (diagnosed) |
---|
320 | REAL ts_phy(klon_glo) |
---|
321 | REAL ts((nbp_lon + 1) * nbp_lat), td((nbp_lon + 1) * nbp_lat) |
---|
322 | ! zonal and meridional wind stress |
---|
323 | REAL tx_phy(klon_glo), ty_phy(klon_glo) |
---|
324 | REAL tyu((nbp_lon + 1) * nbp_lat), txu((nbp_lon + 1) * nbp_lat) |
---|
325 | REAL txv((nbp_lon + 1) * (nbp_lat - 1)), tyv((nbp_lon + 1) * (nbp_lat - 1)) |
---|
326 | REAL tcurl((nbp_lon + 1) * (nbp_lat - 1)) |
---|
327 | ! zonal and meridional Ekman mass fluxes at u, v points (2D grid) |
---|
328 | REAL fluxz((nbp_lon + 1) * nbp_lat), fluxm((nbp_lon + 1) * (nbp_lat - 1)) |
---|
329 | ! vertical and absolute mass fluxes (to estimate alpha) |
---|
330 | REAL fluxv((nbp_lon + 1) * nbp_lat), fluxt((nbp_lon + 1) * (nbp_lat - 1)) |
---|
331 | ! temperature tendency |
---|
332 | REAL dt((nbp_lon + 1) * nbp_lat), dt_phy(klon_glo) |
---|
333 | REAL alpha((nbp_lon + 1) * nbp_lat) ! deep temperature coef |
---|
334 | |
---|
335 | INTEGER iim, iip1, iip2, jjp1, ip1jm, ip1jmi1, ip1jmp1 |
---|
336 | |
---|
337 | ! Grid definitions |
---|
338 | iim = nbp_lon |
---|
339 | iip1 = nbp_lon + 1 |
---|
340 | iip2 = nbp_lon + 2 |
---|
341 | jjp1 = nbp_lat |
---|
342 | ip1jm = (nbp_lon + 1) * (nbp_lat - 1) ! = iip1*jjm |
---|
343 | ip1jmi1 = (nbp_lon + 1) * (nbp_lat - 1) - (nbp_lon + 1) ! = ip1jm - iip1 |
---|
344 | ip1jmp1 = (nbp_lon + 1) * nbp_lat ! = iip1*jjp1 |
---|
345 | |
---|
346 | ! Convert taux,y to 2D scalar grid |
---|
347 | ! Note: 2D grid size = iim*jjm. iip1=iim+1 |
---|
348 | ! First and last points in zonal direction are the same |
---|
349 | ! we use 1 index ij from 1 to (iim+1)*(jjm+1) |
---|
350 | ! north and south poles |
---|
351 | tx_phy(1) = 0. |
---|
352 | tx_phy(klon_glo) = 0. |
---|
353 | ty_phy(1) = 0. |
---|
354 | ty_phy(klon_glo) = 0. |
---|
355 | CALL gr_fi_dyn(1, iip1, jjp1, tx_phy, txu) |
---|
356 | CALL gr_fi_dyn(1, iip1, jjp1, ty_phy, tyu) |
---|
357 | ! convert to u,v grid (Arakawa C) |
---|
358 | ! Multiply by f or eps to get mass flux |
---|
359 | ! Meridional mass flux |
---|
360 | CALL gr_scal_v(1, txu, txv) ! wind stress at v points |
---|
361 | IF (slab_sverdrup) THEN ! Sverdrup bal. near equator |
---|
362 | tcurl = (txu(1:ip1jm) - txu(iip2:ip1jmp1)) / cv(:) |
---|
363 | fluxm = -tcurl * unsbv - txv * unsfv ! in kg.s-1.m-1 (zonal distance) |
---|
364 | ELSE |
---|
365 | CALL gr_scal_v(1, tyu, tyv) |
---|
366 | fluxm = tyv * unsev - txv * unsfv ! in kg.s-1.m-1 (zonal distance) |
---|
367 | ENDIF |
---|
368 | ! Zonal mass flux |
---|
369 | CALL gr_scal_u(1, txu, txu) ! wind stress at u points |
---|
370 | CALL gr_scal_u(1, tyu, tyu) |
---|
371 | fluxz = tyu * unsfu + txu * unseu |
---|
372 | |
---|
373 | ! Correct flux: continent mask and horiz grid size |
---|
374 | ! multiply m-flux by mask and dx: flux in kg.s-1 |
---|
375 | fluxm = fluxm * cv * cuvsurcv * zmasqv |
---|
376 | ! multiply z-flux by mask and dy: flux in kg.s-1 |
---|
377 | fluxz = fluxz * cu * cvusurcu * zmasqu |
---|
378 | |
---|
379 | ! Compute vertical and absolute mass flux (for variable alpha) |
---|
380 | IF (alpha_var) THEN |
---|
381 | DO ij = iip2, ip1jm |
---|
382 | fluxv(ij) = fluxz(ij) - fluxz(ij - 1) - fluxm(ij) + fluxm(ij - iip1) |
---|
383 | fluxt(ij) = ABS(fluxz(ij)) + ABS(fluxz(ij - 1)) & |
---|
384 | + ABS(fluxm(ij)) + ABS(fluxm(ij - iip1)) |
---|
385 | ENDDO |
---|
386 | DO ij = iip1, ip1jmi1, iip1 |
---|
387 | fluxt(ij + 1) = fluxt(ij + iip1) |
---|
388 | fluxv(ij + 1) = fluxv(ij + iip1) |
---|
389 | END DO |
---|
390 | fluxt(1) = SUM(ABS(fluxm(1:iim))) |
---|
391 | fluxt(ip1jmp1) = SUM(ABS(fluxm(ip1jm - iim:ip1jm - 1))) |
---|
392 | fluxv(1) = -SUM(fluxm(1:iim)) |
---|
393 | fluxv(ip1jmp1) = SUM(fluxm(ip1jm - iim:ip1jm - 1)) |
---|
394 | fluxt = MAX(fluxt, 1.e-10) |
---|
395 | ENDIF |
---|
396 | |
---|
397 | ! Compute alpha coefficient. |
---|
398 | ! Tdeep = Tsurf * alpha + 271.35 * (1-alpha) |
---|
399 | IF (alpha_var) THEN |
---|
400 | ! increase alpha (and Tdeep) in downwelling regions |
---|
401 | ! and decrease in upwelling regions |
---|
402 | ! to avoid "hot spots" where there is surface convergence |
---|
403 | DO ij = iip2, ip1jm |
---|
404 | alpha(ij) = alpham - fluxv(ij) / fluxt(ij) * (1. - alpham) |
---|
405 | ENDDO |
---|
406 | alpha(1:iip1) = alpham - fluxv(1) / fluxt(1) * (1. - alpham) |
---|
407 | alpha(ip1jm + 1:ip1jmp1) = alpham - fluxv(ip1jmp1) / fluxt(ip1jmp1) * (1. - alpham) |
---|
408 | ELSE |
