[1992] | 1 | ! IM ctes ds clesphys.h SUBROUTINE SW(PSCT, RCO2, PRMU0, PFRAC, |
---|
| 2 | SUBROUTINE sw_lmdar4(psct, prmu0, pfrac, ppmb, pdp, ppsol, palbd, palbp, & |
---|
[5144] | 3 | ptave, pwv, pqs, pozon, paer, pcldsw, ptau, pomega, pcg, pheat, pheat0, & |
---|
| 4 | palbpla, ptopsw, psolsw, ptopsw0, psolsw0, zfsup, zfsdn, zfsup0, zfsdn0, & |
---|
| 5 | tauae, pizae, cgae, ptaua, pomegaa, ptopswad, psolswad, ptopswai, & |
---|
| 6 | psolswai, ok_ade, ok_aie) |
---|
[1992] | 7 | USE dimphy |
---|
[5112] | 8 | USE lmdz_print_control, ONLY: lunout |
---|
[5137] | 9 | USE lmdz_clesphys |
---|
[5144] | 10 | USE lmdz_yomcst |
---|
[5160] | 11 | USE lmdz_phys_constants, ONLY: dobson_u |
---|
[5137] | 12 | |
---|
[1992] | 13 | IMPLICIT NONE |
---|
[998] | 14 | |
---|
[1992] | 15 | ! ------------------------------------------------------------------ |
---|
[1279] | 16 | |
---|
[1992] | 17 | ! PURPOSE. |
---|
| 18 | ! -------- |
---|
[1565] | 19 | |
---|
[1992] | 20 | ! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN TWO |
---|
| 21 | ! SPECTRAL INTERVALS FOLLOWING FOUQUART AND BONNEL (1980). |
---|
[1565] | 22 | |
---|
[1992] | 23 | ! METHOD. |
---|
| 24 | ! ------- |
---|
[998] | 25 | |
---|
[1992] | 26 | ! 1. COMPUTES ABSORBER AMOUNTS (SWU) |
---|
| 27 | ! 2. COMPUTES FLUXES IN 1ST SPECTRAL INTERVAL (SW1S) |
---|
| 28 | ! 3. COMPUTES FLUXES IN 2ND SPECTRAL INTERVAL (SW2S) |
---|
| 29 | |
---|
| 30 | ! REFERENCE. |
---|
| 31 | ! ---------- |
---|
| 32 | |
---|
| 33 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 34 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 35 | |
---|
| 36 | ! AUTHOR. |
---|
| 37 | ! ------- |
---|
| 38 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 39 | |
---|
| 40 | ! MODIFICATIONS. |
---|
| 41 | ! -------------- |
---|
| 42 | ! ORIGINAL : 89-07-14 |
---|
| 43 | ! 95-01-01 J.-J. MORCRETTE Direct/Diffuse Albedo |
---|
| 44 | ! 03-11-27 J. QUAAS Introduce aerosol forcings (based on BOUCHER) |
---|
| 45 | ! ------------------------------------------------------------------ |
---|
| 46 | |
---|
| 47 | ! * ARGUMENTS: |
---|
| 48 | |
---|
[5144] | 49 | REAL (KIND = 8) psct ! constante solaire (valeur conseillee: 1370) |
---|
[1992] | 50 | ! IM ctes ds clesphys.h REAL(KIND=8) RCO2 ! concentration CO2 (IPCC: |
---|
| 51 | ! 353.E-06*44.011/28.97) |
---|
| 52 | |
---|
[5144] | 53 | REAL (KIND = 8) ppsol(kdlon) ! SURFACE PRESSURE (PA) |
---|
| 54 | REAL (KIND = 8) pdp(kdlon, kflev) ! LAYER THICKNESS (PA) |
---|
| 55 | REAL (KIND = 8) ppmb(kdlon, kflev + 1) ! HALF-LEVEL PRESSURE (MB) |
---|
[1992] | 56 | |
---|
[5144] | 57 | REAL (KIND = 8) prmu0(kdlon) ! COSINE OF ZENITHAL ANGLE |
---|
| 58 | REAL (KIND = 8) pfrac(kdlon) ! fraction de la journee |
---|
[1992] | 59 | |
---|
[5144] | 60 | REAL (KIND = 8) ptave(kdlon, kflev) ! LAYER TEMPERATURE (K) |
---|
| 61 | REAL (KIND = 8) pwv(kdlon, kflev) ! SPECIFIC HUMIDITY (KG/KG) |
---|
| 62 | REAL (KIND = 8) pqs(kdlon, kflev) ! SATURATED WATER VAPOUR (KG/KG) |
---|
| 63 | REAL (KIND = 8) pozon(kdlon, kflev) ! OZONE CONCENTRATION (KG/KG) |
---|
| 64 | REAL (KIND = 8) paer(kdlon, kflev, 5) ! AEROSOLS' OPTICAL THICKNESS |
---|
[1992] | 65 | |
---|
[5144] | 66 | REAL (KIND = 8) palbd(kdlon, 2) ! albedo du sol (lumiere diffuse) |
---|
| 67 | REAL (KIND = 8) palbp(kdlon, 2) ! albedo du sol (lumiere parallele) |
---|
[1992] | 68 | |
---|
[5144] | 69 | REAL (KIND = 8) pcldsw(kdlon, kflev) ! CLOUD FRACTION |
---|
| 70 | REAL (KIND = 8) ptau(kdlon, 2, kflev) ! CLOUD OPTICAL THICKNESS |
---|
| 71 | REAL (KIND = 8) pcg(kdlon, 2, kflev) ! ASYMETRY FACTOR |
---|
| 72 | REAL (KIND = 8) pomega(kdlon, 2, kflev) ! SINGLE SCATTERING ALBEDO |
---|
[1992] | 73 | |
---|
[5144] | 74 | REAL (KIND = 8) pheat(kdlon, kflev) ! SHORTWAVE HEATING (K/DAY) |
---|
| 75 | REAL (KIND = 8) pheat0(kdlon, kflev) ! SHORTWAVE HEATING (K/DAY) clear-sky |
---|
| 76 | REAL (KIND = 8) palbpla(kdlon) ! PLANETARY ALBEDO |
---|
| 77 | REAL (KIND = 8) ptopsw(kdlon) ! SHORTWAVE FLUX AT T.O.A. |
---|
| 78 | REAL (KIND = 8) psolsw(kdlon) ! SHORTWAVE FLUX AT SURFACE |
---|
| 79 | REAL (KIND = 8) ptopsw0(kdlon) ! SHORTWAVE FLUX AT T.O.A. (CLEAR-SKY) |
---|
| 80 | REAL (KIND = 8) psolsw0(kdlon) ! SHORTWAVE FLUX AT SURFACE (CLEAR-SKY) |
---|
[1992] | 81 | |
---|
| 82 | ! * LOCAL VARIABLES: |
---|
[5144] | 83 | REAL (KIND = 8) zoz(kdlon, kflev) |
---|
[1992] | 84 | ! column-density of ozone in layer, in kilo-Dobsons |
---|
| 85 | |
---|
[5144] | 86 | REAL (KIND = 8) zaki(kdlon, 2) |
---|
| 87 | REAL (KIND = 8) zcld(kdlon, kflev) |
---|
| 88 | REAL (KIND = 8) zclear(kdlon) |
---|
| 89 | REAL (KIND = 8) zdsig(kdlon, kflev) |
---|
| 90 | REAL (KIND = 8) zfact(kdlon) |
---|
| 91 | REAL (KIND = 8) zfd(kdlon, kflev + 1) |
---|
| 92 | REAL (KIND = 8) zfdown(kdlon, kflev + 1) |
---|
| 93 | REAL (KIND = 8) zfu(kdlon, kflev + 1) |
---|
| 94 | REAL (KIND = 8) zfup(kdlon, kflev + 1) |
---|
| 95 | REAL (KIND = 8) zrmu(kdlon) |
---|
| 96 | REAL (KIND = 8) zsec(kdlon) |
---|
| 97 | REAL (KIND = 8) zud(kdlon, 5, kflev + 1) |
---|
| 98 | REAL (KIND = 8) zcldsw0(kdlon, kflev) |
---|
[1992] | 99 | |
---|
[5144] | 100 | REAL (KIND = 8) zfsup(kdlon, kflev + 1) |
---|
| 101 | REAL (KIND = 8) zfsdn(kdlon, kflev + 1) |
---|
| 102 | REAL (KIND = 8) zfsup0(kdlon, kflev + 1) |
---|
| 103 | REAL (KIND = 8) zfsdn0(kdlon, kflev + 1) |
---|
[1992] | 104 | |
---|
| 105 | INTEGER inu, jl, jk, i, k, kpl1 |
---|
| 106 | |
---|
| 107 | INTEGER swpas ! Every swpas steps, sw is calculated |
---|
[5144] | 108 | PARAMETER (swpas = 1) |
---|
[1992] | 109 | |
---|
| 110 | INTEGER itapsw |
---|
| 111 | LOGICAL appel1er |
---|
| 112 | DATA itapsw/0/ |
---|
| 113 | DATA appel1er/.TRUE./ |
---|
| 114 | SAVE itapsw, appel1er |
---|
| 115 | !$OMP THREADPRIVATE(appel1er) |
---|
| 116 | !$OMP THREADPRIVATE(itapsw) |
---|
| 117 | ! jq-Introduced for aerosol forcings |
---|
[5144] | 118 | REAL (KIND = 8) flag_aer |
---|
[1992] | 119 | LOGICAL ok_ade, ok_aie ! use aerosol forcings or not? |
---|
[5144] | 120 | REAL (KIND = 8) tauae(kdlon, kflev, 2) ! aerosol optical properties |
---|
| 121 | REAL (KIND = 8) pizae(kdlon, kflev, 2) ! (see aeropt.F) |
---|
| 122 | REAL (KIND = 8) cgae(kdlon, kflev, 2) ! -"- |
---|
| 123 | REAL (KIND = 8) ptaua(kdlon, 2, kflev) ! CLOUD OPTICAL THICKNESS (pre-industrial value) |
---|
| 124 | REAL (KIND = 8) pomegaa(kdlon, 2, kflev) ! SINGLE SCATTERING ALBEDO |
---|
| 125 | REAL (KIND = 8) ptopswad(kdlon) ! SHORTWAVE FLUX AT T.O.A.(+AEROSOL DIR) |
---|
| 126 | REAL (KIND = 8) psolswad(kdlon) ! SHORTWAVE FLUX AT SURFACE(+AEROSOL DIR) |
---|
| 127 | REAL (KIND = 8) ptopswai(kdlon) ! SHORTWAVE FLUX AT T.O.A.(+AEROSOL IND) |
---|
| 128 | REAL (KIND = 8) psolswai(kdlon) ! SHORTWAVE FLUX AT SURFACE(+AEROSOL IND) |
---|
[1992] | 129 | ! jq - Fluxes including aerosol effects |
---|
[5144] | 130 | REAL (KIND = 8), ALLOCATABLE, SAVE :: zfsupad(:, :) |
---|
[1992] | 131 | !$OMP THREADPRIVATE(ZFSUPAD) |
---|
[5144] | 132 | REAL (KIND = 8), ALLOCATABLE, SAVE :: zfsdnad(:, :) |
---|
[1992] | 133 | !$OMP THREADPRIVATE(ZFSDNAD) |
---|
[5144] | 134 | REAL (KIND = 8), ALLOCATABLE, SAVE :: zfsupai(:, :) |
---|
[1992] | 135 | !$OMP THREADPRIVATE(ZFSUPAI) |
---|
[5144] | 136 | REAL (KIND = 8), ALLOCATABLE, SAVE :: zfsdnai(:, :) |
---|
[1992] | 137 | !$OMP THREADPRIVATE(ZFSDNAI) |
---|
| 138 | LOGICAL initialized |
---|
| 139 | ! ym SAVE ZFSUPAD, ZFSDNAD, ZFSUPAI, ZFSDNAI ! aerosol fluxes |
---|
| 140 | ! rv |
---|
| 141 | SAVE flag_aer |
---|
| 142 | !$OMP THREADPRIVATE(flag_aer) |
---|
| 143 | DATA initialized/.FALSE./ |
---|
| 144 | SAVE initialized |
---|
| 145 | !$OMP THREADPRIVATE(initialized) |
---|
| 146 | ! jq-end |
---|
| 147 | REAL tmp_ |
---|
| 148 | |
---|
| 149 | IF (.NOT. initialized) THEN |
---|
| 150 | flag_aer = 0. |
---|
| 151 | initialized = .TRUE. |
---|
[5144] | 152 | ALLOCATE (zfsupad(kdlon, kflev + 1)) |
---|
| 153 | ALLOCATE (zfsdnad(kdlon, kflev + 1)) |
---|
| 154 | ALLOCATE (zfsupai(kdlon, kflev + 1)) |
---|
| 155 | ALLOCATE (zfsdnai(kdlon, kflev + 1)) |
---|
[1992] | 156 | |
---|
| 157 | zfsupad(:, :) = 0. |
---|
| 158 | zfsdnad(:, :) = 0. |
---|
| 159 | zfsupai(:, :) = 0. |
---|
| 160 | zfsdnai(:, :) = 0. |
---|
| 161 | END IF |
---|
| 162 | |
---|
| 163 | IF (appel1er) THEN |
---|
| 164 | WRITE (lunout, *) 'SW calling frequency : ', swpas |
---|
| 165 | WRITE (lunout, *) ' In general, it should be 1' |
---|
| 166 | appel1er = .FALSE. |
---|
| 167 | END IF |
---|
| 168 | ! ------------------------------------------------------------------ |
---|
[5144] | 169 | IF (mod(itapsw, swpas)==0) THEN |
---|
[1992] | 170 | |
---|
[5144] | 171 | tmp_ = 1. / (dobson_u * 1E3 * rg) |
---|
[1992] | 172 | ! cdir collapse |
---|
| 173 | DO jk = 1, kflev |
---|
| 174 | DO jl = 1, kdlon |
---|
| 175 | zcldsw0(jl, jk) = 0.0 |
---|
[5144] | 176 | zoz(jl, jk) = pozon(jl, jk) * tmp_ * pdp(jl, jk) |
---|
[1992] | 177 | END DO |
---|
| 178 | END DO |
---|
| 179 | |
---|
| 180 | |
---|
| 181 | ! clear-sky: |
---|
| 182 | ! IM ctes ds clesphys.h CALL SWU(PSCT,RCO2,ZCLDSW0,PPMB,PPSOL, |
---|
| 183 | CALL swu_lmdar4(psct, zcldsw0, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
[5144] | 184 | zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
---|
[1992] | 185 | inu = 1 |
---|
| 186 | CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
[5144] | 187 | pcg, zcld, zclear, zcldsw0, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
---|
| 188 | zfd, zfu) |
---|
[1992] | 189 | inu = 2 |
---|
| 190 | CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
---|
[5144] | 191 | palbp, pcg, zcld, zclear, zcldsw0, zdsig, pomega, zoz, zrmu, zsec, & |
---|
| 192 | ptau, zud, pwv, pqs, zfdown, zfup) |
---|
[1992] | 193 | DO jk = 1, kflev + 1 |
---|
| 194 | DO jl = 1, kdlon |
---|
[5144] | 195 | zfsup0(jl, jk) = (zfup(jl, jk) + zfu(jl, jk)) * zfact(jl) |
---|
| 196 | zfsdn0(jl, jk) = (zfdown(jl, jk) + zfd(jl, jk)) * zfact(jl) |
---|
[1992] | 197 | END DO |
---|
| 198 | END DO |
---|
| 199 | |
---|
| 200 | flag_aer = 0.0 |
---|
| 201 | CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
[5144] | 202 | zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
---|
[1992] | 203 | inu = 1 |
---|
| 204 | CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
[5144] | 205 | pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
---|
| 206 | zfd, zfu) |
---|
[1992] | 207 | inu = 2 |
---|
| 208 | CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
---|
[5144] | 209 | palbp, pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, & |
---|
| 210 | zud, pwv, pqs, zfdown, zfup) |
---|
[1992] | 211 | |
---|
| 212 | ! cloudy-sky: |
---|
| 213 | |
---|
| 214 | DO jk = 1, kflev + 1 |
---|
| 215 | DO jl = 1, kdlon |
---|
[5144] | 216 | zfsup(jl, jk) = (zfup(jl, jk) + zfu(jl, jk)) * zfact(jl) |
---|
| 217 | zfsdn(jl, jk) = (zfdown(jl, jk) + zfd(jl, jk)) * zfact(jl) |
---|
[1992] | 218 | END DO |
---|
| 219 | END DO |
---|
| 220 | |
---|
| 221 | IF (ok_ade) THEN |
---|
| 222 | |
---|
| 223 | ! cloudy-sky + aerosol dir OB |
---|
| 224 | flag_aer = 1.0 |
---|
| 225 | CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
[5144] | 226 | zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
---|
[1992] | 227 | inu = 1 |
---|
| 228 | CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
[5144] | 229 | pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
---|
| 230 | zfd, zfu) |
---|
[1992] | 231 | inu = 2 |
---|
| 232 | CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
---|
[5144] | 233 | palbp, pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, & |
---|
| 234 | ptau, zud, pwv, pqs, zfdown, zfup) |
---|
[1992] | 235 | DO jk = 1, kflev + 1 |
---|
| 236 | DO jl = 1, kdlon |
---|
| 237 | zfsupad(jl, jk) = zfsup(jl, jk) |
---|
| 238 | zfsdnad(jl, jk) = zfsdn(jl, jk) |
---|
[5144] | 239 | zfsup(jl, jk) = (zfup(jl, jk) + zfu(jl, jk)) * zfact(jl) |
---|
| 240 | zfsdn(jl, jk) = (zfdown(jl, jk) + zfd(jl, jk)) * zfact(jl) |
---|
[1992] | 241 | END DO |
---|
| 242 | END DO |
---|
| 243 | |
---|
| 244 | END IF ! ok_ade |
---|
| 245 | |
---|
| 246 | IF (ok_aie) THEN |
---|
| 247 | |
---|
| 248 | ! jq cloudy-sky + aerosol direct + aerosol indirect |
---|
| 249 | flag_aer = 1.0 |
---|
| 250 | CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
[5144] | 251 | zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
---|
[1992] | 252 | inu = 1 |
---|
| 253 | CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
[5144] | 254 | pcg, zcld, zclear, pcldsw, zdsig, pomegaa, zoz, zrmu, zsec, ptaua, & |
---|
| 255 | zud, zfd, zfu) |
---|
[1992] | 256 | inu = 2 |
---|
| 257 | CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
---|
[5144] | 258 | palbp, pcg, zcld, zclear, pcldsw, zdsig, pomegaa, zoz, zrmu, zsec, & |
---|
| 259 | ptaua, zud, pwv, pqs, zfdown, zfup) |
---|
[1992] | 260 | DO jk = 1, kflev + 1 |
---|
| 261 | DO jl = 1, kdlon |
---|
| 262 | zfsupai(jl, jk) = zfsup(jl, jk) |
---|
| 263 | zfsdnai(jl, jk) = zfsdn(jl, jk) |
---|
[5144] | 264 | zfsup(jl, jk) = (zfup(jl, jk) + zfu(jl, jk)) * zfact(jl) |
---|
| 265 | zfsdn(jl, jk) = (zfdown(jl, jk) + zfd(jl, jk)) * zfact(jl) |
---|
[1992] | 266 | END DO |
---|
| 267 | END DO |
---|
| 268 | END IF ! ok_aie |
---|
| 269 | ! jq -end |
---|
| 270 | |
---|
| 271 | itapsw = 0 |
---|
| 272 | END IF |
---|
| 273 | itapsw = itapsw + 1 |
---|
| 274 | |
---|
| 275 | DO k = 1, kflev |
---|
| 276 | kpl1 = k + 1 |
---|
| 277 | DO i = 1, kdlon |
---|
[5144] | 278 | pheat(i, k) = -(zfsup(i, kpl1) - zfsup(i, k)) - (zfsdn(i, k) - zfsdn(i, kpl1)) |
---|
| 279 | pheat(i, k) = pheat(i, k) * rday * rg / rcpd / pdp(i, k) |
---|
| 280 | pheat0(i, k) = -(zfsup0(i, kpl1) - zfsup0(i, k)) - & |
---|
| 281 | (zfsdn0(i, k) - zfsdn0(i, kpl1)) |
---|
| 282 | pheat0(i, k) = pheat0(i, k) * rday * rg / rcpd / pdp(i, k) |
---|
[1992] | 283 | END DO |
---|
| 284 | END DO |
---|
| 285 | DO i = 1, kdlon |
---|
[5144] | 286 | palbpla(i) = zfsup(i, kflev + 1) / (zfsdn(i, kflev + 1) + 1.0E-20) |
---|
[1992] | 287 | |
---|
| 288 | psolsw(i) = zfsdn(i, 1) - zfsup(i, 1) |
---|
[5144] | 289 | ptopsw(i) = zfsdn(i, kflev + 1) - zfsup(i, kflev + 1) |
---|
[1992] | 290 | |
---|
| 291 | psolsw0(i) = zfsdn0(i, 1) - zfsup0(i, 1) |
---|
[5144] | 292 | ptopsw0(i) = zfsdn0(i, kflev + 1) - zfsup0(i, kflev + 1) |
---|
[1992] | 293 | ! -OB |
---|
| 294 | psolswad(i) = zfsdnad(i, 1) - zfsupad(i, 1) |
---|
[5144] | 295 | ptopswad(i) = zfsdnad(i, kflev + 1) - zfsupad(i, kflev + 1) |
---|
[1992] | 296 | |
---|
| 297 | psolswai(i) = zfsdnai(i, 1) - zfsupai(i, 1) |
---|
[5144] | 298 | ptopswai(i) = zfsdnai(i, kflev + 1) - zfsupai(i, kflev + 1) |
---|
[1992] | 299 | ! -fin |
---|
| 300 | END DO |
---|
| 301 | |
---|
| 302 | END SUBROUTINE sw_lmdar4 |
---|
| 303 | |
---|
| 304 | ! IM ctes ds clesphys.h SUBROUTINE SWU |
---|
| 305 | ! (PSCT,RCO2,PCLDSW,PPMB,PPSOL,PRMU0,PFRAC, |
---|
| 306 | SUBROUTINE swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
[5144] | 307 | paki, pcld, pclear, pdsig, pfact, prmu, psec, pud) |
---|
[1992] | 308 | USE dimphy |
---|
| 309 | USE radiation_ar4_param, ONLY: zpdh2o, zpdumg, zprh2o, zprumg, rtdh2o, & |
---|
[5144] | 310 | rtdumg, rth2o, rtumg |
---|
[5137] | 311 | USE lmdz_clesphys, ONLY: RCO2 |
---|
[5144] | 312 | USE lmdz_yomcst |
---|
[5137] | 313 | |
---|
[1992] | 314 | IMPLICIT NONE |
---|
| 315 | include "radepsi.h" |
---|
| 316 | include "radopt.h" |
---|
| 317 | |
---|
| 318 | ! * ARGUMENTS: |
---|
| 319 | |
---|
[5144] | 320 | REAL (KIND = 8) psct |
---|
[5137] | 321 | |
---|
[5144] | 322 | REAL (KIND = 8) pcldsw(kdlon, kflev) |
---|
| 323 | REAL (KIND = 8) ppmb(kdlon, kflev + 1) |
---|
| 324 | REAL (KIND = 8) ppsol(kdlon) |
---|
| 325 | REAL (KIND = 8) prmu0(kdlon) |
---|
| 326 | REAL (KIND = 8) pfrac(kdlon) |
---|
| 327 | REAL (KIND = 8) ptave(kdlon, kflev) |
---|
| 328 | REAL (KIND = 8) pwv(kdlon, kflev) |
---|
[1992] | 329 | |
---|
[5144] | 330 | REAL (KIND = 8) paki(kdlon, 2) |
---|
| 331 | REAL (KIND = 8) pcld(kdlon, kflev) |
---|
| 332 | REAL (KIND = 8) pclear(kdlon) |
---|
| 333 | REAL (KIND = 8) pdsig(kdlon, kflev) |
---|
| 334 | REAL (KIND = 8) pfact(kdlon) |
---|
| 335 | REAL (KIND = 8) prmu(kdlon) |
---|
| 336 | REAL (KIND = 8) psec(kdlon) |
---|
| 337 | REAL (KIND = 8) pud(kdlon, 5, kflev + 1) |
---|
[1992] | 338 | |
---|
| 339 | ! * LOCAL VARIABLES: |
---|
| 340 | |
---|
| 341 | INTEGER iind(2) |
---|
[5144] | 342 | REAL (KIND = 8) zc1j(kdlon, kflev + 1) |
---|
| 343 | REAL (KIND = 8) zclear(kdlon) |
---|
| 344 | REAL (KIND = 8) zcloud(kdlon) |
---|
| 345 | REAL (KIND = 8) zn175(kdlon) |
---|
| 346 | REAL (KIND = 8) zn190(kdlon) |
---|
| 347 | REAL (KIND = 8) zo175(kdlon) |
---|
| 348 | REAL (KIND = 8) zo190(kdlon) |
---|
| 349 | REAL (KIND = 8) zsign(kdlon) |
---|
| 350 | REAL (KIND = 8) zr(kdlon, 2) |
---|
| 351 | REAL (KIND = 8) zsigo(kdlon) |
---|
| 352 | REAL (KIND = 8) zud(kdlon, 2) |
---|
| 353 | REAL (KIND = 8) zrth, zrtu, zwh2o, zdsco2, zdsh2o, zfppw |
---|
[1992] | 354 | INTEGER jl, jk, jkp1, jkl, jklp1, ja |
---|
| 355 | |
---|
| 356 | ! ------------------------------------------------------------------ |
---|
| 357 | |
---|
| 358 | ! * 1. COMPUTES AMOUNTS OF ABSORBERS |
---|
| 359 | ! ----------------------------- |
---|
| 360 | |
---|
| 361 | iind(1) = 1 |
---|
| 362 | iind(2) = 2 |
---|
| 363 | |
---|
| 364 | ! * 1.1 INITIALIZES QUANTITIES |
---|
| 365 | ! ---------------------- |
---|
| 366 | |
---|
| 367 | DO jl = 1, kdlon |
---|
[5144] | 368 | pud(jl, 1, kflev + 1) = 0. |
---|
| 369 | pud(jl, 2, kflev + 1) = 0. |
---|
| 370 | pud(jl, 3, kflev + 1) = 0. |
---|
| 371 | pud(jl, 4, kflev + 1) = 0. |
---|
| 372 | pud(jl, 5, kflev + 1) = 0. |
---|
| 373 | pfact(jl) = prmu0(jl) * pfrac(jl) * psct |
---|
| 374 | prmu(jl) = sqrt(1224. * prmu0(jl) * prmu0(jl) + 1.) / 35. |
---|
| 375 | psec(jl) = 1. / prmu(jl) |
---|
| 376 | zc1j(jl, kflev + 1) = 0. |
---|
[1992] | 377 | END DO |
---|
| 378 | |
---|
| 379 | ! * 1.3 AMOUNTS OF ABSORBERS |
---|
| 380 | ! -------------------- |
---|
| 381 | |
---|
| 382 | DO jl = 1, kdlon |
---|
| 383 | zud(jl, 1) = 0. |
---|
| 384 | zud(jl, 2) = 0. |
---|
[5144] | 385 | zo175(jl) = ppsol(jl)**(zpdumg + 1.) |
---|
| 386 | zo190(jl) = ppsol(jl)**(zpdh2o + 1.) |
---|
[1992] | 387 | zsigo(jl) = ppsol(jl) |
---|
| 388 | zclear(jl) = 1. |
---|
| 389 | zcloud(jl) = 0. |
---|
| 390 | END DO |
---|
| 391 | |
---|
| 392 | DO jk = 1, kflev |
---|
| 393 | jkp1 = jk + 1 |
---|
| 394 | jkl = kflev + 1 - jk |
---|
| 395 | jklp1 = jkl + 1 |
---|
| 396 | DO jl = 1, kdlon |
---|
[5144] | 397 | zrth = (rth2o / ptave(jl, jk))**rtdh2o |
---|
| 398 | zrtu = (rtumg / ptave(jl, jk))**rtdumg |
---|
| 399 | zwh2o = max(pwv(jl, jk), zepscq) |
---|
| 400 | zsign(jl) = 100. * ppmb(jl, jkp1) |
---|
| 401 | pdsig(jl, jk) = (zsigo(jl) - zsign(jl)) / ppsol(jl) |
---|
| 402 | zn175(jl) = zsign(jl)**(zpdumg + 1.) |
---|
| 403 | zn190(jl) = zsign(jl)**(zpdh2o + 1.) |
---|
[1992] | 404 | zdsco2 = zo175(jl) - zn175(jl) |
---|
| 405 | zdsh2o = zo190(jl) - zn190(jl) |
---|
[5144] | 406 | pud(jl, 1, jk) = 1. / (10. * rg * (zpdh2o + 1.)) / (zprh2o**zpdh2o) * zdsh2o * zwh2o * & |
---|
| 407 | zrth |
---|
| 408 | pud(jl, 2, jk) = 1. / (10. * rg * (zpdumg + 1.)) / (zprumg**zpdumg) * zdsco2 * rco2 * & |
---|
| 409 | zrtu |
---|
| 410 | zfppw = 1.6078 * zwh2o / (1. + 0.608 * zwh2o) |
---|
| 411 | pud(jl, 4, jk) = pud(jl, 1, jk) * zfppw |
---|
| 412 | pud(jl, 5, jk) = pud(jl, 1, jk) * (1. - zfppw) |
---|
[1992] | 413 | zud(jl, 1) = zud(jl, 1) + pud(jl, 1, jk) |
---|
| 414 | zud(jl, 2) = zud(jl, 2) + pud(jl, 2, jk) |
---|
| 415 | zsigo(jl) = zsign(jl) |
---|
| 416 | zo175(jl) = zn175(jl) |
---|
| 417 | zo190(jl) = zn190(jl) |
---|
| 418 | |
---|
| 419 | IF (novlp==1) THEN |
---|
[5144] | 420 | zclear(jl) = zclear(jl) * (1. - max(pcldsw(jl, jkl), zcloud(jl))) / (1. - min(& |
---|
| 421 | zcloud(jl), 1. - zepsec)) |
---|
[1992] | 422 | zc1j(jl, jkl) = 1.0 - zclear(jl) |
---|
| 423 | zcloud(jl) = pcldsw(jl, jkl) |
---|
| 424 | ELSE IF (novlp==2) THEN |
---|
[5144] | 425 | zcloud(jl) = max(pcldsw(jl, jkl), zcloud(jl)) |
---|
[1992] | 426 | zc1j(jl, jkl) = zcloud(jl) |
---|
| 427 | ELSE IF (novlp==3) THEN |
---|
[5144] | 428 | zclear(jl) = zclear(jl) * (1. - pcldsw(jl, jkl)) |
---|
[1992] | 429 | zcloud(jl) = 1.0 - zclear(jl) |
---|
| 430 | zc1j(jl, jkl) = zcloud(jl) |
---|
[998] | 431 | END IF |
---|
[1992] | 432 | END DO |
---|
| 433 | END DO |
---|
| 434 | DO jl = 1, kdlon |
---|
| 435 | pclear(jl) = 1. - zc1j(jl, 1) |
---|
| 436 | END DO |
---|
| 437 | DO jk = 1, kflev |
---|
| 438 | DO jl = 1, kdlon |
---|
| 439 | IF (pclear(jl)<1.) THEN |
---|
[5144] | 440 | pcld(jl, jk) = pcldsw(jl, jk) / (1. - pclear(jl)) |
---|
[998] | 441 | ELSE |
---|
[1992] | 442 | pcld(jl, jk) = 0. |
---|
[998] | 443 | END IF |
---|
[1992] | 444 | END DO |
---|
| 445 | END DO |
---|
| 446 | |
---|
| 447 | ! * 1.4 COMPUTES CLEAR-SKY GREY ABSORPTION COEFFICIENTS |
---|
| 448 | ! ----------------------------------------------- |
---|
| 449 | |
---|
| 450 | DO ja = 1, 2 |
---|
| 451 | DO jl = 1, kdlon |
---|
[5144] | 452 | zud(jl, ja) = zud(jl, ja) * psec(jl) |
---|
[1992] | 453 | END DO |
---|
| 454 | END DO |
---|
| 455 | |
---|
| 456 | CALL swtt1_lmdar4(2, 2, iind, zud, zr) |
---|
| 457 | |
---|
| 458 | DO ja = 1, 2 |
---|
| 459 | DO jl = 1, kdlon |
---|
[5144] | 460 | paki(jl, ja) = -log(zr(jl, ja)) / zud(jl, ja) |
---|
[1992] | 461 | END DO |
---|
| 462 | END DO |
---|
| 463 | |
---|
| 464 | |
---|
| 465 | ! ------------------------------------------------------------------ |
