1 | ! $Id$ |
---|
2 | |
---|
3 | SUBROUTINE readaerosol_interp(id_aero, itap, pdtphys, r_day, first, pplay, paprs, t_seri, mass_out, pi_mass_out, load_src) |
---|
4 | |
---|
5 | ! This routine will return the mass concentration at actual day(mass_out) and |
---|
6 | ! the pre-industrial values(pi_mass_out) for aerosol corresponding to "id_aero". |
---|
7 | ! The mass concentrations for all aerosols are saved in this routine but each |
---|
8 | ! CALL to this routine only treats the aerosol "id_aero". |
---|
9 | |
---|
10 | ! 1) Read in data for the whole year, ONLY at first time step |
---|
11 | ! 2) Interpolate to the actual day, ONLY at new day |
---|
12 | ! 3) Interpolate to the model vertical grid (target grid), ONLY at new day |
---|
13 | ! 4) Test for negative mass values |
---|
14 | |
---|
15 | USE ioipsl |
---|
16 | USE dimphy, ONLY: klev, klon |
---|
17 | USE lmdz_phys_para, ONLY: mpi_rank |
---|
18 | USE readaerosol_mod |
---|
19 | USE aero_mod, ONLY: naero_spc, name_aero |
---|
20 | USE lmdz_writefield_phy |
---|
21 | USE phys_cal_mod |
---|
22 | USE lmdz_pres2lev |
---|
23 | USE lmdz_print_control, ONLY: lunout |
---|
24 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
25 | USE lmdz_clesphys |
---|
26 | |
---|
27 | IMPLICIT NONE |
---|
28 | |
---|
29 | INCLUDE "YOMCST.h" |
---|
30 | INCLUDE "chem.h" |
---|
31 | |
---|
32 | ! Input: |
---|
33 | !**************************************************************************************** |
---|
34 | INTEGER, INTENT(IN) :: id_aero! Identity number for the aerosol to treat |
---|
35 | INTEGER, INTENT(IN) :: itap ! Physic step count |
---|
36 | REAL, INTENT(IN) :: pdtphys! Physic day step |
---|
37 | REAL, INTENT(IN) :: r_day ! Day of integration |
---|
38 | LOGICAL, INTENT(IN) :: first ! First model timestep |
---|
39 | REAL, DIMENSION(klon, klev), INTENT(IN) :: pplay ! pression at model mid-layers |
---|
40 | REAL, DIMENSION(klon, klev + 1), INTENT(IN) :: paprs ! pression between model layers |
---|
41 | REAL, DIMENSION(klon, klev), INTENT(IN) :: t_seri ! air temperature |
---|
42 | |
---|
43 | ! Output: |
---|
44 | !**************************************************************************************** |
---|
45 | REAL, INTENT(OUT) :: mass_out(klon, klev) ! Mass of aerosol (monthly mean data,from file) [ug AIBCM/m3] |
---|
46 | REAL, INTENT(OUT) :: pi_mass_out(klon, klev) ! Mass of preindustrial aerosol (monthly mean data,from file) [ug AIBCM/m3] |
---|
47 | REAL, INTENT(OUT) :: load_src(klon) ! Load of aerosol (monthly mean data,from file) [kg/m3] |
---|
48 | |
---|
49 | ! Local Variables: |
---|
50 | !**************************************************************************************** |
---|
51 | INTEGER :: i, k, ierr |
---|
52 | INTEGER :: iday, iyr, lmt_pas |
---|
53 | ! INTEGER :: im, day1, day2, im2 |
---|
54 | INTEGER :: im, im2 |
---|
55 | REAL :: day1, day2 |
---|
56 | INTEGER :: pi_klev_src ! Only for testing purpose |
---|
57 | INTEGER, SAVE :: klev_src ! Number of vertical levles in source field |
---|
58 | !$OMP THREADPRIVATE(klev_src) |
---|
59 | |
---|
60 | REAL :: zrho ! Air density [kg/m3] |
---|
61 | REAL :: volm ! Volyme de melange [kg/kg] |
---|
62 | REAL, DIMENSION(klon) :: psurf_day, pi_psurf_day |
---|
63 | REAL, DIMENSION(klon) :: pi_load_src ! Mass load at source grid |
---|
64 | REAL, DIMENSION(klon) :: load_tgt, load_tgt_test |
---|