---|
409 | alpha(:) = alpham |
---|
410 | ! Tsurf-Tdeep ~ 10° in the Tropics |
---|
411 | ENDIF |
---|
412 | |
---|
413 | ! Estimate deep temperature |
---|
414 | CALL gr_fi_dyn(1, iip1, jjp1, ts_phy, ts) |
---|
415 | DO ij = 1, ip1jmp1 |
---|
416 | td(ij) = 271.35 + (ts(ij) - 271.35) * alpha(ij) |
---|
417 | td(ij) = MIN(td(ij), ts(ij)) |
---|
418 | END DO |
---|
419 | |
---|
420 | ! Meridional heat flux: multiply mass flux by (ts-td) |
---|
421 | ! flux in K.kg.s-1 |
---|
422 | IF (slab_upstream) THEN |
---|
423 | ! upstream scheme to avoid hot spots |
---|
424 | DO ij = 1, ip1jm |
---|
425 | IF (fluxm(ij)>=0.) THEN |
---|
426 | fluxm(ij) = fluxm(ij) * (ts(ij + iip1) - td(ij)) |
---|
427 | ELSE |
---|
428 | fluxm(ij) = fluxm(ij) * (ts(ij) - td(ij + iip1)) |
---|
429 | END IF |
---|
430 | END DO |
---|
431 | ELSE |
---|
432 | ! centered scheme better in mid-latitudes |
---|
433 | DO ij = 1, ip1jm |
---|
434 | fluxm(ij) = fluxm(ij) * (ts(ij + iip1) + ts(ij) - td(ij) - td(ij + iip1)) / 2. |
---|
435 | END DO |
---|
436 | ENDIF |
---|
437 | |
---|
438 | ! Zonal heat flux |
---|
439 | ! upstream scheme |
---|
440 | DO ij = iip2, ip1jm |
---|
441 | fluxz(ij) = fluxz(ij) * (ts(ij) + ts(ij + 1) - td(ij + 1) - td(ij)) / 2. |
---|
442 | END DO |
---|
443 | DO ij = iip1 * 2, ip1jmp1, iip1 |
---|
444 | fluxz(ij) = fluxz(ij - iim) |
---|
445 | END DO |
---|
446 | |
---|
447 | ! temperature tendency = divergence of heat fluxes |
---|
448 | ! dt in K.s-1.kg.m-2 (T trend times mass/horiz surface) |
---|
449 | DO ij = iip2, ip1jm |
---|
450 | dt(ij) = (fluxz(ij - 1) - fluxz(ij) + fluxm(ij) - fluxm(ij - iip1)) & |
---|
451 | / aire(ij) ! aire : grid area |
---|
452 | END DO |
---|
453 | DO ij = iip1, ip1jmi1, iip1 |
---|
454 | dt(ij + 1) = dt(ij + iip1) |
---|
455 | END DO |
---|
456 | ! special treatment at the Poles |
---|
457 | dt(1) = SUM(fluxm(1:iim)) / apoln |
---|
458 | dt(ip1jmp1) = -SUM(fluxm(ip1jm - iim:ip1jm - 1)) / apols |
---|
459 | dt(2:iip1) = dt(1) |
---|
460 | dt(ip1jm + 1:ip1jmp1) = dt(ip1jmp1) |
---|
461 | |
---|
462 | ! tendencies back to 1D grid |
---|
463 | CALL gr_dyn_fi(1, iip1, jjp1, dt, dt_phy) |
---|
464 | |
---|
465 | END SUBROUTINE slab_ekman1 |
---|
466 | |
---|
467 | SUBROUTINE slab_ekman2(tx_phy, ty_phy, ts_phy, dt_phy_ek, dt_phy_gm, slab_gm) |
---|
468 | ! Temperature tendency for 2-layers slab ocean |
---|
469 | ! note : tendency dt later multiplied by (delta time)/(rho.H) |
---|
470 | ! to convert from divergence of heat fluxes to T |
---|
471 | |
---|
472 | ! 11/16 : Inclusion of GM-like eddy advection |
---|
473 | |
---|
474 | IMPLICIT NONE |
---|
475 | |
---|
476 | LOGICAL, INTENT(IN) :: slab_gm |
---|
477 | ! Here, temperature and flux variables are on 2 layers |
---|
478 | INTEGER ij |
---|
479 | |
---|
480 | ! wind stress variables |
---|
481 | REAL tx_phy(klon_glo), ty_phy(klon_glo) |
---|
482 | REAL txv((nbp_lon + 1) * (nbp_lat - 1)), tyv((nbp_lon + 1) * (nbp_lat - 1)) |
---|
483 | REAL tyu((nbp_lon + 1) * nbp_lat), txu((nbp_lon + 1) * nbp_lat) |
---|
484 | REAL tcurl((nbp_lon + 1) * (nbp_lat - 1)) |
---|
485 | ! slab temperature on 1D, 2D grid |
---|
486 | REAL ts_phy(klon_glo, 2), ts((nbp_lon + 1) * nbp_lat, 2) |
---|
487 | ! Temperature gradient, v-points |
---|
488 | REAL dty((nbp_lon + 1) * (nbp_lat - 1)), dtx((nbp_lon + 1) * nbp_lat) |
---|
489 | ! Vertical temperature difference, V-points |
---|
490 | REAL dtz((nbp_lon + 1) * (nbp_lat - 1)) |
---|
491 | ! zonal and meridional mass fluxes at u, v points (2D grid) |
---|
492 | REAL fluxz((nbp_lon + 1) * nbp_lat), fluxm((nbp_lon + 1) * (nbp_lat - 1)) |
---|
493 | ! vertical mass flux between the 2 layers |
---|
494 | REAL fluxv_ek((nbp_lon + 1) * nbp_lat) |
---|
495 | REAL fluxv_gm((nbp_lon + 1) * nbp_lat) |
---|
496 | ! zonal and meridional heat fluxes |
---|
497 | REAL fluxtz((nbp_lon + 1) * nbp_lat, 2) |
---|
498 | REAL fluxtm((nbp_lon + 1) * (nbp_lat - 1), 2) |
---|
499 | ! temperature tendency (in K.s-1.kg.m-2) |
---|
500 | REAL dt_ek((nbp_lon + 1) * nbp_lat, 2), dt_phy_ek(klon_glo, 2) |
---|
501 | REAL dt_gm((nbp_lon + 1) * nbp_lat, 2), dt_phy_gm(klon_glo, 2) |
---|
502 | ! helper vars |
---|
503 | REAL zonavg, fluxv |
---|
504 | REAL, PARAMETER :: sea_den = 1025. ! sea water density |
---|
505 | |
---|
506 | INTEGER iim, iip1, iip2, jjp1, ip1jm, ip1jmi1, ip1jmp1 |
---|
507 | |
---|
508 | ! Grid definitions |
---|
509 | iim = nbp_lon |
---|
510 | iip1 = nbp_lon + 1 |