---|
| 466 | |
---|
| 467 | END SUBROUTINE swu_lmdar4 |
---|
| 468 | SUBROUTINE sw1s_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
[5144] | 469 | pcg, pcld, pclear, pcldsw, pdsig, pomega, poz, prmu, psec, ptau, pud, & |
---|
| 470 | pfd, pfu) |
---|
[1992] | 471 | USE dimphy |
---|
| 472 | USE radiation_ar4_param, ONLY: rsun, rray |
---|
[4389] | 473 | USE infotrac_phy, ONLY: type_trac |
---|
[5185] | 474 | USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_REPROBUS |
---|
| 475 | USE lmdz_reprobus_wrappers, ONLY: rsuntime, ok_suntime |
---|
[5112] | 476 | USE lmdz_print_control, ONLY: lunout |
---|
[1565] | 477 | |
---|
[1992] | 478 | IMPLICIT NONE |
---|
[1279] | 479 | |
---|
[1992] | 480 | ! ------------------------------------------------------------------ |
---|
| 481 | ! PURPOSE. |
---|
| 482 | ! -------- |
---|
| 483 | |
---|
| 484 | ! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN TWO |
---|
| 485 | ! SPECTRAL INTERVALS FOLLOWING FOUQUART AND BONNEL (1980). |
---|
| 486 | |
---|
| 487 | ! METHOD. |
---|
| 488 | ! ------- |
---|
| 489 | |
---|
| 490 | ! 1. COMPUTES UPWARD AND DOWNWARD FLUXES CORRESPONDING TO |
---|
| 491 | ! CONTINUUM SCATTERING |
---|
| 492 | ! 2. MULTIPLY BY OZONE TRANSMISSION FUNCTION |
---|
| 493 | |
---|
| 494 | ! REFERENCE. |
---|
| 495 | ! ---------- |
---|
| 496 | |
---|
| 497 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 498 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 499 | |
---|
| 500 | ! AUTHOR. |
---|
| 501 | ! ------- |
---|
| 502 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 503 | |
---|
| 504 | ! MODIFICATIONS. |
---|
| 505 | ! -------------- |
---|
| 506 | ! ORIGINAL : 89-07-14 |
---|
| 507 | ! 94-11-15 J.-J. MORCRETTE DIRECT/DIFFUSE ALBEDO |
---|
| 508 | ! ------------------------------------------------------------------ |
---|
| 509 | |
---|
| 510 | ! * ARGUMENTS: |
---|
| 511 | |
---|
| 512 | INTEGER knu |
---|
| 513 | ! -OB |
---|
[5144] | 514 | REAL (KIND = 8) flag_aer |
---|
| 515 | REAL (KIND = 8) tauae(kdlon, kflev, 2) |
---|
| 516 | REAL (KIND = 8) pizae(kdlon, kflev, 2) |
---|
| 517 | REAL (KIND = 8) cgae(kdlon, kflev, 2) |
---|
| 518 | REAL (KIND = 8) paer(kdlon, kflev, 5) |
---|
| 519 | REAL (KIND = 8) palbd(kdlon, 2) |
---|
| 520 | REAL (KIND = 8) palbp(kdlon, 2) |
---|
| 521 | REAL (KIND = 8) pcg(kdlon, 2, kflev) |
---|
| 522 | REAL (KIND = 8) pcld(kdlon, kflev) |
---|
| 523 | REAL (KIND = 8) pcldsw(kdlon, kflev) |
---|
| 524 | REAL (KIND = 8) pclear(kdlon) |
---|
| 525 | REAL (KIND = 8) pdsig(kdlon, kflev) |
---|
| 526 | REAL (KIND = 8) pomega(kdlon, 2, kflev) |
---|
| 527 | REAL (KIND = 8) poz(kdlon, kflev) |
---|
| 528 | REAL (KIND = 8) prmu(kdlon) |
---|
| 529 | REAL (KIND = 8) psec(kdlon) |
---|
| 530 | REAL (KIND = 8) ptau(kdlon, 2, kflev) |
---|
| 531 | REAL (KIND = 8) pud(kdlon, 5, kflev + 1) |
---|
[1992] | 532 | |
---|
[5144] | 533 | REAL (KIND = 8) pfd(kdlon, kflev + 1) |
---|
| 534 | REAL (KIND = 8) pfu(kdlon, kflev + 1) |
---|
[1992] | 535 | |
---|
| 536 | ! * LOCAL VARIABLES: |
---|
| 537 | |
---|
| 538 | INTEGER iind(4) |
---|
| 539 | |
---|
[5144] | 540 | REAL (KIND = 8) zcgaz(kdlon, kflev) |
---|
| 541 | REAL (KIND = 8) zdiff(kdlon) |
---|
| 542 | REAL (KIND = 8) zdirf(kdlon) |
---|
| 543 | REAL (KIND = 8) zpizaz(kdlon, kflev) |
---|
| 544 | REAL (KIND = 8) zrayl(kdlon) |
---|
| 545 | REAL (KIND = 8) zray1(kdlon, kflev + 1) |
---|
| 546 | REAL (KIND = 8) zray2(kdlon, kflev + 1) |
---|
| 547 | REAL (KIND = 8) zrefz(kdlon, 2, kflev + 1) |
---|
| 548 | REAL (KIND = 8) zrj(kdlon, 6, kflev + 1) |
---|
| 549 | REAL (KIND = 8) zrj0(kdlon, 6, kflev + 1) |
---|
| 550 | REAL (KIND = 8) zrk(kdlon, 6, kflev + 1) |
---|
| 551 | REAL (KIND = 8) zrk0(kdlon, 6, kflev + 1) |
---|
| 552 | REAL (KIND = 8) zrmue(kdlon, kflev + 1) |
---|
| 553 | REAL (KIND = 8) zrmu0(kdlon, kflev + 1) |
---|
| 554 | REAL (KIND = 8) zr(kdlon, 4) |
---|
| 555 | REAL (KIND = 8) ztauaz(kdlon, kflev) |
---|
| 556 | REAL (KIND = 8) ztra1(kdlon, kflev + 1) |
---|
| 557 | REAL (KIND = 8) ztra2(kdlon, kflev + 1) |
---|
| 558 | REAL (KIND = 8) zw(kdlon, 4) |
---|
[1992] | 559 | |
---|
| 560 | INTEGER jl, jk, k, jaj, ikm1, ikl |
---|
| 561 | |
---|
| 562 | ! If running with Reporbus, overwrite default values of RSUN. |
---|
| 563 | ! Otherwise keep default values from radiation_AR4_param module. |
---|
[4389] | 564 | IF (type_trac=='repr') THEN |
---|
[5185] | 565 | IF (CPPKEY_REPROBUS) THEN |
---|
| 566 | IF (ok_suntime) THEN |
---|
| 567 | rsun(1) = rsuntime(1) |
---|
| 568 | rsun(2) = rsuntime(2) |
---|
| 569 | END IF |
---|
| 570 | WRITE (lunout, *) 'RSUN(1): ', rsun(1) |
---|
[1992] | 571 | END IF |
---|
| 572 | END IF |
---|
[1565] | 573 | |
---|
[1992] | 574 | ! ------------------------------------------------------------------ |
---|
| 575 | |
---|
| 576 | ! * 1. FIRST SPECTRAL INTERVAL (0.25-0.68 MICRON) |
---|
| 577 | ! ----------------------- ------------------ |
---|
| 578 | |
---|
| 579 | |
---|
| 580 | |
---|
| 581 | ! * 1.1 OPTICAL THICKNESS FOR RAYLEIGH SCATTERING |
---|
| 582 | ! ----------------------------------------- |
---|
| 583 | |
---|
| 584 | DO jl = 1, kdlon |
---|
[5144] | 585 | zrayl(jl) = rray(knu, 1) + prmu(jl) * (rray(knu, 2) + prmu(jl) * (rray(knu, & |
---|
| 586 | 3) + prmu(jl) * (rray(knu, 4) + prmu(jl) * (rray(knu, 5) + prmu(jl) * rray(knu, 6))))) |
---|
[1992] | 587 | END DO |
---|
| 588 | |
---|
| 589 | |
---|
| 590 | ! ------------------------------------------------------------------ |
---|
| 591 | |
---|
| 592 | ! * 2. CONTINUUM SCATTERING CALCULATIONS |
---|
| 593 | ! --------------------------------- |
---|
| 594 | |
---|
| 595 | |
---|
| 596 | ! * 2.1 CLEAR-SKY FRACTION OF THE COLUMN |
---|
| 597 | ! -------------------------------- |
---|
| 598 | |
---|
| 599 | CALL swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, pdsig, & |
---|
[5144] | 600 | zrayl, psec, zcgaz, zpizaz, zray1, zray2, zrefz, zrj0, zrk0, zrmu0, & |
---|
| 601 | ztauaz, ztra1, ztra2) |
---|
[1992] | 602 | |
---|
| 603 | ! * 2.2 CLOUDY FRACTION OF THE COLUMN |
---|
| 604 | ! ----------------------------- |
---|
| 605 | |
---|
| 606 | CALL swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, zrayl, psec, ptau, & |
---|
[5144] | 607 | zcgaz, zpizaz, zray1, zray2, zrefz, zrj, zrk, zrmue, ztauaz, ztra1, & |
---|
| 608 | ztra2) |
---|
[1992] | 609 | |
---|
| 610 | ! ------------------------------------------------------------------ |
---|
| 611 | |
---|
| 612 | ! * 3. OZONE ABSORPTION |
---|
| 613 | ! ---------------- |
---|
| 614 | |
---|
| 615 | iind(1) = 1 |
---|
| 616 | iind(2) = 3 |
---|
| 617 | iind(3) = 1 |
---|
| 618 | iind(4) = 3 |
---|
| 619 | |
---|
| 620 | ! * 3.1 DOWNWARD FLUXES |
---|
| 621 | ! --------------- |
---|
| 622 | |
---|
| 623 | jaj = 2 |
---|
| 624 | |
---|
| 625 | DO jl = 1, kdlon |
---|
| 626 | zw(jl, 1) = 0. |
---|
| 627 | zw(jl, 2) = 0. |
---|
| 628 | zw(jl, 3) = 0. |
---|
| 629 | zw(jl, 4) = 0. |
---|
[5144] | 630 | pfd(jl, kflev + 1) = ((1. - pclear(jl)) * zrj(jl, jaj, kflev + 1) + pclear(jl) * zrj0(& |
---|
| 631 | jl, jaj, kflev + 1)) * rsun(knu) |
---|
[1992] | 632 | END DO |
---|
| 633 | DO jk = 1, kflev |
---|
| 634 | ikl = kflev + 1 - jk |
---|
| 635 | DO jl = 1, kdlon |
---|
[5144] | 636 | zw(jl, 1) = zw(jl, 1) + pud(jl, 1, ikl) / zrmue(jl, ikl) |
---|
| 637 | zw(jl, 2) = zw(jl, 2) + poz(jl, ikl) / zrmue(jl, ikl) |
---|
| 638 | zw(jl, 3) = zw(jl, 3) + pud(jl, 1, ikl) / zrmu0(jl, ikl) |
---|
| 639 | zw(jl, 4) = zw(jl, 4) + poz(jl, ikl) / zrmu0(jl, ikl) |
---|
[1992] | 640 | END DO |
---|
| 641 | |
---|
| 642 | CALL swtt1_lmdar4(knu, 4, iind, zw, zr) |
---|
| 643 | |
---|
| 644 | DO jl = 1, kdlon |
---|
[5144] | 645 | zdiff(jl) = zr(jl, 1) * zr(jl, 2) * zrj(jl, jaj, ikl) |
---|
| 646 | zdirf(jl) = zr(jl, 3) * zr(jl, 4) * zrj0(jl, jaj, ikl) |
---|
| 647 | pfd(jl, ikl) = ((1. - pclear(jl)) * zdiff(jl) + pclear(jl) * zdirf(jl)) * & |
---|
| 648 | rsun(knu) |
---|
[1992] | 649 | END DO |
---|
| 650 | END DO |
---|
| 651 | |
---|
| 652 | ! * 3.2 UPWARD FLUXES |
---|
| 653 | ! ------------- |
---|
| 654 | |
---|
| 655 | DO jl = 1, kdlon |
---|
[5144] | 656 | pfu(jl, 1) = ((1. - pclear(jl)) * zdiff(jl) * palbd(jl, knu) + pclear(jl) * zdirf(jl & |
---|
| 657 | ) * palbp(jl, knu)) * rsun(knu) |
---|
[1992] | 658 | END DO |
---|
| 659 | |
---|
| 660 | DO jk = 2, kflev + 1 |
---|
| 661 | ikm1 = jk - 1 |
---|
| 662 | DO jl = 1, kdlon |
---|
[5144] | 663 | zw(jl, 1) = zw(jl, 1) + pud(jl, 1, ikm1) * 1.66 |
---|
| 664 | zw(jl, 2) = zw(jl, 2) + poz(jl, ikm1) * 1.66 |
---|
| 665 | zw(jl, 3) = zw(jl, 3) + pud(jl, 1, ikm1) * 1.66 |
---|
| 666 | zw(jl, 4) = zw(jl, 4) + poz(jl, ikm1) * 1.66 |
---|
[1992] | 667 | END DO |
---|
| 668 | |
---|
| 669 | CALL swtt1_lmdar4(knu, 4, iind, zw, zr) |
---|
| 670 | |
---|
| 671 | DO jl = 1, kdlon |
---|
[5144] | 672 | zdiff(jl) = zr(jl, 1) * zr(jl, 2) * zrk(jl, jaj, jk) |
---|
| 673 | zdirf(jl) = zr(jl, 3) * zr(jl, 4) * zrk0(jl, jaj, jk) |
---|
| 674 | pfu(jl, jk) = ((1. - pclear(jl)) * zdiff(jl) + pclear(jl) * zdirf(jl)) * & |
---|
| 675 | rsun(knu) |
---|
[1992] | 676 | END DO |
---|
| 677 | END DO |
---|
| 678 | |
---|
| 679 | ! ------------------------------------------------------------------ |
---|
| 680 | |
---|
| 681 | END SUBROUTINE sw1s_lmdar4 |
---|
| 682 | SUBROUTINE sw2s_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, paki, palbd, & |
---|
[5144] | 683 | palbp, pcg, pcld, pclear, pcldsw, pdsig, pomega, poz, prmu, psec, ptau, & |
---|
| 684 | pud, pwv, pqs, pfdown, pfup) |
---|
[1992] | 685 | USE dimphy |
---|
| 686 | USE radiation_ar4_param, ONLY: rsun, rray |
---|
[4389] | 687 | USE infotrac_phy, ONLY: type_trac |
---|
[5185] | 688 | USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_REPROBUS |
---|
| 689 | USE lmdz_reprobus_wrappers, ONLY: rsuntime, ok_suntime |
---|
[1565] | 690 | |
---|
[1992] | 691 | IMPLICIT NONE |
---|
| 692 | include "radepsi.h" |
---|
[1565] | 693 | |
---|
[1992] | 694 | ! ------------------------------------------------------------------ |
---|
| 695 | ! PURPOSE. |
---|
| 696 | ! -------- |
---|
| 697 | |
---|
| 698 | ! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN THE |
---|
| 699 | ! SECOND SPECTRAL INTERVAL FOLLOWING FOUQUART AND BONNEL (1980). |
---|
| 700 | |
---|
| 701 | ! METHOD. |
---|
| 702 | ! ------- |
---|
| 703 | |
---|
| 704 | ! 1. COMPUTES REFLECTIVITY/TRANSMISSIVITY CORRESPONDING TO |
---|
| 705 | ! CONTINUUM SCATTERING |
---|
| 706 | ! 2. COMPUTES REFLECTIVITY/TRANSMISSIVITY CORRESPONDING FOR |
---|
| 707 | ! A GREY MOLECULAR ABSORPTION |
---|
| 708 | ! 3. LAPLACE TRANSFORM ON THE PREVIOUS TO GET EFFECTIVE AMOUNTS |
---|
| 709 | ! OF ABSORBERS |
---|
| 710 | ! 4. APPLY H2O AND U.M.G. TRANSMISSION FUNCTIONS |
---|
| 711 | ! 5. MULTIPLY BY OZONE TRANSMISSION FUNCTION |
---|
| 712 | |
---|
| 713 | ! REFERENCE. |
---|
| 714 | ! ---------- |
---|
| 715 | |
---|
| 716 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 717 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 718 | |
---|
| 719 | ! AUTHOR. |
---|
| 720 | ! ------- |
---|
| 721 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 722 | |
---|
| 723 | ! MODIFICATIONS. |
---|
| 724 | ! -------------- |
---|
| 725 | ! ORIGINAL : 89-07-14 |
---|
| 726 | ! 94-11-15 J.-J. MORCRETTE DIRECT/DIFFUSE ALBEDO |
---|
| 727 | ! ------------------------------------------------------------------ |
---|
| 728 | ! * ARGUMENTS: |
---|
| 729 | |
---|
| 730 | INTEGER knu |
---|
| 731 | ! -OB |
---|
[5144] | 732 | REAL (KIND = 8) flag_aer |
---|
| 733 | REAL (KIND = 8) tauae(kdlon, kflev, 2) |
---|
| 734 | REAL (KIND = 8) pizae(kdlon, kflev, 2) |
---|
| 735 | REAL (KIND = 8) cgae(kdlon, kflev, 2) |
---|
| 736 | REAL (KIND = 8) paer(kdlon, kflev, 5) |
---|
| 737 | REAL (KIND = 8) paki(kdlon, 2) |
---|
| 738 | REAL (KIND = 8) palbd(kdlon, 2) |
---|
| 739 | REAL (KIND = 8) palbp(kdlon, 2) |
---|
| 740 | REAL (KIND = 8) pcg(kdlon, 2, kflev) |
---|
| 741 | REAL (KIND = 8) pcld(kdlon, kflev) |
---|
| 742 | REAL (KIND = 8) pcldsw(kdlon, kflev) |
---|
| 743 | REAL (KIND = 8) pclear(kdlon) |
---|
| 744 | REAL (KIND = 8) pdsig(kdlon, kflev) |
---|
| 745 | REAL (KIND = 8) pomega(kdlon, 2, kflev) |
---|
| 746 | REAL (KIND = 8) poz(kdlon, kflev) |
---|
| 747 | REAL (KIND = 8) pqs(kdlon, kflev) |
---|
| 748 | REAL (KIND = 8) prmu(kdlon) |
---|
| 749 | REAL (KIND = 8) psec(kdlon) |
---|
| 750 | REAL (KIND = 8) ptau(kdlon, 2, kflev) |
---|
| 751 | REAL (KIND = 8) pud(kdlon, 5, kflev + 1) |
---|
| 752 | REAL (KIND = 8) pwv(kdlon, kflev) |
---|
[1992] | 753 | |
---|
[5144] | 754 | REAL (KIND = 8) pfdown(kdlon, kflev + 1) |
---|
| 755 | REAL (KIND = 8) pfup(kdlon, kflev + 1) |
---|
[1992] | 756 | |
---|
| 757 | ! * LOCAL VARIABLES: |
---|
| 758 | |
---|
| 759 | INTEGER iind2(2), iind3(3) |
---|
[5144] | 760 | REAL (KIND = 8) zcgaz(kdlon, kflev) |
---|
| 761 | REAL (KIND = 8) zfd(kdlon, kflev + 1) |
---|
| 762 | REAL (KIND = 8) zfu(kdlon, kflev + 1) |
---|
| 763 | REAL (KIND = 8) zg(kdlon) |
---|
| 764 | REAL (KIND = 8) zgg(kdlon) |
---|
| 765 | REAL (KIND = 8) zpizaz(kdlon, kflev) |
---|
| 766 | REAL (KIND = 8) zrayl(kdlon) |
---|
| 767 | REAL (KIND = 8) zray1(kdlon, kflev + 1) |
---|
| 768 | REAL (KIND = 8) zray2(kdlon, kflev + 1) |
---|
| 769 | REAL (KIND = 8) zref(kdlon) |
---|
| 770 | REAL (KIND = 8) zrefz(kdlon, 2, kflev + 1) |
---|
| 771 | REAL (KIND = 8) zre1(kdlon) |
---|
| 772 | REAL (KIND = 8) zre2(kdlon) |
---|
| 773 | REAL (KIND = 8) zrj(kdlon, 6, kflev + 1) |
---|
| 774 | REAL (KIND = 8) zrj0(kdlon, 6, kflev + 1) |
---|
| 775 | REAL (KIND = 8) zrk(kdlon, 6, kflev + 1) |
---|
| 776 | REAL (KIND = 8) zrk0(kdlon, 6, kflev + 1) |
---|
| 777 | REAL (KIND = 8) zrl(kdlon, 8) |
---|
| 778 | REAL (KIND = 8) zrmue(kdlon, kflev + 1) |
---|
| 779 | REAL (KIND = 8) zrmu0(kdlon, kflev + 1) |
---|
| 780 | REAL (KIND = 8) zrmuz(kdlon) |
---|
| 781 | REAL (KIND = 8) zrneb(kdlon) |
---|
| 782 | REAL (KIND = 8) zruef(kdlon, 8) |
---|
| 783 | REAL (KIND = 8) zr1(kdlon) |
---|
| 784 | REAL (KIND = 8) zr2(kdlon, 2) |
---|
| 785 | REAL (KIND = 8) zr3(kdlon, 3) |
---|
| 786 | REAL (KIND = 8) zr4(kdlon) |
---|
| 787 | REAL (KIND = 8) zr21(kdlon) |
---|
| 788 | REAL (KIND = 8) zr22(kdlon) |
---|
| 789 | REAL (KIND = 8) zs(kdlon) |
---|
| 790 | REAL (KIND = 8) ztauaz(kdlon, kflev) |
---|
| 791 | REAL (KIND = 8) zto1(kdlon) |
---|
| 792 | REAL (KIND = 8) ztr(kdlon, 2, kflev + 1) |
---|
| 793 | REAL (KIND = 8) ztra1(kdlon, kflev + 1) |
---|
| 794 | REAL (KIND = 8) ztra2(kdlon, kflev + 1) |
---|
| 795 | REAL (KIND = 8) ztr1(kdlon) |
---|
| 796 | REAL (KIND = 8) ztr2(kdlon) |
---|
| 797 | REAL (KIND = 8) zw(kdlon) |
---|
| 798 | REAL (KIND = 8) zw1(kdlon) |
---|
| 799 | REAL (KIND = 8) zw2(kdlon, 2) |
---|
| 800 | REAL (KIND = 8) zw3(kdlon, 3) |
---|
| 801 | REAL (KIND = 8) zw4(kdlon) |
---|
| 802 | REAL (KIND = 8) zw5(kdlon) |
---|
[1992] | 803 | |
---|
| 804 | INTEGER jl, jk, k, jaj, ikm1, ikl, jn, jabs, jkm1 |
---|
| 805 | INTEGER jref, jkl, jklp1, jajp, jkki, jkkp4, jn2j, iabs |
---|
[5144] | 806 | REAL (KIND = 8) zrmum1, zwh2o, zcneb, zaa, zbb, zrki, zre11 |
---|
[1992] | 807 | |
---|
| 808 | ! If running with Reporbus, overwrite default values of RSUN. |
---|
| 809 | ! Otherwise keep default values from radiation_AR4_param module. |
---|
[4389] | 810 | IF (type_trac=='repr') THEN |
---|
[5185] | 811 | IF (CPPKEY_REPROBUS) THEN |
---|
| 812 | IF (ok_suntime) THEN |
---|
| 813 | rsun(1) = rsuntime(1) |
---|
| 814 | rsun(2) = rsuntime(2) |
---|
| 815 | END IF |
---|
[1992] | 816 | END IF |
---|
| 817 | END IF |
---|
[1565] | 818 | |
---|
[1992] | 819 | ! ------------------------------------------------------------------ |
---|
[1279] | 820 | |
---|
[1992] | 821 | ! * 1. SECOND SPECTRAL INTERVAL (0.68-4.00 MICRON) |
---|
| 822 | ! ------------------------------------------- |
---|
| 823 | |
---|
| 824 | |
---|
| 825 | |
---|
| 826 | ! * 1.1 OPTICAL THICKNESS FOR RAYLEIGH SCATTERING |
---|
| 827 | ! ----------------------------------------- |
---|
| 828 | |
---|
| 829 | DO jl = 1, kdlon |
---|
| 830 | zrmum1 = 1. - prmu(jl) |
---|
[5144] | 831 | zrayl(jl) = rray(knu, 1) + zrmum1 * (rray(knu, 2) + zrmum1 * (rray(knu, & |
---|
| 832 | 3) + zrmum1 * (rray(knu, 4) + zrmum1 * (rray(knu, 5) + zrmum1 * rray(knu, 6))))) |
---|
[1992] | 833 | END DO |
---|
| 834 | |
---|
| 835 | ! ------------------------------------------------------------------ |
---|
| 836 | |
---|
| 837 | ! * 2. CONTINUUM SCATTERING CALCULATIONS |
---|
| 838 | ! --------------------------------- |
---|
| 839 | |
---|
| 840 | |
---|
| 841 | ! * 2.1 CLEAR-SKY FRACTION OF THE COLUMN |
---|
| 842 | ! -------------------------------- |
---|
| 843 | |
---|
| 844 | CALL swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, pdsig, & |
---|
[5144] | 845 | zrayl, psec, zcgaz, zpizaz, zray1, zray2, zrefz, zrj0, zrk0, zrmu0, & |
---|
| 846 | ztauaz, ztra1, ztra2) |
---|
[1992] | 847 | |
---|
| 848 | ! * 2.2 CLOUDY FRACTION OF THE COLUMN |
---|
| 849 | ! ----------------------------- |
---|
| 850 | |
---|
| 851 | CALL swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, zrayl, psec, ptau, & |
---|
[5144] | 852 | zcgaz, zpizaz, zray1, zray2, zrefz, zrj, zrk, zrmue, ztauaz, ztra1, & |
---|
| 853 | ztra2) |
---|
[1992] | 854 | |
---|
| 855 | ! ------------------------------------------------------------------ |
---|
| 856 | |
---|
| 857 | ! * 3. SCATTERING CALCULATIONS WITH GREY MOLECULAR ABSORPTION |
---|
| 858 | ! ------------------------------------------------------ |
---|
| 859 | |
---|
| 860 | jn = 2 |
---|
| 861 | |
---|
| 862 | DO jabs = 1, 2 |
---|
| 863 | ! * 3.1 SURFACE CONDITIONS |
---|
| 864 | ! ------------------ |
---|
| 865 | |
---|
| 866 | DO jl = 1, kdlon |
---|
| 867 | zrefz(jl, 2, 1) = palbd(jl, knu) |
---|
| 868 | zrefz(jl, 1, 1) = palbd(jl, knu) |
---|
| 869 | END DO |
---|
| 870 | |
---|
| 871 | ! * 3.2 INTRODUCING CLOUD EFFECTS |
---|
| 872 | ! ------------------------- |
---|
| 873 | |
---|
| 874 | DO jk = 2, kflev + 1 |
---|
| 875 | jkm1 = jk - 1 |
---|
| 876 | ikl = kflev + 1 - jkm1 |
---|
| 877 | DO jl = 1, kdlon |
---|
| 878 | zrneb(jl) = pcld(jl, jkm1) |
---|
[5144] | 879 | IF (jabs==1 .AND. zrneb(jl)>2. * zeelog) THEN |
---|
| 880 | zwh2o = max(pwv(jl, jkm1), zeelog) |
---|
| 881 | zcneb = max(zeelog, min(zrneb(jl), 1. - zeelog)) |
---|
| 882 | zbb = pud(jl, jabs, jkm1) * pqs(jl, jkm1) / zwh2o |
---|
| 883 | zaa = max((pud(jl, jabs, jkm1) - zcneb * zbb) / (1. - zcneb), zeelog) |
---|
[1992] | 884 | ELSE |
---|
| 885 | zaa = pud(jl, jabs, jkm1) |
---|
| 886 | zbb = zaa |
---|
| 887 | END IF |
---|
| 888 | zrki = paki(jl, jabs) |
---|
[5144] | 889 | zs(jl) = exp(-zrki * zaa * 1.66) |
---|
| 890 | zg(jl) = exp(-zrki * zaa / zrmue(jl, jk)) |
---|
[1992] | 891 | ztr1(jl) = 0. |
---|
| 892 | zre1(jl) = 0. |
---|
| 893 | ztr2(jl) = 0. |
---|
| 894 | zre2(jl) = 0. |
---|
| 895 | |
---|
| 896 | zw(jl) = pomega(jl, knu, jkm1) |
---|
[5144] | 897 | zto1(jl) = ptau(jl, knu, jkm1) / zw(jl) + ztauaz(jl, jkm1) / zpizaz(jl, & |
---|
| 898 | jkm1) + zbb * zrki |
---|
[1992] | 899 | |
---|
| 900 | zr21(jl) = ptau(jl, knu, jkm1) + ztauaz(jl, jkm1) |
---|
[5144] | 901 | zr22(jl) = ptau(jl, knu, jkm1) / zr21(jl) |
---|
| 902 | zgg(jl) = zr22(jl) * pcg(jl, knu, jkm1) + (1. - zr22(jl)) * zcgaz(jl, jkm1) |
---|
| 903 | zw(jl) = zr21(jl) / zto1(jl) |
---|
[1992] | 904 | zref(jl) = zrefz(jl, 1, jkm1) |
---|
| 905 | zrmuz(jl) = zrmue(jl, jk) |
---|
| 906 | END DO |
---|
| 907 | |
---|
| 908 | CALL swde_lmdar4(zgg, zref, zrmuz, zto1, zw, zre1, zre2, ztr1, ztr2) |
---|
| 909 | |
---|
| 910 | DO jl = 1, kdlon |
---|
| 911 | |
---|
[5144] | 912 | zrefz(jl, 2, jk) = (1. - zrneb(jl)) * (zray1(jl, jkm1) + zrefz(jl, 2, jkm1) * & |
---|
| 913 | ztra1(jl, jkm1) * ztra2(jl, jkm1)) * zg(jl) * zs(jl) + zrneb(jl) * zre1(jl) |
---|
[1992] | 914 | |
---|
[5144] | 915 | ztr(jl, 2, jkm1) = zrneb(jl) * ztr1(jl) + (ztra1(jl, jkm1)) * zg(jl) * (1. - & |
---|
| 916 | zrneb(jl)) |
---|
[1992] | 917 | |
---|
[5144] | 918 | zrefz(jl, 1, jk) = (1. - zrneb(jl)) * (zray1(jl, jkm1) + zrefz(jl, 1, jkm1) * & |
---|
| 919 | ztra1(jl, jkm1) * ztra2(jl, jkm1) / (1. - zray2(jl, jkm1) * zrefz(jl, 1, & |
---|
| 920 | jkm1))) * zg(jl) * zs(jl) + zrneb(jl) * zre2(jl) |
---|
[1992] | 921 | |
---|
[5144] | 922 | ztr(jl, 1, jkm1) = zrneb(jl) * ztr2(jl) + (ztra1(jl, jkm1) / (1. - zray2(jl, & |
---|
| 923 | jkm1) * zrefz(jl, 1, jkm1))) * zg(jl) * (1. - zrneb(jl)) |
---|
[1992] | 924 | |
---|
| 925 | END DO |
---|
| 926 | END DO |
---|
| 927 | |
---|
| 928 | ! * 3.3 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
---|
| 929 | ! ------------------------------------------------- |
---|
| 930 | |
---|
| 931 | DO jref = 1, 2 |
---|
| 932 | |
---|
| 933 | jn = jn + 1 |
---|
| 934 | |
---|
| 935 | DO jl = 1, kdlon |
---|
[5144] | 936 | zrj(jl, jn, kflev + 1) = 1. |
---|
| 937 | zrk(jl, jn, kflev + 1) = zrefz(jl, jref, kflev + 1) |
---|
[1992] | 938 | END DO |
---|
| 939 | |
---|
| 940 | DO jk = 1, kflev |
---|
| 941 | jkl = kflev + 1 - jk |
---|
| 942 | jklp1 = jkl + 1 |
---|
| 943 | DO jl = 1, kdlon |
---|
[5144] | 944 | zre11 = zrj(jl, jn, jklp1) * ztr(jl, jref, jkl) |
---|
[1992] | 945 | zrj(jl, jn, jkl) = zre11 |
---|
[5144] | 946 | zrk(jl, jn, jkl) = zre11 * zrefz(jl, jref, jkl) |
---|
[1992] | 947 | END DO |
---|
| 948 | END DO |
---|
| 949 | END DO |
---|
| 950 | END DO |
---|
| 951 | |
---|
| 952 | ! ------------------------------------------------------------------ |