65 | REAL, DIMENSION(klon, klev) :: delp ! pressure difference in each model layer |
---|
66 | |
---|
67 | REAL, ALLOCATABLE, DIMENSION(:, :) :: pplay_src ! pression mid-layer at source levels |
---|
68 | REAL, ALLOCATABLE, DIMENSION(:, :) :: tmp1, tmp2 ! Temporary variables |
---|
69 | REAL, ALLOCATABLE, DIMENSION(:, :, :, :), SAVE :: var_year ! VAR in right dimension for the total year |
---|
70 | REAL, ALLOCATABLE, DIMENSION(:, :, :, :), SAVE :: pi_var_year ! pre-industrial VAR, -"- |
---|
71 | !$OMP THREADPRIVATE(var_year,pi_var_year) |
---|
72 | REAL, ALLOCATABLE, DIMENSION(:, :, :), SAVE :: var_day ! VAR interpolated to the actual day and model grid |
---|
73 | REAL, ALLOCATABLE, DIMENSION(:, :, :), SAVE :: pi_var_day ! pre-industrial VAR, -"- |
---|
74 | !$OMP THREADPRIVATE(var_day,pi_var_day) |
---|
75 | REAL, ALLOCATABLE, DIMENSION(:, :, :), SAVE :: psurf_year, pi_psurf_year ! surface pressure for the total year |
---|
76 | !$OMP THREADPRIVATE(psurf_year, pi_psurf_year) |
---|
77 | REAL, ALLOCATABLE, DIMENSION(:, :, :), SAVE :: load_year, pi_load_year ! load in the column for the total year |
---|
78 | !$OMP THREADPRIVATE(load_year, pi_load_year) |
---|
79 | |
---|
80 | REAL, DIMENSION(:, :, :), POINTER :: pt_tmp ! Pointer allocated in readaerosol |
---|
81 | REAL, POINTER, DIMENSION(:), SAVE :: pt_ap, pt_b ! Pointer for describing the vertical levels |
---|
82 | !$OMP THREADPRIVATE(pt_ap, pt_b) |
---|
83 | INTEGER, SAVE :: nbr_tsteps ! number of time steps in file read |
---|
84 | REAL, DIMENSION(14), SAVE :: month_len, month_start, month_mid |
---|
85 | !$OMP THREADPRIVATE(nbr_tsteps, month_len, month_start, month_mid) |
---|
86 | REAL :: jDay |
---|
87 | |
---|
88 | LOGICAL :: lnewday ! Indicates if first time step at a new day |
---|
89 | LOGICAL :: OLDNEWDAY |
---|
90 | LOGICAL, SAVE :: vert_interp ! Indicates if vertical interpolation will be done |
---|
91 | LOGICAL, SAVE :: debug = .FALSE.! Debugging in this subroutine |
---|
92 | !$OMP THREADPRIVATE(vert_interp, debug) |
---|
93 | CHARACTER(len = 8) :: type |
---|
94 | CHARACTER(len = 8) :: filename |
---|
95 | |
---|
96 | |
---|
97 | !**************************************************************************************** |
---|
98 | ! Initialization |
---|
99 | |
---|
100 | !**************************************************************************************** |
---|
101 | |
---|
102 | ! Calculation to find if it is a new day |
---|
103 | |
---|
104 | IF(mpi_rank == 0 .AND. debug)THEN |
---|
105 | PRINT*, 'CONTROL PANEL REGARDING TIME STEPING' |
---|
106 | ENDIF |
---|
107 | |
---|
108 | ! Use phys_cal_mod |
---|
109 | iday = day_cur |
---|
110 | iyr = year_cur |
---|
111 | im = mth_cur |
---|
112 | |
---|
113 | ! iday = INT(r_day) |
---|
114 | ! iyr = iday/360 |
---|
115 | ! iday = iday-iyr*360 ! day of the actual year |
---|
116 | ! iyr = iyr + annee_ref ! year of the run |
---|
117 | ! im = iday/30 +1 ! the actual month |
---|
118 | CALL ymds2ju(iyr, im, iday, 0., jDay) |
---|
119 | ! CALL ymds2ju(iyr, im, iday-(im-1)*30, 0., jDay) |
---|
120 | |
---|
121 | IF(MOD(itap - 1, NINT(86400. / pdtphys)) == 0)THEN |
---|
122 | lnewday = .TRUE. |
---|
123 | ELSE |
---|
124 | lnewday = .FALSE. |
---|
125 | ENDIF |
---|
126 | |
---|
127 | IF(mpi_rank == 0 .AND. debug)THEN |
---|
128 | ! 0.02 is about 0.5/24, namly less than half an hour |
---|
129 | OLDNEWDAY = (r_day - REAL(iday) < 0.02) |
---|
130 | ! Once per day, update aerosol fields |