---|
511 | iip2 = nbp_lon + 2 |
---|
512 | jjp1 = nbp_lat |
---|
513 | ip1jm = (nbp_lon + 1) * (nbp_lat - 1) ! = iip1*jjm |
---|
514 | ip1jmi1 = (nbp_lon + 1) * (nbp_lat - 1) - (nbp_lon + 1) ! = ip1jm - iip1 |
---|
515 | ip1jmp1 = (nbp_lon + 1) * nbp_lat ! = iip1*jjp1 |
---|
516 | ! Convert temperature to 2D grid |
---|
517 | CALL gr_fi_dyn(2, iip1, jjp1, ts_phy, ts) |
---|
518 | |
---|
519 | ! ------------------------------------ |
---|
520 | ! Ekman mass fluxes and Temp tendency |
---|
521 | ! ------------------------------------ |
---|
522 | ! Convert taux,y to 2D scalar grid |
---|
523 | ! north and south poles tx,ty no meaning |
---|
524 | tx_phy(1) = 0. |
---|
525 | tx_phy(klon_glo) = 0. |
---|
526 | ty_phy(1) = 0. |
---|
527 | ty_phy(klon_glo) = 0. |
---|
528 | CALL gr_fi_dyn(1, iip1, jjp1, tx_phy, txu) |
---|
529 | CALL gr_fi_dyn(1, iip1, jjp1, ty_phy, tyu) |
---|
530 | IF (ekman_zonavg) THEN ! use zonal average of wind stress |
---|
531 | DO ij = 1, jjp1 - 2 |
---|
532 | zonavg = SUM(txu(ij * iip1 + 1:ij * iip1 + iim)) / iim |
---|
533 | txu(ij * iip1 + 1:(ij + 1) * iip1) = zonavg |
---|
534 | zonavg = SUM(tyu(ij * iip1 + 1:ij * iip1 + iim)) / iim |
---|
535 | tyu(ij * iip1 + 1:(ij + 1) * iip1) = zonavg |
---|
536 | END DO |
---|
537 | END IF |
---|
538 | |
---|
539 | ! Divide taux,y by f or eps, and convert to 2D u,v grids |
---|
540 | ! (Arakawa C grid) |
---|
541 | ! Meridional flux |
---|
542 | CALL gr_scal_v(1, txu, txv) ! wind stress at v points |
---|
543 | fluxm = -txv * unsfv ! in kg.s-1.m-1 (zonal distance) |
---|
544 | IF (slab_sverdrup) THEN ! Sverdrup bal. near equator |
---|
545 | tcurl = (txu(1:ip1jm) - txu(iip2:ip1jmp1)) / cv(:) ! dtx/dy |
---|
546 | !poles curl = 0 |
---|
547 | tcurl(1:iip1) = 0. |
---|
548 | tcurl(ip1jmi1 + 1:ip1jm) = 0. |
---|
549 | fluxm = fluxm - tcurl * unsbv |
---|
550 | ENDIF |
---|
551 | IF (slab_tyeq) THEN ! meridional wind forcing at equator |
---|
552 | CALL gr_scal_v(1, tyu, tyv) |
---|
553 | fluxm = fluxm + tyv * unsev ! in kg.s-1.m-1 (zonal distance) |
---|
554 | ENDIF |
---|
555 | ! apply continent mask, multiply by horiz grid dimension |
---|
556 | fluxm = fluxm * cv * cuvsurcv * zmasqv |
---|
557 | |
---|
558 | ! Zonal flux |
---|
559 | IF (ekman_zonadv) THEN |
---|
560 | CALL gr_scal_u(1, txu, txu) ! wind stress at u points |
---|
561 | CALL gr_scal_u(1, tyu, tyu) |
---|
562 | fluxz = tyu * unsfu + txu * unseu |
---|
563 | ! apply continent mask, multiply by horiz grid dimension |
---|
564 | fluxz = fluxz * cu * cvusurcu * zmasqu |
---|
565 | END IF |
---|
566 | |
---|
567 | ! Vertical mass flux from mass budget (divergence of horiz fluxes) |
---|
568 | IF (ekman_zonadv) THEN |
---|
569 | DO ij = iip2, ip1jm |
---|
570 | fluxv_ek(ij) = fluxz(ij) - fluxz(ij - 1) - fluxm(ij) + fluxm(ij - iip1) |
---|
571 | ENDDO |
---|
572 | ELSE |
---|
573 | DO ij = iip2, ip1jm |
---|
574 | fluxv_ek(ij) = -fluxm(ij) + fluxm(ij - iip1) |
---|
575 | ENDDO |
---|
576 | END IF |
---|
577 | DO ij = iip1, ip1jmi1, iip1 |
---|
578 | fluxv_ek(ij + 1) = fluxv_ek(ij + iip1) |
---|
579 | END DO |
---|
580 | ! vertical mass flux at Poles |
---|
581 | fluxv_ek(1) = -SUM(fluxm(1:iim)) |
---|
582 | fluxv_ek(ip1jmp1) = SUM(fluxm(ip1jm - iim:ip1jm - 1)) |
---|
583 | |
---|
584 | ! Meridional heat fluxes |
---|
585 | DO ij = 1, ip1jm |
---|
586 | ! centered scheme |
---|
587 | fluxtm(ij, 1) = fluxm(ij) * (ts(ij + iip1, 1) + ts(ij, 1)) / 2. |
---|
588 | fluxtm(ij, 2) = -fluxm(ij) * (ts(ij + iip1, 2) + ts(ij, 2)) / 2. |
---|
589 | END DO |
---|
590 | |
---|
591 | ! Zonal heat fluxes |
---|
592 | ! Schema upstream |
---|
593 | IF (ekman_zonadv) THEN |
---|
594 | DO ij = iip2, ip1jm |
---|
595 | IF (fluxz(ij)>=0.) THEN |
---|
596 | fluxtz(ij, 1) = fluxz(ij) * ts(ij, 1) |
---|
597 | fluxtz(ij, 2) = -fluxz(ij) * ts(ij + 1, 2) |
---|
598 | ELSE |
---|
599 | fluxtz(ij, 1) = fluxz(ij) * ts(ij + 1, 1) |
---|
600 | fluxtz(ij, 2) = -fluxz(ij) * ts(ij, 2) |
---|
601 | ENDIF |
---|
602 | ENDDO |
---|
603 | DO ij = iip1 * 2, ip1jmp1, iip1 |
---|
604 | fluxtz(ij, :) = fluxtz(ij - iim, :) |
---|
605 | END DO |
---|
606 | ELSE |
---|
607 | fluxtz(:, :) = 0. |
---|
608 | ENDIF |
---|
609 | |
---|
610 | ! Temperature tendency, horizontal advection: |
---|
611 | DO ij = iip2, ip1jm |
---|
612 | dt_ek(ij, :) = fluxtz(ij - 1, :) - fluxtz(ij, :) & |
---|
613 | + fluxtm(ij, :) - fluxtm(ij - iip1, :) |
---|
614 | END DO |
---|
615 | ! Poles |