---|
| 953 | |
---|
| 954 | ! * 4. INVERT GREY AND CONTINUUM FLUXES |
---|
| 955 | ! -------------------------------- |
---|
| 956 | |
---|
| 957 | |
---|
| 958 | |
---|
| 959 | ! * 4.1 UPWARD (ZRK) AND DOWNWARD (ZRJ) PSEUDO-FLUXES |
---|
| 960 | ! --------------------------------------------- |
---|
| 961 | |
---|
| 962 | DO jk = 1, kflev + 1 |
---|
| 963 | DO jaj = 1, 5, 2 |
---|
| 964 | jajp = jaj + 1 |
---|
| 965 | DO jl = 1, kdlon |
---|
| 966 | zrj(jl, jaj, jk) = zrj(jl, jaj, jk) - zrj(jl, jajp, jk) |
---|
| 967 | zrk(jl, jaj, jk) = zrk(jl, jaj, jk) - zrk(jl, jajp, jk) |
---|
[5144] | 968 | zrj(jl, jaj, jk) = max(zrj(jl, jaj, jk), zeelog) |
---|
| 969 | zrk(jl, jaj, jk) = max(zrk(jl, jaj, jk), zeelog) |
---|
[1992] | 970 | END DO |
---|
| 971 | END DO |
---|
| 972 | END DO |
---|
| 973 | |
---|
| 974 | DO jk = 1, kflev + 1 |
---|
| 975 | DO jaj = 2, 6, 2 |
---|
| 976 | DO jl = 1, kdlon |
---|
[5144] | 977 | zrj(jl, jaj, jk) = max(zrj(jl, jaj, jk), zeelog) |
---|
| 978 | zrk(jl, jaj, jk) = max(zrk(jl, jaj, jk), zeelog) |
---|
[1992] | 979 | END DO |
---|
| 980 | END DO |
---|
| 981 | END DO |
---|
| 982 | |
---|
| 983 | ! * 4.2 EFFECTIVE ABSORBER AMOUNTS BY INVERSE LAPLACE |
---|
| 984 | ! --------------------------------------------- |
---|
| 985 | |
---|
| 986 | DO jk = 1, kflev + 1 |
---|
| 987 | jkki = 1 |
---|
| 988 | DO jaj = 1, 2 |
---|
| 989 | iind2(1) = jaj |
---|
| 990 | iind2(2) = jaj |
---|
| 991 | DO jn = 1, 2 |
---|
[5144] | 992 | jn2j = jn + 2 * jaj |
---|
[1992] | 993 | jkkp4 = jkki + 4 |
---|
| 994 | |
---|
| 995 | ! * 4.2.1 EFFECTIVE ABSORBER AMOUNTS |
---|
| 996 | ! -------------------------- |
---|
| 997 | |
---|
| 998 | DO jl = 1, kdlon |
---|
[5144] | 999 | zw2(jl, 1) = log(zrj(jl, jn, jk) / zrj(jl, jn2j, jk)) / paki(jl, jaj) |
---|
| 1000 | zw2(jl, 2) = log(zrk(jl, jn, jk) / zrk(jl, jn2j, jk)) / paki(jl, jaj) |
---|
[1992] | 1001 | END DO |
---|
| 1002 | |
---|
| 1003 | ! * 4.2.2 TRANSMISSION FUNCTION |
---|
| 1004 | ! --------------------- |
---|
| 1005 | |
---|
| 1006 | CALL swtt1_lmdar4(knu, 2, iind2, zw2, zr2) |
---|
| 1007 | |
---|
| 1008 | DO jl = 1, kdlon |
---|
| 1009 | zrl(jl, jkki) = zr2(jl, 1) |
---|
| 1010 | zruef(jl, jkki) = zw2(jl, 1) |
---|
| 1011 | zrl(jl, jkkp4) = zr2(jl, 2) |
---|
| 1012 | zruef(jl, jkkp4) = zw2(jl, 2) |
---|
| 1013 | END DO |
---|
| 1014 | |
---|
| 1015 | jkki = jkki + 1 |
---|
| 1016 | END DO |
---|
| 1017 | END DO |
---|
| 1018 | |
---|
| 1019 | ! * 4.3 UPWARD AND DOWNWARD FLUXES WITH H2O AND UMG ABSORPTION |
---|
| 1020 | ! ------------------------------------------------------ |
---|
| 1021 | |
---|
| 1022 | DO jl = 1, kdlon |
---|
[5144] | 1023 | pfdown(jl, jk) = zrj(jl, 1, jk) * zrl(jl, 1) * zrl(jl, 3) + & |
---|
| 1024 | zrj(jl, 2, jk) * zrl(jl, 2) * zrl(jl, 4) |
---|
| 1025 | pfup(jl, jk) = zrk(jl, 1, jk) * zrl(jl, 5) * zrl(jl, 7) + & |
---|
| 1026 | zrk(jl, 2, jk) * zrl(jl, 6) * zrl(jl, 8) |
---|
[1992] | 1027 | END DO |
---|
| 1028 | END DO |
---|
| 1029 | |
---|
| 1030 | ! ------------------------------------------------------------------ |
---|
| 1031 | |
---|
| 1032 | ! * 5. MOLECULAR ABSORPTION ON CLEAR-SKY FLUXES |
---|
| 1033 | ! ---------------------------------------- |
---|
| 1034 | |
---|
| 1035 | |
---|
| 1036 | |
---|
| 1037 | ! * 5.1 DOWNWARD FLUXES |
---|
| 1038 | ! --------------- |
---|
| 1039 | |
---|
| 1040 | jaj = 2 |
---|
| 1041 | iind3(1) = 1 |
---|
| 1042 | iind3(2) = 2 |
---|
| 1043 | iind3(3) = 3 |
---|
| 1044 | |
---|
| 1045 | DO jl = 1, kdlon |
---|
| 1046 | zw3(jl, 1) = 0. |
---|
| 1047 | zw3(jl, 2) = 0. |
---|
| 1048 | zw3(jl, 3) = 0. |
---|
| 1049 | zw4(jl) = 0. |
---|
| 1050 | zw5(jl) = 0. |
---|
| 1051 | zr4(jl) = 1. |
---|
[5144] | 1052 | zfd(jl, kflev + 1) = zrj0(jl, jaj, kflev + 1) |
---|
[1992] | 1053 | END DO |
---|
| 1054 | DO jk = 1, kflev |
---|
| 1055 | ikl = kflev + 1 - jk |
---|
| 1056 | DO jl = 1, kdlon |
---|
[5144] | 1057 | zw3(jl, 1) = zw3(jl, 1) + pud(jl, 1, ikl) / zrmu0(jl, ikl) |
---|
| 1058 | zw3(jl, 2) = zw3(jl, 2) + pud(jl, 2, ikl) / zrmu0(jl, ikl) |
---|
| 1059 | zw3(jl, 3) = zw3(jl, 3) + poz(jl, ikl) / zrmu0(jl, ikl) |
---|
| 1060 | zw4(jl) = zw4(jl) + pud(jl, 4, ikl) / zrmu0(jl, ikl) |
---|
| 1061 | zw5(jl) = zw5(jl) + pud(jl, 5, ikl) / zrmu0(jl, ikl) |
---|
[1992] | 1062 | END DO |
---|
| 1063 | |
---|
| 1064 | CALL swtt1_lmdar4(knu, 3, iind3, zw3, zr3) |
---|
| 1065 | |
---|
| 1066 | DO jl = 1, kdlon |
---|
| 1067 | ! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
[5144] | 1068 | zfd(jl, ikl) = zr3(jl, 1) * zr3(jl, 2) * zr3(jl, 3) * zr4(jl) * & |
---|
| 1069 | zrj0(jl, jaj, ikl) |
---|
[1992] | 1070 | END DO |
---|
| 1071 | END DO |
---|
| 1072 | |
---|
| 1073 | ! * 5.2 UPWARD FLUXES |
---|
| 1074 | ! ------------- |
---|
| 1075 | |
---|
| 1076 | DO jl = 1, kdlon |
---|
[5144] | 1077 | zfu(jl, 1) = zfd(jl, 1) * palbp(jl, knu) |
---|
[1992] | 1078 | END DO |
---|
| 1079 | |
---|
| 1080 | DO jk = 2, kflev + 1 |
---|
| 1081 | ikm1 = jk - 1 |
---|
| 1082 | DO jl = 1, kdlon |
---|
[5144] | 1083 | zw3(jl, 1) = zw3(jl, 1) + pud(jl, 1, ikm1) * 1.66 |
---|
| 1084 | zw3(jl, 2) = zw3(jl, 2) + pud(jl, 2, ikm1) * 1.66 |
---|
| 1085 | zw3(jl, 3) = zw3(jl, 3) + poz(jl, ikm1) * 1.66 |
---|
| 1086 | zw4(jl) = zw4(jl) + pud(jl, 4, ikm1) * 1.66 |
---|
| 1087 | zw5(jl) = zw5(jl) + pud(jl, 5, ikm1) * 1.66 |
---|
[1992] | 1088 | END DO |
---|
| 1089 | |
---|
| 1090 | CALL swtt1_lmdar4(knu, 3, iind3, zw3, zr3) |
---|
| 1091 | |
---|
| 1092 | DO jl = 1, kdlon |
---|
| 1093 | ! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
[5144] | 1094 | zfu(jl, jk) = zr3(jl, 1) * zr3(jl, 2) * zr3(jl, 3) * zr4(jl) * & |
---|
| 1095 | zrk0(jl, jaj, jk) |
---|
[1992] | 1096 | END DO |
---|
| 1097 | END DO |
---|
| 1098 | |
---|
| 1099 | ! ------------------------------------------------------------------ |
---|
| 1100 | |
---|
| 1101 | ! * 6. INTRODUCTION OF OZONE AND H2O CONTINUUM ABSORPTION |
---|
| 1102 | ! -------------------------------------------------- |
---|
| 1103 | |
---|
| 1104 | iabs = 3 |
---|
| 1105 | |
---|
| 1106 | ! * 6.1 DOWNWARD FLUXES |
---|
| 1107 | ! --------------- |
---|
| 1108 | |
---|
| 1109 | DO jl = 1, kdlon |
---|
| 1110 | zw1(jl) = 0. |
---|
| 1111 | zw4(jl) = 0. |
---|
| 1112 | zw5(jl) = 0. |
---|
| 1113 | zr1(jl) = 0. |
---|
[5144] | 1114 | pfdown(jl, kflev + 1) = ((1. - pclear(jl)) * pfdown(jl, kflev + 1) + pclear(jl) * zfd(& |
---|
| 1115 | jl, kflev + 1)) * rsun(knu) |
---|
[1992] | 1116 | END DO |
---|
| 1117 | |
---|
| 1118 | DO jk = 1, kflev |
---|
| 1119 | ikl = kflev + 1 - jk |
---|
| 1120 | DO jl = 1, kdlon |
---|
[5144] | 1121 | zw1(jl) = zw1(jl) + poz(jl, ikl) / zrmue(jl, ikl) |
---|
| 1122 | zw4(jl) = zw4(jl) + pud(jl, 4, ikl) / zrmue(jl, ikl) |
---|
| 1123 | zw5(jl) = zw5(jl) + pud(jl, 5, ikl) / zrmue(jl, ikl) |
---|
[1992] | 1124 | ! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
| 1125 | END DO |
---|
| 1126 | |
---|
| 1127 | CALL swtt_lmdar4(knu, iabs, zw1, zr1) |
---|
| 1128 | |
---|
| 1129 | DO jl = 1, kdlon |
---|
[5144] | 1130 | pfdown(jl, ikl) = ((1. - pclear(jl)) * zr1(jl) * zr4(jl) * pfdown(jl, ikl) + & |
---|
| 1131 | pclear(jl) * zfd(jl, ikl)) * rsun(knu) |
---|
[1992] | 1132 | END DO |
---|
| 1133 | END DO |
---|
| 1134 | |
---|
| 1135 | ! * 6.2 UPWARD FLUXES |
---|
| 1136 | ! ------------- |
---|
| 1137 | |
---|
| 1138 | DO jl = 1, kdlon |
---|
[5144] | 1139 | pfup(jl, 1) = ((1. - pclear(jl)) * zr1(jl) * zr4(jl) * pfup(jl, 1) + pclear(jl) * zfu(& |
---|
| 1140 | jl, 1)) * rsun(knu) |
---|
[1992] | 1141 | END DO |
---|
| 1142 | |
---|
| 1143 | DO jk = 2, kflev + 1 |
---|
| 1144 | ikm1 = jk - 1 |
---|
| 1145 | DO jl = 1, kdlon |
---|
[5144] | 1146 | zw1(jl) = zw1(jl) + poz(jl, ikm1) * 1.66 |
---|
| 1147 | zw4(jl) = zw4(jl) + pud(jl, 4, ikm1) * 1.66 |
---|
| 1148 | zw5(jl) = zw5(jl) + pud(jl, 5, ikm1) * 1.66 |
---|
[1992] | 1149 | ! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
| 1150 | END DO |
---|
| 1151 | |
---|
| 1152 | CALL swtt_lmdar4(knu, iabs, zw1, zr1) |
---|
| 1153 | |
---|
| 1154 | DO jl = 1, kdlon |
---|
[5144] | 1155 | pfup(jl, jk) = ((1. - pclear(jl)) * zr1(jl) * zr4(jl) * pfup(jl, jk) + pclear(jl) * & |
---|
| 1156 | zfu(jl, jk)) * rsun(knu) |
---|
[1992] | 1157 | END DO |
---|
| 1158 | END DO |
---|
| 1159 | |
---|
| 1160 | ! ------------------------------------------------------------------ |
---|
| 1161 | |
---|
| 1162 | END SUBROUTINE sw2s_lmdar4 |
---|
| 1163 | SUBROUTINE swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, & |
---|
[5144] | 1164 | pdsig, prayl, psec, pcgaz, ppizaz, pray1, pray2, prefz, prj, prk, prmu0, & |
---|
| 1165 | ptauaz, ptra1, ptra2) |
---|
[1992] | 1166 | USE dimphy |
---|
| 1167 | USE radiation_ar4_param, ONLY: taua, rpiza, rcga |
---|
| 1168 | IMPLICIT NONE |
---|
| 1169 | include "radepsi.h" |
---|
| 1170 | include "radopt.h" |
---|
| 1171 | |
---|
| 1172 | ! ------------------------------------------------------------------ |
---|
| 1173 | ! PURPOSE. |
---|
| 1174 | ! -------- |
---|
| 1175 | ! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY IN CASE OF |
---|
| 1176 | ! CLEAR-SKY COLUMN |
---|
| 1177 | |
---|
| 1178 | ! REFERENCE. |
---|
| 1179 | ! ---------- |
---|
| 1180 | |
---|
| 1181 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 1182 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 1183 | |
---|
| 1184 | ! AUTHOR. |
---|
| 1185 | ! ------- |
---|
| 1186 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 1187 | |
---|
| 1188 | ! MODIFICATIONS. |
---|
| 1189 | ! -------------- |
---|
| 1190 | ! ORIGINAL : 94-11-15 |
---|
| 1191 | ! ------------------------------------------------------------------ |
---|
| 1192 | ! * ARGUMENTS: |
---|
| 1193 | |
---|
| 1194 | INTEGER knu |
---|
| 1195 | ! -OB |
---|
[5144] | 1196 | REAL (KIND = 8) flag_aer |
---|
| 1197 | REAL (KIND = 8) tauae(kdlon, kflev, 2) |
---|
| 1198 | REAL (KIND = 8) pizae(kdlon, kflev, 2) |
---|
| 1199 | REAL (KIND = 8) cgae(kdlon, kflev, 2) |
---|
| 1200 | REAL (KIND = 8) paer(kdlon, kflev, 5) |
---|
| 1201 | REAL (KIND = 8) palbp(kdlon, 2) |
---|
| 1202 | REAL (KIND = 8) pdsig(kdlon, kflev) |
---|
| 1203 | REAL (KIND = 8) prayl(kdlon) |
---|
| 1204 | REAL (KIND = 8) psec(kdlon) |
---|
[1992] | 1205 | |
---|
[5144] | 1206 | REAL (KIND = 8) pcgaz(kdlon, kflev) |
---|
| 1207 | REAL (KIND = 8) ppizaz(kdlon, kflev) |
---|
| 1208 | REAL (KIND = 8) pray1(kdlon, kflev + 1) |
---|
| 1209 | REAL (KIND = 8) pray2(kdlon, kflev + 1) |
---|
| 1210 | REAL (KIND = 8) prefz(kdlon, 2, kflev + 1) |
---|
| 1211 | REAL (KIND = 8) prj(kdlon, 6, kflev + 1) |
---|
| 1212 | REAL (KIND = 8) prk(kdlon, 6, kflev + 1) |
---|
| 1213 | REAL (KIND = 8) prmu0(kdlon, kflev + 1) |
---|
| 1214 | REAL (KIND = 8) ptauaz(kdlon, kflev) |
---|
| 1215 | REAL (KIND = 8) ptra1(kdlon, kflev + 1) |
---|
| 1216 | REAL (KIND = 8) ptra2(kdlon, kflev + 1) |
---|
[1992] | 1217 | |
---|
| 1218 | ! * LOCAL VARIABLES: |
---|
| 1219 | |
---|
[5144] | 1220 | REAL (KIND = 8) zc0i(kdlon, kflev + 1) |
---|
| 1221 | REAL (KIND = 8) zcle0(kdlon, kflev) |
---|
| 1222 | REAL (KIND = 8) zclear(kdlon) |
---|
| 1223 | REAL (KIND = 8) zr21(kdlon) |
---|
| 1224 | REAL (KIND = 8) zr23(kdlon) |
---|
| 1225 | REAL (KIND = 8) zss0(kdlon) |
---|
| 1226 | REAL (KIND = 8) zscat(kdlon) |
---|
| 1227 | REAL (KIND = 8) ztr(kdlon, 2, kflev + 1) |
---|
[1992] | 1228 | |
---|
| 1229 | INTEGER jl, jk, ja, jae, jkl, jklp1, jaj, jkm1, in |
---|
[5144] | 1230 | REAL (KIND = 8) ztray, zgar, zratio, zff, zfacoa, zcorae |
---|
| 1231 | REAL (KIND = 8) zmue, zgap, zww, zto, zden, zmu1, zden1 |
---|
| 1232 | REAL (KIND = 8) zbmu0, zbmu1, zre11 |
---|
[1992] | 1233 | |
---|
| 1234 | ! ------------------------------------------------------------------ |
---|
| 1235 | |
---|
| 1236 | ! * 1. OPTICAL PARAMETERS FOR AEROSOLS AND RAYLEIGH |
---|
| 1237 | ! -------------------------------------------- |
---|
| 1238 | |
---|
| 1239 | |
---|
| 1240 | ! cdir collapse |
---|
| 1241 | DO jk = 1, kflev + 1 |
---|
| 1242 | DO ja = 1, 6 |
---|
| 1243 | DO jl = 1, kdlon |
---|
| 1244 | prj(jl, ja, jk) = 0. |
---|
| 1245 | prk(jl, ja, jk) = 0. |
---|
| 1246 | END DO |
---|
| 1247 | END DO |
---|
| 1248 | END DO |
---|
| 1249 | |
---|
| 1250 | DO jk = 1, kflev |
---|
| 1251 | ! -OB |
---|
| 1252 | ! DO 104 JL = 1, KDLON |
---|
| 1253 | ! PCGAZ(JL,JK) = 0. |
---|
| 1254 | ! PPIZAZ(JL,JK) = 0. |
---|
| 1255 | ! PTAUAZ(JL,JK) = 0. |
---|
| 1256 | ! 104 CONTINUE |
---|
| 1257 | ! -OB |
---|
| 1258 | ! DO 106 JAE=1,5 |
---|
| 1259 | ! DO 105 JL = 1, KDLON |
---|
| 1260 | ! PTAUAZ(JL,JK)=PTAUAZ(JL,JK) |
---|
| 1261 | ! S +PAER(JL,JK,JAE)*TAUA(KNU,JAE) |
---|
| 1262 | ! PPIZAZ(JL,JK)=PPIZAZ(JL,JK)+PAER(JL,JK,JAE) |
---|
| 1263 | ! S * TAUA(KNU,JAE)*RPIZA(KNU,JAE) |
---|
| 1264 | ! PCGAZ(JL,JK) = PCGAZ(JL,JK) +PAER(JL,JK,JAE) |
---|
| 1265 | ! S * TAUA(KNU,JAE)*RPIZA(KNU,JAE)*RCGA(KNU,JAE) |
---|
| 1266 | ! 105 CONTINUE |
---|
| 1267 | ! 106 CONTINUE |
---|
| 1268 | ! -OB |
---|
| 1269 | DO jl = 1, kdlon |
---|
[5144] | 1270 | ptauaz(jl, jk) = flag_aer * tauae(jl, jk, knu) |
---|
| 1271 | ppizaz(jl, jk) = flag_aer * pizae(jl, jk, knu) |
---|
| 1272 | pcgaz(jl, jk) = flag_aer * cgae(jl, jk, knu) |
---|
[1992] | 1273 | END DO |
---|
| 1274 | |
---|
| 1275 | IF (flag_aer>0) THEN |
---|
| 1276 | ! -OB |
---|
| 1277 | DO jl = 1, kdlon |
---|
| 1278 | ! PCGAZ(JL,JK)=PCGAZ(JL,JK)/PPIZAZ(JL,JK) |
---|
| 1279 | ! PPIZAZ(JL,JK)=PPIZAZ(JL,JK)/PTAUAZ(JL,JK) |
---|
[5144] | 1280 | ztray = prayl(jl) * pdsig(jl, jk) |
---|
| 1281 | zratio = ztray / (ztray + ptauaz(jl, jk)) |
---|
[1992] | 1282 | zgar = pcgaz(jl, jk) |
---|
[5144] | 1283 | zff = zgar * zgar |
---|
| 1284 | ptauaz(jl, jk) = ztray + ptauaz(jl, jk) * (1. - ppizaz(jl, jk) * zff) |
---|
| 1285 | pcgaz(jl, jk) = zgar * (1. - zratio) / (1. + zgar) |
---|
| 1286 | ppizaz(jl, jk) = zratio + (1. - zratio) * ppizaz(jl, jk) * (1. - zff) / (1. - & |
---|
| 1287 | ppizaz(jl, jk) * zff) |
---|
[1992] | 1288 | END DO |
---|
| 1289 | ELSE |
---|
| 1290 | DO jl = 1, kdlon |
---|
[5144] | 1291 | ztray = prayl(jl) * pdsig(jl, jk) |
---|
[1992] | 1292 | ptauaz(jl, jk) = ztray |
---|
| 1293 | pcgaz(jl, jk) = 0. |
---|
| 1294 | ppizaz(jl, jk) = 1. - repsct |
---|
| 1295 | END DO |
---|
| 1296 | END IF ! check flag_aer |
---|
| 1297 | ! 107 CONTINUE |
---|
| 1298 | ! PRINT 9107,JK,((PAER(JL,JK,JAE),JAE=1,5) |
---|
| 1299 | ! $ ,PTAUAZ(JL,JK),PPIZAZ(JL,JK),PCGAZ(JL,JK),JL=1,KDLON) |
---|
| 1300 | ! 9107 FORMAT(1X,'SWCLR_107',I3,8E12.5) |
---|
| 1301 | |
---|
| 1302 | END DO |
---|
| 1303 | |
---|
| 1304 | ! ------------------------------------------------------------------ |
---|
| 1305 | |
---|
| 1306 | ! * 2. TOTAL EFFECTIVE CLOUDINESS ABOVE A GIVEN LEVEL |
---|
| 1307 | ! ---------------------------------------------- |
---|
| 1308 | |
---|
| 1309 | DO jl = 1, kdlon |
---|
| 1310 | zr23(jl) = 0. |
---|
[5144] | 1311 | zc0i(jl, kflev + 1) = 0. |
---|
[1992] | 1312 | zclear(jl) = 1. |
---|
| 1313 | zscat(jl) = 0. |
---|
| 1314 | END DO |
---|
| 1315 | |
---|
| 1316 | jk = 1 |
---|
| 1317 | jkl = kflev + 1 - jk |
---|
| 1318 | jklp1 = jkl + 1 |
---|
| 1319 | DO jl = 1, kdlon |
---|
[5144] | 1320 | zfacoa = 1. - ppizaz(jl, jkl) * pcgaz(jl, jkl) * pcgaz(jl, jkl) |
---|
| 1321 | zcorae = zfacoa * ptauaz(jl, jkl) * psec(jl) |
---|
[1992] | 1322 | zr21(jl) = exp(-zcorae) |
---|
| 1323 | zss0(jl) = 1. - zr21(jl) |
---|
| 1324 | zcle0(jl, jkl) = zss0(jl) |
---|
| 1325 | |
---|
| 1326 | IF (novlp==1) THEN |
---|
| 1327 | ! * maximum-random |
---|
[5144] | 1328 | zclear(jl) = zclear(jl) * (1.0 - max(zss0(jl), zscat(jl))) / & |
---|
| 1329 | (1.0 - min(zscat(jl), 1. - zepsec)) |
---|
[1992] | 1330 | zc0i(jl, jkl) = 1.0 - zclear(jl) |
---|
| 1331 | zscat(jl) = zss0(jl) |
---|
| 1332 | ELSE IF (novlp==2) THEN |
---|
| 1333 | ! * maximum |
---|
| 1334 | zscat(jl) = max(zss0(jl), zscat(jl)) |
---|
| 1335 | zc0i(jl, jkl) = zscat(jl) |
---|
| 1336 | ELSE IF (novlp==3) THEN |
---|
| 1337 | ! * random |
---|
[5144] | 1338 | zclear(jl) = zclear(jl) * (1.0 - zss0(jl)) |
---|
[1992] | 1339 | zscat(jl) = 1.0 - zclear(jl) |
---|
| 1340 | zc0i(jl, jkl) = zscat(jl) |
---|
| 1341 | END IF |
---|
| 1342 | END DO |
---|
| 1343 | |
---|
| 1344 | DO jk = 2, kflev |
---|
| 1345 | jkl = kflev + 1 - jk |
---|
| 1346 | jklp1 = jkl + 1 |
---|
| 1347 | DO jl = 1, kdlon |
---|
[5144] | 1348 | zfacoa = 1. - ppizaz(jl, jkl) * pcgaz(jl, jkl) * pcgaz(jl, jkl) |
---|
| 1349 | zcorae = zfacoa * ptauaz(jl, jkl) * psec(jl) |
---|
[1992] | 1350 | zr21(jl) = exp(-zcorae) |
---|
| 1351 | zss0(jl) = 1. - zr21(jl) |
---|
| 1352 | zcle0(jl, jkl) = zss0(jl) |
---|
| 1353 | |
---|
| 1354 | IF (novlp==1) THEN |
---|
| 1355 | ! * maximum-random |
---|
[5144] | 1356 | zclear(jl) = zclear(jl) * (1.0 - max(zss0(jl), zscat(jl))) / & |
---|
| 1357 | (1.0 - min(zscat(jl), 1. - zepsec)) |
---|
[1992] | 1358 | zc0i(jl, jkl) = 1.0 - zclear(jl) |
---|
| 1359 | zscat(jl) = zss0(jl) |
---|
| 1360 | ELSE IF (novlp==2) THEN |
---|
| 1361 | ! * maximum |
---|
| 1362 | zscat(jl) = max(zss0(jl), zscat(jl)) |
---|
| 1363 | zc0i(jl, jkl) = zscat(jl) |
---|
| 1364 | ELSE IF (novlp==3) THEN |
---|
| 1365 | ! * random |
---|
[5144] | 1366 | zclear(jl) = zclear(jl) * (1.0 - zss0(jl)) |
---|
[1992] | 1367 | zscat(jl) = 1.0 - zclear(jl) |
---|
| 1368 | zc0i(jl, jkl) = zscat(jl) |
---|
[998] | 1369 | END IF |
---|
[1992] | 1370 | END DO |
---|
| 1371 | END DO |
---|
[998] | 1372 | |
---|
[1992] | 1373 | ! ------------------------------------------------------------------ |
---|
[1279] | 1374 | |
---|
[1992] | 1375 | ! * 3. REFLECTIVITY/TRANSMISSIVITY FOR PURE SCATTERING |
---|
| 1376 | ! ----------------------------------------------- |
---|
| 1377 | |
---|
| 1378 | DO jl = 1, kdlon |
---|
[5144] | 1379 | pray1(jl, kflev + 1) = 0. |
---|
| 1380 | pray2(jl, kflev + 1) = 0. |
---|
[1992] | 1381 | prefz(jl, 2, 1) = palbp(jl, knu) |
---|
| 1382 | prefz(jl, 1, 1) = palbp(jl, knu) |
---|
[5144] | 1383 | ptra1(jl, kflev + 1) = 1. |
---|
| 1384 | ptra2(jl, kflev + 1) = 1. |
---|
[1992] | 1385 | END DO |
---|
| 1386 | |
---|
| 1387 | DO jk = 2, kflev + 1 |
---|
| 1388 | jkm1 = jk - 1 |
---|
| 1389 | DO jl = 1, kdlon |
---|
| 1390 | |
---|
| 1391 | ! ------------------------------------------------------------------ |
---|
| 1392 | |
---|
| 1393 | ! * 3.1 EQUIVALENT ZENITH ANGLE |
---|
| 1394 | ! ----------------------- |
---|
| 1395 | |
---|
[5144] | 1396 | zmue = (1. - zc0i(jl, jk)) * psec(jl) + zc0i(jl, jk) * 1.66 |
---|
| 1397 | prmu0(jl, jk) = 1. / zmue |
---|
[1992] | 1398 | |
---|
| 1399 | ! ------------------------------------------------------------------ |
---|
| 1400 | |
---|
| 1401 | ! * 3.2 REFLECT./TRANSMISSIVITY DUE TO RAYLEIGH AND AEROSOLS |
---|
| 1402 | ! ---------------------------------------------------- |
---|
| 1403 | |
---|
| 1404 | zgap = pcgaz(jl, jkm1) |
---|
[5144] | 1405 | zbmu0 = 0.5 - 0.75 * zgap / zmue |
---|
[1992] | 1406 | zww = ppizaz(jl, jkm1) |
---|
| 1407 | zto = ptauaz(jl, jkm1) |
---|
[5144] | 1408 | zden = 1. + (1. - zww + zbmu0 * zww) * zto * zmue + (1 - zww) * (1. - zww + 2. * zbmu0 * zww) & |
---|
| 1409 | * zto * zto * zmue * zmue |
---|
| 1410 | pray1(jl, jkm1) = zbmu0 * zww * zto * zmue / zden |
---|
| 1411 | ptra1(jl, jkm1) = 1. / zden |
---|
[1992] | 1412 | |
---|
| 1413 | zmu1 = 0.5 |
---|
[5144] | 1414 | zbmu1 = 0.5 - 0.75 * zgap * zmu1 |
---|
| 1415 | zden1 = 1. + (1. - zww + zbmu1 * zww) * zto / zmu1 + (1 - zww) * (1. - zww + 2. * zbmu1 * zww & |
---|
| 1416 | ) * zto * zto / zmu1 / zmu1 |
---|
| 1417 | pray2(jl, jkm1) = zbmu1 * zww * zto / zmu1 / zden1 |
---|
| 1418 | ptra2(jl, jkm1) = 1. / zden1 |
---|
[1992] | 1419 | |
---|
[5144] | 1420 | prefz(jl, 1, jk) = (pray1(jl, jkm1) + prefz(jl, 1, jkm1) * ptra1(jl, jkm1) * & |
---|
| 1421 | ptra2(jl, jkm1) / (1. - pray2(jl, jkm1) * prefz(jl, 1, jkm1))) |
---|
[1992] | 1422 | |
---|
[5144] | 1423 | ztr(jl, 1, jkm1) = (ptra1(jl, jkm1) / (1. - pray2(jl, jkm1) * prefz(jl, 1, & |
---|
| 1424 | jkm1))) |
---|
[1992] | 1425 | |
---|
[5144] | 1426 | prefz(jl, 2, jk) = (pray1(jl, jkm1) + prefz(jl, 2, jkm1) * ptra1(jl, jkm1) * & |
---|
| 1427 | ptra2(jl, jkm1)) |
---|
[1992] | 1428 | |
---|
| 1429 | ztr(jl, 2, jkm1) = ptra1(jl, jkm1) |
---|
| 1430 | |
---|
| 1431 | END DO |
---|
| 1432 | END DO |
---|
| 1433 | DO jl = 1, kdlon |
---|
[5144] | 1434 | zmue = (1. - zc0i(jl, 1)) * psec(jl) + zc0i(jl, 1) * 1.66 |
---|
| 1435 | prmu0(jl, 1) = 1. / zmue |
---|
[1992] | 1436 | END DO |
---|
| 1437 | |
---|
| 1438 | ! ------------------------------------------------------------------ |
---|
| 1439 | |
---|
| 1440 | ! * 3.5 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
---|
| 1441 | ! ------------------------------------------------- |
---|
| 1442 | |
---|
| 1443 | IF (knu==1) THEN |
---|
| 1444 | jaj = 2 |
---|
| 1445 | DO jl = 1, kdlon |
---|
[5144] | 1446 | prj(jl, jaj, kflev + 1) = 1. |
---|
| 1447 | prk(jl, jaj, kflev + 1) = prefz(jl, 1, kflev + 1) |
---|
[1992] | 1448 | END DO |
---|
| 1449 | |
---|
| 1450 | DO jk = 1, kflev |
---|
| 1451 | jkl = kflev + 1 - jk |
---|
| 1452 | jklp1 = jkl + 1 |
---|
| 1453 | DO jl = 1, kdlon |
---|
[5144] | 1454 | zre11 = prj(jl, jaj, jklp1) * ztr(jl, 1, jkl) |
---|
[1992] | 1455 | prj(jl, jaj, jkl) = zre11 |
---|
[5144] | 1456 | prk(jl, jaj, jkl) = zre11 * prefz(jl, 1, jkl) |
---|
[998] | 1457 | END DO |
---|
[1992] | 1458 | END DO |
---|
| 1459 | |
---|
| 1460 | ELSE |
---|
| 1461 | |
---|
| 1462 | DO jaj = 1, 2 |
---|
| 1463 | DO jl = 1, kdlon |
---|