---|
131 | lmt_pas = NINT(86400. / pdtphys) |
---|
132 | PRINT*, 'r_day-REAL(iday) =', r_day - REAL(iday) |
---|
133 | PRINT*, 'itap =', itap |
---|
134 | PRINT*, 'pdtphys =', pdtphys |
---|
135 | PRINT*, 'lmt_pas =', lmt_pas |
---|
136 | PRINT*, 'iday =', iday |
---|
137 | PRINT*, 'r_day =', r_day |
---|
138 | PRINT*, 'day_cur =', day_cur |
---|
139 | PRINT*, 'mth_cur =', mth_cur |
---|
140 | PRINT*, 'year_cur =', year_cur |
---|
141 | PRINT*, 'NINT(86400./pdtphys) =', NINT(86400. / pdtphys) |
---|
142 | PRINT*, 'MOD(0,1) =', MOD(0, 1) |
---|
143 | PRINT*, 'lnewday =', lnewday |
---|
144 | PRINT*, 'OLDNEWDAY =', OLDNEWDAY |
---|
145 | ENDIF |
---|
146 | |
---|
147 | IF (.NOT. ALLOCATED(var_day)) THEN |
---|
148 | ALLOCATE(var_day(klon, klev, naero_spc), stat = ierr) |
---|
149 | IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 1', 1) |
---|
150 | ALLOCATE(pi_var_day(klon, klev, naero_spc), stat = ierr) |
---|
151 | IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 2', 1) |
---|
152 | |
---|
153 | ALLOCATE(psurf_year(klon, 12, naero_spc), pi_psurf_year(klon, 12, naero_spc), stat = ierr) |
---|
154 | IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 3', 1) |
---|
155 | |
---|
156 | ALLOCATE(load_year(klon, 12, naero_spc), pi_load_year(klon, 12, naero_spc), stat = ierr) |
---|
157 | IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 4', 1) |
---|
158 | |
---|
159 | lnewday = .TRUE. |
---|
160 | |
---|
161 | NULLIFY(pt_ap) |
---|
162 | NULLIFY(pt_b) |
---|
163 | ENDIF |
---|
164 | |
---|
165 | !**************************************************************************************** |
---|
166 | ! 1) Read in data : corresponding to the actual year and preindustrial data. |
---|
167 | ! Only for the first day of the year. |
---|
168 | |
---|
169 | !**************************************************************************************** |
---|
170 | IF ((first .OR. iday==0) .AND. lnewday) THEN |
---|
171 | NULLIFY(pt_tmp) |
---|
172 | |
---|
173 | ! Reading values corresponding to the closest year taking into count the choice of aer_type. |
---|
174 | ! For aer_type=scenario interpolation between 2 data sets is done in readaerosol. |
---|
175 | ! If aer_type=mix1, mix2 or mix3, the run type and file name depends on the aerosol. |
---|
176 | IF (aer_type=='preind' .OR. aer_type=='actuel' .OR. aer_type=='annuel' .OR. aer_type=='scenario') THEN |
---|
177 | ! Standard case |
---|
178 | filename = 'aerosols' |
---|
179 | type = aer_type |
---|
180 | ELSE IF (aer_type == 'mix1') THEN |
---|
181 | ! Special case using a mix of decenal sulfate file and annual aerosols(all aerosols except sulfate) |
---|
182 | IF (name_aero(id_aero) == 'SO4') THEN |
---|
183 | filename = 'so4.run ' |
---|
184 | type = 'scenario' |
---|
185 | ELSE |
---|
186 | filename = 'aerosols' |
---|
187 | type = 'annuel' |
---|
188 | ENDIF |
---|
189 | ELSE IF (aer_type == 'mix2') THEN |
---|
190 | ! Special case using a mix of decenal sulfate file and natrual aerosols |
---|
191 | IF (name_aero(id_aero) == 'SO4') THEN |
---|
192 | filename = 'so4.run ' |
---|
193 | type = 'scenario' |
---|
194 | ELSE |
---|
195 | filename = 'aerosols' |
---|
196 | type = 'preind' |
---|
197 | ENDIF |
---|
198 | ELSE IF (aer_type == 'mix3') THEN |
---|
199 | ! Special case using a mix of annual sulfate file and natrual aerosols |
---|
200 | IF (name_aero(id_aero) == 'SO4') THEN |
---|
201 | filename = 'aerosols' |