---|
616 | dt_ek(1, :) = SUM(fluxtm(1:iim, :), dim = 1) |
---|
617 | dt_ek(ip1jmp1, :) = -SUM(fluxtm(ip1jm - iim:ip1jm - 1, :), dim = 1) |
---|
618 | |
---|
619 | ! ------------------------------------ |
---|
620 | ! GM mass fluxes and Temp tendency |
---|
621 | ! ------------------------------------ |
---|
622 | IF (slab_gm) THEN |
---|
623 | ! Vertical Temperature difference T1-T2 on v-grid points |
---|
624 | CALL gr_scal_v(1, ts(:, 1) - ts(:, 2), dtz) |
---|
625 | dtz(:) = MAX(dtz(:), 0.25) |
---|
626 | ! Horizontal Temperature differences |
---|
627 | CALL grad(1, (ts(:, 1) + ts(:, 2)) / 2., dtx, dty) |
---|
628 | ! Meridional flux = -k.s (s=dyT/dzT) |
---|
629 | ! Continent mask, multiply by dz/dy |
---|
630 | fluxm = dty / dtz * 500. * cuvsurcv * zmasqv |
---|
631 | ! slope limitation, multiply by kappa |
---|
632 | fluxm = -gmkappa * SIGN(MIN(ABS(fluxm), gm_smax * cv * cuvsurcv), dty) |
---|
633 | ! convert to kg/s |
---|
634 | fluxm(:) = fluxm(:) * sea_den |
---|
635 | ! Zonal flux = 0. (temporary) |
---|
636 | fluxz(:) = 0. |
---|
637 | ! Vertical mass flux from mass budget (divergence of horiz fluxes) |
---|
638 | DO ij = iip2, ip1jm |
---|
639 | fluxv_gm(ij) = fluxz(ij) - fluxz(ij - 1) - fluxm(ij) + fluxm(ij - iip1) |
---|
640 | ENDDO |
---|
641 | DO ij = iip1, ip1jmi1, iip1 |
---|
642 | fluxv_gm(ij + 1) = fluxv_gm(ij + iip1) |
---|
643 | END DO |
---|
644 | ! vertical mass flux at Poles |
---|
645 | fluxv_gm(1) = -SUM(fluxm(1:iim)) |
---|
646 | fluxv_gm(ip1jmp1) = SUM(fluxm(ip1jm - iim:ip1jm - 1)) |
---|
647 | |
---|
648 | ! Meridional heat fluxes |
---|
649 | DO ij = 1, ip1jm |
---|
650 | ! centered scheme |
---|
651 | fluxtm(ij, 1) = fluxm(ij) * (ts(ij + iip1, 1) + ts(ij, 1)) / 2. |
---|
652 | fluxtm(ij, 2) = -fluxm(ij) * (ts(ij + iip1, 2) + ts(ij, 2)) / 2. |
---|
653 | END DO |
---|
654 | |
---|
655 | ! Zonal heat fluxes |
---|
656 | ! Schema upstream |
---|
657 | DO ij = iip2, ip1jm |
---|
658 | IF (fluxz(ij)>=0.) THEN |
---|
659 | fluxtz(ij, 1) = fluxz(ij) * ts(ij, 1) |
---|
660 | fluxtz(ij, 2) = -fluxz(ij) * ts(ij + 1, 2) |
---|
661 | ELSE |
---|
662 | fluxtz(ij, 1) = fluxz(ij) * ts(ij + 1, 1) |
---|
663 | fluxtz(ij, 2) = -fluxz(ij) * ts(ij, 2) |
---|
664 | ENDIF |
---|
665 | ENDDO |
---|
666 | DO ij = iip1 * 2, ip1jmp1, iip1 |
---|
667 | fluxtz(ij, :) = fluxtz(ij - iim, :) |
---|
668 | END DO |
---|
669 | |
---|
670 | ! Temperature tendency : |
---|
671 | ! divergence of horizontal heat fluxes |
---|
672 | DO ij = iip2, ip1jm |
---|
673 | dt_gm(ij, :) = fluxtz(ij - 1, :) - fluxtz(ij, :) & |
---|
674 | + fluxtm(ij, :) - fluxtm(ij - iip1, :) |
---|
675 | END DO |
---|
676 | ! Poles |
---|
677 | dt_gm(1, :) = SUM(fluxtm(1:iim, :), dim = 1) |
---|
678 | dt_gm(ip1jmp1, :) = -SUM(fluxtm(ip1jm - iim:ip1jm - 1, :), dim = 1) |
---|
679 | ELSE |
---|
680 | dt_gm(:, :) = 0. |
---|
681 | fluxv_gm(:) = 0. |
---|
682 | ENDIF ! slab_gm |
---|
683 | |
---|
684 | ! ------------------------------------ |
---|
685 | ! Temp tendency from vertical advection |
---|
686 | ! Divide by cell area |
---|
687 | ! ------------------------------------ |
---|
688 | ! vertical heat flux = mass flux * T, upstream scheme |
---|
689 | DO ij = iip2, ip1jm |
---|
690 | fluxv = fluxv_ek(ij) + fluxv_gm(ij) ! net flux, needed for upstream scheme |
---|
691 | IF (fluxv>0.) THEN |
---|
692 | dt_ek(ij, 1) = dt_ek(ij, 1) + fluxv_ek(ij) * ts(ij, 2) |
---|
693 | dt_ek(ij, 2) = dt_ek(ij, 2) - fluxv_ek(ij) * ts(ij, 2) |
---|
694 | dt_gm(ij, 1) = dt_gm(ij, 1) + fluxv_gm(ij) * ts(ij, 2) |
---|
695 | dt_gm(ij, 2) = dt_gm(ij, 2) - fluxv_gm(ij) * ts(ij, 2) |
---|
696 | ELSE |
---|
697 | dt_ek(ij, 1) = dt_ek(ij, 1) + fluxv_ek(ij) * ts(ij, 1) |
---|
698 | dt_ek(ij, 2) = dt_ek(ij, 2) - fluxv_ek(ij) * ts(ij, 1) |
---|
699 | dt_gm(ij, 1) = dt_gm(ij, 1) + fluxv_gm(ij) * ts(ij, 1) |
---|
700 | dt_gm(ij, 2) = dt_gm(ij, 2) - fluxv_gm(ij) * ts(ij, 1) |
---|
701 | ENDIF |
---|
702 | ! divide by cell area |
---|
703 | dt_ek(ij, :) = dt_ek(ij, :) / aire(ij) |
---|
704 | dt_gm(ij, :) = dt_gm(ij, :) / aire(ij) |
---|
705 | END DO |
---|
706 | ! North Pole |
---|
707 | fluxv = fluxv_ek(1) + fluxv_gm(1) |
---|
708 | IF (fluxv>0.) THEN |
---|
709 | dt_ek(1, 1) = dt_ek(1, 1) + fluxv_ek(1) * ts(1, 2) |
---|
710 | dt_ek(1, 2) = dt_ek(1, 2) - fluxv_ek(1) * ts(1, 2) |
---|
711 | dt_gm(1, 1) = dt_gm(1, 1) + fluxv_gm(1) * ts(1, 2) |
---|
712 | dt_gm(1, 2) = dt_gm(1, 2) - fluxv_gm(1) * ts(1, 2) |
---|