[5144] | 1464 | prj(jl, jaj, kflev + 1) = 1. |
---|
| 1465 | prk(jl, jaj, kflev + 1) = prefz(jl, jaj, kflev + 1) |
---|
[1992] | 1466 | END DO |
---|
| 1467 | |
---|
| 1468 | DO jk = 1, kflev |
---|
| 1469 | jkl = kflev + 1 - jk |
---|
| 1470 | jklp1 = jkl + 1 |
---|
| 1471 | DO jl = 1, kdlon |
---|
[5144] | 1472 | zre11 = prj(jl, jaj, jklp1) * ztr(jl, jaj, jkl) |
---|
[1992] | 1473 | prj(jl, jaj, jkl) = zre11 |
---|
[5144] | 1474 | prk(jl, jaj, jkl) = zre11 * prefz(jl, jaj, jkl) |
---|
[1992] | 1475 | END DO |
---|
| 1476 | END DO |
---|
| 1477 | END DO |
---|
| 1478 | |
---|
| 1479 | END IF |
---|
| 1480 | |
---|
| 1481 | ! ------------------------------------------------------------------ |
---|
| 1482 | |
---|
| 1483 | END SUBROUTINE swclr_lmdar4 |
---|
| 1484 | SUBROUTINE swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, prayl, psec, & |
---|
[5144] | 1485 | ptau, pcgaz, ppizaz, pray1, pray2, prefz, prj, prk, prmue, ptauaz, ptra1, & |
---|
| 1486 | ptra2) |
---|
[1992] | 1487 | USE dimphy |
---|
| 1488 | IMPLICIT NONE |
---|
| 1489 | include "radepsi.h" |
---|
| 1490 | include "radopt.h" |
---|
| 1491 | |
---|
| 1492 | ! ------------------------------------------------------------------ |
---|
| 1493 | ! PURPOSE. |
---|
| 1494 | ! -------- |
---|
| 1495 | ! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY IN CASE OF |
---|
| 1496 | ! CONTINUUM SCATTERING |
---|
| 1497 | |
---|
| 1498 | ! METHOD. |
---|
| 1499 | ! ------- |
---|
| 1500 | |
---|
| 1501 | ! 1. COMPUTES CONTINUUM FLUXES CORRESPONDING TO AEROSOL |
---|
| 1502 | ! OR/AND RAYLEIGH SCATTERING (NO MOLECULAR GAS ABSORPTION) |
---|
| 1503 | |
---|
| 1504 | ! REFERENCE. |
---|
| 1505 | ! ---------- |
---|
| 1506 | |
---|
| 1507 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 1508 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 1509 | |
---|
| 1510 | ! AUTHOR. |
---|
| 1511 | ! ------- |
---|
| 1512 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 1513 | |
---|
| 1514 | ! MODIFICATIONS. |
---|
| 1515 | ! -------------- |
---|
| 1516 | ! ORIGINAL : 89-07-14 |
---|
| 1517 | ! ------------------------------------------------------------------ |
---|
| 1518 | ! * ARGUMENTS: |
---|
| 1519 | |
---|
| 1520 | INTEGER knu |
---|
[5144] | 1521 | REAL (KIND = 8) palbd(kdlon, 2) |
---|
| 1522 | REAL (KIND = 8) pcg(kdlon, 2, kflev) |
---|
| 1523 | REAL (KIND = 8) pcld(kdlon, kflev) |
---|
| 1524 | REAL (KIND = 8) pdsig(kdlon, kflev) |
---|
| 1525 | REAL (KIND = 8) pomega(kdlon, 2, kflev) |
---|
| 1526 | REAL (KIND = 8) prayl(kdlon) |
---|
| 1527 | REAL (KIND = 8) psec(kdlon) |
---|
| 1528 | REAL (KIND = 8) ptau(kdlon, 2, kflev) |
---|
[1992] | 1529 | |
---|
[5144] | 1530 | REAL (KIND = 8) pray1(kdlon, kflev + 1) |
---|
| 1531 | REAL (KIND = 8) pray2(kdlon, kflev + 1) |
---|
| 1532 | REAL (KIND = 8) prefz(kdlon, 2, kflev + 1) |
---|
| 1533 | REAL (KIND = 8) prj(kdlon, 6, kflev + 1) |
---|
| 1534 | REAL (KIND = 8) prk(kdlon, 6, kflev + 1) |
---|
| 1535 | REAL (KIND = 8) prmue(kdlon, kflev + 1) |
---|
| 1536 | REAL (KIND = 8) pcgaz(kdlon, kflev) |
---|
| 1537 | REAL (KIND = 8) ppizaz(kdlon, kflev) |
---|
| 1538 | REAL (KIND = 8) ptauaz(kdlon, kflev) |
---|
| 1539 | REAL (KIND = 8) ptra1(kdlon, kflev + 1) |
---|
| 1540 | REAL (KIND = 8) ptra2(kdlon, kflev + 1) |
---|
[1992] | 1541 | |
---|
| 1542 | ! * LOCAL VARIABLES: |
---|
| 1543 | |
---|
[5144] | 1544 | REAL (KIND = 8) zc1i(kdlon, kflev + 1) |
---|
| 1545 | REAL (KIND = 8) zcleq(kdlon, kflev) |
---|
| 1546 | REAL (KIND = 8) zclear(kdlon) |
---|
| 1547 | REAL (KIND = 8) zcloud(kdlon) |
---|
| 1548 | REAL (KIND = 8) zgg(kdlon) |
---|
| 1549 | REAL (KIND = 8) zref(kdlon) |
---|
| 1550 | REAL (KIND = 8) zre1(kdlon) |
---|
| 1551 | REAL (KIND = 8) zre2(kdlon) |
---|
| 1552 | REAL (KIND = 8) zrmuz(kdlon) |
---|
| 1553 | REAL (KIND = 8) zrneb(kdlon) |
---|
| 1554 | REAL (KIND = 8) zr21(kdlon) |
---|
| 1555 | REAL (KIND = 8) zr22(kdlon) |
---|
| 1556 | REAL (KIND = 8) zr23(kdlon) |
---|
| 1557 | REAL (KIND = 8) zss1(kdlon) |
---|
| 1558 | REAL (KIND = 8) zto1(kdlon) |
---|
| 1559 | REAL (KIND = 8) ztr(kdlon, 2, kflev + 1) |
---|
| 1560 | REAL (KIND = 8) ztr1(kdlon) |
---|
| 1561 | REAL (KIND = 8) ztr2(kdlon) |
---|
| 1562 | REAL (KIND = 8) zw(kdlon) |
---|
[1992] | 1563 | |
---|
| 1564 | INTEGER jk, jl, ja, jkl, jklp1, jkm1, jaj |
---|
[5144] | 1565 | REAL (KIND = 8) zfacoa, zfacoc, zcorae, zcorcd |
---|
| 1566 | REAL (KIND = 8) zmue, zgap, zww, zto, zden, zden1 |
---|
| 1567 | REAL (KIND = 8) zmu1, zre11, zbmu0, zbmu1 |
---|
[1992] | 1568 | |
---|
| 1569 | ! ------------------------------------------------------------------ |
---|
| 1570 | |
---|
| 1571 | ! * 1. INITIALIZATION |
---|
| 1572 | ! -------------- |
---|
| 1573 | |
---|
| 1574 | DO jk = 1, kflev + 1 |
---|
| 1575 | DO ja = 1, 6 |
---|
| 1576 | DO jl = 1, kdlon |
---|
| 1577 | prj(jl, ja, jk) = 0. |
---|
| 1578 | prk(jl, ja, jk) = 0. |
---|
| 1579 | END DO |
---|
| 1580 | END DO |
---|
| 1581 | END DO |
---|
| 1582 | |
---|
| 1583 | ! ------------------------------------------------------------------ |
---|
| 1584 | |
---|
| 1585 | ! * 2. TOTAL EFFECTIVE CLOUDINESS ABOVE A GIVEN LEVEL |
---|
| 1586 | ! ---------------------------------------------- |
---|
| 1587 | |
---|
| 1588 | DO jl = 1, kdlon |
---|
| 1589 | zr23(jl) = 0. |
---|
[5144] | 1590 | zc1i(jl, kflev + 1) = 0. |
---|
[1992] | 1591 | zclear(jl) = 1. |
---|
| 1592 | zcloud(jl) = 0. |
---|
| 1593 | END DO |
---|
| 1594 | |
---|
| 1595 | jk = 1 |
---|
| 1596 | jkl = kflev + 1 - jk |
---|
| 1597 | jklp1 = jkl + 1 |
---|
| 1598 | DO jl = 1, kdlon |
---|
[5144] | 1599 | zfacoa = 1. - ppizaz(jl, jkl) * pcgaz(jl, jkl) * pcgaz(jl, jkl) |
---|
| 1600 | zfacoc = 1. - pomega(jl, knu, jkl) * pcg(jl, knu, jkl) * pcg(jl, knu, jkl) |
---|
| 1601 | zcorae = zfacoa * ptauaz(jl, jkl) * psec(jl) |
---|
| 1602 | zcorcd = zfacoc * ptau(jl, knu, jkl) * psec(jl) |
---|
[1992] | 1603 | zr21(jl) = exp(-zcorae) |
---|
| 1604 | zr22(jl) = exp(-zcorcd) |
---|
[5144] | 1605 | zss1(jl) = pcld(jl, jkl) * (1.0 - zr21(jl) * zr22(jl)) + & |
---|
| 1606 | (1.0 - pcld(jl, jkl)) * (1.0 - zr21(jl)) |
---|
[1992] | 1607 | zcleq(jl, jkl) = zss1(jl) |
---|
| 1608 | |
---|
| 1609 | IF (novlp==1) THEN |
---|
| 1610 | ! * maximum-random |
---|
[5144] | 1611 | zclear(jl) = zclear(jl) * (1.0 - max(zss1(jl), zcloud(jl))) / & |
---|
| 1612 | (1.0 - min(zcloud(jl), 1. - zepsec)) |
---|
[1992] | 1613 | zc1i(jl, jkl) = 1.0 - zclear(jl) |
---|
| 1614 | zcloud(jl) = zss1(jl) |
---|
| 1615 | ELSE IF (novlp==2) THEN |
---|
| 1616 | ! * maximum |
---|
| 1617 | zcloud(jl) = max(zss1(jl), zcloud(jl)) |
---|
| 1618 | zc1i(jl, jkl) = zcloud(jl) |
---|
| 1619 | ELSE IF (novlp==3) THEN |
---|
| 1620 | ! * random |
---|
[5144] | 1621 | zclear(jl) = zclear(jl) * (1.0 - zss1(jl)) |
---|
[1992] | 1622 | zcloud(jl) = 1.0 - zclear(jl) |
---|
| 1623 | zc1i(jl, jkl) = zcloud(jl) |
---|
| 1624 | END IF |
---|
| 1625 | END DO |
---|
| 1626 | |
---|
| 1627 | DO jk = 2, kflev |
---|
| 1628 | jkl = kflev + 1 - jk |
---|
| 1629 | jklp1 = jkl + 1 |
---|
| 1630 | DO jl = 1, kdlon |
---|
[5144] | 1631 | zfacoa = 1. - ppizaz(jl, jkl) * pcgaz(jl, jkl) * pcgaz(jl, jkl) |
---|
| 1632 | zfacoc = 1. - pomega(jl, knu, jkl) * pcg(jl, knu, jkl) * pcg(jl, knu, jkl) |
---|
| 1633 | zcorae = zfacoa * ptauaz(jl, jkl) * psec(jl) |
---|
| 1634 | zcorcd = zfacoc * ptau(jl, knu, jkl) * psec(jl) |
---|
[1992] | 1635 | zr21(jl) = exp(-zcorae) |
---|
| 1636 | zr22(jl) = exp(-zcorcd) |
---|
[5144] | 1637 | zss1(jl) = pcld(jl, jkl) * (1.0 - zr21(jl) * zr22(jl)) + & |
---|
| 1638 | (1.0 - pcld(jl, jkl)) * (1.0 - zr21(jl)) |
---|
[1992] | 1639 | zcleq(jl, jkl) = zss1(jl) |
---|
| 1640 | |
---|
| 1641 | IF (novlp==1) THEN |
---|
| 1642 | ! * maximum-random |
---|
[5144] | 1643 | zclear(jl) = zclear(jl) * (1.0 - max(zss1(jl), zcloud(jl))) / & |
---|
| 1644 | (1.0 - min(zcloud(jl), 1. - zepsec)) |
---|
[1992] | 1645 | zc1i(jl, jkl) = 1.0 - zclear(jl) |
---|
| 1646 | zcloud(jl) = zss1(jl) |
---|
| 1647 | ELSE IF (novlp==2) THEN |
---|
| 1648 | ! * maximum |
---|
| 1649 | zcloud(jl) = max(zss1(jl), zcloud(jl)) |
---|
| 1650 | zc1i(jl, jkl) = zcloud(jl) |
---|
| 1651 | ELSE IF (novlp==3) THEN |
---|
| 1652 | ! * random |
---|
[5144] | 1653 | zclear(jl) = zclear(jl) * (1.0 - zss1(jl)) |
---|
[1992] | 1654 | zcloud(jl) = 1.0 - zclear(jl) |
---|
| 1655 | zc1i(jl, jkl) = zcloud(jl) |
---|
[998] | 1656 | END IF |
---|
[1992] | 1657 | END DO |
---|
| 1658 | END DO |
---|
| 1659 | |
---|
| 1660 | ! ------------------------------------------------------------------ |
---|
| 1661 | |
---|
| 1662 | ! * 3. REFLECTIVITY/TRANSMISSIVITY FOR PURE SCATTERING |
---|
| 1663 | ! ----------------------------------------------- |
---|
| 1664 | |
---|
| 1665 | DO jl = 1, kdlon |
---|
[5144] | 1666 | pray1(jl, kflev + 1) = 0. |
---|
| 1667 | pray2(jl, kflev + 1) = 0. |
---|
[1992] | 1668 | prefz(jl, 2, 1) = palbd(jl, knu) |
---|
| 1669 | prefz(jl, 1, 1) = palbd(jl, knu) |
---|
[5144] | 1670 | ptra1(jl, kflev + 1) = 1. |
---|
| 1671 | ptra2(jl, kflev + 1) = 1. |
---|
[1992] | 1672 | END DO |
---|
| 1673 | |
---|
| 1674 | DO jk = 2, kflev + 1 |
---|
| 1675 | jkm1 = jk - 1 |
---|
| 1676 | DO jl = 1, kdlon |
---|
| 1677 | zrneb(jl) = pcld(jl, jkm1) |
---|
| 1678 | zre1(jl) = 0. |
---|
| 1679 | ztr1(jl) = 0. |
---|
| 1680 | zre2(jl) = 0. |
---|
| 1681 | ztr2(jl) = 0. |
---|
| 1682 | |
---|
| 1683 | ! ------------------------------------------------------------------ |
---|
| 1684 | |
---|
| 1685 | ! * 3.1 EQUIVALENT ZENITH ANGLE |
---|
| 1686 | ! ----------------------- |
---|
| 1687 | |
---|
[5144] | 1688 | zmue = (1. - zc1i(jl, jk)) * psec(jl) + zc1i(jl, jk) * 1.66 |
---|
| 1689 | prmue(jl, jk) = 1. / zmue |
---|
[1992] | 1690 | |
---|
| 1691 | ! ------------------------------------------------------------------ |
---|
| 1692 | |
---|
| 1693 | ! * 3.2 REFLECT./TRANSMISSIVITY DUE TO RAYLEIGH AND AEROSOLS |
---|
| 1694 | ! ---------------------------------------------------- |
---|
| 1695 | |
---|
| 1696 | zgap = pcgaz(jl, jkm1) |
---|
[5144] | 1697 | zbmu0 = 0.5 - 0.75 * zgap / zmue |
---|
[1992] | 1698 | zww = ppizaz(jl, jkm1) |
---|
| 1699 | zto = ptauaz(jl, jkm1) |
---|
[5144] | 1700 | zden = 1. + (1. - zww + zbmu0 * zww) * zto * zmue + (1 - zww) * (1. - zww + 2. * zbmu0 * zww) & |
---|
| 1701 | * zto * zto * zmue * zmue |
---|
| 1702 | pray1(jl, jkm1) = zbmu0 * zww * zto * zmue / zden |
---|
| 1703 | ptra1(jl, jkm1) = 1. / zden |
---|
[1992] | 1704 | ! PRINT *,' LOOP 342 ** 3 ** JL=',JL,PRAY1(JL,JKM1),PTRA1(JL,JKM1) |
---|
| 1705 | |
---|
| 1706 | zmu1 = 0.5 |
---|
[5144] | 1707 | zbmu1 = 0.5 - 0.75 * zgap * zmu1 |
---|
| 1708 | zden1 = 1. + (1. - zww + zbmu1 * zww) * zto / zmu1 + (1 - zww) * (1. - zww + 2. * zbmu1 * zww & |
---|
| 1709 | ) * zto * zto / zmu1 / zmu1 |
---|
| 1710 | pray2(jl, jkm1) = zbmu1 * zww * zto / zmu1 / zden1 |
---|
| 1711 | ptra2(jl, jkm1) = 1. / zden1 |
---|
[1992] | 1712 | |
---|
| 1713 | ! ------------------------------------------------------------------ |
---|
| 1714 | |
---|
| 1715 | ! * 3.3 EFFECT OF CLOUD LAYER |
---|
| 1716 | ! --------------------- |
---|
| 1717 | |
---|
| 1718 | zw(jl) = pomega(jl, knu, jkm1) |
---|
[5144] | 1719 | zto1(jl) = ptau(jl, knu, jkm1) / zw(jl) + ptauaz(jl, jkm1) / ppizaz(jl, & |
---|
| 1720 | jkm1) |
---|
[1992] | 1721 | zr21(jl) = ptau(jl, knu, jkm1) + ptauaz(jl, jkm1) |
---|
[5144] | 1722 | zr22(jl) = ptau(jl, knu, jkm1) / zr21(jl) |
---|
| 1723 | zgg(jl) = zr22(jl) * pcg(jl, knu, jkm1) + (1. - zr22(jl)) * pcgaz(jl, jkm1) |
---|
[1992] | 1724 | ! Modif PhD - JJM 19/03/96 pour erreurs arrondis |
---|
| 1725 | ! machine |
---|
| 1726 | ! PHD PROTECTION ZW(JL) = ZR21(JL) / ZTO1(JL) |
---|
[5144] | 1727 | IF (zw(jl)==1. .AND. ppizaz(jl, jkm1)==1.) THEN |
---|
[1992] | 1728 | zw(jl) = 1. |
---|
[998] | 1729 | ELSE |
---|
[5144] | 1730 | zw(jl) = zr21(jl) / zto1(jl) |
---|
[998] | 1731 | END IF |
---|
[1992] | 1732 | zref(jl) = prefz(jl, 1, jkm1) |
---|
| 1733 | zrmuz(jl) = prmue(jl, jk) |
---|
| 1734 | END DO |
---|
[1279] | 1735 | |
---|
[1992] | 1736 | CALL swde_lmdar4(zgg, zref, zrmuz, zto1, zw, zre1, zre2, ztr1, ztr2) |
---|
[1279] | 1737 | |
---|
[1992] | 1738 | DO jl = 1, kdlon |
---|
[1279] | 1739 | |
---|
[5144] | 1740 | prefz(jl, 1, jk) = (1. - zrneb(jl)) * (pray1(jl, jkm1) + prefz(jl, 1, jkm1) * & |
---|
| 1741 | ptra1(jl, jkm1) * ptra2(jl, jkm1) / (1. - pray2(jl, jkm1) * prefz(jl, 1, & |
---|
| 1742 | jkm1))) + zrneb(jl) * zre2(jl) |
---|
[1279] | 1743 | |
---|
[5144] | 1744 | ztr(jl, 1, jkm1) = zrneb(jl) * ztr2(jl) + (ptra1(jl, jkm1) / (1. - pray2(jl, & |
---|
| 1745 | jkm1) * prefz(jl, 1, jkm1))) * (1. - zrneb(jl)) |
---|
[998] | 1746 | |
---|
[5144] | 1747 | prefz(jl, 2, jk) = (1. - zrneb(jl)) * (pray1(jl, jkm1) + prefz(jl, 2, jkm1) * & |
---|
| 1748 | ptra1(jl, jkm1) * ptra2(jl, jkm1)) + zrneb(jl) * zre1(jl) |
---|
[1992] | 1749 | |
---|
[5144] | 1750 | ztr(jl, 2, jkm1) = zrneb(jl) * ztr1(jl) + ptra1(jl, jkm1) * (1. - zrneb(jl)) |
---|
[1992] | 1751 | |
---|
| 1752 | END DO |
---|
| 1753 | END DO |
---|
| 1754 | DO jl = 1, kdlon |
---|
[5144] | 1755 | zmue = (1. - zc1i(jl, 1)) * psec(jl) + zc1i(jl, 1) * 1.66 |
---|
| 1756 | prmue(jl, 1) = 1. / zmue |
---|
[1992] | 1757 | END DO |
---|
| 1758 | |
---|
| 1759 | ! ------------------------------------------------------------------ |
---|
| 1760 | |
---|
| 1761 | ! * 3.5 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
---|
| 1762 | ! ------------------------------------------------- |
---|
| 1763 | |
---|
| 1764 | IF (knu==1) THEN |
---|
| 1765 | jaj = 2 |
---|
| 1766 | DO jl = 1, kdlon |
---|
[5144] | 1767 | prj(jl, jaj, kflev + 1) = 1. |
---|
| 1768 | prk(jl, jaj, kflev + 1) = prefz(jl, 1, kflev + 1) |
---|
[1992] | 1769 | END DO |
---|
| 1770 | |
---|
| 1771 | DO jk = 1, kflev |
---|
| 1772 | jkl = kflev + 1 - jk |
---|
| 1773 | jklp1 = jkl + 1 |
---|
| 1774 | DO jl = 1, kdlon |
---|
[5144] | 1775 | zre11 = prj(jl, jaj, jklp1) * ztr(jl, 1, jkl) |
---|
[1992] | 1776 | prj(jl, jaj, jkl) = zre11 |
---|
[5144] | 1777 | prk(jl, jaj, jkl) = zre11 * prefz(jl, 1, jkl) |
---|
[1992] | 1778 | END DO |
---|
| 1779 | END DO |
---|
| 1780 | |
---|
| 1781 | ELSE |
---|
| 1782 | |
---|
| 1783 | DO jaj = 1, 2 |
---|
| 1784 | DO jl = 1, kdlon |
---|
[5144] | 1785 | prj(jl, jaj, kflev + 1) = 1. |
---|
| 1786 | prk(jl, jaj, kflev + 1) = prefz(jl, jaj, kflev + 1) |
---|
[1992] | 1787 | END DO |
---|
| 1788 | |
---|
| 1789 | DO jk = 1, kflev |
---|
| 1790 | jkl = kflev + 1 - jk |
---|
| 1791 | jklp1 = jkl + 1 |
---|
| 1792 | DO jl = 1, kdlon |
---|
[5144] | 1793 | zre11 = prj(jl, jaj, jklp1) * ztr(jl, jaj, jkl) |
---|
[1992] | 1794 | prj(jl, jaj, jkl) = zre11 |
---|
[5144] | 1795 | prk(jl, jaj, jkl) = zre11 * prefz(jl, jaj, jkl) |
---|
[1992] | 1796 | END DO |
---|
| 1797 | END DO |
---|
| 1798 | END DO |
---|
| 1799 | |
---|
| 1800 | END IF |
---|
| 1801 | |
---|
| 1802 | ! ------------------------------------------------------------------ |
---|
| 1803 | |
---|
| 1804 | END SUBROUTINE swr_lmdar4 |
---|
| 1805 | SUBROUTINE swde_lmdar4(pgg, pref, prmuz, pto1, pw, pre1, pre2, ptr1, ptr2) |
---|
| 1806 | USE dimphy |
---|
| 1807 | IMPLICIT NONE |
---|
| 1808 | |
---|
| 1809 | ! ------------------------------------------------------------------ |
---|
| 1810 | ! PURPOSE. |
---|
| 1811 | ! -------- |
---|
| 1812 | ! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY OF A CLOUDY |
---|
| 1813 | ! LAYER USING THE DELTA-EDDINGTON'S APPROXIMATION. |
---|
| 1814 | |
---|
| 1815 | ! METHOD. |
---|
| 1816 | ! ------- |
---|
| 1817 | |
---|
| 1818 | ! STANDARD DELTA-EDDINGTON LAYER CALCULATIONS. |
---|
| 1819 | |
---|
| 1820 | ! REFERENCE. |
---|
| 1821 | ! ---------- |
---|
| 1822 | |
---|
| 1823 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 1824 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 1825 | |
---|
| 1826 | ! AUTHOR. |
---|
| 1827 | ! ------- |
---|
| 1828 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 1829 | |
---|
| 1830 | ! MODIFICATIONS. |
---|
| 1831 | ! -------------- |
---|
| 1832 | ! ORIGINAL : 88-12-15 |
---|
| 1833 | ! ------------------------------------------------------------------ |
---|
| 1834 | ! * ARGUMENTS: |
---|
| 1835 | |
---|
[5144] | 1836 | REAL (KIND = 8) pgg(kdlon) ! ASSYMETRY FACTOR |
---|
| 1837 | REAL (KIND = 8) pref(kdlon) ! REFLECTIVITY OF THE UNDERLYING LAYER |
---|
| 1838 | REAL (KIND = 8) prmuz(kdlon) ! COSINE OF SOLAR ZENITH ANGLE |
---|
| 1839 | REAL (KIND = 8) pto1(kdlon) ! OPTICAL THICKNESS |
---|
| 1840 | REAL (KIND = 8) pw(kdlon) ! SINGLE SCATTERING ALBEDO |
---|
| 1841 | REAL (KIND = 8) pre1(kdlon) ! LAYER REFLECTIVITY (NO UNDERLYING-LAYER REFLECTION) |
---|
| 1842 | REAL (KIND = 8) pre2(kdlon) ! LAYER REFLECTIVITY |
---|
| 1843 | REAL (KIND = 8) ptr1(kdlon) ! LAYER TRANSMISSIVITY (NO UNDERLYING-LAYER REFLECTION) |
---|
| 1844 | REAL (KIND = 8) ptr2(kdlon) ! LAYER TRANSMISSIVITY |
---|
[1992] | 1845 | |
---|
| 1846 | ! * LOCAL VARIABLES: |
---|
| 1847 | |
---|
| 1848 | INTEGER jl |
---|
[5144] | 1849 | REAL (KIND = 8) zff, zgp, ztop, zwcp, zdt, zx1, zwm |
---|
| 1850 | REAL (KIND = 8) zrm2, zrk, zx2, zrp, zalpha, zbeta, zarg |
---|
| 1851 | REAL (KIND = 8) zexmu0, zarg2, zexkp, zexkm, zxp2p, zxm2p, zap2b, zam2b |
---|
| 1852 | REAL (KIND = 8) za11, za12, za13, za21, za22, za23 |
---|
| 1853 | REAL (KIND = 8) zdena, zc1a, zc2a, zri0a, zri1a |
---|
| 1854 | REAL (KIND = 8) zri0b, zri1b |
---|
| 1855 | REAL (KIND = 8) zb21, zb22, zb23, zdenb, zc1b, zc2b |
---|
| 1856 | REAL (KIND = 8) zri0c, zri1c, zri0d, zri1d |
---|
[1992] | 1857 | |
---|
| 1858 | ! ------------------------------------------------------------------ |
---|
| 1859 | |
---|
| 1860 | ! * 1. DELTA-EDDINGTON CALCULATIONS |
---|
| 1861 | |
---|
| 1862 | DO jl = 1, kdlon |
---|
| 1863 | ! * 1.1 SET UP THE DELTA-MODIFIED PARAMETERS |
---|
| 1864 | |
---|
[5144] | 1865 | zff = pgg(jl) * pgg(jl) |
---|
| 1866 | zgp = pgg(jl) / (1. + pgg(jl)) |
---|
| 1867 | ztop = (1. - pw(jl) * zff) * pto1(jl) |
---|
| 1868 | zwcp = (1 - zff) * pw(jl) / (1. - pw(jl) * zff) |
---|
| 1869 | zdt = 2. / 3. |
---|
| 1870 | zx1 = 1. - zwcp * zgp |
---|
[1992] | 1871 | zwm = 1. - zwcp |
---|
[5144] | 1872 | zrm2 = prmuz(jl) * prmuz(jl) |
---|
| 1873 | zrk = sqrt(3. * zwm * zx1) |
---|
| 1874 | zx2 = 4. * (1. - zrk * zrk * zrm2) |
---|
| 1875 | zrp = zrk / zx1 |
---|
| 1876 | zalpha = 3. * zwcp * zrm2 * (1. + zgp * zwm) / zx2 |
---|
| 1877 | zbeta = 3. * zwcp * prmuz(jl) * (1. + 3. * zgp * zrm2 * zwm) / zx2 |
---|
| 1878 | zarg = min(ztop / prmuz(jl), 200._8) |
---|
[1992] | 1879 | zexmu0 = exp(-zarg) |
---|
[5144] | 1880 | zarg2 = min(zrk * ztop, 200._8) |
---|
[1992] | 1881 | zexkp = exp(zarg2) |
---|
[5144] | 1882 | zexkm = 1. / zexkp |
---|
| 1883 | zxp2p = 1. + zdt * zrp |
---|
| 1884 | zxm2p = 1. - zdt * zrp |
---|
| 1885 | zap2b = zalpha + zdt * zbeta |
---|
| 1886 | zam2b = zalpha - zdt * zbeta |
---|
[1992] | 1887 | |
---|
| 1888 | ! * 1.2 WITHOUT REFLECTION FROM THE UNDERLYING LAYER |
---|
| 1889 | |
---|
| 1890 | za11 = zxp2p |
---|
| 1891 | za12 = zxm2p |
---|
| 1892 | za13 = zap2b |
---|
[5144] | 1893 | za22 = zxp2p * zexkp |
---|
| 1894 | za21 = zxm2p * zexkm |
---|
| 1895 | za23 = zam2b * zexmu0 |
---|
| 1896 | zdena = za11 * za22 - za21 * za12 |
---|
| 1897 | zc1a = (za22 * za13 - za12 * za23) / zdena |
---|
| 1898 | zc2a = (za11 * za23 - za21 * za13) / zdena |
---|
[1992] | 1899 | zri0a = zc1a + zc2a - zalpha |
---|
[5144] | 1900 | zri1a = zrp * (zc1a - zc2a) - zbeta |
---|
| 1901 | pre1(jl) = (zri0a - zdt * zri1a) / prmuz(jl) |
---|
| 1902 | zri0b = zc1a * zexkm + zc2a * zexkp - zalpha * zexmu0 |
---|
| 1903 | zri1b = zrp * (zc1a * zexkm - zc2a * zexkp) - zbeta * zexmu0 |
---|
| 1904 | ptr1(jl) = zexmu0 + (zri0b + zdt * zri1b) / prmuz(jl) |
---|
[1992] | 1905 | |
---|
| 1906 | ! * 1.3 WITH REFLECTION FROM THE UNDERLYING LAYER |
---|
| 1907 | |
---|
[5144] | 1908 | zb21 = za21 - pref(jl) * zxp2p * zexkm |
---|
| 1909 | zb22 = za22 - pref(jl) * zxm2p * zexkp |
---|
| 1910 | zb23 = za23 - pref(jl) * zexmu0 * (zap2b - prmuz(jl)) |
---|
| 1911 | zdenb = za11 * zb22 - zb21 * za12 |
---|
| 1912 | zc1b = (zb22 * za13 - za12 * zb23) / zdenb |
---|
| 1913 | zc2b = (za11 * zb23 - zb21 * za13) / zdenb |
---|
[1992] | 1914 | zri0c = zc1b + zc2b - zalpha |
---|
[5144] | 1915 | zri1c = zrp * (zc1b - zc2b) - zbeta |
---|
| 1916 | pre2(jl) = (zri0c - zdt * zri1c) / prmuz(jl) |
---|
| 1917 | zri0d = zc1b * zexkm + zc2b * zexkp - zalpha * zexmu0 |
---|
| 1918 | zri1d = zrp * (zc1b * zexkm - zc2b * zexkp) - zbeta * zexmu0 |
---|
| 1919 | ptr2(jl) = zexmu0 + (zri0d + zdt * zri1d) / prmuz(jl) |
---|
[1992] | 1920 | |
---|
| 1921 | END DO |
---|
[5105] | 1922 | |
---|
[1992] | 1923 | END SUBROUTINE swde_lmdar4 |
---|
| 1924 | SUBROUTINE swtt_lmdar4(knu, ka, pu, ptr) |
---|
| 1925 | USE dimphy |
---|
| 1926 | USE radiation_ar4_param, ONLY: apad, bpad, d |
---|
| 1927 | IMPLICIT NONE |
---|
| 1928 | |
---|
| 1929 | ! ----------------------------------------------------------------------- |
---|
| 1930 | ! PURPOSE. |
---|
| 1931 | ! -------- |
---|
| 1932 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
| 1933 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN THE TWO SPECTRAL |
---|
| 1934 | ! INTERVALS. |
---|
| 1935 | |
---|
| 1936 | ! METHOD. |
---|
| 1937 | ! ------- |
---|
| 1938 | |
---|
| 1939 | ! TRANSMISSION FUNCTION ARE COMPUTED USING PADE APPROXIMANTS |
---|
| 1940 | ! AND HORNER'S ALGORITHM. |