---|
202 | type = 'annuel' |
---|
203 | ELSE |
---|
204 | filename = 'aerosols' |
---|
205 | type = 'preind' |
---|
206 | ENDIF |
---|
207 | ELSE |
---|
208 | CALL abort_physic('readaerosol_interp', 'this aer_type not supported', 1) |
---|
209 | ENDIF |
---|
210 | |
---|
211 | CALL readaerosol(name_aero(id_aero), type, filename, iyr, klev_src, pt_ap, pt_b, pt_tmp, & |
---|
212 | psurf_year(:, :, id_aero), load_year(:, :, id_aero)) |
---|
213 | IF (.NOT. ALLOCATED(var_year)) THEN |
---|
214 | ALLOCATE(var_year(klon, klev_src, 12, naero_spc), stat = ierr) |
---|
215 | IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 5', 1) |
---|
216 | ENDIF |
---|
217 | var_year(:, :, :, id_aero) = pt_tmp(:, :, :) |
---|
218 | |
---|
219 | ! Reading values corresponding to the preindustrial concentrations. |
---|
220 | type = 'preind' |
---|
221 | CALL readaerosol(name_aero(id_aero), type, filename, iyr, pi_klev_src, pt_ap, pt_b, pt_tmp, & |
---|
222 | pi_psurf_year(:, :, id_aero), pi_load_year(:, :, id_aero)) |
---|
223 | |
---|
224 | ! klev_src must be the same in both files. |
---|
225 | ! Also supposing pt_ap and pt_b to be the same in the 2 files without testing. |
---|
226 | IF (pi_klev_src /= klev_src) THEN |
---|
227 | WRITE(lunout, *) 'Error! All forcing files for the same aerosol must have the same vertical dimension' |
---|
228 | WRITE(lunout, *) 'Aerosol : ', name_aero(id_aero) |
---|
229 | CALL abort_physic('readaerosol_interp', 'Differnt vertical axes in aerosol forcing files', 1) |
---|
230 | ENDIF |
---|
231 | |
---|
232 | IF (.NOT. ALLOCATED(pi_var_year)) THEN |
---|
233 | ALLOCATE(pi_var_year(klon, klev_src, 12, naero_spc), stat = ierr) |
---|
234 | IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 6', 1) |
---|
235 | ENDIF |
---|
236 | pi_var_year(:, :, :, id_aero) = pt_tmp(:, :, :) |
---|
237 | |
---|
238 | IF (debug) THEN |
---|
239 | CALL writefield_phy('var_year_jan', var_year(:, :, 1, id_aero), klev_src) |
---|
240 | CALL writefield_phy('var_year_dec', var_year(:, :, 12, id_aero), klev_src) |
---|
241 | CALL writefield_phy('psurf_src', psurf_year(:, :, id_aero), 1) |
---|
242 | CALL writefield_phy('pi_psurf_src', pi_psurf_year(:, :, id_aero), 1) |
---|
243 | CALL writefield_phy('load_year_src', load_year(:, :, id_aero), 1) |
---|
244 | CALL writefield_phy('pi_load_year_src', pi_load_year(:, :, id_aero), 1) |
---|
245 | ENDIF |
---|
246 | |
---|
247 | ! Pointer no more useful, deallocate. |
---|
248 | DEALLOCATE(pt_tmp) |
---|
249 | |
---|
250 | ! Test if vertical interpolation will be needed. |
---|
251 | IF (psurf_year(1, 1, id_aero)==not_valid .OR. pi_psurf_year(1, 1, id_aero)==not_valid) THEN |
---|
252 | ! Pressure=not_valid indicates old file format, see module readaerosol |
---|
253 | vert_interp = .FALSE. |
---|
254 | |
---|
255 | ! If old file format, both psurf_year and pi_psurf_year must be not_valid |
---|
256 | IF (psurf_year(1, 1, id_aero) /= pi_psurf_year(1, 1, id_aero)) THEN |
---|
257 | WRITE(lunout, *) 'Warning! All forcing files for the same aerosol must have the same structure' |
---|
258 | CALL abort_physic('readaerosol_interp', 'The aerosol files have not the same format', 1) |
---|
259 | ENDIF |
---|
260 | |
---|
261 | IF (klev /= klev_src) THEN |
---|
262 | WRITE(lunout, *) 'Old format of aerosol file do not allowed vertical interpolation' |
---|
263 | CALL abort_physic('readaerosol_interp', 'Old aerosol file not possible', 1) |