713 | ELSE |
---|
714 | dt_ek(1, 1) = dt_ek(1, 1) + fluxv_ek(1) * ts(1, 1) |
---|
715 | dt_ek(1, 2) = dt_ek(1, 2) - fluxv_ek(1) * ts(1, 1) |
---|
716 | dt_gm(1, 1) = dt_gm(1, 1) + fluxv_gm(1) * ts(1, 1) |
---|
717 | dt_gm(1, 2) = dt_gm(1, 2) - fluxv_gm(1) * ts(1, 1) |
---|
718 | ENDIF |
---|
719 | dt_ek(1, :) = dt_ek(1, :) / apoln |
---|
720 | dt_gm(1, :) = dt_gm(1, :) / apoln |
---|
721 | ! South pole |
---|
722 | fluxv = fluxv_ek(ip1jmp1) + fluxv_gm(ip1jmp1) |
---|
723 | IF (fluxv>0.) THEN |
---|
724 | dt_ek(ip1jmp1, 1) = dt_ek(ip1jmp1, 1) + fluxv_ek(ip1jmp1) * ts(ip1jmp1, 2) |
---|
725 | dt_ek(ip1jmp1, 2) = dt_ek(ip1jmp1, 2) - fluxv_ek(ip1jmp1) * ts(ip1jmp1, 2) |
---|
726 | dt_gm(ip1jmp1, 1) = dt_gm(ip1jmp1, 1) + fluxv_gm(ip1jmp1) * ts(ip1jmp1, 2) |
---|
727 | dt_gm(ip1jmp1, 2) = dt_gm(ip1jmp1, 2) - fluxv_gm(ip1jmp1) * ts(ip1jmp1, 2) |
---|
728 | ELSE |
---|
729 | dt_ek(ip1jmp1, 1) = dt_ek(ip1jmp1, 1) + fluxv_ek(ip1jmp1) * ts(ip1jmp1, 1) |
---|
730 | dt_ek(ip1jmp1, 2) = dt_ek(ip1jmp1, 2) - fluxv_ek(ip1jmp1) * ts(ip1jmp1, 1) |
---|
731 | dt_gm(ip1jmp1, 1) = dt_gm(ip1jmp1, 1) + fluxv_gm(ip1jmp1) * ts(ip1jmp1, 1) |
---|
732 | dt_gm(ip1jmp1, 2) = dt_gm(ip1jmp1, 2) - fluxv_gm(ip1jmp1) * ts(ip1jmp1, 1) |
---|
733 | ENDIF |
---|
734 | dt_ek(ip1jmp1, :) = dt_ek(ip1jmp1, :) / apols |
---|
735 | dt_gm(ip1jmp1, :) = dt_gm(ip1jmp1, :) / apols |
---|
736 | |
---|
737 | dt_ek(2:iip1, 1) = dt_ek(1, 1) |
---|
738 | dt_ek(2:iip1, 2) = dt_ek(1, 2) |
---|
739 | dt_gm(2:iip1, 1) = dt_gm(1, 1) |
---|
740 | dt_gm(2:iip1, 2) = dt_gm(1, 2) |
---|
741 | dt_ek(ip1jm + 1:ip1jmp1, 1) = dt_ek(ip1jmp1, 1) |
---|
742 | dt_ek(ip1jm + 1:ip1jmp1, 2) = dt_ek(ip1jmp1, 2) |
---|
743 | dt_gm(ip1jm + 1:ip1jmp1, 1) = dt_gm(ip1jmp1, 1) |
---|
744 | dt_gm(ip1jm + 1:ip1jmp1, 2) = dt_gm(ip1jmp1, 2) |
---|
745 | |
---|
746 | DO ij = iip1, ip1jmi1, iip1 |
---|
747 | dt_gm(ij + 1, :) = dt_gm(ij + iip1, :) |
---|
748 | dt_ek(ij + 1, :) = dt_ek(ij + iip1, :) |
---|
749 | END DO |
---|
750 | |
---|
751 | ! T tendency back to 1D grid... |
---|
752 | CALL gr_dyn_fi(2, iip1, jjp1, dt_ek, dt_phy_ek) |
---|
753 | CALL gr_dyn_fi(2, iip1, jjp1, dt_gm, dt_phy_gm) |
---|
754 | |
---|
755 | END SUBROUTINE slab_ekman2 |
---|
756 | |
---|
757 | SUBROUTINE slab_gmdiff(ts_phy, dt_phy) |
---|
758 | ! Temperature tendency for 2-layers slab ocean |
---|
759 | ! Due to Gent-McWilliams type eddy-induced advection |
---|
760 | |
---|
761 | IMPLICIT NONE |
---|
762 | |
---|
763 | ! Here, temperature and flux variables are on 2 layers |
---|
764 | INTEGER ij |
---|
765 | ! Temperature gradient, v-points |
---|
766 | REAL dty((nbp_lon + 1) * (nbp_lat - 1)), dtx((nbp_lon + 1) * nbp_lat) |
---|
767 | ! Vertical temperature difference, V-points |
---|
768 | REAL dtz((nbp_lon + 1) * (nbp_lat - 1)) |
---|
769 | ! slab temperature on 1D, 2D grid |
---|
770 | REAL ts_phy(klon_glo, 2), ts((nbp_lon + 1) * nbp_lat, 2) |
---|
771 | ! zonal and meridional mass fluxes at u, v points (2D grid) |
---|
772 | REAL fluxz((nbp_lon + 1) * nbp_lat), fluxm((nbp_lon + 1) * (nbp_lat - 1)) |
---|
773 | ! vertical mass flux between the 2 layers |
---|
774 | REAL fluxv((nbp_lon + 1) * nbp_lat) |
---|
775 | ! zonal and meridional heat fluxes |
---|
776 | REAL fluxtz((nbp_lon + 1) * nbp_lat, 2) |
---|
777 | REAL fluxtm((nbp_lon + 1) * (nbp_lat - 1), 2) |
---|
778 | ! temperature tendency (in K.s-1.kg.m-2) |
---|
779 | REAL dt((nbp_lon + 1) * nbp_lat, 2), dt_phy(klon_glo, 2) |
---|
780 | |
---|
781 | INTEGER iim, iip1, iip2, jjp1, ip1jm, ip1jmi1, ip1jmp1 |
---|
782 | |
---|
783 | ! Grid definitions |
---|
784 | iim = nbp_lon |
---|
785 | iip1 = nbp_lon + 1 |
---|
786 | iip2 = nbp_lon + 2 |
---|
787 | jjp1 = nbp_lat |
---|
788 | ip1jm = (nbp_lon + 1) * (nbp_lat - 1) ! = iip1*jjm |
---|
789 | ip1jmi1 = (nbp_lon + 1) * (nbp_lat - 1) - (nbp_lon + 1) ! = ip1jm - iip1 |
---|
790 | ip1jmp1 = (nbp_lon + 1) * nbp_lat ! = iip1*jjp1 |
---|
791 | |
---|
792 | ! Convert temperature to 2D grid |
---|
793 | CALL gr_fi_dyn(2, iip1, jjp1, ts_phy, ts) |
---|
794 | ! Vertical Temperature difference T1-T2 on v-grid points |
---|
795 | CALL gr_scal_v(1, ts(:, 1) - ts(:, 2), dtz) |
---|
796 | dtz(:) = MAX(dtz(:), 0.25) |
---|
797 | ! Horizontal Temperature differences |
---|
798 | CALL grad(1, (ts(:, 1) + ts(:, 2)) / 2., dtx, dty) |
---|
799 | ! Meridional flux = -k.s (s=dyT/dzT) |
---|
800 | ! Continent mask, multiply by dz/dy |
---|
801 | fluxm = dty / dtz * 500. * cuvsurcv * zmasqv |