---|
| 1941 | |
---|
| 1942 | ! REFERENCE. |
---|
| 1943 | ! ---------- |
---|
| 1944 | |
---|
| 1945 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 1946 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 1947 | |
---|
| 1948 | ! AUTHOR. |
---|
| 1949 | ! ------- |
---|
| 1950 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 1951 | |
---|
| 1952 | ! MODIFICATIONS. |
---|
| 1953 | ! -------------- |
---|
| 1954 | ! ORIGINAL : 88-12-15 |
---|
| 1955 | ! ----------------------------------------------------------------------- |
---|
| 1956 | |
---|
| 1957 | ! * ARGUMENTS |
---|
| 1958 | |
---|
| 1959 | INTEGER knu ! INDEX OF THE SPECTRAL INTERVAL |
---|
| 1960 | INTEGER ka ! INDEX OF THE ABSORBER |
---|
[5144] | 1961 | REAL (KIND = 8) pu(kdlon) ! ABSORBER AMOUNT |
---|
[1992] | 1962 | |
---|
[5144] | 1963 | REAL (KIND = 8) ptr(kdlon) ! TRANSMISSION FUNCTION |
---|
[1992] | 1964 | |
---|
| 1965 | ! * LOCAL VARIABLES: |
---|
| 1966 | |
---|
[5144] | 1967 | REAL (KIND = 8) zr1(kdlon), zr2(kdlon) |
---|
[1992] | 1968 | INTEGER jl, i, j |
---|
| 1969 | |
---|
| 1970 | ! ----------------------------------------------------------------------- |
---|
| 1971 | |
---|
| 1972 | ! * 1. HORNER'S ALGORITHM TO COMPUTE TRANSMISSION FUNCTION |
---|
| 1973 | |
---|
| 1974 | DO jl = 1, kdlon |
---|
[5144] | 1975 | zr1(jl) = apad(knu, ka, 1) + pu(jl) * (apad(knu, ka, 2) + pu(jl) * (apad(knu, ka, & |
---|
| 1976 | 3) + pu(jl) * (apad(knu, ka, 4) + pu(jl) * (apad(knu, ka, 5) + pu(jl) * (apad(knu, ka, 6) & |
---|
| 1977 | + pu(jl) * (apad(knu, ka, 7))))))) |
---|
[1992] | 1978 | |
---|
[5144] | 1979 | zr2(jl) = bpad(knu, ka, 1) + pu(jl) * (bpad(knu, ka, 2) + pu(jl) * (bpad(knu, ka, & |
---|
| 1980 | 3) + pu(jl) * (bpad(knu, ka, 4) + pu(jl) * (bpad(knu, ka, 5) + pu(jl) * (bpad(knu, ka, 6) & |
---|
| 1981 | + pu(jl) * (bpad(knu, ka, 7))))))) |
---|
[1992] | 1982 | |
---|
| 1983 | ! * 2. ADD THE BACKGROUND TRANSMISSION |
---|
| 1984 | |
---|
[5144] | 1985 | ptr(jl) = (zr1(jl) / zr2(jl)) * (1. - d(knu, ka)) + d(knu, ka) |
---|
[1992] | 1986 | END DO |
---|
| 1987 | |
---|
| 1988 | END SUBROUTINE swtt_lmdar4 |
---|
| 1989 | SUBROUTINE swtt1_lmdar4(knu, kabs, kind, pu, ptr) |
---|
| 1990 | USE dimphy |
---|
| 1991 | USE radiation_ar4_param, ONLY: apad, bpad, d |
---|
| 1992 | IMPLICIT NONE |
---|
| 1993 | |
---|
| 1994 | ! ----------------------------------------------------------------------- |
---|
| 1995 | ! PURPOSE. |
---|
| 1996 | ! -------- |
---|
| 1997 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
| 1998 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN THE TWO SPECTRAL |
---|
| 1999 | ! INTERVALS. |
---|
| 2000 | |
---|
| 2001 | ! METHOD. |
---|
| 2002 | ! ------- |
---|
| 2003 | |
---|
| 2004 | ! TRANSMISSION FUNCTION ARE COMPUTED USING PADE APPROXIMANTS |
---|
| 2005 | ! AND HORNER'S ALGORITHM. |
---|
| 2006 | |
---|
| 2007 | ! REFERENCE. |
---|
| 2008 | ! ---------- |
---|
| 2009 | |
---|
| 2010 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2011 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2012 | |
---|
| 2013 | ! AUTHOR. |
---|
| 2014 | ! ------- |
---|
| 2015 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2016 | |
---|
| 2017 | ! MODIFICATIONS. |
---|
| 2018 | ! -------------- |
---|
| 2019 | ! ORIGINAL : 95-01-20 |
---|
| 2020 | ! ----------------------------------------------------------------------- |
---|
| 2021 | ! * ARGUMENTS: |
---|
| 2022 | |
---|
| 2023 | INTEGER knu ! INDEX OF THE SPECTRAL INTERVAL |
---|
| 2024 | INTEGER kabs ! NUMBER OF ABSORBERS |
---|
| 2025 | INTEGER kind(kabs) ! INDICES OF THE ABSORBERS |
---|
[5144] | 2026 | REAL (KIND = 8) pu(kdlon, kabs) ! ABSORBER AMOUNT |
---|
[1992] | 2027 | |
---|
[5144] | 2028 | REAL (KIND = 8) ptr(kdlon, kabs) ! TRANSMISSION FUNCTION |
---|
[1992] | 2029 | |
---|
| 2030 | ! * LOCAL VARIABLES: |
---|
| 2031 | |
---|
[5144] | 2032 | REAL (KIND = 8) zr1(kdlon) |
---|
| 2033 | REAL (KIND = 8) zr2(kdlon) |
---|
| 2034 | REAL (KIND = 8) zu(kdlon) |
---|
[1992] | 2035 | INTEGER jl, ja, i, j, ia |
---|
| 2036 | |
---|
| 2037 | ! ----------------------------------------------------------------------- |
---|
| 2038 | |
---|
| 2039 | ! * 1. HORNER'S ALGORITHM TO COMPUTE TRANSMISSION FUNCTION |
---|
| 2040 | |
---|
| 2041 | DO ja = 1, kabs |
---|
| 2042 | ia = kind(ja) |
---|
| 2043 | DO jl = 1, kdlon |
---|
| 2044 | zu(jl) = pu(jl, ja) |
---|
[5144] | 2045 | zr1(jl) = apad(knu, ia, 1) + zu(jl) * (apad(knu, ia, 2) + zu(jl) * (apad(knu, & |
---|
| 2046 | ia, 3) + zu(jl) * (apad(knu, ia, 4) + zu(jl) * (apad(knu, ia, 5) + zu(jl) * (apad(knu, & |
---|
| 2047 | ia, 6) + zu(jl) * (apad(knu, ia, 7))))))) |
---|
[1992] | 2048 | |
---|
[5144] | 2049 | zr2(jl) = bpad(knu, ia, 1) + zu(jl) * (bpad(knu, ia, 2) + zu(jl) * (bpad(knu, & |
---|
| 2050 | ia, 3) + zu(jl) * (bpad(knu, ia, 4) + zu(jl) * (bpad(knu, ia, 5) + zu(jl) * (bpad(knu, & |
---|
| 2051 | ia, 6) + zu(jl) * (bpad(knu, ia, 7))))))) |
---|
[1992] | 2052 | |
---|
| 2053 | ! * 2. ADD THE BACKGROUND TRANSMISSION |
---|
| 2054 | |
---|
[5144] | 2055 | ptr(jl, ja) = (zr1(jl) / zr2(jl)) * (1. - d(knu, ia)) + d(knu, ia) |
---|
[1992] | 2056 | END DO |
---|
| 2057 | END DO |
---|
| 2058 | |
---|
| 2059 | END SUBROUTINE swtt1_lmdar4 |
---|
| 2060 | ! IM ctes ds clesphys.h SUBROUTINE LW(RCO2,RCH4,RN2O,RCFC11,RCFC12, |
---|
| 2061 | SUBROUTINE lw_lmdar4(ppmb, pdp, ppsol, pdt0, pemis, ptl, ptave, pwv, pozon, & |
---|
[5144] | 2062 | paer, pcldld, pcldlu, pview, pcolr, pcolr0, ptoplw, psollw, ptoplw0, & |
---|
| 2063 | psollw0, psollwdown, & ! IM . |
---|
| 2064 | ! psollwdown,psollwdownclr, |
---|
| 2065 | ! IM . ptoplwdown,ptoplwdownclr) |
---|
| 2066 | plwup, plwdn, plwup0, plwdn0) |
---|
[1992] | 2067 | USE dimphy |
---|
[5112] | 2068 | USE lmdz_print_control, ONLY: lunout |
---|
[5144] | 2069 | ! IM ctes ds clesphys.h |
---|
[5137] | 2070 | ! REAL(KIND=8) RCO2 ! CO2 CONCENTRATION (IPCC:353.E-06* 44.011/28.97) |
---|
| 2071 | ! REAL(KIND=8) RCH4 ! CH4 CONCENTRATION (IPCC: 1.72E-06* 16.043/28.97) |
---|
| 2072 | ! REAL(KIND=8) RN2O ! N2O CONCENTRATION (IPCC: 310.E-09* 44.013/28.97) |
---|
| 2073 | ! REAL(KIND=8) RCFC11 ! CFC11 CONCENTRATION (IPCC: 280.E-12* 137.3686/28.97) |
---|
| 2074 | ! REAL(KIND=8) RCFC12 ! CFC12 CONCENTRATION (IPCC: 484.E-12* 120.9140/28.97) |
---|
| 2075 | USE lmdz_clesphys, ONLY: rco2, rch4, rn2o, rcfc11, rcfc12 |
---|
[5144] | 2076 | USE lmdz_yomcst |
---|
[5137] | 2077 | |
---|
[1992] | 2078 | IMPLICIT NONE |
---|
| 2079 | include "raddimlw.h" |
---|
| 2080 | |
---|
| 2081 | ! ----------------------------------------------------------------------- |
---|
| 2082 | ! METHOD. |
---|
| 2083 | ! ------- |
---|
| 2084 | |
---|
| 2085 | ! 1. COMPUTES THE PRESSURE AND TEMPERATURE WEIGHTED AMOUNTS OF |
---|
| 2086 | ! ABSORBERS. |
---|
| 2087 | ! 2. COMPUTES THE PLANCK FUNCTIONS ON THE INTERFACES AND THE |
---|
| 2088 | ! GRADIENT OF PLANCK FUNCTIONS IN THE LAYERS. |
---|
| 2089 | ! 3. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING THE CON- |
---|
| 2090 | ! TRIBUTIONS OF THE ADJACENT AND DISTANT LAYERS AND THOSE FROM THE |
---|
| 2091 | ! BOUNDARIES. |
---|
| 2092 | ! 4. COMPUTES THE CLEAR-SKY DOWNWARD AND UPWARD EMISSIVITIES. |
---|
| 2093 | ! 5. INTRODUCES THE EFFECTS OF THE CLOUDS ON THE FLUXES. |
---|
| 2094 | |
---|
| 2095 | |
---|
| 2096 | ! REFERENCE. |
---|
| 2097 | ! ---------- |
---|
| 2098 | |
---|
| 2099 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2100 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2101 | |
---|
| 2102 | ! AUTHOR. |
---|
| 2103 | ! ------- |
---|
| 2104 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2105 | |
---|
| 2106 | ! MODIFICATIONS. |
---|
| 2107 | ! -------------- |
---|
| 2108 | ! ORIGINAL : 89-07-14 |
---|
| 2109 | ! ----------------------------------------------------------------------- |
---|
[5137] | 2110 | |
---|
[5144] | 2111 | REAL (KIND = 8) pcldld(kdlon, kflev) ! DOWNWARD EFFECTIVE CLOUD COVER |
---|
| 2112 | REAL (KIND = 8) pcldlu(kdlon, kflev) ! UPWARD EFFECTIVE CLOUD COVER |
---|
| 2113 | REAL (KIND = 8) pdp(kdlon, kflev) ! LAYER PRESSURE THICKNESS (Pa) |
---|
| 2114 | REAL (KIND = 8) pdt0(kdlon) ! SURFACE TEMPERATURE DISCONTINUITY (K) |
---|
| 2115 | REAL (KIND = 8) pemis(kdlon) ! SURFACE EMISSIVITY |
---|
| 2116 | REAL (KIND = 8) ppmb(kdlon, kflev + 1) ! HALF LEVEL PRESSURE (mb) |
---|
| 2117 | REAL (KIND = 8) ppsol(kdlon) ! SURFACE PRESSURE (Pa) |
---|
| 2118 | REAL (KIND = 8) pozon(kdlon, kflev) ! O3 mass fraction |
---|
| 2119 | REAL (KIND = 8) ptl(kdlon, kflev + 1) ! HALF LEVEL TEMPERATURE (K) |
---|
| 2120 | REAL (KIND = 8) paer(kdlon, kflev, 5) ! OPTICAL THICKNESS OF THE AEROSOLS |
---|
| 2121 | REAL (KIND = 8) ptave(kdlon, kflev) ! LAYER TEMPERATURE (K) |
---|
| 2122 | REAL (KIND = 8) pview(kdlon) ! COSECANT OF VIEWING ANGLE |
---|
| 2123 | REAL (KIND = 8) pwv(kdlon, kflev) ! SPECIFIC HUMIDITY (kg/kg) |
---|
[1992] | 2124 | |
---|
[5144] | 2125 | REAL (KIND = 8) pcolr(kdlon, kflev) ! LONG-WAVE TENDENCY (K/day) |
---|
| 2126 | REAL (KIND = 8) pcolr0(kdlon, kflev) ! LONG-WAVE TENDENCY (K/day) clear-sky |
---|
| 2127 | REAL (KIND = 8) ptoplw(kdlon) ! LONGWAVE FLUX AT T.O.A. |
---|
| 2128 | REAL (KIND = 8) psollw(kdlon) ! LONGWAVE FLUX AT SURFACE |
---|
| 2129 | REAL (KIND = 8) ptoplw0(kdlon) ! LONGWAVE FLUX AT T.O.A. (CLEAR-SKY) |
---|
| 2130 | REAL (KIND = 8) psollw0(kdlon) ! LONGWAVE FLUX AT SURFACE (CLEAR-SKY) |
---|
[1992] | 2131 | ! Rajout LF |
---|
[5144] | 2132 | REAL (KIND = 8) psollwdown(kdlon) ! LONGWAVE downwards flux at surface |
---|
[1992] | 2133 | ! Rajout IM |
---|
| 2134 | ! IM real(kind=8) psollwdownclr(kdlon) ! LONGWAVE CS downwards flux at |
---|
| 2135 | ! surface |
---|
| 2136 | ! IM real(kind=8) ptoplwdown(kdlon) ! LONGWAVE downwards flux at |
---|
| 2137 | ! T.O.A. |
---|
| 2138 | ! IM real(kind=8) ptoplwdownclr(kdlon) ! LONGWAVE CS downwards flux at |
---|
| 2139 | ! T.O.A. |
---|
| 2140 | ! IM |
---|
[5144] | 2141 | REAL (KIND = 8) plwup(kdlon, kflev + 1) ! LW up total sky |
---|
| 2142 | REAL (KIND = 8) plwup0(kdlon, kflev + 1) ! LW up clear sky |
---|
| 2143 | REAL (KIND = 8) plwdn(kdlon, kflev + 1) ! LW down total sky |
---|
| 2144 | REAL (KIND = 8) plwdn0(kdlon, kflev + 1) ! LW down clear sky |
---|
[1992] | 2145 | ! ------------------------------------------------------------------------- |
---|
[5144] | 2146 | REAL (KIND = 8) zabcu(kdlon, nua, 3 * kflev + 1) |
---|
[1992] | 2147 | |
---|
[5144] | 2148 | REAL (KIND = 8) zoz(kdlon, kflev) |
---|
[1992] | 2149 | ! equivalent pressure of ozone in a layer, in Pa |
---|
| 2150 | |
---|
| 2151 | ! ym REAL(KIND=8) ZFLUX(KDLON,2,KFLEV+1) ! RADIATIVE FLUXES (1:up; |
---|
| 2152 | ! 2:down) |
---|
| 2153 | ! ym REAL(KIND=8) ZFLUC(KDLON,2,KFLEV+1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
| 2154 | ! ym REAL(KIND=8) ZBINT(KDLON,KFLEV+1) ! Intermediate |
---|
| 2155 | ! variable |
---|
| 2156 | ! ym REAL(KIND=8) ZBSUI(KDLON) ! Intermediate |
---|
| 2157 | ! variable |
---|
| 2158 | ! ym REAL(KIND=8) ZCTS(KDLON,KFLEV) ! Intermediate |
---|
| 2159 | ! variable |
---|
| 2160 | ! ym REAL(KIND=8) ZCNTRB(KDLON,KFLEV+1,KFLEV+1) ! Intermediate |
---|
| 2161 | ! variable |
---|
| 2162 | ! ym SAVE ZFLUX, ZFLUC, ZBINT, ZBSUI, ZCTS, ZCNTRB |
---|
[5144] | 2163 | REAL (KIND = 8), ALLOCATABLE, SAVE :: zflux(:, :, :) ! RADIATIVE FLUXES (1:up; 2:down) |
---|
| 2164 | REAL (KIND = 8), ALLOCATABLE, SAVE :: zfluc(:, :, :) ! CLEAR-SKY RADIATIVE FLUXES |
---|
| 2165 | REAL (KIND = 8), ALLOCATABLE, SAVE :: zbint(:, :) ! Intermediate variable |
---|
| 2166 | REAL (KIND = 8), ALLOCATABLE, SAVE :: zbsui(:) ! Intermediate variable |
---|
| 2167 | REAL (KIND = 8), ALLOCATABLE, SAVE :: zcts(:, :) ! Intermediate variable |
---|
| 2168 | REAL (KIND = 8), ALLOCATABLE, SAVE :: zcntrb(:, :, :) ! Intermediate variable |
---|
[1992] | 2169 | !$OMP THREADPRIVATE(ZFLUX, ZFLUC, ZBINT, ZBSUI, ZCTS, ZCNTRB) |
---|
| 2170 | |
---|
| 2171 | INTEGER ilim, i, k, kpl1 |
---|
| 2172 | |
---|
| 2173 | INTEGER lw0pas ! Every lw0pas steps, clear-sky is done |
---|
[5144] | 2174 | PARAMETER (lw0pas = 1) |
---|
[1992] | 2175 | INTEGER lwpas ! Every lwpas steps, cloudy-sky is done |
---|
[5144] | 2176 | PARAMETER (lwpas = 1) |
---|
[1992] | 2177 | |
---|
| 2178 | INTEGER itaplw0, itaplw |
---|
| 2179 | LOGICAL appel1er |
---|
| 2180 | SAVE appel1er, itaplw0, itaplw |
---|
| 2181 | !$OMP THREADPRIVATE(appel1er, itaplw0, itaplw) |
---|
| 2182 | DATA appel1er/.TRUE./ |
---|
| 2183 | DATA itaplw0, itaplw/0, 0/ |
---|
| 2184 | |
---|
| 2185 | ! ------------------------------------------------------------------ |
---|
| 2186 | IF (appel1er) THEN |
---|
| 2187 | WRITE (lunout, *) 'LW clear-sky calling frequency: ', lw0pas |
---|
| 2188 | WRITE (lunout, *) 'LW cloudy-sky calling frequency: ', lwpas |
---|
| 2189 | WRITE (lunout, *) ' In general, they should be 1' |
---|
| 2190 | ! ym |
---|
[5144] | 2191 | ALLOCATE (zflux(kdlon, 2, kflev + 1)) |
---|
| 2192 | ALLOCATE (zfluc(kdlon, 2, kflev + 1)) |
---|
| 2193 | ALLOCATE (zbint(kdlon, kflev + 1)) |
---|
[1992] | 2194 | ALLOCATE (zbsui(kdlon)) |
---|
[5144] | 2195 | ALLOCATE (zcts(kdlon, kflev)) |
---|
| 2196 | ALLOCATE (zcntrb(kdlon, kflev + 1, kflev + 1)) |
---|
[1992] | 2197 | appel1er = .FALSE. |
---|
| 2198 | END IF |
---|
| 2199 | |
---|
[5144] | 2200 | IF (mod(itaplw0, lw0pas)==0) THEN |
---|
[1992] | 2201 | ! Compute equivalent pressure of ozone from mass fraction: |
---|
| 2202 | DO k = 1, kflev |
---|
| 2203 | DO i = 1, kdlon |
---|
[5144] | 2204 | zoz(i, k) = pozon(i, k) * pdp(i, k) |
---|
[1992] | 2205 | END DO |
---|
| 2206 | END DO |
---|
| 2207 | ! IM ctes ds clesphys.h CALL LWU(RCO2,RCH4, RN2O, RCFC11, RCFC12, |
---|
| 2208 | CALL lwu_lmdar4(paer, pdp, ppmb, ppsol, zoz, ptave, pview, pwv, zabcu) |
---|
| 2209 | CALL lwbv_lmdar4(ilim, pdp, pdt0, pemis, ppmb, ptl, ptave, zabcu, zfluc, & |
---|
[5144] | 2210 | zbint, zbsui, zcts, zcntrb) |
---|
[1992] | 2211 | itaplw0 = 0 |
---|
| 2212 | END IF |
---|
| 2213 | itaplw0 = itaplw0 + 1 |
---|
| 2214 | |
---|
[5144] | 2215 | IF (mod(itaplw, lwpas)==0) THEN |
---|
[1992] | 2216 | CALL lwc_lmdar4(ilim, pcldld, pcldlu, pemis, zfluc, zbint, zbsui, zcts, & |
---|
[5144] | 2217 | zcntrb, zflux) |
---|
[1992] | 2218 | itaplw = 0 |
---|
| 2219 | END IF |
---|
| 2220 | itaplw = itaplw + 1 |
---|
| 2221 | |
---|
| 2222 | DO k = 1, kflev |
---|
| 2223 | kpl1 = k + 1 |
---|
| 2224 | DO i = 1, kdlon |
---|
| 2225 | pcolr(i, k) = zflux(i, 1, kpl1) + zflux(i, 2, kpl1) - zflux(i, 1, k) - & |
---|
[5144] | 2226 | zflux(i, 2, k) |
---|
| 2227 | pcolr(i, k) = pcolr(i, k) * rday * rg / rcpd / pdp(i, k) |
---|
[1992] | 2228 | pcolr0(i, k) = zfluc(i, 1, kpl1) + zfluc(i, 2, kpl1) - zfluc(i, 1, k) - & |
---|
[5144] | 2229 | zfluc(i, 2, k) |
---|
| 2230 | pcolr0(i, k) = pcolr0(i, k) * rday * rg / rcpd / pdp(i, k) |
---|
[1992] | 2231 | END DO |
---|
| 2232 | END DO |
---|
| 2233 | DO i = 1, kdlon |
---|
| 2234 | psollw(i) = -zflux(i, 1, 1) - zflux(i, 2, 1) |
---|
[5144] | 2235 | ptoplw(i) = zflux(i, 1, kflev + 1) + zflux(i, 2, kflev + 1) |
---|
[1992] | 2236 | |
---|
| 2237 | psollw0(i) = -zfluc(i, 1, 1) - zfluc(i, 2, 1) |
---|
[5144] | 2238 | ptoplw0(i) = zfluc(i, 1, kflev + 1) + zfluc(i, 2, kflev + 1) |
---|
[1992] | 2239 | psollwdown(i) = -zflux(i, 2, 1) |
---|
| 2240 | |
---|
| 2241 | ! IM attention aux signes !; LWtop >0, LWdn < 0 |
---|
| 2242 | DO k = 1, kflev + 1 |
---|
| 2243 | plwup(i, k) = zflux(i, 1, k) |
---|
| 2244 | plwup0(i, k) = zfluc(i, 1, k) |
---|
| 2245 | plwdn(i, k) = zflux(i, 2, k) |
---|
| 2246 | plwdn0(i, k) = zfluc(i, 2, k) |
---|
| 2247 | END DO |
---|
| 2248 | END DO |
---|
| 2249 | ! ------------------------------------------------------------------ |
---|
[5105] | 2250 | |
---|
[1992] | 2251 | END SUBROUTINE lw_lmdar4 |
---|
| 2252 | ! IM ctes ds clesphys.h SUBROUTINE LWU(RCO2, RCH4, RN2O, RCFC11, RCFC12, |
---|
| 2253 | SUBROUTINE lwu_lmdar4(paer, pdp, ppmb, ppsol, poz, ptave, pview, pwv, pabcu) |
---|
| 2254 | USE dimphy |
---|
| 2255 | USE radiation_ar4_param, ONLY: tref, rt1, raer, at, bt, oct |
---|
[4389] | 2256 | USE infotrac_phy, ONLY: type_trac |
---|
[5185] | 2257 | USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_REPROBUS |
---|
| 2258 | USE lmdz_reprobus_wrappers, ONLY: rch42d, rn2o2d, rcfc112d, rcfc122d, ok_rtime2d |
---|
[5144] | 2259 | ! IM ctes ds clesphys.h |
---|
[5137] | 2260 | ! REAL(KIND=8) RCO2 |
---|
| 2261 | ! REAL(KIND=8) RCH4, RN2O, RCFC11, RCFC12 |
---|
| 2262 | USE lmdz_clesphys, ONLY: rco2, rch4, rn2o, rcfc11, rcfc12 |
---|
[5144] | 2263 | USE lmdz_yomcst |
---|
[1565] | 2264 | |
---|
[1992] | 2265 | IMPLICIT NONE |
---|
| 2266 | include "raddimlw.h" |
---|
| 2267 | include "radepsi.h" |
---|
| 2268 | include "radopt.h" |
---|
[1279] | 2269 | |
---|
[1992] | 2270 | ! PURPOSE. |
---|
| 2271 | ! -------- |
---|
| 2272 | ! COMPUTES ABSORBER AMOUNTS INCLUDING PRESSURE AND |
---|
| 2273 | ! TEMPERATURE EFFECTS |
---|
[1565] | 2274 | |
---|
[1992] | 2275 | ! METHOD. |
---|
| 2276 | ! ------- |
---|
| 2277 | |
---|
| 2278 | ! 1. COMPUTES THE PRESSURE AND TEMPERATURE WEIGHTED AMOUNTS OF |
---|
| 2279 | ! ABSORBERS. |
---|
| 2280 | |
---|
| 2281 | |
---|
| 2282 | ! REFERENCE. |
---|
| 2283 | ! ---------- |
---|
| 2284 | |
---|
| 2285 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2286 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2287 | |
---|
| 2288 | ! AUTHOR. |
---|
| 2289 | ! ------- |
---|
| 2290 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2291 | |
---|
| 2292 | ! MODIFICATIONS. |
---|
| 2293 | ! -------------- |
---|
| 2294 | ! ORIGINAL : 89-07-14 |
---|
| 2295 | ! Voigt lines (loop 404 modified) - JJM & PhD - 01/96 |
---|
| 2296 | ! ----------------------------------------------------------------------- |
---|
| 2297 | ! * ARGUMENTS: |
---|
[5144] | 2298 | REAL (KIND = 8) paer(kdlon, kflev, 5) |
---|
| 2299 | REAL (KIND = 8) pdp(kdlon, kflev) |
---|
| 2300 | REAL (KIND = 8) ppmb(kdlon, kflev + 1) |
---|
| 2301 | REAL (KIND = 8) ppsol(kdlon) |
---|
| 2302 | REAL (KIND = 8) poz(kdlon, kflev) |
---|
| 2303 | REAL (KIND = 8) ptave(kdlon, kflev) |
---|
| 2304 | REAL (KIND = 8) pview(kdlon) |
---|
| 2305 | REAL (KIND = 8) pwv(kdlon, kflev) |
---|
[1992] | 2306 | |
---|
[5144] | 2307 | REAL (KIND = 8) pabcu(kdlon, nua, 3 * kflev + 1) ! EFFECTIVE ABSORBER AMOUNTS |
---|
[1992] | 2308 | |
---|
| 2309 | ! ----------------------------------------------------------------------- |
---|
| 2310 | ! * LOCAL VARIABLES: |
---|
[5144] | 2311 | REAL (KIND = 8) zably(kdlon, nua, 3 * kflev + 1) |
---|
| 2312 | REAL (KIND = 8) zduc(kdlon, 3 * kflev + 1) |
---|
| 2313 | REAL (KIND = 8) zphio(kdlon) |
---|
| 2314 | REAL (KIND = 8) zpsc2(kdlon) |
---|
| 2315 | REAL (KIND = 8) zpsc3(kdlon) |
---|
| 2316 | REAL (KIND = 8) zpsh1(kdlon) |
---|
| 2317 | REAL (KIND = 8) zpsh2(kdlon) |
---|
| 2318 | REAL (KIND = 8) zpsh3(kdlon) |
---|
| 2319 | REAL (KIND = 8) zpsh4(kdlon) |
---|
| 2320 | REAL (KIND = 8) zpsh5(kdlon) |
---|
| 2321 | REAL (KIND = 8) zpsh6(kdlon) |
---|
| 2322 | REAL (KIND = 8) zpsio(kdlon) |
---|
| 2323 | REAL (KIND = 8) ztcon(kdlon) |
---|
| 2324 | REAL (KIND = 8) zphm6(kdlon) |
---|
| 2325 | REAL (KIND = 8) zpsm6(kdlon) |
---|
| 2326 | REAL (KIND = 8) zphn6(kdlon) |
---|
| 2327 | REAL (KIND = 8) zpsn6(kdlon) |
---|
| 2328 | REAL (KIND = 8) zssig(kdlon, 3 * kflev + 1) |
---|
| 2329 | REAL (KIND = 8) ztavi(kdlon) |
---|
| 2330 | REAL (KIND = 8) zuaer(kdlon, ninter) |
---|
| 2331 | REAL (KIND = 8) zxoz(kdlon) |
---|
| 2332 | REAL (KIND = 8) zxwv(kdlon) |
---|
[1992] | 2333 | |
---|
| 2334 | INTEGER jl, jk, jkj, jkjr, jkjp, ig1 |
---|
| 2335 | INTEGER jki, jkip1, ja, jj |
---|
| 2336 | INTEGER jkl, jkp1, jkk, jkjpn |
---|
| 2337 | INTEGER jae1, jae2, jae3, jae, jjpn |
---|
| 2338 | INTEGER ir, jc, jcp1 |
---|
[5144] | 2339 | REAL (KIND = 8) zdpm, zupm, zupmh2o, zupmco2, zupmo3, zu6, zup |
---|
| 2340 | REAL (KIND = 8) zfppw, ztx, ztx2, zzably |
---|
| 2341 | REAL (KIND = 8) zcah1, zcbh1, zcah2, zcbh2, zcah3, zcbh3 |
---|
| 2342 | REAL (KIND = 8) zcah4, zcbh4, zcah5, zcbh5, zcah6, zcbh6 |
---|
| 2343 | REAL (KIND = 8) zcac8, zcbc8 |
---|
| 2344 | REAL (KIND = 8) zalup, zdiff |
---|
[1992] | 2345 | |
---|
[5144] | 2346 | REAL (KIND = 8) pvgco2, pvgh2o, pvgo3 |
---|
[1992] | 2347 | |
---|
[5144] | 2348 | REAL (KIND = 8) r10e ! DECIMAL/NATURAL LOG.FACTOR |
---|
| 2349 | PARAMETER (r10e = 0.4342945) |
---|
[1992] | 2350 | |
---|
| 2351 | ! ----------------------------------------------------------------------- |
---|
| 2352 | |
---|
| 2353 | IF (levoigt) THEN |
---|
| 2354 | pvgco2 = 60. |
---|
| 2355 | pvgh2o = 30. |
---|
| 2356 | pvgo3 = 400. |
---|
| 2357 | ELSE |
---|
| 2358 | pvgco2 = 0. |
---|
| 2359 | pvgh2o = 0. |
---|
| 2360 | pvgo3 = 0. |
---|
| 2361 | END IF |
---|
| 2362 | |
---|
| 2363 | ! * 2. PRESSURE OVER GAUSS SUB-LEVELS |
---|
| 2364 | ! ------------------------------ |
---|
| 2365 | |
---|
| 2366 | DO jl = 1, kdlon |
---|
[5144] | 2367 | zssig(jl, 1) = ppmb(jl, 1) * 100. |
---|
[1992] | 2368 | END DO |
---|
| 2369 | |
---|
| 2370 | DO jk = 1, kflev |
---|
[5144] | 2371 | jkj = (jk - 1) * ng1p1 + 1 |
---|
[1992] | 2372 | jkjr = jkj |
---|
| 2373 | jkjp = jkj + ng1p1 |
---|
| 2374 | DO jl = 1, kdlon |
---|
[5144] | 2375 | zssig(jl, jkjp) = ppmb(jl, jk + 1) * 100. |
---|
[1992] | 2376 | END DO |
---|
| 2377 | DO ig1 = 1, ng1 |
---|
| 2378 | jkj = jkj + 1 |
---|
| 2379 | DO jl = 1, kdlon |
---|