---|
264 | ENDIF |
---|
265 | |
---|
266 | ELSE |
---|
267 | vert_interp = .TRUE. |
---|
268 | ENDIF |
---|
269 | |
---|
270 | ! Calendar initialisation |
---|
271 | |
---|
272 | DO i = 2, 13 |
---|
273 | month_len(i) = REAL(ioget_mon_len(year_cur, i - 1)) |
---|
274 | CALL ymds2ju(year_cur, i - 1, 1, 0.0, month_start(i)) |
---|
275 | ENDDO |
---|
276 | month_len(1) = REAL(ioget_mon_len(year_cur - 1, 12)) |
---|
277 | CALL ymds2ju(year_cur - 1, 12, 1, 0.0, month_start(1)) |
---|
278 | month_len(14) = REAL(ioget_mon_len(year_cur + 1, 1)) |
---|
279 | CALL ymds2ju(year_cur + 1, 1, 1, 0.0, month_start(14)) |
---|
280 | month_mid(:) = month_start (:) + month_len(:) / 2. |
---|
281 | |
---|
282 | IF (debug) THEN |
---|
283 | WRITE(lunout, *)' month_len = ', month_len |
---|
284 | WRITE(lunout, *)' month_mid = ', month_mid |
---|
285 | endif |
---|
286 | |
---|
287 | ENDIF ! IF ( (first .OR. iday==0) .AND. lnewday ) THEN |
---|
288 | |
---|
289 | !**************************************************************************************** |
---|
290 | ! - 2) Interpolate to the actual day. |
---|
291 | ! - 3) Interpolate to the model vertical grid. |
---|
292 | |
---|
293 | !**************************************************************************************** |
---|
294 | |
---|
295 | IF (lnewday) THEN ! only if new day |
---|
296 | !**************************************************************************************** |
---|
297 | ! 2) Interpolate to the actual day |
---|
298 | |
---|
299 | !**************************************************************************************** |
---|
300 | ! Find which months and days to use for time interpolation |
---|
301 | nbr_tsteps = 12 |
---|
302 | IF (nbr_tsteps == 12) THEN |
---|
303 | IF (jDay < month_mid(im + 1)) THEN |
---|
304 | im2 = im - 1 |
---|
305 | day2 = month_mid(im2 + 1) |
---|
306 | day1 = month_mid(im + 1) |
---|
307 | IF (im2 <= 0) THEN |
---|
308 | ! the month is january, thus the month before december |
---|
309 | im2 = 12 |
---|
310 | ENDIF |
---|
311 | ELSE |
---|
312 | ! the second half of the month |
---|
313 | im2 = im + 1 |
---|
314 | day1 = month_mid(im + 1) |
---|
315 | day2 = month_mid(im2 + 1) |
---|
316 | IF (im2 > 12) THEN |
---|
317 | ! the month is december, the following thus january |
---|
318 | im2 = 1 |
---|
319 | ENDIF |
---|
320 | ENDIF |
---|
321 | ELSE IF (nbr_tsteps == 14) THEN |
---|
322 | im = im + 1 |
---|
323 | IF (jDay < month_mid(im)) THEN |
---|
324 | ! in the first half of the month use month before and actual month |
---|
325 | im2 = im - 1 |
---|
326 | day2 = month_mid(im2) |
---|
327 | day1 = month_mid(im) |
---|
328 | ELSE |
---|
329 | ! the second half of the month |
---|
330 | im2 = im + 1 |
---|
331 | day1 = month_mid(im) |
---|
332 | day2 = month_mid(im2) |
---|
333 | ENDIF |
---|
334 | ELSE |
---|
335 | CALL abort_physic('readaerosol_interp', 'number of months undefined', 1) |
---|
336 | ENDIF |
---|
337 | IF (debug) THEN |
---|
338 | WRITE(lunout, *)' jDay, day1, day2, im, im2 = ', jDay, day1, day2, im, im2 |
---|
339 | endif |
---|
340 | |
---|
341 | |
---|
342 | ! Time interpolation, still on vertical source grid |
---|
343 | ALLOCATE(tmp1(klon, klev_src), tmp2(klon, klev_src), stat = ierr) |
---|
344 | IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 7', 1) |
---|
345 | |
---|
346 | ALLOCATE(pplay_src(klon, klev_src), stat = ierr) |
---|