---|
802 | ! slope limitation, multiply by kappa |
---|
803 | fluxm = -gmkappa * SIGN(MIN(ABS(fluxm), gm_smax * cv * cuvsurcv), dty) |
---|
804 | ! Zonal flux = 0. (temporary) |
---|
805 | fluxz(:) = 0. |
---|
806 | ! Vertical mass flux from mass budget (divergence of horiz fluxes) |
---|
807 | DO ij = iip2, ip1jm |
---|
808 | fluxv(ij) = fluxz(ij) - fluxz(ij - 1) - fluxm(ij) + fluxm(ij - iip1) |
---|
809 | ENDDO |
---|
810 | DO ij = iip1, ip1jmi1, iip1 |
---|
811 | fluxv(ij + 1) = fluxv(ij + iip1) |
---|
812 | END DO |
---|
813 | ! vertical mass flux at Poles |
---|
814 | fluxv(1) = -SUM(fluxm(1:iim)) |
---|
815 | fluxv(ip1jmp1) = SUM(fluxm(ip1jm - iim:ip1jm - 1)) |
---|
816 | fluxv = fluxv |
---|
817 | |
---|
818 | ! Meridional heat fluxes |
---|
819 | DO ij = 1, ip1jm |
---|
820 | ! centered scheme |
---|
821 | fluxtm(ij, 1) = fluxm(ij) * (ts(ij + iip1, 1) + ts(ij, 1)) / 2. |
---|
822 | fluxtm(ij, 2) = -fluxm(ij) * (ts(ij + iip1, 2) + ts(ij, 2)) / 2. |
---|
823 | END DO |
---|
824 | |
---|
825 | ! Zonal heat fluxes |
---|
826 | ! Schema upstream |
---|
827 | DO ij = iip2, ip1jm |
---|
828 | IF (fluxz(ij)>=0.) THEN |
---|
829 | fluxtz(ij, 1) = fluxz(ij) * ts(ij, 1) |
---|
830 | fluxtz(ij, 2) = -fluxz(ij) * ts(ij + 1, 2) |
---|
831 | ELSE |
---|
832 | fluxtz(ij, 1) = fluxz(ij) * ts(ij + 1, 1) |
---|
833 | fluxtz(ij, 2) = -fluxz(ij) * ts(ij, 2) |
---|
834 | ENDIF |
---|
835 | ENDDO |
---|
836 | DO ij = iip1 * 2, ip1jmp1, iip1 |
---|
837 | fluxtz(ij, :) = fluxtz(ij - iim, :) |
---|
838 | END DO |
---|
839 | |
---|
840 | ! Temperature tendency : |
---|
841 | DO ij = iip2, ip1jm |
---|
842 | ! divergence of horizontal heat fluxes |
---|
843 | dt(ij, :) = fluxtz(ij - 1, :) - fluxtz(ij, :) & |
---|
844 | + fluxtm(ij, :) - fluxtm(ij - iip1, :) |
---|
845 | ! + vertical heat flux (mass flux * T, upstream scheme) |
---|
846 | IF (fluxv(ij)>0.) THEN |
---|
847 | dt(ij, 1) = dt(ij, 1) + fluxv(ij) * ts(ij, 2) |
---|
848 | dt(ij, 2) = dt(ij, 2) - fluxv(ij) * ts(ij, 2) |
---|
849 | ELSE |
---|
850 | dt(ij, 1) = dt(ij, 1) + fluxv(ij) * ts(ij, 1) |
---|
851 | dt(ij, 2) = dt(ij, 2) - fluxv(ij) * ts(ij, 1) |
---|
852 | ENDIF |
---|
853 | ! divide by cell area |
---|
854 | dt(ij, :) = dt(ij, :) / aire(ij) |
---|
855 | END DO |
---|
856 | DO ij = iip1, ip1jmi1, iip1 |
---|
857 | dt(ij + 1, :) = dt(ij + iip1, :) |
---|
858 | END DO |
---|
859 | ! Poles |
---|
860 | dt(1, :) = SUM(fluxtm(1:iim, :), dim = 1) |
---|
861 | IF (fluxv(1)>0.) THEN |
---|
862 | dt(1, 1) = dt(1, 1) + fluxv(1) * ts(1, 2) |
---|
863 | dt(1, 2) = dt(1, 2) - fluxv(1) * ts(1, 2) |
---|
864 | ELSE |
---|
865 | dt(1, 1) = dt(1, 1) + fluxv(1) * ts(1, 1) |
---|
866 | dt(1, 2) = dt(1, 2) - fluxv(1) * ts(1, 1) |
---|
867 | ENDIF |
---|
868 | dt(1, :) = dt(1, :) / apoln |
---|
869 | dt(ip1jmp1, :) = -SUM(fluxtm(ip1jm - iim:ip1jm - 1, :), dim = 1) |
---|
870 | IF (fluxv(ip1jmp1)>0.) THEN |
---|
871 | dt(ip1jmp1, 1) = dt(ip1jmp1, 1) + fluxv(ip1jmp1) * ts(ip1jmp1, 2) |
---|
872 | dt(ip1jmp1, 2) = dt(ip1jmp1, 2) - fluxv(ip1jmp1) * ts(ip1jmp1, 2) |
---|
873 | ELSE |
---|
874 | dt(ip1jmp1, 1) = dt(ip1jmp1, 1) + fluxv(ip1jmp1) * ts(ip1jmp1, 1) |
---|
875 | dt(ip1jmp1, 2) = dt(ip1jmp1, 2) - fluxv(ip1jmp1) * ts(ip1jmp1, 1) |
---|
876 | ENDIF |
---|
877 | dt(ip1jmp1, :) = dt(ip1jmp1, :) / apols |
---|
878 | dt(2:iip1, 1) = dt(1, 1) |
---|
879 | dt(2:iip1, 2) = dt(1, 2) |
---|
880 | dt(ip1jm + 1:ip1jmp1, 1) = dt(ip1jmp1, 1) |
---|
881 | dt(ip1jm + 1:ip1jmp1, 2) = dt(ip1jmp1, 2) |
---|
882 | |
---|
883 | ! T tendency back to 1D grid... |
---|
884 | CALL gr_dyn_fi(2, iip1, jjp1, dt, dt_phy) |
---|
885 | |
---|
886 | END SUBROUTINE slab_gmdiff |
---|
887 | |
---|
888 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
889 | |
---|
890 | SUBROUTINE gr_fi_dyn(nfield, im, jm, pfi, pdyn) |
---|
891 | ! Transfer a variable from 1D "physics" grid to 2D "dynamics" grid |
---|
892 | USE lmdz_ssum_scopy, ONLY: scopy |
---|
893 | |
---|
894 | IMPLICIT NONE |
---|
895 | |
---|
896 | INTEGER, INTENT(IN) :: im, jm, nfield |
---|
897 | REAL, INTENT(IN) :: pfi(klon_glo, nfield) ! on 1D grid |
---|
898 | REAL, INTENT(OUT) :: pdyn(im, jm, nfield) ! on 2D grid |
---|
899 | |
---|
900 | INTEGER :: i, j, ifield, ig |
---|
901 | |
---|
902 | DO ifield = 1, nfield |
---|
903 | ! Handle poles |
---|
904 | DO i = 1, im |
---|
905 | pdyn(i, 1, ifield) = pfi(1, ifield) |
---|
906 | pdyn(i, jm, ifield) = pfi(klon_glo, ifield) |