[5144] | 2380 | zssig(jl, jkj) = (zssig(jl, jkjr) + zssig(jl, jkjp)) * 0.5 + & |
---|
| 2381 | rt1(ig1) * (zssig(jl, jkjp) - zssig(jl, jkjr)) * 0.5 |
---|
[1992] | 2382 | END DO |
---|
| 2383 | END DO |
---|
| 2384 | END DO |
---|
| 2385 | |
---|
| 2386 | ! ----------------------------------------------------------------------- |
---|
| 2387 | |
---|
| 2388 | |
---|
| 2389 | ! * 4. PRESSURE THICKNESS AND MEAN PRESSURE OF SUB-LAYERS |
---|
| 2390 | ! -------------------------------------------------- |
---|
| 2391 | |
---|
[5144] | 2392 | DO jki = 1, 3 * kflev |
---|
[1992] | 2393 | jkip1 = jki + 1 |
---|
| 2394 | DO jl = 1, kdlon |
---|
[5144] | 2395 | zably(jl, 5, jki) = (zssig(jl, jki) + zssig(jl, jkip1)) * 0.5 |
---|
| 2396 | zably(jl, 3, jki) = (zssig(jl, jki) - zssig(jl, jkip1)) / (10. * rg) |
---|
[1992] | 2397 | END DO |
---|
| 2398 | END DO |
---|
| 2399 | |
---|
| 2400 | DO jk = 1, kflev |
---|
| 2401 | jkp1 = jk + 1 |
---|
| 2402 | jkl = kflev + 1 - jk |
---|
| 2403 | DO jl = 1, kdlon |
---|
[5144] | 2404 | zxwv(jl) = max(pwv(jl, jk), zepscq) |
---|
| 2405 | zxoz(jl) = max(poz(jl, jk) / pdp(jl, jk), zepsco) |
---|
[1992] | 2406 | END DO |
---|
[5144] | 2407 | jkj = (jk - 1) * ng1p1 + 1 |
---|
[1992] | 2408 | jkjpn = jkj + ng1 |
---|
| 2409 | DO jkk = jkj, jkjpn |
---|
| 2410 | DO jl = 1, kdlon |
---|
| 2411 | zdpm = zably(jl, 3, jkk) |
---|
[5144] | 2412 | zupm = zably(jl, 5, jkk) * zdpm / 101325. |
---|
| 2413 | zupmco2 = (zably(jl, 5, jkk) + pvgco2) * zdpm / 101325. |
---|
| 2414 | zupmh2o = (zably(jl, 5, jkk) + pvgh2o) * zdpm / 101325. |
---|
| 2415 | zupmo3 = (zably(jl, 5, jkk) + pvgo3) * zdpm / 101325. |
---|
[1992] | 2416 | zduc(jl, jkk) = zdpm |
---|
[5144] | 2417 | zably(jl, 12, jkk) = zxoz(jl) * zdpm |
---|
| 2418 | zably(jl, 13, jkk) = zxoz(jl) * zupmo3 |
---|
| 2419 | zu6 = zxwv(jl) * zupm |
---|
| 2420 | zfppw = 1.6078 * zxwv(jl) / (1. + 0.608 * zxwv(jl)) |
---|
| 2421 | zably(jl, 6, jkk) = zxwv(jl) * zupmh2o |
---|
| 2422 | zably(jl, 11, jkk) = zu6 * zfppw |
---|
| 2423 | zably(jl, 10, jkk) = zu6 * (1. - zfppw) |
---|
| 2424 | zably(jl, 9, jkk) = rco2 * zupmco2 |
---|
| 2425 | zably(jl, 8, jkk) = rco2 * zdpm |
---|
[1992] | 2426 | END DO |
---|
| 2427 | END DO |
---|
| 2428 | END DO |
---|
| 2429 | |
---|
| 2430 | ! ----------------------------------------------------------------------- |
---|
| 2431 | |
---|
| 2432 | |
---|
| 2433 | ! * 5. CUMULATIVE ABSORBER AMOUNTS FROM TOP OF ATMOSPHERE |
---|
| 2434 | ! -------------------------------------------------- |
---|
| 2435 | |
---|
| 2436 | DO ja = 1, nua |
---|
| 2437 | DO jl = 1, kdlon |
---|
[5144] | 2438 | pabcu(jl, ja, 3 * kflev + 1) = 0. |
---|
[1992] | 2439 | END DO |
---|
| 2440 | END DO |
---|
| 2441 | |
---|
| 2442 | DO jk = 1, kflev |
---|
[5144] | 2443 | jj = (jk - 1) * ng1p1 + 1 |
---|
[1992] | 2444 | jjpn = jj + ng1 |
---|
| 2445 | jkl = kflev + 1 - jk |
---|
| 2446 | |
---|
| 2447 | ! * 5.1 CUMULATIVE AEROSOL AMOUNTS FROM TOP OF ATMOSPHERE |
---|
| 2448 | ! -------------------------------------------------- |
---|
| 2449 | |
---|
[5144] | 2450 | jae1 = 3 * kflev + 1 - jj |
---|
| 2451 | jae2 = 3 * kflev + 1 - (jj + 1) |
---|
| 2452 | jae3 = 3 * kflev + 1 - jjpn |
---|
[1992] | 2453 | DO jae = 1, 5 |
---|
| 2454 | DO jl = 1, kdlon |
---|
[5144] | 2455 | zuaer(jl, jae) = (raer(jae, 1) * paer(jl, jkl, 1) + raer(jae, 2) * paer(jl, jkl, & |
---|
| 2456 | 2) + raer(jae, 3) * paer(jl, jkl, 3) + raer(jae, 4) * paer(jl, jkl, 4) + & |
---|
| 2457 | raer(jae, 5) * paer(jl, jkl, 5)) / (zduc(jl, jae1) + zduc(jl, jae2) + zduc(jl, & |
---|
| 2458 | jae3)) |
---|
[1992] | 2459 | END DO |
---|
| 2460 | END DO |
---|
| 2461 | |
---|
| 2462 | ! * 5.2 INTRODUCES TEMPERATURE EFFECTS ON ABSORBER AMOUNTS |
---|
| 2463 | ! -------------------------------------------------- |
---|
| 2464 | |
---|
| 2465 | DO jl = 1, kdlon |
---|
| 2466 | ztavi(jl) = ptave(jl, jkl) |
---|
[5144] | 2467 | ztcon(jl) = exp(6.08 * (296. / ztavi(jl) - 1.)) |
---|
[1992] | 2468 | ztx = ztavi(jl) - tref |
---|
[5144] | 2469 | ztx2 = ztx * ztx |
---|
[1992] | 2470 | zzably = zably(jl, 6, jae1) + zably(jl, 6, jae2) + zably(jl, 6, jae3) |
---|
[5144] | 2471 | zup = min(max(0.5 * r10e * log(zzably) + 5., 0._8), 6._8) |
---|
| 2472 | zcah1 = at(1, 1) + zup * (at(1, 2) + zup * (at(1, 3))) |
---|
| 2473 | zcbh1 = bt(1, 1) + zup * (bt(1, 2) + zup * (bt(1, 3))) |
---|
| 2474 | zpsh1(jl) = exp(zcah1 * ztx + zcbh1 * ztx2) |
---|
| 2475 | zcah2 = at(2, 1) + zup * (at(2, 2) + zup * (at(2, 3))) |
---|
| 2476 | zcbh2 = bt(2, 1) + zup * (bt(2, 2) + zup * (bt(2, 3))) |
---|
| 2477 | zpsh2(jl) = exp(zcah2 * ztx + zcbh2 * ztx2) |
---|
| 2478 | zcah3 = at(3, 1) + zup * (at(3, 2) + zup * (at(3, 3))) |
---|
| 2479 | zcbh3 = bt(3, 1) + zup * (bt(3, 2) + zup * (bt(3, 3))) |
---|
| 2480 | zpsh3(jl) = exp(zcah3 * ztx + zcbh3 * ztx2) |
---|
| 2481 | zcah4 = at(4, 1) + zup * (at(4, 2) + zup * (at(4, 3))) |
---|
| 2482 | zcbh4 = bt(4, 1) + zup * (bt(4, 2) + zup * (bt(4, 3))) |
---|
| 2483 | zpsh4(jl) = exp(zcah4 * ztx + zcbh4 * ztx2) |
---|
| 2484 | zcah5 = at(5, 1) + zup * (at(5, 2) + zup * (at(5, 3))) |
---|
| 2485 | zcbh5 = bt(5, 1) + zup * (bt(5, 2) + zup * (bt(5, 3))) |
---|
| 2486 | zpsh5(jl) = exp(zcah5 * ztx + zcbh5 * ztx2) |
---|
| 2487 | zcah6 = at(6, 1) + zup * (at(6, 2) + zup * (at(6, 3))) |
---|
| 2488 | zcbh6 = bt(6, 1) + zup * (bt(6, 2) + zup * (bt(6, 3))) |
---|
| 2489 | zpsh6(jl) = exp(zcah6 * ztx + zcbh6 * ztx2) |
---|
| 2490 | zphm6(jl) = exp(-5.81E-4 * ztx - 1.13E-6 * ztx2) |
---|
| 2491 | zpsm6(jl) = exp(-5.57E-4 * ztx - 3.30E-6 * ztx2) |
---|
| 2492 | zphn6(jl) = exp(-3.46E-5 * ztx + 2.05E-7 * ztx2) |
---|
| 2493 | zpsn6(jl) = exp(3.70E-3 * ztx - 2.30E-6 * ztx2) |
---|
[1992] | 2494 | END DO |
---|
| 2495 | |
---|
| 2496 | DO jl = 1, kdlon |
---|
| 2497 | ztavi(jl) = ptave(jl, jkl) |
---|
| 2498 | ztx = ztavi(jl) - tref |
---|
[5144] | 2499 | ztx2 = ztx * ztx |
---|
[1992] | 2500 | zzably = zably(jl, 9, jae1) + zably(jl, 9, jae2) + zably(jl, 9, jae3) |
---|
[5144] | 2501 | zalup = r10e * log(zzably) |
---|
| 2502 | zup = max(0._8, 5.0 + 0.5 * zalup) |
---|
| 2503 | zpsc2(jl) = (ztavi(jl) / tref)**zup |
---|
| 2504 | zcac8 = at(8, 1) + zup * (at(8, 2) + zup * (at(8, 3))) |
---|
| 2505 | zcbc8 = bt(8, 1) + zup * (bt(8, 2) + zup * (bt(8, 3))) |
---|
| 2506 | zpsc3(jl) = exp(zcac8 * ztx + zcbc8 * ztx2) |
---|
| 2507 | zphio(jl) = exp(oct(1) * ztx + oct(2) * ztx2) |
---|
| 2508 | zpsio(jl) = exp(2. * (oct(3) * ztx + oct(4) * ztx2)) |
---|
[1992] | 2509 | END DO |
---|
| 2510 | |
---|
| 2511 | DO jkk = jj, jjpn |
---|
[5144] | 2512 | jc = 3 * kflev + 1 - jkk |
---|
[1992] | 2513 | jcp1 = jc + 1 |
---|
| 2514 | DO jl = 1, kdlon |
---|
| 2515 | zdiff = pview(jl) |
---|
[5144] | 2516 | pabcu(jl, 10, jc) = pabcu(jl, 10, jcp1) + zably(jl, 10, jc) * zdiff |
---|
| 2517 | pabcu(jl, 11, jc) = pabcu(jl, 11, jcp1) + zably(jl, 11, jc) * ztcon(jl) & |
---|
| 2518 | * zdiff |
---|
[1992] | 2519 | |
---|
[5144] | 2520 | pabcu(jl, 12, jc) = pabcu(jl, 12, jcp1) + zably(jl, 12, jc) * zphio(jl) & |
---|
| 2521 | * zdiff |
---|
| 2522 | pabcu(jl, 13, jc) = pabcu(jl, 13, jcp1) + zably(jl, 13, jc) * zpsio(jl) & |
---|
| 2523 | * zdiff |
---|
[1992] | 2524 | |
---|
[5144] | 2525 | pabcu(jl, 7, jc) = pabcu(jl, 7, jcp1) + zably(jl, 9, jc) * zpsc2(jl) * & |
---|
| 2526 | zdiff |
---|
| 2527 | pabcu(jl, 8, jc) = pabcu(jl, 8, jcp1) + zably(jl, 9, jc) * zpsc3(jl) * & |
---|
| 2528 | zdiff |
---|
| 2529 | pabcu(jl, 9, jc) = pabcu(jl, 9, jcp1) + zably(jl, 9, jc) * zpsc3(jl) * & |
---|
| 2530 | zdiff |
---|
[1992] | 2531 | |
---|
[5144] | 2532 | pabcu(jl, 1, jc) = pabcu(jl, 1, jcp1) + zably(jl, 6, jc) * zpsh1(jl) * & |
---|
| 2533 | zdiff |
---|
| 2534 | pabcu(jl, 2, jc) = pabcu(jl, 2, jcp1) + zably(jl, 6, jc) * zpsh2(jl) * & |
---|
| 2535 | zdiff |
---|
| 2536 | pabcu(jl, 3, jc) = pabcu(jl, 3, jcp1) + zably(jl, 6, jc) * zpsh5(jl) * & |
---|
| 2537 | zdiff |
---|
| 2538 | pabcu(jl, 4, jc) = pabcu(jl, 4, jcp1) + zably(jl, 6, jc) * zpsh3(jl) * & |
---|
| 2539 | zdiff |
---|
| 2540 | pabcu(jl, 5, jc) = pabcu(jl, 5, jcp1) + zably(jl, 6, jc) * zpsh4(jl) * & |
---|
| 2541 | zdiff |
---|
| 2542 | pabcu(jl, 6, jc) = pabcu(jl, 6, jcp1) + zably(jl, 6, jc) * zpsh6(jl) * & |
---|
| 2543 | zdiff |
---|
[1992] | 2544 | |
---|
[5144] | 2545 | pabcu(jl, 14, jc) = pabcu(jl, 14, jcp1) + zuaer(jl, 1) * zduc(jl, jc) * & |
---|
| 2546 | zdiff |
---|
| 2547 | pabcu(jl, 15, jc) = pabcu(jl, 15, jcp1) + zuaer(jl, 2) * zduc(jl, jc) * & |
---|
| 2548 | zdiff |
---|
| 2549 | pabcu(jl, 16, jc) = pabcu(jl, 16, jcp1) + zuaer(jl, 3) * zduc(jl, jc) * & |
---|
| 2550 | zdiff |
---|
| 2551 | pabcu(jl, 17, jc) = pabcu(jl, 17, jcp1) + zuaer(jl, 4) * zduc(jl, jc) * & |
---|
| 2552 | zdiff |
---|
| 2553 | pabcu(jl, 18, jc) = pabcu(jl, 18, jcp1) + zuaer(jl, 5) * zduc(jl, jc) * & |
---|
| 2554 | zdiff |
---|
[1992] | 2555 | |
---|
[4389] | 2556 | IF (type_trac=='repr') THEN |
---|
[5185] | 2557 | IF (CPPKEY_REPROBUS) THEN |
---|
| 2558 | IF (ok_rtime2d) THEN |
---|
| 2559 | pabcu(jl, 19, jc) = pabcu(jl, 19, jcp1) + & |
---|
| 2560 | zably(jl, 8, jc) * rch42d(jl, jc) / rco2 * zphm6(jl) * zdiff |
---|
| 2561 | pabcu(jl, 20, jc) = pabcu(jl, 20, jcp1) + & |
---|
| 2562 | zably(jl, 9, jc) * rch42d(jl, jc) / rco2 * zpsm6(jl) * zdiff |
---|
| 2563 | pabcu(jl, 21, jc) = pabcu(jl, 21, jcp1) + & |
---|
| 2564 | zably(jl, 8, jc) * rn2o2d(jl, jc) / rco2 * zphn6(jl) * zdiff |
---|
| 2565 | pabcu(jl, 22, jc) = pabcu(jl, 22, jcp1) + & |
---|
| 2566 | zably(jl, 9, jc) * rn2o2d(jl, jc) / rco2 * zpsn6(jl) * zdiff |
---|
[1992] | 2567 | |
---|
[5185] | 2568 | pabcu(jl, 23, jc) = pabcu(jl, 23, jcp1) + & |
---|
| 2569 | zably(jl, 8, jc) * rcfc112d(jl, jc) / rco2 * zdiff |
---|
| 2570 | pabcu(jl, 24, jc) = pabcu(jl, 24, jcp1) + & |
---|
| 2571 | zably(jl, 8, jc) * rcfc122d(jl, jc) / rco2 * zdiff |
---|
| 2572 | ELSE |
---|
[1992] | 2573 | ! Same calculation as for type_trac /= repr |
---|
[5185] | 2574 | pabcu(jl, 19, jc) = pabcu(jl, 19, jcp1) + & |
---|
| 2575 | zably(jl, 8, jc) * rch4 / rco2 * zphm6(jl) * zdiff |
---|
| 2576 | pabcu(jl, 20, jc) = pabcu(jl, 20, jcp1) + & |
---|
| 2577 | zably(jl, 9, jc) * rch4 / rco2 * zpsm6(jl) * zdiff |
---|
| 2578 | pabcu(jl, 21, jc) = pabcu(jl, 21, jcp1) + & |
---|
| 2579 | zably(jl, 8, jc) * rn2o / rco2 * zphn6(jl) * zdiff |
---|
| 2580 | pabcu(jl, 22, jc) = pabcu(jl, 22, jcp1) + & |
---|
| 2581 | zably(jl, 9, jc) * rn2o / rco2 * zpsn6(jl) * zdiff |
---|
[1992] | 2582 | |
---|
[5185] | 2583 | pabcu(jl, 23, jc) = pabcu(jl, 23, jcp1) + & |
---|
| 2584 | zably(jl, 8, jc) * rcfc11 / rco2 * zdiff |
---|
| 2585 | pabcu(jl, 24, jc) = pabcu(jl, 24, jcp1) + & |
---|
| 2586 | zably(jl, 8, jc) * rcfc12 / rco2 * zdiff |
---|
| 2587 | END IF |
---|
[1992] | 2588 | END IF |
---|
| 2589 | ELSE |
---|
| 2590 | pabcu(jl, 19, jc) = pabcu(jl, 19, jcp1) + & |
---|
[5144] | 2591 | zably(jl, 8, jc) * rch4 / rco2 * zphm6(jl) * zdiff |
---|
[1992] | 2592 | pabcu(jl, 20, jc) = pabcu(jl, 20, jcp1) + & |
---|
[5144] | 2593 | zably(jl, 9, jc) * rch4 / rco2 * zpsm6(jl) * zdiff |
---|
[1992] | 2594 | pabcu(jl, 21, jc) = pabcu(jl, 21, jcp1) + & |
---|
[5144] | 2595 | zably(jl, 8, jc) * rn2o / rco2 * zphn6(jl) * zdiff |
---|
[1992] | 2596 | pabcu(jl, 22, jc) = pabcu(jl, 22, jcp1) + & |
---|
[5144] | 2597 | zably(jl, 9, jc) * rn2o / rco2 * zpsn6(jl) * zdiff |
---|
[1992] | 2598 | |
---|
| 2599 | pabcu(jl, 23, jc) = pabcu(jl, 23, jcp1) + & |
---|
[5144] | 2600 | zably(jl, 8, jc) * rcfc11 / rco2 * zdiff |
---|
[1992] | 2601 | pabcu(jl, 24, jc) = pabcu(jl, 24, jcp1) + & |
---|
[5144] | 2602 | zably(jl, 8, jc) * rcfc12 / rco2 * zdiff |
---|
[1992] | 2603 | END IF |
---|
| 2604 | |
---|
| 2605 | END DO |
---|
| 2606 | END DO |
---|
| 2607 | |
---|
| 2608 | END DO |
---|
| 2609 | |
---|
| 2610 | END SUBROUTINE lwu_lmdar4 |
---|
| 2611 | SUBROUTINE lwbv_lmdar4(klim, pdp, pdt0, pemis, ppmb, ptl, ptave, pabcu, & |
---|
[5144] | 2612 | pfluc, pbint, pbsui, pcts, pcntrb) |
---|
[1992] | 2613 | USE dimphy |
---|
[5144] | 2614 | USE lmdz_yomcst |
---|
| 2615 | |
---|
[1992] | 2616 | IMPLICIT NONE |
---|
| 2617 | include "raddimlw.h" |
---|
| 2618 | |
---|
| 2619 | ! PURPOSE. |
---|
| 2620 | ! -------- |
---|
| 2621 | ! TO COMPUTE THE PLANCK FUNCTION AND PERFORM THE |
---|
| 2622 | ! VERTICAL INTEGRATION. SPLIT OUT FROM LW FOR MEMORY |
---|
| 2623 | ! SAVING |
---|
| 2624 | |
---|
| 2625 | ! METHOD. |
---|
| 2626 | ! ------- |
---|
| 2627 | |
---|
| 2628 | ! 1. COMPUTES THE PLANCK FUNCTIONS ON THE INTERFACES AND THE |
---|
| 2629 | ! GRADIENT OF PLANCK FUNCTIONS IN THE LAYERS. |
---|
| 2630 | ! 2. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING THE CON- |
---|
| 2631 | ! TRIBUTIONS OF THE ADJACENT AND DISTANT LAYERS AND THOSE FROM THE |
---|
| 2632 | ! BOUNDARIES. |
---|
| 2633 | ! 3. COMPUTES THE CLEAR-SKY COOLING RATES. |
---|
| 2634 | |
---|
| 2635 | ! REFERENCE. |
---|
| 2636 | ! ---------- |
---|
| 2637 | |
---|
| 2638 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2639 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2640 | |
---|
| 2641 | ! AUTHOR. |
---|
| 2642 | ! ------- |
---|
| 2643 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2644 | |
---|
| 2645 | ! MODIFICATIONS. |
---|
| 2646 | ! -------------- |
---|
| 2647 | ! ORIGINAL : 89-07-14 |
---|
| 2648 | ! MODIFICATION : 93-10-15 M.HAMRUD (SPLIT OUT FROM LW TO SAVE |
---|
| 2649 | ! MEMORY) |
---|
| 2650 | ! ----------------------------------------------------------------------- |
---|
| 2651 | ! * ARGUMENTS: |
---|
| 2652 | INTEGER klim |
---|
| 2653 | |
---|
[5144] | 2654 | REAL (KIND = 8) pdp(kdlon, kflev) |
---|
| 2655 | REAL (KIND = 8) pdt0(kdlon) |
---|
| 2656 | REAL (KIND = 8) pemis(kdlon) |
---|
| 2657 | REAL (KIND = 8) ppmb(kdlon, kflev + 1) |
---|
| 2658 | REAL (KIND = 8) ptl(kdlon, kflev + 1) |
---|
| 2659 | REAL (KIND = 8) ptave(kdlon, kflev) |
---|
[1992] | 2660 | |
---|
[5144] | 2661 | REAL (KIND = 8) pfluc(kdlon, 2, kflev + 1) |
---|
[1992] | 2662 | |
---|
[5144] | 2663 | REAL (KIND = 8) pabcu(kdlon, nua, 3 * kflev + 1) |
---|
| 2664 | REAL (KIND = 8) pbint(kdlon, kflev + 1) |
---|
| 2665 | REAL (KIND = 8) pbsui(kdlon) |
---|
| 2666 | REAL (KIND = 8) pcts(kdlon, kflev) |
---|
| 2667 | REAL (KIND = 8) pcntrb(kdlon, kflev + 1, kflev + 1) |
---|
[1992] | 2668 | |
---|
| 2669 | ! ------------------------------------------------------------------------- |
---|
| 2670 | |
---|
| 2671 | ! * LOCAL VARIABLES: |
---|
[5144] | 2672 | REAL (KIND = 8) zb(kdlon, ninter, kflev + 1) |
---|
| 2673 | REAL (KIND = 8) zbsur(kdlon, ninter) |
---|
| 2674 | REAL (KIND = 8) zbtop(kdlon, ninter) |
---|
| 2675 | REAL (KIND = 8) zdbsl(kdlon, ninter, kflev * 2) |
---|
| 2676 | REAL (KIND = 8) zga(kdlon, 8, 2, kflev) |
---|
| 2677 | REAL (KIND = 8) zgb(kdlon, 8, 2, kflev) |
---|
| 2678 | REAL (KIND = 8) zgasur(kdlon, 8, 2) |
---|
| 2679 | REAL (KIND = 8) zgbsur(kdlon, 8, 2) |
---|
| 2680 | REAL (KIND = 8) zgatop(kdlon, 8, 2) |
---|
| 2681 | REAL (KIND = 8) zgbtop(kdlon, 8, 2) |
---|
[1992] | 2682 | |
---|
| 2683 | INTEGER nuaer, ntraer |
---|
| 2684 | ! ------------------------------------------------------------------ |
---|
| 2685 | ! * COMPUTES PLANCK FUNCTIONS: |
---|
| 2686 | CALL lwb_lmdar4(pdt0, ptave, ptl, zb, pbint, pbsui, zbsur, zbtop, zdbsl, & |
---|
[5144] | 2687 | zga, zgb, zgasur, zgbsur, zgatop, zgbtop) |
---|
[1992] | 2688 | ! ------------------------------------------------------------------ |
---|
| 2689 | ! * PERFORMS THE VERTICAL INTEGRATION: |
---|
| 2690 | nuaer = nua |
---|
| 2691 | ntraer = ntra |
---|
| 2692 | CALL lwv_lmdar4(nuaer, ntraer, klim, pabcu, zb, pbint, pbsui, zbsur, zbtop, & |
---|
[5144] | 2693 | zdbsl, pemis, ppmb, ptave, zga, zgb, zgasur, zgbsur, zgatop, zgbtop, & |
---|
| 2694 | pcntrb, pcts, pfluc) |
---|
[1992] | 2695 | ! ------------------------------------------------------------------ |
---|
[5105] | 2696 | |
---|
[1992] | 2697 | END SUBROUTINE lwbv_lmdar4 |
---|
| 2698 | SUBROUTINE lwc_lmdar4(klim, pcldld, pcldlu, pemis, pfluc, pbint, pbsuin, & |
---|
[5144] | 2699 | pcts, pcntrb, pflux) |
---|
[1992] | 2700 | USE dimphy |
---|
| 2701 | IMPLICIT NONE |
---|
| 2702 | include "radepsi.h" |
---|
| 2703 | include "radopt.h" |
---|
| 2704 | |
---|
| 2705 | ! PURPOSE. |
---|
| 2706 | ! -------- |
---|
| 2707 | ! INTRODUCES CLOUD EFFECTS ON LONGWAVE FLUXES OR |
---|
| 2708 | ! RADIANCES |
---|
| 2709 | |
---|
| 2710 | ! EXPLICIT ARGUMENTS : |
---|
| 2711 | ! -------------------- |
---|
| 2712 | ! ==== INPUTS === |
---|
| 2713 | ! PBINT : (KDLON,0:KFLEV) ; HALF LEVEL PLANCK FUNCTION |
---|
| 2714 | ! PBSUIN : (KDLON) ; SURFACE PLANCK FUNCTION |
---|
| 2715 | ! PCLDLD : (KDLON,KFLEV) ; DOWNWARD EFFECTIVE CLOUD FRACTION |
---|
| 2716 | ! PCLDLU : (KDLON,KFLEV) ; UPWARD EFFECTIVE CLOUD FRACTION |
---|
| 2717 | ! PCNTRB : (KDLON,KFLEV+1,KFLEV+1); CLEAR-SKY ENERGY EXCHANGE |
---|
| 2718 | ! PCTS : (KDLON,KFLEV) ; CLEAR-SKY LAYER COOLING-TO-SPACE |
---|
| 2719 | ! PEMIS : (KDLON) ; SURFACE EMISSIVITY |
---|
| 2720 | ! PFLUC |
---|
| 2721 | ! ==== OUTPUTS === |
---|
| 2722 | ! PFLUX(KDLON,2,KFLEV) ; RADIATIVE FLUXES : |
---|
| 2723 | ! 1 ==> UPWARD FLUX TOTAL |
---|
| 2724 | ! 2 ==> DOWNWARD FLUX TOTAL |
---|
| 2725 | |
---|
| 2726 | ! METHOD. |
---|
| 2727 | ! ------- |
---|
| 2728 | |
---|
| 2729 | ! 1. INITIALIZES ALL FLUXES TO CLEAR-SKY VALUES |
---|
| 2730 | ! 2. EFFECT OF ONE OVERCAST UNITY EMISSIVITY CLOUD LAYER |
---|
| 2731 | ! 3. EFFECT OF SEMI-TRANSPARENT, PARTIAL OR MULTI-LAYERED |
---|
| 2732 | ! CLOUDS |
---|
| 2733 | |
---|
| 2734 | ! REFERENCE. |
---|
| 2735 | ! ---------- |
---|
| 2736 | |
---|
| 2737 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2738 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2739 | |
---|
| 2740 | ! AUTHOR. |
---|
| 2741 | ! ------- |
---|
| 2742 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2743 | |
---|
| 2744 | ! MODIFICATIONS. |
---|
| 2745 | ! -------------- |
---|
| 2746 | ! ORIGINAL : 89-07-14 |
---|
| 2747 | ! Voigt lines (loop 231 to 233) - JJM & PhD - 01/96 |
---|
| 2748 | ! ----------------------------------------------------------------------- |
---|
| 2749 | ! * ARGUMENTS: |
---|
| 2750 | INTEGER klim |
---|
[5144] | 2751 | REAL (KIND = 8) pfluc(kdlon, 2, kflev + 1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
| 2752 | REAL (KIND = 8) pbint(kdlon, kflev + 1) ! HALF LEVEL PLANCK FUNCTION |
---|
| 2753 | REAL (KIND = 8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
---|
| 2754 | REAL (KIND = 8) pcntrb(kdlon, kflev + 1, kflev + 1) !CLEAR-SKY ENERGY EXCHANGE |
---|
| 2755 | REAL (KIND = 8) pcts(kdlon, kflev) ! CLEAR-SKY LAYER COOLING-TO-SPACE |
---|
[1992] | 2756 | |
---|
[5144] | 2757 | REAL (KIND = 8) pcldld(kdlon, kflev) |
---|
| 2758 | REAL (KIND = 8) pcldlu(kdlon, kflev) |
---|
| 2759 | REAL (KIND = 8) pemis(kdlon) |
---|
[1992] | 2760 | |
---|
[5144] | 2761 | REAL (KIND = 8) pflux(kdlon, 2, kflev + 1) |
---|
[1992] | 2762 | ! ----------------------------------------------------------------------- |
---|
| 2763 | ! * LOCAL VARIABLES: |
---|
| 2764 | INTEGER imx(kdlon), imxp(kdlon) |
---|
| 2765 | |
---|
[5144] | 2766 | REAL (KIND = 8) zclear(kdlon), zcloud(kdlon), zdnf(kdlon, kflev + 1, kflev + 1), & |
---|
| 2767 | zfd(kdlon), zfn10(kdlon), zfu(kdlon), zupf(kdlon, kflev + 1, kflev + 1) |
---|
| 2768 | REAL (KIND = 8) zclm(kdlon, kflev + 1, kflev + 1) |
---|
[1992] | 2769 | |
---|
| 2770 | INTEGER jk, jl, imaxc, imx1, imx2, jkj, jkp1, jkm1 |
---|
| 2771 | INTEGER jk1, jk2, jkc, jkcp1, jcloud |
---|
| 2772 | INTEGER imxm1, imxp1 |
---|
[5144] | 2773 | REAL (KIND = 8) zcfrac |
---|
[1992] | 2774 | |
---|
| 2775 | ! ------------------------------------------------------------------ |
---|
| 2776 | |
---|
| 2777 | ! * 1. INITIALIZATION |
---|
| 2778 | ! -------------- |
---|
| 2779 | |
---|
| 2780 | imaxc = 0 |
---|
| 2781 | |
---|
| 2782 | DO jl = 1, kdlon |
---|
| 2783 | imx(jl) = 0 |
---|
| 2784 | imxp(jl) = 0 |
---|
| 2785 | zcloud(jl) = 0. |
---|
| 2786 | END DO |
---|
| 2787 | |
---|
| 2788 | ! * 1.1 SEARCH THE LAYER INDEX OF THE HIGHEST CLOUD |
---|
| 2789 | ! ------------------------------------------- |
---|
| 2790 | |
---|
| 2791 | DO jk = 1, kflev |
---|
| 2792 | DO jl = 1, kdlon |
---|
| 2793 | imx1 = imx(jl) |
---|
| 2794 | imx2 = jk |
---|
[5144] | 2795 | IF (pcldlu(jl, jk)>zepsc) THEN |
---|
[1992] | 2796 | imxp(jl) = imx2 |
---|
[1565] | 2797 | ELSE |
---|
[1992] | 2798 | imxp(jl) = imx1 |
---|
[1565] | 2799 | END IF |
---|
[1992] | 2800 | imaxc = max(imxp(jl), imaxc) |
---|
| 2801 | imx(jl) = imxp(jl) |
---|
| 2802 | END DO |
---|
| 2803 | END DO |
---|
| 2804 | ! GM******* |
---|
| 2805 | imaxc = kflev |
---|
| 2806 | ! GM******* |
---|
| 2807 | |
---|
| 2808 | DO jk = 1, kflev + 1 |
---|
| 2809 | DO jl = 1, kdlon |
---|
| 2810 | pflux(jl, 1, jk) = pfluc(jl, 1, jk) |
---|
| 2811 | pflux(jl, 2, jk) = pfluc(jl, 2, jk) |
---|
| 2812 | END DO |
---|
| 2813 | END DO |
---|
| 2814 | |
---|
| 2815 | ! ------------------------------------------------------------------ |
---|
| 2816 | |
---|
| 2817 | ! * 2. EFFECT OF CLOUDINESS ON LONGWAVE FLUXES |
---|
| 2818 | ! --------------------------------------- |
---|
| 2819 | |
---|
| 2820 | IF (imaxc>0) THEN |
---|
| 2821 | |
---|
| 2822 | imxp1 = imaxc + 1 |
---|
| 2823 | imxm1 = imaxc - 1 |
---|
| 2824 | |
---|
| 2825 | ! * 2.0 INITIALIZE TO CLEAR-SKY FLUXES |
---|
| 2826 | ! ------------------------------ |
---|
| 2827 | |
---|
| 2828 | DO jk1 = 1, kflev + 1 |
---|
| 2829 | DO jk2 = 1, kflev + 1 |