347 | IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 8', 1) |
---|
348 | |
---|
349 | DO k = 1, klev_src |
---|
350 | DO i = 1, klon |
---|
351 | tmp1(i, k) = & |
---|
352 | var_year(i, k, im2, id_aero) - (jDay - day2) / (day1 - day2) * & |
---|
353 | (var_year(i, k, im2, id_aero) - var_year(i, k, im, id_aero)) |
---|
354 | |
---|
355 | tmp2(i, k) = & |
---|
356 | pi_var_year(i, k, im2, id_aero) - (jDay - day2) / (day1 - day2) * & |
---|
357 | (pi_var_year(i, k, im2, id_aero) - pi_var_year(i, k, im, id_aero)) |
---|
358 | ENDDO |
---|
359 | ENDDO |
---|
360 | |
---|
361 | ! Time interpolation for pressure at surface, still on vertical source grid |
---|
362 | DO i = 1, klon |
---|
363 | psurf_day(i) = & |
---|
364 | psurf_year(i, im2, id_aero) - (jDay - day2) / (day1 - day2) * & |
---|
365 | (psurf_year(i, im2, id_aero) - psurf_year(i, im, id_aero)) |
---|
366 | |
---|
367 | pi_psurf_day(i) = & |
---|
368 | pi_psurf_year(i, im2, id_aero) - (jDay - day2) / (day1 - day2) * & |
---|
369 | (pi_psurf_year(i, im2, id_aero) - pi_psurf_year(i, im, id_aero)) |
---|
370 | ENDDO |
---|
371 | |
---|
372 | ! Time interpolation for the load, still on vertical source grid |
---|
373 | DO i = 1, klon |
---|
374 | load_src(i) = & |
---|
375 | load_year(i, im2, id_aero) - (jDay - day2) / (day1 - day2) * & |
---|
376 | (load_year(i, im2, id_aero) - load_year(i, im, id_aero)) |
---|
377 | |
---|
378 | pi_load_src(i) = & |
---|
379 | pi_load_year(i, im2, id_aero) - (jDay - day2) / (day1 - day2) * & |
---|
380 | (pi_load_year(i, im2, id_aero) - pi_load_year(i, im, id_aero)) |
---|
381 | ENDDO |
---|
382 | |
---|
383 | !**************************************************************************************** |
---|
384 | ! 3) Interpolate to the model vertical grid (target grid) |
---|
385 | |
---|
386 | !**************************************************************************************** |
---|
387 | |
---|
388 | IF (vert_interp) THEN |
---|
389 | |
---|
390 | ! - Interpolate variable tmp1 (on source grid) to var_day (on target grid) |
---|
391 | !******************************************************************************** |
---|
392 | ! a) calculate pression at vertical levels for the source grid using the |
---|
393 | ! hybrid-sigma coordinates ap and b and the surface pressure, variables from file. |
---|
394 | DO k = 1, klev_src |
---|
395 | DO i = 1, klon |
---|
396 | pplay_src(i, k) = pt_ap(k) + pt_b(k) * psurf_day(i) |
---|
397 | ENDDO |
---|
398 | ENDDO |
---|
399 | |
---|
400 | IF (debug) THEN |
---|
401 | CALL writefield_phy('psurf_day_src', psurf_day(:), 1) |
---|
402 | CALL writefield_phy('pplay_src', pplay_src(:, :), klev_src) |
---|
403 | CALL writefield_phy('pplay', pplay(:, :), klev) |
---|
404 | CALL writefield_phy('day_src', tmp1, klev_src) |
---|
405 | CALL writefield_phy('pi_day_src', tmp2, klev_src) |
---|
406 | ENDIF |
---|
407 | |
---|
408 | ! b) vertical interpolation on pressure leveles |
---|
409 | CALL pres2lev(tmp1(:, :), var_day(:, :, id_aero), klev_src, klev, pplay_src, pplay, & |
---|
410 | 1, klon, .FALSE.) |
---|
411 | |
---|
412 | IF (debug) CALL writefield_phy('day_tgt', var_day(:, :, id_aero), klev) |
---|
413 | |
---|
414 | ! c) adjust to conserve total aerosol mass load in the vertical pillar |
---|
415 | ! Calculate the load in the actual pillar and compare with the load |
---|
416 | ! read from aerosol file. |
---|
417 | |
---|