---|
907 | ENDDO |
---|
908 | ! Other points |
---|
909 | DO j = 2, jm - 1 |
---|
910 | ig = 2 + (j - 2) * (im - 1) |
---|
911 | CALL SCOPY(im - 1, pfi(ig, ifield), 1, pdyn(1, j, ifield), 1) |
---|
912 | pdyn(im, j, ifield) = pdyn(1, j, ifield) |
---|
913 | ENDDO |
---|
914 | ENDDO ! of DO ifield=1,nfield |
---|
915 | |
---|
916 | END SUBROUTINE gr_fi_dyn |
---|
917 | |
---|
918 | SUBROUTINE gr_dyn_fi(nfield, im, jm, pdyn, pfi) |
---|
919 | ! Transfer a variable from 2D "dynamics" grid to 1D "physics" grid |
---|
920 | USE lmdz_ssum_scopy, ONLY: scopy |
---|
921 | IMPLICIT NONE |
---|
922 | |
---|
923 | INTEGER, INTENT(IN) :: im, jm, nfield |
---|
924 | REAL, INTENT(IN) :: pdyn(im, jm, nfield) ! on 2D grid |
---|
925 | REAL, INTENT(OUT) :: pfi(klon_glo, nfield) ! on 1D grid |
---|
926 | |
---|
927 | INTEGER j, ifield, ig |
---|
928 | |
---|
929 | CHARACTER (len = 20) :: modname = 'slab_heat_transp' |
---|
930 | CHARACTER (len = 80) :: abort_message |
---|
931 | |
---|
932 | ! Sanity check: |
---|
933 | IF(klon_glo/=2 + (jm - 2) * (im - 1)) THEN |
---|
934 | abort_message = "gr_dyn_fi error, wrong sizes" |
---|
935 | CALL abort_physic(modname, abort_message, 1) |
---|
936 | ENDIF |
---|
937 | |
---|
938 | ! Handle poles |
---|
939 | CALL SCOPY(nfield, pdyn, im * jm, pfi, klon_glo) |
---|
940 | CALL SCOPY(nfield, pdyn(1, jm, 1), im * jm, pfi(klon_glo, 1), klon_glo) |
---|
941 | ! Other points |
---|
942 | DO ifield = 1, nfield |
---|
943 | DO j = 2, jm - 1 |
---|
944 | ig = 2 + (j - 2) * (im - 1) |
---|
945 | CALL SCOPY(im - 1, pdyn(1, j, ifield), 1, pfi(ig, ifield), 1) |
---|
946 | ENDDO |
---|
947 | ENDDO |
---|
948 | |
---|
949 | END SUBROUTINE gr_dyn_fi |
---|
950 | |
---|
951 | SUBROUTINE grad(klevel, pg, pgx, pgy) |
---|
952 | ! compute the covariant components pgx,pgy of the gradient of pg |
---|
953 | ! pgx = d(pg)/dx * delta(x) = delta(pg) |
---|
954 | IMPLICIT NONE |
---|
955 | |
---|
956 | INTEGER, INTENT(IN) :: klevel |
---|
957 | REAL, INTENT(IN) :: pg((nbp_lon + 1) * nbp_lat, klevel) |
---|
958 | REAL, INTENT(OUT) :: pgx((nbp_lon + 1) * nbp_lat, klevel) |
---|
959 | REAL, INTENT(OUT) :: pgy((nbp_lon + 1) * (nbp_lat - 1), klevel) |
---|
960 | |
---|
961 | INTEGER :: l, ij |
---|
962 | INTEGER :: iim, iip1, ip1jm, ip1jmp1 |
---|
963 | |
---|
964 | iim = nbp_lon |
---|
965 | iip1 = nbp_lon + 1 |
---|
966 | ip1jm = (nbp_lon + 1) * (nbp_lat - 1) ! = iip1*jjm |
---|
967 | ip1jmp1 = (nbp_lon + 1) * nbp_lat ! = iip1*jjp1 |
---|
968 | |
---|
969 | DO l = 1, klevel |
---|
970 | DO ij = 1, ip1jmp1 - 1 |
---|
971 | pgx(ij, l) = pg(ij + 1, l) - pg(ij, l) |
---|
972 | ENDDO |
---|
973 | ! correction for pgx(ip1,j,l) ... |
---|
974 | ! ... pgx(iip1,j,l)=pgx(1,j,l) ... |
---|
975 | DO ij = iip1, ip1jmp1, iip1 |
---|
976 | pgx(ij, l) = pgx(ij - iim, l) |
---|
977 | ENDDO |
---|
978 | DO ij = 1, ip1jm |
---|
979 | pgy(ij, l) = pg(ij, l) - pg(ij + iip1, l) |
---|
980 | ENDDO |
---|
981 | ENDDO |
---|
982 | |
---|
983 | END SUBROUTINE grad |
---|
984 | |
---|
985 | SUBROUTINE diverg(klevel, x, y, div) |
---|
986 | ! computes the divergence of a vector field of components |
---|
987 | ! x,y. x and y being covariant components |
---|
988 | USE lmdz_ssum_scopy, ONLY: ssum |
---|
989 | |
---|
990 | IMPLICIT NONE |
---|
991 | |
---|
992 | INTEGER, INTENT(IN) :: klevel |
---|
993 | REAL, INTENT(IN) :: x((nbp_lon + 1) * nbp_lat, klevel) |
---|
994 | REAL, INTENT(IN) :: y((nbp_lon + 1) * (nbp_lat - 1), klevel) |
---|
995 | REAL, INTENT(OUT) :: div((nbp_lon + 1) * nbp_lat, klevel) |
---|
996 | |
---|
997 | INTEGER :: l, ij |
---|
998 | INTEGER :: iim, iip1, iip2, ip1jm, ip1jmp1, ip1jmi1 |
---|
999 | |
---|
1000 | REAL :: aiy1(nbp_lon + 1), aiy2(nbp_lon + 1) |
---|
1001 | REAL :: sumypn, sumyps |
---|
1002 | |
---|
1003 | iim = nbp_lon |
---|
1004 | iip1 = nbp_lon + 1 |
---|
1005 | iip2 = nbp_lon + 2 |
---|
1006 | ip1jm = (nbp_lon + 1) * (nbp_lat - 1) ! = iip1*jjm |
---|
1007 | ip1jmp1 = (nbp_lon + 1) * nbp_lat ! = iip1*jjp1 |
---|
1008 | ip1jmi1 = (nbp_lon + 1) * (nbp_lat - 1) - (nbp_lon + 1) ! = ip1jm - iip1 |
---|
1009 | |
---|
1010 | DO l = 1, klevel |
---|
1011 | DO ij = iip2, ip1jm - 1 |
---|
1012 | div(ij + 1, l) = & |
---|
1013 | cvusurcu(ij + 1) * x(ij + 1, l) - cvusurcu(ij) * x(ij, l) + & |
---|
1014 | cuvsurcv(ij - iim) * y(ij - iim, l) - cuvsurcv(ij + 1) * y(ij + 1, l) |
---|
1015 | ENDDO |
---|
1016 | ! correction for div(1,j,l) ... |
---|