---|
| 2830 | DO jl = 1, kdlon |
---|
| 2831 | zupf(jl, jk2, jk1) = pfluc(jl, 1, jk1) |
---|
| 2832 | zdnf(jl, jk2, jk1) = pfluc(jl, 2, jk1) |
---|
| 2833 | END DO |
---|
| 2834 | END DO |
---|
| 2835 | END DO |
---|
| 2836 | |
---|
| 2837 | ! * 2.1 FLUXES FOR ONE OVERCAST UNITY EMISSIVITY CLOUD |
---|
| 2838 | ! ---------------------------------------------- |
---|
| 2839 | |
---|
| 2840 | DO jkc = 1, imaxc |
---|
| 2841 | jcloud = jkc |
---|
| 2842 | jkcp1 = jcloud + 1 |
---|
| 2843 | |
---|
| 2844 | ! * 2.1.1 ABOVE THE CLOUD |
---|
| 2845 | ! --------------- |
---|
| 2846 | |
---|
| 2847 | DO jk = jkcp1, kflev + 1 |
---|
| 2848 | jkm1 = jk - 1 |
---|
| 2849 | DO jl = 1, kdlon |
---|
| 2850 | zfu(jl) = 0. |
---|
| 2851 | END DO |
---|
| 2852 | IF (jk>jkcp1) THEN |
---|
| 2853 | DO jkj = jkcp1, jkm1 |
---|
| 2854 | DO jl = 1, kdlon |
---|
| 2855 | zfu(jl) = zfu(jl) + pcntrb(jl, jk, jkj) |
---|
| 2856 | END DO |
---|
| 2857 | END DO |
---|
| 2858 | END IF |
---|
| 2859 | |
---|
| 2860 | DO jl = 1, kdlon |
---|
| 2861 | zupf(jl, jkcp1, jk) = pbint(jl, jk) - zfu(jl) |
---|
| 2862 | END DO |
---|
| 2863 | END DO |
---|
| 2864 | |
---|
| 2865 | ! * 2.1.2 BELOW THE CLOUD |
---|
| 2866 | ! --------------- |
---|
| 2867 | |
---|
| 2868 | DO jk = 1, jcloud |
---|
| 2869 | jkp1 = jk + 1 |
---|
| 2870 | DO jl = 1, kdlon |
---|
| 2871 | zfd(jl) = 0. |
---|
| 2872 | END DO |
---|
| 2873 | |
---|
| 2874 | IF (jk<jcloud) THEN |
---|
| 2875 | DO jkj = jkp1, jcloud |
---|
| 2876 | DO jl = 1, kdlon |
---|
| 2877 | zfd(jl) = zfd(jl) + pcntrb(jl, jk, jkj) |
---|
| 2878 | END DO |
---|
| 2879 | END DO |
---|
| 2880 | END IF |
---|
| 2881 | DO jl = 1, kdlon |
---|
| 2882 | zdnf(jl, jkcp1, jk) = -pbint(jl, jk) - zfd(jl) |
---|
| 2883 | END DO |
---|
| 2884 | END DO |
---|
| 2885 | |
---|
| 2886 | END DO |
---|
| 2887 | |
---|
| 2888 | ! * 2.2 CLOUD COVER MATRIX |
---|
| 2889 | ! ------------------ |
---|
| 2890 | |
---|
| 2891 | ! * ZCLM(JK1,JK2) IS THE OBSCURATION FACTOR BY CLOUD LAYERS BETWEEN |
---|
| 2892 | ! HALF-LEVELS JK1 AND JK2 AS SEEN FROM JK1 |
---|
| 2893 | |
---|
| 2894 | DO jk1 = 1, kflev + 1 |
---|
| 2895 | DO jk2 = 1, kflev + 1 |
---|
| 2896 | DO jl = 1, kdlon |
---|
| 2897 | zclm(jl, jk1, jk2) = 0. |
---|
| 2898 | END DO |
---|
| 2899 | END DO |
---|
| 2900 | END DO |
---|
| 2901 | |
---|
| 2902 | ! * 2.4 CLOUD COVER BELOW THE LEVEL OF CALCULATION |
---|
| 2903 | ! ------------------------------------------ |
---|
| 2904 | |
---|
| 2905 | DO jk1 = 2, kflev + 1 |
---|
| 2906 | DO jl = 1, kdlon |
---|
| 2907 | zclear(jl) = 1. |
---|
| 2908 | zcloud(jl) = 0. |
---|
| 2909 | END DO |
---|
| 2910 | DO jk = jk1 - 1, 1, -1 |
---|
| 2911 | DO jl = 1, kdlon |
---|
| 2912 | IF (novlp==1) THEN |
---|
| 2913 | ! * maximum-random |
---|
[5144] | 2914 | zclear(jl) = zclear(jl) * (1.0 - max(pcldlu(jl, & |
---|
| 2915 | jk), zcloud(jl))) / (1.0 - min(zcloud(jl), 1. - zepsec)) |
---|
[1992] | 2916 | zclm(jl, jk1, jk) = 1.0 - zclear(jl) |
---|
| 2917 | zcloud(jl) = pcldlu(jl, jk) |
---|
| 2918 | ELSE IF (novlp==2) THEN |
---|
| 2919 | ! * maximum |
---|
[5144] | 2920 | zcloud(jl) = max(zcloud(jl), pcldlu(jl, jk)) |
---|
[1992] | 2921 | zclm(jl, jk1, jk) = zcloud(jl) |
---|
| 2922 | ELSE IF (novlp==3) THEN |
---|
| 2923 | ! * random |
---|
[5144] | 2924 | zclear(jl) = zclear(jl) * (1.0 - pcldlu(jl, jk)) |
---|
[1992] | 2925 | zcloud(jl) = 1.0 - zclear(jl) |
---|
| 2926 | zclm(jl, jk1, jk) = zcloud(jl) |
---|
| 2927 | END IF |
---|
| 2928 | END DO |
---|
| 2929 | END DO |
---|
| 2930 | END DO |
---|
| 2931 | |
---|
| 2932 | ! * 2.5 CLOUD COVER ABOVE THE LEVEL OF CALCULATION |
---|
| 2933 | ! ------------------------------------------ |
---|
| 2934 | |
---|
| 2935 | DO jk1 = 1, kflev |
---|
| 2936 | DO jl = 1, kdlon |
---|
| 2937 | zclear(jl) = 1. |
---|
| 2938 | zcloud(jl) = 0. |
---|
| 2939 | END DO |
---|
| 2940 | DO jk = jk1, kflev |
---|
| 2941 | DO jl = 1, kdlon |
---|
| 2942 | IF (novlp==1) THEN |
---|
| 2943 | ! * maximum-random |
---|
[5144] | 2944 | zclear(jl) = zclear(jl) * (1.0 - max(pcldld(jl, & |
---|
| 2945 | jk), zcloud(jl))) / (1.0 - min(zcloud(jl), 1. - zepsec)) |
---|
[1992] | 2946 | zclm(jl, jk1, jk) = 1.0 - zclear(jl) |
---|
| 2947 | zcloud(jl) = pcldld(jl, jk) |
---|
| 2948 | ELSE IF (novlp==2) THEN |
---|
| 2949 | ! * maximum |
---|
[5144] | 2950 | zcloud(jl) = max(zcloud(jl), pcldld(jl, jk)) |
---|
[1992] | 2951 | zclm(jl, jk1, jk) = zcloud(jl) |
---|
| 2952 | ELSE IF (novlp==3) THEN |
---|
| 2953 | ! * random |
---|
[5144] | 2954 | zclear(jl) = zclear(jl) * (1.0 - pcldld(jl, jk)) |
---|
[1992] | 2955 | zcloud(jl) = 1.0 - zclear(jl) |
---|
| 2956 | zclm(jl, jk1, jk) = zcloud(jl) |
---|
| 2957 | END IF |
---|
| 2958 | END DO |
---|
| 2959 | END DO |
---|
| 2960 | END DO |
---|
| 2961 | |
---|
| 2962 | ! * 3. FLUXES FOR PARTIAL/MULTIPLE LAYERED CLOUDINESS |
---|
| 2963 | ! ---------------------------------------------- |
---|
| 2964 | |
---|
| 2965 | |
---|
| 2966 | ! * 3.1 DOWNWARD FLUXES |
---|
| 2967 | ! --------------- |
---|
| 2968 | |
---|
| 2969 | DO jl = 1, kdlon |
---|
[5144] | 2970 | pflux(jl, 2, kflev + 1) = 0. |
---|
[1992] | 2971 | END DO |
---|
| 2972 | |
---|
| 2973 | DO jk1 = kflev, 1, -1 |
---|
| 2974 | |
---|
| 2975 | ! * CONTRIBUTION FROM CLEAR-SKY FRACTION |
---|
| 2976 | |
---|
| 2977 | DO jl = 1, kdlon |
---|
[5144] | 2978 | zfd(jl) = (1. - zclm(jl, jk1, kflev)) * zdnf(jl, 1, jk1) |
---|
[1992] | 2979 | END DO |
---|
| 2980 | |
---|
| 2981 | ! * CONTRIBUTION FROM ADJACENT CLOUD |
---|
| 2982 | |
---|
| 2983 | DO jl = 1, kdlon |
---|
[5144] | 2984 | zfd(jl) = zfd(jl) + zclm(jl, jk1, jk1) * zdnf(jl, jk1 + 1, jk1) |
---|
[1992] | 2985 | END DO |
---|
| 2986 | |
---|
| 2987 | ! * CONTRIBUTION FROM OTHER CLOUDY FRACTIONS |
---|
| 2988 | |
---|
| 2989 | DO jk = kflev - 1, jk1, -1 |
---|
| 2990 | DO jl = 1, kdlon |
---|
[5144] | 2991 | zcfrac = zclm(jl, jk1, jk + 1) - zclm(jl, jk1, jk) |
---|
| 2992 | zfd(jl) = zfd(jl) + zcfrac * zdnf(jl, jk + 2, jk1) |
---|
[1992] | 2993 | END DO |
---|
| 2994 | END DO |
---|
| 2995 | |
---|
| 2996 | DO jl = 1, kdlon |
---|
| 2997 | pflux(jl, 2, jk1) = zfd(jl) |
---|
| 2998 | END DO |
---|
| 2999 | |
---|
| 3000 | END DO |
---|
| 3001 | |
---|
| 3002 | ! * 3.2 UPWARD FLUX AT THE SURFACE |
---|
| 3003 | ! -------------------------- |
---|
| 3004 | |
---|
| 3005 | DO jl = 1, kdlon |
---|
[5144] | 3006 | pflux(jl, 1, 1) = pemis(jl) * pbsuin(jl) - (1. - pemis(jl)) * pflux(jl, 2, 1) |
---|
[1992] | 3007 | END DO |
---|
| 3008 | |
---|
| 3009 | ! * 3.3 UPWARD FLUXES |
---|
| 3010 | ! ------------- |
---|
| 3011 | |
---|
| 3012 | DO jk1 = 2, kflev + 1 |
---|
| 3013 | |
---|
| 3014 | ! * CONTRIBUTION FROM CLEAR-SKY FRACTION |
---|
| 3015 | |
---|
| 3016 | DO jl = 1, kdlon |
---|
[5144] | 3017 | zfu(jl) = (1. - zclm(jl, jk1, 1)) * zupf(jl, 1, jk1) |
---|
[1992] | 3018 | END DO |
---|
| 3019 | |
---|
| 3020 | ! * CONTRIBUTION FROM ADJACENT CLOUD |
---|
| 3021 | |
---|
| 3022 | DO jl = 1, kdlon |
---|
[5144] | 3023 | zfu(jl) = zfu(jl) + zclm(jl, jk1, jk1 - 1) * zupf(jl, jk1, jk1) |
---|
[1992] | 3024 | END DO |
---|
| 3025 | |
---|
| 3026 | ! * CONTRIBUTION FROM OTHER CLOUDY FRACTIONS |
---|
| 3027 | |
---|
| 3028 | DO jk = 2, jk1 - 1 |
---|
| 3029 | DO jl = 1, kdlon |
---|
[5144] | 3030 | zcfrac = zclm(jl, jk1, jk - 1) - zclm(jl, jk1, jk) |
---|
| 3031 | zfu(jl) = zfu(jl) + zcfrac * zupf(jl, jk, jk1) |
---|
[1992] | 3032 | END DO |
---|
| 3033 | END DO |
---|
| 3034 | |
---|
| 3035 | DO jl = 1, kdlon |
---|
| 3036 | pflux(jl, 1, jk1) = zfu(jl) |
---|
| 3037 | END DO |
---|
| 3038 | |
---|
| 3039 | END DO |
---|
| 3040 | |
---|
| 3041 | END IF |
---|
| 3042 | |
---|
| 3043 | ! * 2.3 END OF CLOUD EFFECT COMPUTATIONS |
---|
| 3044 | |
---|
| 3045 | IF (.NOT. levoigt) THEN |
---|
| 3046 | DO jl = 1, kdlon |
---|
| 3047 | zfn10(jl) = pflux(jl, 1, klim) + pflux(jl, 2, klim) |
---|
| 3048 | END DO |
---|
| 3049 | DO jk = klim + 1, kflev + 1 |
---|
| 3050 | DO jl = 1, kdlon |
---|
[5144] | 3051 | zfn10(jl) = zfn10(jl) + pcts(jl, jk - 1) |
---|
[1992] | 3052 | pflux(jl, 1, jk) = zfn10(jl) |
---|
| 3053 | pflux(jl, 2, jk) = 0.0 |
---|
| 3054 | END DO |
---|
| 3055 | END DO |
---|
| 3056 | END IF |
---|
| 3057 | |
---|
| 3058 | END SUBROUTINE lwc_lmdar4 |
---|
| 3059 | SUBROUTINE lwb_lmdar4(pdt0, ptave, ptl, pb, pbint, pbsuin, pbsur, pbtop, & |
---|
[5144] | 3060 | pdbsl, pga, pgb, pgasur, pgbsur, pgatop, pgbtop) |
---|
[1992] | 3061 | USE dimphy |
---|
| 3062 | USE radiation_ar4_param, ONLY: tintp, xp, ga, gb |
---|
| 3063 | IMPLICIT NONE |
---|
| 3064 | include "raddimlw.h" |
---|
| 3065 | |
---|
| 3066 | ! ----------------------------------------------------------------------- |
---|
| 3067 | ! PURPOSE. |
---|
| 3068 | ! -------- |
---|
| 3069 | ! COMPUTES PLANCK FUNCTIONS |
---|
| 3070 | |
---|
| 3071 | ! EXPLICIT ARGUMENTS : |
---|
| 3072 | ! -------------------- |
---|
| 3073 | ! ==== INPUTS === |
---|
| 3074 | ! PDT0 : (KDLON) ; SURFACE TEMPERATURE DISCONTINUITY |
---|
| 3075 | ! PTAVE : (KDLON,KFLEV) ; TEMPERATURE |
---|
| 3076 | ! PTL : (KDLON,0:KFLEV) ; HALF LEVEL TEMPERATURE |
---|
| 3077 | ! ==== OUTPUTS === |
---|
| 3078 | ! PB : (KDLON,Ninter,KFLEV+1); SPECTRAL HALF LEVEL PLANCK FUNCTION |
---|
| 3079 | ! PBINT : (KDLON,KFLEV+1) ; HALF LEVEL PLANCK FUNCTION |
---|
| 3080 | ! PBSUIN : (KDLON) ; SURFACE PLANCK FUNCTION |
---|
| 3081 | ! PBSUR : (KDLON,Ninter) ; SURFACE SPECTRAL PLANCK FUNCTION |
---|
| 3082 | ! PBTOP : (KDLON,Ninter) ; TOP SPECTRAL PLANCK FUNCTION |
---|
| 3083 | ! PDBSL : (KDLON,Ninter,KFLEV*2); SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
| 3084 | ! PGA : (KDLON,8,2,KFLEV); dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
| 3085 | ! PGB : (KDLON,8,2,KFLEV); dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
| 3086 | ! PGASUR, PGBSUR (KDLON,8,2) ; SURFACE PADE APPROXIMANTS |
---|
| 3087 | ! PGATOP, PGBTOP (KDLON,8,2) ; T.O.A. PADE APPROXIMANTS |
---|
| 3088 | |
---|
| 3089 | ! IMPLICIT ARGUMENTS : NONE |
---|
| 3090 | ! -------------------- |
---|
| 3091 | |
---|
| 3092 | ! METHOD. |
---|
| 3093 | ! ------- |
---|
| 3094 | |
---|
| 3095 | ! 1. COMPUTES THE PLANCK FUNCTION ON ALL LEVELS AND HALF LEVELS |
---|
| 3096 | ! FROM A POLYNOMIAL DEVELOPMENT OF PLANCK FUNCTION |
---|
| 3097 | |
---|
| 3098 | ! REFERENCE. |
---|
| 3099 | ! ---------- |
---|
| 3100 | |
---|
| 3101 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 3102 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS " |
---|
| 3103 | |
---|
| 3104 | ! AUTHOR. |
---|
| 3105 | ! ------- |
---|
| 3106 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 3107 | |
---|
| 3108 | ! MODIFICATIONS. |
---|
| 3109 | ! -------------- |
---|
| 3110 | ! ORIGINAL : 89-07-14 |
---|
| 3111 | |
---|
| 3112 | ! ----------------------------------------------------------------------- |
---|
| 3113 | |
---|
| 3114 | ! ARGUMENTS: |
---|
| 3115 | |
---|
[5144] | 3116 | REAL (KIND = 8) pdt0(kdlon) |
---|
| 3117 | REAL (KIND = 8) ptave(kdlon, kflev) |
---|
| 3118 | REAL (KIND = 8) ptl(kdlon, kflev + 1) |
---|
[1992] | 3119 | |
---|
[5144] | 3120 | REAL (KIND = 8) pb(kdlon, ninter, kflev + 1) ! SPECTRAL HALF LEVEL PLANCK FUNCTION |
---|
| 3121 | REAL (KIND = 8) pbint(kdlon, kflev + 1) ! HALF LEVEL PLANCK FUNCTION |
---|
| 3122 | REAL (KIND = 8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
---|
| 3123 | REAL (KIND = 8) pbsur(kdlon, ninter) ! SURFACE SPECTRAL PLANCK FUNCTION |
---|
| 3124 | REAL (KIND = 8) pbtop(kdlon, ninter) ! TOP SPECTRAL PLANCK FUNCTION |
---|
| 3125 | REAL (KIND = 8) pdbsl(kdlon, ninter, kflev * 2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
| 3126 | REAL (KIND = 8) pga(kdlon, 8, 2, kflev) ! dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
| 3127 | REAL (KIND = 8) pgb(kdlon, 8, 2, kflev) ! dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
| 3128 | REAL (KIND = 8) pgasur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
---|
| 3129 | REAL (KIND = 8) pgbsur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
---|
| 3130 | REAL (KIND = 8) pgatop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
---|
| 3131 | REAL (KIND = 8) pgbtop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
---|
[1992] | 3132 | |
---|
| 3133 | ! ------------------------------------------------------------------------- |
---|
| 3134 | ! * LOCAL VARIABLES: |
---|
| 3135 | INTEGER indb(kdlon), inds(kdlon) |
---|
[5144] | 3136 | REAL (KIND = 8) zblay(kdlon, kflev), zblev(kdlon, kflev + 1) |
---|
| 3137 | REAL (KIND = 8) zres(kdlon), zres2(kdlon), zti(kdlon), zti2(kdlon) |
---|
[1992] | 3138 | |
---|
| 3139 | INTEGER jk, jl, ic, jnu, jf, jg |
---|
| 3140 | INTEGER jk1, jk2 |
---|
| 3141 | INTEGER k, j, ixtox, indto, ixtx, indt |
---|
| 3142 | INTEGER indsu, indtp |
---|
[5144] | 3143 | REAL (KIND = 8) zdsto1, zdstox, zdst1, zdstx |
---|
[1992] | 3144 | |
---|
| 3145 | ! * Quelques parametres: |
---|
[5144] | 3146 | REAL (KIND = 8) tstand |
---|
| 3147 | PARAMETER (tstand = 250.0) |
---|
| 3148 | REAL (KIND = 8) tstp |
---|
| 3149 | PARAMETER (tstp = 12.5) |
---|
[1992] | 3150 | INTEGER mxixt |
---|
[5144] | 3151 | PARAMETER (mxixt = 10) |
---|
[1992] | 3152 | |
---|
| 3153 | ! * Used Data Block: |
---|
| 3154 | ! REAL*8 TINTP(11) |
---|
| 3155 | ! SAVE TINTP |
---|
| 3156 | ! c$OMP THREADPRIVATE(TINTP) |
---|
| 3157 | ! REAL*8 GA(11,16,3), GB(11,16,3) |
---|
| 3158 | ! SAVE GA, GB |
---|
| 3159 | ! c$OMP THREADPRIVATE(GA, GB) |
---|
| 3160 | ! REAL*8 XP(6,6) |
---|
| 3161 | ! SAVE XP |
---|
| 3162 | ! c$OMP THREADPRIVATE(XP) |
---|
| 3163 | |
---|
| 3164 | ! DATA TINTP / 187.5, 200., 212.5, 225., 237.5, 250., |
---|
| 3165 | ! S 262.5, 275., 287.5, 300., 312.5 / |
---|
| 3166 | ! ----------------------------------------------------------------------- |
---|
| 3167 | ! -- WATER VAPOR -- INT.1 -- 0- 500 CM-1 -- FROM ABS225 ---------------- |
---|
| 3168 | |
---|
| 3169 | |
---|
| 3170 | |
---|
| 3171 | |
---|
| 3172 | ! -- R.D. -- G = - 0.2 SLA |
---|
| 3173 | |
---|
| 3174 | |
---|
| 3175 | ! ----- INTERVAL = 1 ----- T = 187.5 |
---|
| 3176 | |
---|
| 3177 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3178 | ! DATA (GA( 1, 1,IC),IC=1,3) / |
---|
| 3179 | ! S 0.63499072E-02,-0.99506586E-03, 0.00000000E+00/ |
---|
| 3180 | ! DATA (GB( 1, 1,IC),IC=1,3) / |
---|
| 3181 | ! S 0.63499072E-02, 0.97222852E-01, 0.10000000E+01/ |
---|
| 3182 | ! DATA (GA( 1, 2,IC),IC=1,3) / |
---|
| 3183 | ! S 0.77266491E-02,-0.11661515E-02, 0.00000000E+00/ |
---|
| 3184 | ! DATA (GB( 1, 2,IC),IC=1,3) / |
---|
| 3185 | ! S 0.77266491E-02, 0.10681591E+00, 0.10000000E+01/ |
---|
| 3186 | |
---|
| 3187 | ! ----- INTERVAL = 1 ----- T = 200.0 |
---|
| 3188 | |
---|
| 3189 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3190 | ! DATA (GA( 2, 1,IC),IC=1,3) / |
---|
| 3191 | ! S 0.65566348E-02,-0.10184169E-02, 0.00000000E+00/ |
---|
| 3192 | ! DATA (GB( 2, 1,IC),IC=1,3) / |
---|
| 3193 | ! S 0.65566348E-02, 0.98862238E-01, 0.10000000E+01/ |
---|
| 3194 | ! DATA (GA( 2, 2,IC),IC=1,3) / |
---|
| 3195 | ! S 0.81323287E-02,-0.11886130E-02, 0.00000000E+00/ |
---|
| 3196 | ! DATA (GB( 2, 2,IC),IC=1,3) / |
---|
| 3197 | ! S 0.81323287E-02, 0.10921298E+00, 0.10000000E+01/ |
---|
| 3198 | |
---|
| 3199 | ! ----- INTERVAL = 1 ----- T = 212.5 |
---|
| 3200 | |
---|
| 3201 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3202 | ! DATA (GA( 3, 1,IC),IC=1,3) / |
---|
| 3203 | ! S 0.67849730E-02,-0.10404730E-02, 0.00000000E+00/ |
---|
| 3204 | ! DATA (GB( 3, 1,IC),IC=1,3) / |
---|
| 3205 | ! S 0.67849730E-02, 0.10061504E+00, 0.10000000E+01/ |
---|
| 3206 | ! DATA (GA( 3, 2,IC),IC=1,3) / |
---|
| 3207 | ! S 0.86507620E-02,-0.12139929E-02, 0.00000000E+00/ |
---|
| 3208 | ! DATA (GB( 3, 2,IC),IC=1,3) / |
---|
| 3209 | ! S 0.86507620E-02, 0.11198225E+00, 0.10000000E+01/ |
---|
| 3210 | |
---|
| 3211 | ! ----- INTERVAL = 1 ----- T = 225.0 |
---|
| 3212 | |
---|
| 3213 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3214 | ! DATA (GA( 4, 1,IC),IC=1,3) / |
---|
| 3215 | ! S 0.70481947E-02,-0.10621792E-02, 0.00000000E+00/ |
---|
| 3216 | ! DATA (GB( 4, 1,IC),IC=1,3) / |
---|
| 3217 | ! S 0.70481947E-02, 0.10256222E+00, 0.10000000E+01/ |
---|
| 3218 | ! DATA (GA( 4, 2,IC),IC=1,3) / |
---|
| 3219 | ! S 0.92776391E-02,-0.12445811E-02, 0.00000000E+00/ |
---|
| 3220 | ! DATA (GB( 4, 2,IC),IC=1,3) / |
---|
| 3221 | ! S 0.92776391E-02, 0.11487826E+00, 0.10000000E+01/ |
---|
| 3222 | |
---|
| 3223 | ! ----- INTERVAL = 1 ----- T = 237.5 |
---|
| 3224 | |
---|
| 3225 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3226 | ! DATA (GA( 5, 1,IC),IC=1,3) / |
---|
| 3227 | ! S 0.73585943E-02,-0.10847662E-02, 0.00000000E+00/ |
---|
| 3228 | ! DATA (GB( 5, 1,IC),IC=1,3) / |
---|
| 3229 | ! S 0.73585943E-02, 0.10475952E+00, 0.10000000E+01/ |
---|
| 3230 | ! DATA (GA( 5, 2,IC),IC=1,3) / |
---|
| 3231 | ! S 0.99806312E-02,-0.12807672E-02, 0.00000000E+00/ |
---|
| 3232 | ! DATA (GB( 5, 2,IC),IC=1,3) / |
---|
| 3233 | ! S 0.99806312E-02, 0.11751113E+00, 0.10000000E+01/ |
---|
| 3234 | |
---|
| 3235 | ! ----- INTERVAL = 1 ----- T = 250.0 |
---|
| 3236 | |
---|
| 3237 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3238 | ! DATA (GA( 6, 1,IC),IC=1,3) / |
---|
| 3239 | ! S 0.77242818E-02,-0.11094726E-02, 0.00000000E+00/ |
---|
| 3240 | ! DATA (GB( 6, 1,IC),IC=1,3) / |
---|
| 3241 | ! S 0.77242818E-02, 0.10720986E+00, 0.10000000E+01/ |
---|
| 3242 | ! DATA (GA( 6, 2,IC),IC=1,3) / |
---|
| 3243 | ! S 0.10709803E-01,-0.13208251E-02, 0.00000000E+00/ |
---|
| 3244 | ! DATA (GB( 6, 2,IC),IC=1,3) / |
---|
| 3245 | ! S 0.10709803E-01, 0.11951535E+00, 0.10000000E+01/ |
---|
| 3246 | |
---|
| 3247 | ! ----- INTERVAL = 1 ----- T = 262.5 |
---|
| 3248 | |
---|
| 3249 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3250 | ! DATA (GA( 7, 1,IC),IC=1,3) / |
---|
| 3251 | ! S 0.81472693E-02,-0.11372949E-02, 0.00000000E+00/ |
---|
| 3252 | ! DATA (GB( 7, 1,IC),IC=1,3) / |
---|
| 3253 | ! S 0.81472693E-02, 0.10985370E+00, 0.10000000E+01/ |
---|
| 3254 | ! DATA (GA( 7, 2,IC),IC=1,3) / |
---|
| 3255 | ! S 0.11414739E-01,-0.13619034E-02, 0.00000000E+00/ |
---|
| 3256 | ! DATA (GB( 7, 2,IC),IC=1,3) / |
---|
| 3257 | ! S 0.11414739E-01, 0.12069945E+00, 0.10000000E+01/ |
---|
| 3258 | |
---|
| 3259 | ! ----- INTERVAL = 1 ----- T = 275.0 |
---|
| 3260 | |
---|
| 3261 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3262 | ! DATA (GA( 8, 1,IC),IC=1,3) / |
---|
| 3263 | ! S 0.86227527E-02,-0.11687683E-02, 0.00000000E+00/ |
---|
| 3264 | ! DATA (GB( 8, 1,IC),IC=1,3) / |
---|
| 3265 | ! S 0.86227527E-02, 0.11257633E+00, 0.10000000E+01/ |
---|
| 3266 | ! DATA (GA( 8, 2,IC),IC=1,3) / |
---|
| 3267 | ! S 0.12058772E-01,-0.14014165E-02, 0.00000000E+00/ |
---|
| 3268 | ! DATA (GB( 8, 2,IC),IC=1,3) / |
---|
| 3269 | ! S 0.12058772E-01, 0.12108524E+00, 0.10000000E+01/ |
---|
| 3270 | |
---|
| 3271 | ! ----- INTERVAL = 1 ----- T = 287.5 |
---|
| 3272 | |
---|
| 3273 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3274 | ! DATA (GA( 9, 1,IC),IC=1,3) / |
---|
| 3275 | ! S 0.91396814E-02,-0.12038314E-02, 0.00000000E+00/ |
---|
| 3276 | ! DATA (GB( 9, 1,IC),IC=1,3) / |
---|
| 3277 | ! S 0.91396814E-02, 0.11522980E+00, 0.10000000E+01/ |
---|
| 3278 | ! DATA (GA( 9, 2,IC),IC=1,3) / |
---|
| 3279 | ! S 0.12623992E-01,-0.14378639E-02, 0.00000000E+00/ |
---|
| 3280 | ! DATA (GB( 9, 2,IC),IC=1,3) / |
---|
| 3281 | ! S 0.12623992E-01, 0.12084229E+00, 0.10000000E+01/ |
---|
| 3282 | |
---|
| 3283 | ! ----- INTERVAL = 1 ----- T = 300.0 |
---|
| 3284 | |
---|
| 3285 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3286 | ! DATA (GA(10, 1,IC),IC=1,3) / |
---|
| 3287 | ! S 0.96825438E-02,-0.12418367E-02, 0.00000000E+00/ |
---|
| 3288 | ! DATA (GB(10, 1,IC),IC=1,3) / |
---|
| 3289 | ! S 0.96825438E-02, 0.11766343E+00, 0.10000000E+01/ |
---|
| 3290 | ! DATA (GA(10, 2,IC),IC=1,3) / |
---|
| 3291 | ! S 0.13108146E-01,-0.14708488E-02, 0.00000000E+00/ |
---|
| 3292 | ! DATA (GB(10, 2,IC),IC=1,3) / |
---|
| 3293 | ! S 0.13108146E-01, 0.12019005E+00, 0.10000000E+01/ |
---|
| 3294 | |
---|
| 3295 | ! ----- INTERVAL = 1 ----- T = 312.5 |
---|
| 3296 | |
---|
| 3297 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3298 | ! DATA (GA(11, 1,IC),IC=1,3) / |
---|
| 3299 | ! S 0.10233955E-01,-0.12817135E-02, 0.00000000E+00/ |
---|
| 3300 | ! DATA (GB(11, 1,IC),IC=1,3) / |
---|
| 3301 | ! S 0.10233955E-01, 0.11975320E+00, 0.10000000E+01/ |
---|
| 3302 | ! DATA (GA(11, 2,IC),IC=1,3) / |
---|
| 3303 | ! S 0.13518390E-01,-0.15006791E-02, 0.00000000E+00/ |
---|
| 3304 | ! DATA (GB(11, 2,IC),IC=1,3) / |
---|
| 3305 | ! S 0.13518390E-01, 0.11932684E+00, 0.10000000E+01/ |
---|
| 3306 | |
---|
| 3307 | |
---|
| 3308 | |
---|
| 3309 | ! --- WATER VAPOR --- INTERVAL 2 -- 500-800 CM-1--- FROM ABS225 --------- |
---|
| 3310 | |
---|
| 3311 | |
---|
| 3312 | |
---|
| 3313 | |
---|
| 3314 | ! --- R.D. --- G = 0.02 + 0.50 / ( 1 + 4.5 U ) |
---|
| 3315 | |
---|
| 3316 | |
---|
| 3317 | ! ----- INTERVAL = 2 ----- T = 187.5 |
---|
| 3318 | |
---|
| 3319 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3320 | ! DATA (GA( 1, 3,IC),IC=1,3) / |
---|
| 3321 | ! S 0.11644593E+01, 0.41243390E+00, 0.00000000E+00/ |
---|
| 3322 | ! DATA (GB( 1, 3,IC),IC=1,3) / |
---|
| 3323 | ! S 0.11644593E+01, 0.10346097E+01, 0.10000000E+01/ |
---|
| 3324 | ! DATA (GA( 1, 4,IC),IC=1,3) / |
---|
| 3325 | ! S 0.12006968E+01, 0.48318936E+00, 0.00000000E+00/ |
---|
| 3326 | ! DATA (GB( 1, 4,IC),IC=1,3) / |
---|