418 | ! Find the pressure difference in each model layer |
---|
419 | DO k = 1, klev |
---|
420 | DO i = 1, klon |
---|
421 | delp(i, k) = paprs(i, k) - paprs (i, k + 1) |
---|
422 | ENDDO |
---|
423 | ENDDO |
---|
424 | |
---|
425 | ! Find the mass load in the actual pillar, on target grid |
---|
426 | load_tgt(:) = 0. |
---|
427 | DO k = 1, klev |
---|
428 | DO i = 1, klon |
---|
429 | zrho = pplay(i, k) / t_seri(i, k) / RD ! [kg/m3] |
---|
430 | volm = var_day(i, k, id_aero) * 1.E-9 / zrho ! [kg/kg] |
---|
431 | load_tgt(i) = load_tgt(i) + volm * delp(i, k) / RG |
---|
432 | ENDDO |
---|
433 | ENDDO |
---|
434 | |
---|
435 | ! Adjust, uniform |
---|
436 | DO k = 1, klev |
---|
437 | DO i = 1, klon |
---|
438 | var_day(i, k, id_aero) = var_day(i, k, id_aero) * load_src(i) / max(1.e-30, load_tgt(i)) |
---|
439 | ENDDO |
---|
440 | ENDDO |
---|
441 | |
---|
442 | IF (debug) THEN |
---|
443 | load_tgt_test(:) = 0. |
---|
444 | DO k = 1, klev |
---|
445 | DO i = 1, klon |
---|
446 | zrho = pplay(i, k) / t_seri(i, k) / RD ! [kg/m3] |
---|
447 | volm = var_day(i, k, id_aero) * 1.E-9 / zrho ! [kg/kg] |
---|
448 | load_tgt_test(i) = load_tgt_test(i) + volm * delp(i, k) / RG |
---|
449 | ENDDO |
---|
450 | ENDDO |
---|
451 | |
---|
452 | CALL writefield_phy('day_tgt2', var_day(:, :, id_aero), klev) |
---|
453 | CALL writefield_phy('load_tgt', load_tgt(:), 1) |
---|
454 | CALL writefield_phy('load_tgt_test', load_tgt_test(:), 1) |
---|
455 | CALL writefield_phy('load_src', load_src(:), 1) |
---|
456 | ENDIF |
---|
457 | |
---|
458 | ! - Interpolate variable tmp2 (source grid) to pi_var_day (target grid) |
---|
459 | !******************************************************************************** |
---|
460 | ! a) calculate pression at vertical levels at source grid |
---|
461 | DO k = 1, klev_src |
---|
462 | DO i = 1, klon |
---|
463 | pplay_src(i, k) = pt_ap(k) + pt_b(k) * pi_psurf_day(i) |
---|
464 | ENDDO |
---|
465 | ENDDO |
---|
466 | |
---|
467 | IF (debug) THEN |
---|
468 | CALL writefield_phy('pi_psurf_day_src', pi_psurf_day(:), 1) |
---|
469 | CALL writefield_phy('pi_pplay_src', pplay_src(:, :), klev_src) |
---|
470 | ENDIF |
---|
471 | |
---|
472 | ! b) vertical interpolation on pressure leveles |
---|
473 | CALL pres2lev(tmp2(:, :), pi_var_day(:, :, id_aero), klev_src, klev, pplay_src, pplay, & |
---|
474 | 1, klon, .FALSE.) |
---|
475 | |
---|
476 | IF (debug) CALL writefield_phy('pi_day_tgt', pi_var_day(:, :, id_aero), klev) |
---|
477 | |
---|
478 | ! c) adjust to conserve total aerosol mass load in the vertical pillar |
---|
479 | ! Calculate the load in the actual pillar and compare with the load |
---|
480 | ! read from aerosol file. |
---|
481 | |
---|
482 | ! Find the load in the actual pillar, on target grid |
---|
483 | load_tgt(:) = 0. |
---|
484 | DO k = 1, klev |
---|
485 | DO i = 1, klon |
---|
486 | zrho = pplay(i, k) / t_seri(i, k) / RD ! [kg/m3] |
---|
487 | volm = pi_var_day(i, k, id_aero) * 1.E-9 / zrho ! [kg/kg] |
---|
488 | load_tgt(i) = load_tgt(i) + volm * delp(i, k) / RG |
---|
489 | ENDDO |
---|
490 | ENDDO |
---|
491 | |
---|
492 | DO k = 1, klev |
---|
493 | DO i = 1, klon |
---|
494 | pi_var_day(i, k, id_aero) = pi_var_day(i, k, id_aero) * pi_load_src(i) / max(1.e-30, load_tgt(i)) |
---|
495 | ENDDO |
---|
496 | ENDDO |
---|
497 | |
---|
498 | IF (debug) THEN |
---|
499 | load_tgt_test(:) = 0. |
---|
500 | DO k = 1, klev |
---|
501 | DO i = 1, klon |