1017 | ! ... div(1,j,l)= div(iip1,j,l) ... |
---|
1018 | DO ij = iip2, ip1jm, iip1 |
---|
1019 | div(ij, l) = div(ij + iim, l) |
---|
1020 | ENDDO |
---|
1021 | ! at the poles |
---|
1022 | DO ij = 1, iim |
---|
1023 | aiy1(ij) = cuvsurcv(ij) * y(ij, l) |
---|
1024 | aiy2(ij) = cuvsurcv(ij + ip1jmi1) * y(ij + ip1jmi1, l) |
---|
1025 | ENDDO |
---|
1026 | sumypn = SSUM(iim, aiy1, 1) / apoln |
---|
1027 | sumyps = SSUM(iim, aiy2, 1) / apols |
---|
1028 | DO ij = 1, iip1 |
---|
1029 | div(ij, l) = -sumypn |
---|
1030 | div(ij + ip1jm, l) = sumyps |
---|
1031 | ENDDO |
---|
1032 | ! End (poles) |
---|
1033 | ENDDO ! of DO l=1,klevel |
---|
1034 | |
---|
1035 | !!! CALL filtreg( div, jjp1, klevel, 2, 2, .TRUE., 1 ) |
---|
1036 | DO l = 1, klevel |
---|
1037 | DO ij = iip2, ip1jm |
---|
1038 | div(ij, l) = div(ij, l) * unsaire(ij) |
---|
1039 | ENDDO |
---|
1040 | ENDDO |
---|
1041 | |
---|
1042 | END SUBROUTINE diverg |
---|
1043 | |
---|
1044 | SUBROUTINE gr_v_scal(nx, x_v, x_scal) |
---|
1045 | ! convert values from v points to scalar points on C-grid |
---|
1046 | ! used to compute unsfu, unseu (u points, but depends only on latitude) |
---|
1047 | IMPLICIT NONE |
---|
1048 | |
---|
1049 | INTEGER, INTENT(IN) :: nx ! number of levels or fields |
---|
1050 | REAL, INTENT(IN) :: x_v((nbp_lon + 1) * (nbp_lat - 1), nx) |
---|
1051 | REAL, INTENT(OUT) :: x_scal((nbp_lon + 1) * nbp_lat, nx) |
---|
1052 | |
---|
1053 | INTEGER :: l, ij |
---|
1054 | INTEGER :: iip1, iip2, ip1jm, ip1jmp1 |
---|
1055 | |
---|
1056 | iip1 = nbp_lon + 1 |
---|
1057 | iip2 = nbp_lon + 2 |
---|
1058 | ip1jm = (nbp_lon + 1) * (nbp_lat - 1) ! = iip1*jjm |
---|
1059 | ip1jmp1 = (nbp_lon + 1) * nbp_lat ! = iip1*jjp1 |
---|
1060 | |
---|
1061 | DO l = 1, nx |
---|
1062 | DO ij = iip2, ip1jm |
---|
1063 | x_scal(ij, l) = & |
---|
1064 | (airev(ij - iip1) * x_v(ij - iip1, l) + airev(ij) * x_v(ij, l)) & |
---|
1065 | / (airev(ij - iip1) + airev(ij)) |
---|
1066 | ENDDO |
---|
1067 | DO ij = 1, iip1 |
---|
1068 | x_scal(ij, l) = 0. |
---|
1069 | ENDDO |
---|
1070 | DO ij = ip1jm + 1, ip1jmp1 |
---|
1071 | x_scal(ij, l) = 0. |
---|
1072 | ENDDO |
---|
1073 | ENDDO |
---|
1074 | |
---|
1075 | END SUBROUTINE gr_v_scal |
---|
1076 | |
---|
1077 | SUBROUTINE gr_scal_v(nx, x_scal, x_v) |
---|
1078 | ! convert values from scalar points to v points on C-grid |
---|
1079 | ! used to compute wind stress at V points |
---|
1080 | IMPLICIT NONE |
---|
1081 | |
---|
1082 | INTEGER, INTENT(IN) :: nx ! number of levels or fields |
---|
1083 | REAL, INTENT(OUT) :: x_v((nbp_lon + 1) * (nbp_lat - 1), nx) |
---|
1084 | REAL, INTENT(IN) :: x_scal((nbp_lon + 1) * nbp_lat, nx) |
---|
1085 | |
---|
1086 | INTEGER :: l, ij |
---|
1087 | INTEGER :: iip1, ip1jm |
---|
1088 | |
---|
1089 | iip1 = nbp_lon + 1 |
---|
1090 | ip1jm = (nbp_lon + 1) * (nbp_lat - 1) ! = iip1*jjm |
---|
1091 | |
---|
1092 | DO l = 1, nx |
---|
1093 | DO ij = 1, ip1jm |
---|
1094 | x_v(ij, l) = & |
---|
1095 | (cu(ij) * cvusurcu(ij) * x_scal(ij, l) + & |
---|
1096 | cu(ij + iip1) * cvusurcu(ij + iip1) * x_scal(ij + iip1, l)) & |
---|
1097 | / (cu(ij) * cvusurcu(ij) + cu(ij + iip1) * cvusurcu(ij + iip1)) |
---|
1098 | ENDDO |
---|
1099 | ENDDO |
---|
1100 | |
---|
1101 | END SUBROUTINE gr_scal_v |
---|
1102 | |
---|
1103 | SUBROUTINE gr_scal_u(nx, x_scal, x_u) |
---|
1104 | ! convert values from scalar points to U points on C-grid |
---|
1105 | ! used to compute wind stress at U points |
---|
1106 | USE lmdz_ssum_scopy, ONLY: scopy |
---|
1107 | |
---|
1108 | IMPLICIT NONE |
---|
1109 | |
---|
1110 | INTEGER, INTENT(IN) :: nx |
---|
1111 | REAL, INTENT(OUT) :: x_u((nbp_lon + 1) * nbp_lat, nx) |
---|
1112 | REAL, INTENT(IN) :: x_scal((nbp_lon + 1) * nbp_lat, nx) |
---|
1113 | |
---|
1114 | INTEGER :: l, ij |
---|
1115 | INTEGER :: iip1, jjp1, ip1jmp1 |
---|
1116 | |
---|
1117 | iip1 = nbp_lon + 1 |
---|
1118 | jjp1 = nbp_lat |
---|
1119 | ip1jmp1 = (nbp_lon + 1) * nbp_lat ! = iip1*jjp1 |
---|
1120 | |
---|
1121 | DO l = 1, nx |
---|
1122 | DO ij = 1, ip1jmp1 - 1 |
---|
1123 | x_u(ij, l) = & |
---|
1124 | (aire(ij) * x_scal(ij, l) + aire(ij + 1) * x_scal(ij + 1, l)) & |
---|
1125 | / (aire(ij) + aire(ij + 1)) |
---|
1126 | ENDDO |
---|
1127 | ENDDO |
---|
1128 | |
---|
1129 | CALL SCOPY(nx * jjp1, x_u(1, 1), iip1, x_u(iip1, 1), iip1) |
---|
1130 | |
---|
1131 | END SUBROUTINE gr_scal_u |
---|
1132 | |
---|
1133 | END MODULE slab_heat_transp_mod |
---|