---|
502 | zrho = pplay(i, k) / t_seri(i, k) / RD ! [kg/m3] |
---|
503 | volm = pi_var_day(i, k, id_aero) * 1.E-9 / zrho ! [kg/kg] |
---|
504 | load_tgt_test(i) = load_tgt_test(i) + volm * delp(i, k) / RG |
---|
505 | ENDDO |
---|
506 | ENDDO |
---|
507 | CALL writefield_phy('pi_day_tgt2', pi_var_day(:, :, id_aero), klev) |
---|
508 | CALL writefield_phy('pi_load_tgt', load_tgt(:), 1) |
---|
509 | CALL writefield_phy('pi_load_tgt_test', load_tgt_test(:), 1) |
---|
510 | CALL writefield_phy('pi_load_src', pi_load_src(:), 1) |
---|
511 | ENDIF |
---|
512 | |
---|
513 | ELSE ! No vertical interpolation done |
---|
514 | |
---|
515 | var_day(:, :, id_aero) = tmp1(:, :) |
---|
516 | pi_var_day(:, :, id_aero) = tmp2(:, :) |
---|
517 | |
---|
518 | ENDIF ! vert_interp |
---|
519 | |
---|
520 | |
---|
521 | ! Deallocation |
---|
522 | DEALLOCATE(tmp1, tmp2, pplay_src, stat = ierr) |
---|
523 | |
---|
524 | !**************************************************************************************** |
---|
525 | ! 4) Test for negative mass values |
---|
526 | |
---|
527 | !**************************************************************************************** |
---|
528 | IF (MINVAL(var_day(:, :, id_aero)) < 0.) THEN |
---|
529 | DO k = 1, klev |
---|
530 | DO i = 1, klon |
---|
531 | ! Test for var_day |
---|
532 | IF (var_day(i, k, id_aero) < 0.) THEN |
---|
533 | IF (jDay - day2 < 0.) WRITE(lunout, *) 'jDay-day2=', jDay - day2 |
---|
534 | IF (var_year(i, k, im2, id_aero) - var_year(i, k, im, id_aero) < 0.) THEN |
---|
535 | WRITE(lunout, *) trim(name_aero(id_aero)), '(i,k,im2)-', & |
---|
536 | trim(name_aero(id_aero)), '(i,k,im)=', & |
---|
537 | var_year(i, k, im2, id_aero) - var_year(i, k, im, id_aero) |
---|
538 | ENDIF |
---|
539 | WRITE(lunout, *) 'stop for aerosol : ', name_aero(id_aero) |
---|
540 | WRITE(lunout, *) 'day1, day2, jDay = ', day1, day2, jDay |
---|
541 | CALL abort_physic('readaerosol_interp', 'Error in interpolation 1', 1) |
---|
542 | ENDIF |
---|
543 | ENDDO |
---|
544 | ENDDO |
---|
545 | ENDIF |
---|
546 | |
---|
547 | IF (MINVAL(pi_var_day(:, :, id_aero)) < 0.) THEN |
---|
548 | DO k = 1, klev |
---|
549 | DO i = 1, klon |
---|
550 | ! Test for pi_var_day |
---|
551 | IF (pi_var_day(i, k, id_aero) < 0.) THEN |
---|
552 | IF (jDay - day2 < 0.) WRITE(lunout, *) 'jDay-day2=', jDay - day2 |
---|
553 | IF (pi_var_year(i, k, im2, id_aero) - pi_var_year(i, k, im, id_aero) < 0.) THEN |
---|
554 | WRITE(lunout, *) trim(name_aero(id_aero)), '(i,k,im2)-', & |
---|
555 | trim(name_aero(id_aero)), '(i,k,im)=', & |
---|
556 | pi_var_year(i, k, im2, id_aero) - pi_var_year(i, k, im, id_aero) |
---|
557 | ENDIF |
---|
558 | |
---|
559 | WRITE(lunout, *) 'stop for aerosol : ', name_aero(id_aero) |
---|
560 | CALL abort_physic('readaerosol_interp', 'Error in interpolation 2', 1) |
---|
561 | ENDIF |
---|
562 | ENDDO |
---|
563 | ENDDO |
---|
564 | ENDIF |
---|
565 | |
---|
566 | ENDIF ! lnewday |
---|
567 | |
---|
568 | !**************************************************************************************** |
---|
569 | ! Copy output from saved variables |
---|
570 | |
---|
571 | !**************************************************************************************** |
---|
572 | |
---|
573 | mass_out(:, :) = var_day(:, :, id_aero) |
---|
574 | pi_mass_out(:, :) = pi_var_day(:, :, id_aero) |
---|
575 | |
---|
576 | END SUBROUTINE readaerosol_interp |
---|