| 3327 | ! S 0.12006968E+01, 0.10626130E+01, 0.10000000E+01/ |
---|
| 3328 | |
---|
| 3329 | ! ----- INTERVAL = 2 ----- T = 200.0 |
---|
| 3330 | |
---|
| 3331 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3332 | ! DATA (GA( 2, 3,IC),IC=1,3) / |
---|
| 3333 | ! S 0.11747203E+01, 0.43407282E+00, 0.00000000E+00/ |
---|
| 3334 | ! DATA (GB( 2, 3,IC),IC=1,3) / |
---|
| 3335 | ! S 0.11747203E+01, 0.10433655E+01, 0.10000000E+01/ |
---|
| 3336 | ! DATA (GA( 2, 4,IC),IC=1,3) / |
---|
| 3337 | ! S 0.12108196E+01, 0.50501827E+00, 0.00000000E+00/ |
---|
| 3338 | ! DATA (GB( 2, 4,IC),IC=1,3) / |
---|
| 3339 | ! S 0.12108196E+01, 0.10716026E+01, 0.10000000E+01/ |
---|
| 3340 | |
---|
| 3341 | ! ----- INTERVAL = 2 ----- T = 212.5 |
---|
| 3342 | |
---|
| 3343 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3344 | ! DATA (GA( 3, 3,IC),IC=1,3) / |
---|
| 3345 | ! S 0.11837872E+01, 0.45331413E+00, 0.00000000E+00/ |
---|
| 3346 | ! DATA (GB( 3, 3,IC),IC=1,3) / |
---|
| 3347 | ! S 0.11837872E+01, 0.10511933E+01, 0.10000000E+01/ |
---|
| 3348 | ! DATA (GA( 3, 4,IC),IC=1,3) / |
---|
| 3349 | ! S 0.12196717E+01, 0.52409502E+00, 0.00000000E+00/ |
---|
| 3350 | ! DATA (GB( 3, 4,IC),IC=1,3) / |
---|
| 3351 | ! S 0.12196717E+01, 0.10795108E+01, 0.10000000E+01/ |
---|
| 3352 | |
---|
| 3353 | ! ----- INTERVAL = 2 ----- T = 225.0 |
---|
| 3354 | |
---|
| 3355 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3356 | ! DATA (GA( 4, 3,IC),IC=1,3) / |
---|
| 3357 | ! S 0.11918561E+01, 0.47048604E+00, 0.00000000E+00/ |
---|
| 3358 | ! DATA (GB( 4, 3,IC),IC=1,3) / |
---|
| 3359 | ! S 0.11918561E+01, 0.10582150E+01, 0.10000000E+01/ |
---|
| 3360 | ! DATA (GA( 4, 4,IC),IC=1,3) / |
---|
| 3361 | ! S 0.12274493E+01, 0.54085277E+00, 0.00000000E+00/ |
---|
| 3362 | ! DATA (GB( 4, 4,IC),IC=1,3) / |
---|
| 3363 | ! S 0.12274493E+01, 0.10865006E+01, 0.10000000E+01/ |
---|
| 3364 | |
---|
| 3365 | ! ----- INTERVAL = 2 ----- T = 237.5 |
---|
| 3366 | |
---|
| 3367 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3368 | ! DATA (GA( 5, 3,IC),IC=1,3) / |
---|
| 3369 | ! S 0.11990757E+01, 0.48586286E+00, 0.00000000E+00/ |
---|
| 3370 | ! DATA (GB( 5, 3,IC),IC=1,3) / |
---|
| 3371 | ! S 0.11990757E+01, 0.10645317E+01, 0.10000000E+01/ |
---|
| 3372 | ! DATA (GA( 5, 4,IC),IC=1,3) / |
---|
| 3373 | ! S 0.12343189E+01, 0.55565422E+00, 0.00000000E+00/ |
---|
| 3374 | ! DATA (GB( 5, 4,IC),IC=1,3) / |
---|
| 3375 | ! S 0.12343189E+01, 0.10927103E+01, 0.10000000E+01/ |
---|
| 3376 | |
---|
| 3377 | ! ----- INTERVAL = 2 ----- T = 250.0 |
---|
| 3378 | |
---|
| 3379 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3380 | ! DATA (GA( 6, 3,IC),IC=1,3) / |
---|
| 3381 | ! S 0.12055643E+01, 0.49968044E+00, 0.00000000E+00/ |
---|
| 3382 | ! DATA (GB( 6, 3,IC),IC=1,3) / |
---|
| 3383 | ! S 0.12055643E+01, 0.10702313E+01, 0.10000000E+01/ |
---|
| 3384 | ! DATA (GA( 6, 4,IC),IC=1,3) / |
---|
| 3385 | ! S 0.12404147E+01, 0.56878618E+00, 0.00000000E+00/ |
---|
| 3386 | ! DATA (GB( 6, 4,IC),IC=1,3) / |
---|
| 3387 | ! S 0.12404147E+01, 0.10982489E+01, 0.10000000E+01/ |
---|
| 3388 | |
---|
| 3389 | ! ----- INTERVAL = 2 ----- T = 262.5 |
---|
| 3390 | |
---|
| 3391 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3392 | ! DATA (GA( 7, 3,IC),IC=1,3) / |
---|
| 3393 | ! S 0.12114186E+01, 0.51214132E+00, 0.00000000E+00/ |
---|
| 3394 | ! DATA (GB( 7, 3,IC),IC=1,3) / |
---|
| 3395 | ! S 0.12114186E+01, 0.10753907E+01, 0.10000000E+01/ |
---|
| 3396 | ! DATA (GA( 7, 4,IC),IC=1,3) / |
---|
| 3397 | ! S 0.12458431E+01, 0.58047395E+00, 0.00000000E+00/ |
---|
| 3398 | ! DATA (GB( 7, 4,IC),IC=1,3) / |
---|
| 3399 | ! S 0.12458431E+01, 0.11032019E+01, 0.10000000E+01/ |
---|
| 3400 | |
---|
| 3401 | ! ----- INTERVAL = 2 ----- T = 275.0 |
---|
| 3402 | |
---|
| 3403 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3404 | ! DATA (GA( 8, 3,IC),IC=1,3) / |
---|
| 3405 | ! S 0.12167192E+01, 0.52341830E+00, 0.00000000E+00/ |
---|
| 3406 | ! DATA (GB( 8, 3,IC),IC=1,3) / |
---|
| 3407 | ! S 0.12167192E+01, 0.10800762E+01, 0.10000000E+01/ |
---|
| 3408 | ! DATA (GA( 8, 4,IC),IC=1,3) / |
---|
| 3409 | ! S 0.12506907E+01, 0.59089894E+00, 0.00000000E+00/ |
---|
| 3410 | ! DATA (GB( 8, 4,IC),IC=1,3) / |
---|
| 3411 | ! S 0.12506907E+01, 0.11076379E+01, 0.10000000E+01/ |
---|
| 3412 | |
---|
| 3413 | ! ----- INTERVAL = 2 ----- T = 287.5 |
---|
| 3414 | |
---|
| 3415 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3416 | ! DATA (GA( 9, 3,IC),IC=1,3) / |
---|
| 3417 | ! S 0.12215344E+01, 0.53365803E+00, 0.00000000E+00/ |
---|
| 3418 | ! DATA (GB( 9, 3,IC),IC=1,3) / |
---|
| 3419 | ! S 0.12215344E+01, 0.10843446E+01, 0.10000000E+01/ |
---|
| 3420 | ! DATA (GA( 9, 4,IC),IC=1,3) / |
---|
| 3421 | ! S 0.12550299E+01, 0.60021475E+00, 0.00000000E+00/ |
---|
| 3422 | ! DATA (GB( 9, 4,IC),IC=1,3) / |
---|
| 3423 | ! S 0.12550299E+01, 0.11116160E+01, 0.10000000E+01/ |
---|
| 3424 | |
---|
| 3425 | ! ----- INTERVAL = 2 ----- T = 300.0 |
---|
| 3426 | |
---|
| 3427 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3428 | ! DATA (GA(10, 3,IC),IC=1,3) / |
---|
| 3429 | ! S 0.12259226E+01, 0.54298448E+00, 0.00000000E+00/ |
---|
| 3430 | ! DATA (GB(10, 3,IC),IC=1,3) / |
---|
| 3431 | ! S 0.12259226E+01, 0.10882439E+01, 0.10000000E+01/ |
---|
| 3432 | ! DATA (GA(10, 4,IC),IC=1,3) / |
---|
| 3433 | ! S 0.12589256E+01, 0.60856112E+00, 0.00000000E+00/ |
---|
| 3434 | ! DATA (GB(10, 4,IC),IC=1,3) / |
---|
| 3435 | ! S 0.12589256E+01, 0.11151910E+01, 0.10000000E+01/ |
---|
| 3436 | |
---|
| 3437 | ! ----- INTERVAL = 2 ----- T = 312.5 |
---|
| 3438 | |
---|
| 3439 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3440 | ! DATA (GA(11, 3,IC),IC=1,3) / |
---|
| 3441 | ! S 0.12299344E+01, 0.55150227E+00, 0.00000000E+00/ |
---|
| 3442 | ! DATA (GB(11, 3,IC),IC=1,3) / |
---|
| 3443 | ! S 0.12299344E+01, 0.10918144E+01, 0.10000000E+01/ |
---|
| 3444 | ! DATA (GA(11, 4,IC),IC=1,3) / |
---|
| 3445 | ! S 0.12624402E+01, 0.61607594E+00, 0.00000000E+00/ |
---|
| 3446 | ! DATA (GB(11, 4,IC),IC=1,3) / |
---|
| 3447 | ! S 0.12624402E+01, 0.11184188E+01, 0.10000000E+01/ |
---|
| 3448 | |
---|
| 3449 | |
---|
| 3450 | |
---|
| 3451 | |
---|
| 3452 | |
---|
| 3453 | |
---|
| 3454 | ! - WATER VAPOR - INT. 3 -- 800-970 + 1110-1250 CM-1 -- FIT FROM 215 IS - |
---|
| 3455 | |
---|
| 3456 | |
---|
| 3457 | ! -- WATER VAPOR LINES IN THE WINDOW REGION (800-1250 CM-1) |
---|
| 3458 | |
---|
| 3459 | |
---|
| 3460 | |
---|
| 3461 | ! --- G = 3.875E-03 --------------- |
---|
| 3462 | |
---|
| 3463 | ! ----- INTERVAL = 3 ----- T = 187.5 |
---|
| 3464 | |
---|
| 3465 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3466 | ! DATA (GA( 1, 7,IC),IC=1,3) / |
---|
| 3467 | ! S 0.10192131E+02, 0.80737799E+01, 0.00000000E+00/ |
---|
| 3468 | ! DATA (GB( 1, 7,IC),IC=1,3) / |
---|
| 3469 | ! S 0.10192131E+02, 0.82623280E+01, 0.10000000E+01/ |
---|
| 3470 | ! DATA (GA( 1, 8,IC),IC=1,3) / |
---|
| 3471 | ! S 0.92439050E+01, 0.77425778E+01, 0.00000000E+00/ |
---|
| 3472 | ! DATA (GB( 1, 8,IC),IC=1,3) / |
---|
| 3473 | ! S 0.92439050E+01, 0.79342219E+01, 0.10000000E+01/ |
---|
| 3474 | |
---|
| 3475 | ! ----- INTERVAL = 3 ----- T = 200.0 |
---|
| 3476 | |
---|
| 3477 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3478 | ! DATA (GA( 2, 7,IC),IC=1,3) / |
---|
| 3479 | ! S 0.97258602E+01, 0.79171158E+01, 0.00000000E+00/ |
---|
| 3480 | ! DATA (GB( 2, 7,IC),IC=1,3) / |
---|
| 3481 | ! S 0.97258602E+01, 0.81072291E+01, 0.10000000E+01/ |
---|
| 3482 | ! DATA (GA( 2, 8,IC),IC=1,3) / |
---|
| 3483 | ! S 0.87567422E+01, 0.75443460E+01, 0.00000000E+00/ |
---|
| 3484 | ! DATA (GB( 2, 8,IC),IC=1,3) / |
---|
| 3485 | ! S 0.87567422E+01, 0.77373458E+01, 0.10000000E+01/ |
---|
| 3486 | |
---|
| 3487 | ! ----- INTERVAL = 3 ----- T = 212.5 |
---|
| 3488 | |
---|
| 3489 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3490 | ! DATA (GA( 3, 7,IC),IC=1,3) / |
---|
| 3491 | ! S 0.92992890E+01, 0.77609605E+01, 0.00000000E+00/ |
---|
| 3492 | ! DATA (GB( 3, 7,IC),IC=1,3) / |
---|
| 3493 | ! S 0.92992890E+01, 0.79523834E+01, 0.10000000E+01/ |
---|
| 3494 | ! DATA (GA( 3, 8,IC),IC=1,3) / |
---|
| 3495 | ! S 0.83270144E+01, 0.73526151E+01, 0.00000000E+00/ |
---|
| 3496 | ! DATA (GB( 3, 8,IC),IC=1,3) / |
---|
| 3497 | ! S 0.83270144E+01, 0.75467334E+01, 0.10000000E+01/ |
---|
| 3498 | |
---|
| 3499 | ! ----- INTERVAL = 3 ----- T = 225.0 |
---|
| 3500 | |
---|
| 3501 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3502 | ! DATA (GA( 4, 7,IC),IC=1,3) / |
---|
| 3503 | ! S 0.89154021E+01, 0.76087371E+01, 0.00000000E+00/ |
---|
| 3504 | ! DATA (GB( 4, 7,IC),IC=1,3) / |
---|
| 3505 | ! S 0.89154021E+01, 0.78012527E+01, 0.10000000E+01/ |
---|
| 3506 | ! DATA (GA( 4, 8,IC),IC=1,3) / |
---|
| 3507 | ! S 0.79528337E+01, 0.71711188E+01, 0.00000000E+00/ |
---|
| 3508 | ! DATA (GB( 4, 8,IC),IC=1,3) / |
---|
| 3509 | ! S 0.79528337E+01, 0.73661786E+01, 0.10000000E+01/ |
---|
| 3510 | |
---|
| 3511 | ! ----- INTERVAL = 3 ----- T = 237.5 |
---|
| 3512 | |
---|
| 3513 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3514 | ! DATA (GA( 5, 7,IC),IC=1,3) / |
---|
| 3515 | ! S 0.85730084E+01, 0.74627112E+01, 0.00000000E+00/ |
---|
| 3516 | ! DATA (GB( 5, 7,IC),IC=1,3) / |
---|
| 3517 | ! S 0.85730084E+01, 0.76561458E+01, 0.10000000E+01/ |
---|
| 3518 | ! DATA (GA( 5, 8,IC),IC=1,3) / |
---|
| 3519 | ! S 0.76286839E+01, 0.70015571E+01, 0.00000000E+00/ |
---|
| 3520 | ! DATA (GB( 5, 8,IC),IC=1,3) / |
---|
| 3521 | ! S 0.76286839E+01, 0.71974319E+01, 0.10000000E+01/ |
---|
| 3522 | |
---|
| 3523 | ! ----- INTERVAL = 3 ----- T = 250.0 |
---|
| 3524 | |
---|
| 3525 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3526 | ! DATA (GA( 6, 7,IC),IC=1,3) / |
---|
| 3527 | ! S 0.82685838E+01, 0.73239981E+01, 0.00000000E+00/ |
---|
| 3528 | ! DATA (GB( 6, 7,IC),IC=1,3) / |
---|
| 3529 | ! S 0.82685838E+01, 0.75182174E+01, 0.10000000E+01/ |
---|
| 3530 | ! DATA (GA( 6, 8,IC),IC=1,3) / |
---|
| 3531 | ! S 0.73477879E+01, 0.68442532E+01, 0.00000000E+00/ |
---|
| 3532 | ! DATA (GB( 6, 8,IC),IC=1,3) / |
---|
| 3533 | ! S 0.73477879E+01, 0.70408543E+01, 0.10000000E+01/ |
---|
| 3534 | |
---|
| 3535 | ! ----- INTERVAL = 3 ----- T = 262.5 |
---|
| 3536 | |
---|
| 3537 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3538 | ! DATA (GA( 7, 7,IC),IC=1,3) / |
---|
| 3539 | ! S 0.79978921E+01, 0.71929934E+01, 0.00000000E+00/ |
---|
| 3540 | ! DATA (GB( 7, 7,IC),IC=1,3) / |
---|
| 3541 | ! S 0.79978921E+01, 0.73878952E+01, 0.10000000E+01/ |
---|
| 3542 | ! DATA (GA( 7, 8,IC),IC=1,3) / |
---|
| 3543 | ! S 0.71035818E+01, 0.66987996E+01, 0.00000000E+00/ |
---|
| 3544 | ! DATA (GB( 7, 8,IC),IC=1,3) / |
---|
| 3545 | ! S 0.71035818E+01, 0.68960649E+01, 0.10000000E+01/ |
---|
| 3546 | |
---|
| 3547 | ! ----- INTERVAL = 3 ----- T = 275.0 |
---|
| 3548 | |
---|
| 3549 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3550 | ! DATA (GA( 8, 7,IC),IC=1,3) / |
---|
| 3551 | ! S 0.77568055E+01, 0.70697065E+01, 0.00000000E+00/ |
---|
| 3552 | ! DATA (GB( 8, 7,IC),IC=1,3) / |
---|
| 3553 | ! S 0.77568055E+01, 0.72652133E+01, 0.10000000E+01/ |
---|
| 3554 | ! DATA (GA( 8, 8,IC),IC=1,3) / |
---|
| 3555 | ! S 0.68903312E+01, 0.65644820E+01, 0.00000000E+00/ |
---|
| 3556 | ! DATA (GB( 8, 8,IC),IC=1,3) / |
---|
| 3557 | ! S 0.68903312E+01, 0.67623672E+01, 0.10000000E+01/ |
---|
| 3558 | |
---|
| 3559 | ! ----- INTERVAL = 3 ----- T = 287.5 |
---|
| 3560 | |
---|
| 3561 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3562 | ! DATA (GA( 9, 7,IC),IC=1,3) / |
---|
| 3563 | ! S 0.75416266E+01, 0.69539626E+01, 0.00000000E+00/ |
---|
| 3564 | ! DATA (GB( 9, 7,IC),IC=1,3) / |
---|
| 3565 | ! S 0.75416266E+01, 0.71500151E+01, 0.10000000E+01/ |
---|
| 3566 | ! DATA (GA( 9, 8,IC),IC=1,3) / |
---|
| 3567 | ! S 0.67032875E+01, 0.64405267E+01, 0.00000000E+00/ |
---|
| 3568 | ! DATA (GB( 9, 8,IC),IC=1,3) / |
---|
| 3569 | ! S 0.67032875E+01, 0.66389989E+01, 0.10000000E+01/ |
---|
| 3570 | |
---|
| 3571 | ! ----- INTERVAL = 3 ----- T = 300.0 |
---|
| 3572 | |
---|
| 3573 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3574 | ! DATA (GA(10, 7,IC),IC=1,3) / |
---|
| 3575 | ! S 0.73491694E+01, 0.68455144E+01, 0.00000000E+00/ |
---|
| 3576 | ! DATA (GB(10, 7,IC),IC=1,3) / |
---|
| 3577 | ! S 0.73491694E+01, 0.70420667E+01, 0.10000000E+01/ |
---|
| 3578 | ! DATA (GA(10, 8,IC),IC=1,3) / |
---|
| 3579 | ! S 0.65386461E+01, 0.63262376E+01, 0.00000000E+00/ |
---|
| 3580 | ! DATA (GB(10, 8,IC),IC=1,3) / |
---|
| 3581 | ! S 0.65386461E+01, 0.65252707E+01, 0.10000000E+01/ |
---|
| 3582 | |
---|
| 3583 | ! ----- INTERVAL = 3 ----- T = 312.5 |
---|
| 3584 | |
---|
| 3585 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3586 | ! DATA (GA(11, 7,IC),IC=1,3) / |
---|
| 3587 | ! S 0.71767400E+01, 0.67441020E+01, 0.00000000E+00/ |
---|
| 3588 | ! DATA (GB(11, 7,IC),IC=1,3) / |
---|
| 3589 | ! S 0.71767400E+01, 0.69411177E+01, 0.10000000E+01/ |
---|
| 3590 | ! DATA (GA(11, 8,IC),IC=1,3) / |
---|
| 3591 | ! S 0.63934377E+01, 0.62210701E+01, 0.00000000E+00/ |
---|
| 3592 | ! DATA (GB(11, 8,IC),IC=1,3) / |
---|
| 3593 | ! S 0.63934377E+01, 0.64206412E+01, 0.10000000E+01/ |
---|
| 3594 | |
---|
| 3595 | |
---|
| 3596 | ! -- WATER VAPOR -- 970-1110 CM-1 ---------------------------------------- |
---|
| 3597 | |
---|
| 3598 | ! -- G = 3.6E-03 |
---|
| 3599 | |
---|
| 3600 | ! ----- INTERVAL = 4 ----- T = 187.5 |
---|
| 3601 | |
---|
| 3602 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3603 | ! DATA (GA( 1, 9,IC),IC=1,3) / |
---|
| 3604 | ! S 0.24870635E+02, 0.10542131E+02, 0.00000000E+00/ |
---|
| 3605 | ! DATA (GB( 1, 9,IC),IC=1,3) / |
---|
| 3606 | ! S 0.24870635E+02, 0.10656640E+02, 0.10000000E+01/ |
---|
| 3607 | ! DATA (GA( 1,10,IC),IC=1,3) / |
---|
| 3608 | ! S 0.24586283E+02, 0.10490353E+02, 0.00000000E+00/ |
---|
| 3609 | ! DATA (GB( 1,10,IC),IC=1,3) / |
---|
| 3610 | ! S 0.24586283E+02, 0.10605856E+02, 0.10000000E+01/ |
---|
| 3611 | |
---|
| 3612 | ! ----- INTERVAL = 4 ----- T = 200.0 |
---|
| 3613 | |
---|
| 3614 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3615 | ! DATA (GA( 2, 9,IC),IC=1,3) / |
---|
| 3616 | ! S 0.24725591E+02, 0.10515895E+02, 0.00000000E+00/ |
---|
| 3617 | ! DATA (GB( 2, 9,IC),IC=1,3) / |
---|
| 3618 | ! S 0.24725591E+02, 0.10630910E+02, 0.10000000E+01/ |
---|
| 3619 | ! DATA (GA( 2,10,IC),IC=1,3) / |
---|
| 3620 | ! S 0.24441465E+02, 0.10463512E+02, 0.00000000E+00/ |
---|
| 3621 | ! DATA (GB( 2,10,IC),IC=1,3) / |
---|
| 3622 | ! S 0.24441465E+02, 0.10579514E+02, 0.10000000E+01/ |
---|
| 3623 | |
---|
| 3624 | ! ----- INTERVAL = 4 ----- T = 212.5 |
---|
| 3625 | |
---|
| 3626 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3627 | ! DATA (GA( 3, 9,IC),IC=1,3) / |
---|
| 3628 | ! S 0.24600320E+02, 0.10492949E+02, 0.00000000E+00/ |
---|
| 3629 | ! DATA (GB( 3, 9,IC),IC=1,3) / |
---|
| 3630 | ! S 0.24600320E+02, 0.10608399E+02, 0.10000000E+01/ |
---|
| 3631 | ! DATA (GA( 3,10,IC),IC=1,3) / |
---|
| 3632 | ! S 0.24311657E+02, 0.10439183E+02, 0.00000000E+00/ |
---|
| 3633 | ! DATA (GB( 3,10,IC),IC=1,3) / |
---|
| 3634 | ! S 0.24311657E+02, 0.10555632E+02, 0.10000000E+01/ |
---|
| 3635 | |
---|
| 3636 | ! ----- INTERVAL = 4 ----- T = 225.0 |
---|
| 3637 | |
---|
| 3638 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3639 | ! DATA (GA( 4, 9,IC),IC=1,3) / |
---|
| 3640 | ! S 0.24487300E+02, 0.10472049E+02, 0.00000000E+00/ |
---|
| 3641 | ! DATA (GB( 4, 9,IC),IC=1,3) / |
---|
| 3642 | ! S 0.24487300E+02, 0.10587891E+02, 0.10000000E+01/ |
---|
| 3643 | ! DATA (GA( 4,10,IC),IC=1,3) / |
---|
| 3644 | ! S 0.24196167E+02, 0.10417324E+02, 0.00000000E+00/ |
---|
| 3645 | ! DATA (GB( 4,10,IC),IC=1,3) / |
---|
| 3646 | ! S 0.24196167E+02, 0.10534169E+02, 0.10000000E+01/ |
---|
| 3647 | |
---|
| 3648 | ! ----- INTERVAL = 4 ----- T = 237.5 |
---|
| 3649 | |
---|
| 3650 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3651 | ! DATA (GA( 5, 9,IC),IC=1,3) / |
---|
| 3652 | ! S 0.24384935E+02, 0.10452961E+02, 0.00000000E+00/ |
---|
| 3653 | ! DATA (GB( 5, 9,IC),IC=1,3) / |
---|
| 3654 | ! S 0.24384935E+02, 0.10569156E+02, 0.10000000E+01/ |
---|
| 3655 | ! DATA (GA( 5,10,IC),IC=1,3) / |
---|
| 3656 | ! S 0.24093406E+02, 0.10397704E+02, 0.00000000E+00/ |
---|
| 3657 | ! DATA (GB( 5,10,IC),IC=1,3) / |
---|
| 3658 | ! S 0.24093406E+02, 0.10514900E+02, 0.10000000E+01/ |
---|
| 3659 | |
---|
| 3660 | ! ----- INTERVAL = 4 ----- T = 250.0 |
---|
| 3661 | |
---|
| 3662 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3663 | ! DATA (GA( 6, 9,IC),IC=1,3) / |
---|
| 3664 | ! S 0.24292341E+02, 0.10435562E+02, 0.00000000E+00/ |
---|
| 3665 | ! DATA (GB( 6, 9,IC),IC=1,3) / |
---|
| 3666 | ! S 0.24292341E+02, 0.10552075E+02, 0.10000000E+01/ |
---|
| 3667 | ! DATA (GA( 6,10,IC),IC=1,3) / |
---|
| 3668 | ! S 0.24001597E+02, 0.10380038E+02, 0.00000000E+00/ |
---|
| 3669 | ! DATA (GB( 6,10,IC),IC=1,3) / |
---|
| 3670 | ! S 0.24001597E+02, 0.10497547E+02, 0.10000000E+01/ |
---|
| 3671 | |
---|
| 3672 | ! ----- INTERVAL = 4 ----- T = 262.5 |
---|
| 3673 | |
---|
| 3674 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3675 | ! DATA (GA( 7, 9,IC),IC=1,3) / |
---|
| 3676 | ! S 0.24208572E+02, 0.10419710E+02, 0.00000000E+00/ |
---|
| 3677 | ! DATA (GB( 7, 9,IC),IC=1,3) / |
---|
| 3678 | ! S 0.24208572E+02, 0.10536510E+02, 0.10000000E+01/ |
---|
| 3679 | ! DATA (GA( 7,10,IC),IC=1,3) / |
---|
| 3680 | ! S 0.23919098E+02, 0.10364052E+02, 0.00000000E+00/ |
---|
| 3681 | ! DATA (GB( 7,10,IC),IC=1,3) / |
---|
| 3682 | ! S 0.23919098E+02, 0.10481842E+02, 0.10000000E+01/ |
---|
| 3683 | |
---|
| 3684 | ! ----- INTERVAL = 4 ----- T = 275.0 |
---|
| 3685 | |
---|
| 3686 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3687 | ! DATA (GA( 8, 9,IC),IC=1,3) / |
---|
| 3688 | ! S 0.24132642E+02, 0.10405247E+02, 0.00000000E+00/ |
---|
| 3689 | ! DATA (GB( 8, 9,IC),IC=1,3) / |
---|
| 3690 | ! S 0.24132642E+02, 0.10522307E+02, 0.10000000E+01/ |
---|
| 3691 | ! DATA (GA( 8,10,IC),IC=1,3) / |
---|
| 3692 | ! S 0.23844511E+02, 0.10349509E+02, 0.00000000E+00/ |
---|
| 3693 | ! DATA (GB( 8,10,IC),IC=1,3) / |
---|
| 3694 | ! S 0.23844511E+02, 0.10467553E+02, 0.10000000E+01/ |
---|
| 3695 | |
---|
| 3696 | ! ----- INTERVAL = 4 ----- T = 287.5 |
---|
| 3697 | |
---|
| 3698 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3699 | ! DATA (GA( 9, 9,IC),IC=1,3) / |
---|
| 3700 | ! S 0.24063614E+02, 0.10392022E+02, 0.00000000E+00/ |
---|
| 3701 | ! DATA (GB( 9, 9,IC),IC=1,3) / |
---|
| 3702 | ! S 0.24063614E+02, 0.10509317E+02, 0.10000000E+01/ |
---|
| 3703 | ! DATA (GA( 9,10,IC),IC=1,3) / |
---|
| 3704 | ! S 0.23776708E+02, 0.10336215E+02, 0.00000000E+00/ |
---|
| 3705 | ! DATA (GB( 9,10,IC),IC=1,3) / |
---|
| 3706 | ! S 0.23776708E+02, 0.10454488E+02, 0.10000000E+01/ |
---|
| 3707 | |
---|
| 3708 | ! ----- INTERVAL = 4 ----- T = 300.0 |
---|
| 3709 | |
---|
| 3710 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3711 | ! DATA (GA(10, 9,IC),IC=1,3) / |
---|
| 3712 | ! S 0.24000649E+02, 0.10379892E+02, 0.00000000E+00/ |
---|
| 3713 | ! DATA (GB(10, 9,IC),IC=1,3) / |
---|
| 3714 | ! S 0.24000649E+02, 0.10497402E+02, 0.10000000E+01/ |
---|
| 3715 | ! DATA (GA(10,10,IC),IC=1,3) / |
---|
| 3716 | ! S 0.23714816E+02, 0.10324018E+02, 0.00000000E+00/ |
---|
| 3717 | ! DATA (GB(10,10,IC),IC=1,3) / |
---|
| 3718 | ! S 0.23714816E+02, 0.10442501E+02, 0.10000000E+01/ |
---|
| 3719 | |
---|
| 3720 | ! ----- INTERVAL = 4 ----- T = 312.5 |
---|
| 3721 | |
---|
| 3722 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3723 | ! DATA (GA(11, 9,IC),IC=1,3) / |
---|
| 3724 | ! S 0.23943021E+02, 0.10368736E+02, 0.00000000E+00/ |
---|
| 3725 | ! DATA (GB(11, 9,IC),IC=1,3) / |
---|
| 3726 | ! S 0.23943021E+02, 0.10486443E+02, 0.10000000E+01/ |
---|
| 3727 | ! DATA (GA(11,10,IC),IC=1,3) / |
---|
| 3728 | ! S 0.23658197E+02, 0.10312808E+02, 0.00000000E+00/ |
---|
| 3729 | ! DATA (GB(11,10,IC),IC=1,3) / |
---|
| 3730 | ! S 0.23658197E+02, 0.10431483E+02, 0.10000000E+01/ |
---|
| 3731 | |
---|
| 3732 | |
---|
| 3733 | |
---|
| 3734 | ! -- H2O -- WEAKER PARTS OF THE STRONG BANDS -- FROM ABS225 ---- |
---|
| 3735 | |
---|
| 3736 | ! -- WATER VAPOR --- 350 - 500 CM-1 |
---|
| 3737 | |
---|
| 3738 | ! -- G = - 0.2*SLA, 0.0 +0.5/(1+0.5U) |
---|
| 3739 | |
---|
| 3740 | ! ----- INTERVAL = 5 ----- T = 187.5 |
---|
| 3741 | |
---|
| 3742 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3743 | ! DATA (GA( 1, 5,IC),IC=1,3) / |
---|
| 3744 | ! S 0.15750172E+00,-0.22159303E-01, 0.00000000E+00/ |
---|
| 3745 | ! DATA (GB( 1, 5,IC),IC=1,3) / |
---|
| 3746 | ! S 0.15750172E+00, 0.38103212E+00, 0.10000000E+01/ |
---|
| 3747 | ! DATA (GA( 1, 6,IC),IC=1,3) / |
---|
| 3748 | ! S 0.17770551E+00,-0.24972399E-01, 0.00000000E+00/ |
---|
| 3749 | ! DATA (GB( 1, 6,IC),IC=1,3) / |
---|
| 3750 | ! S 0.17770551E+00, 0.41646579E+00, 0.10000000E+01/ |
---|
| 3751 | |
---|
| 3752 | ! ----- INTERVAL = 5 ----- T = 200.0 |
---|
| 3753 | |
---|
| 3754 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3755 | ! DATA (GA( 2, 5,IC),IC=1,3) / |
---|
| 3756 | ! S 0.16174076E+00,-0.22748917E-01, 0.00000000E+00/ |
---|
| 3757 | ! DATA (GB( 2, 5,IC),IC=1,3) / |
---|
| 3758 | ! S 0.16174076E+00, 0.38913800E+00, 0.10000000E+01/ |
---|
| 3759 | ! DATA (GA( 2, 6,IC),IC=1,3) / |
---|
| 3760 | ! S 0.18176757E+00,-0.25537247E-01, 0.00000000E+00/ |
---|
| 3761 | ! DATA (GB( 2, 6,IC),IC=1,3) / |
---|
| 3762 | ! S 0.18176757E+00, 0.42345095E+00, 0.10000000E+01/ |
---|
| 3763 | |
---|
| 3764 | ! ----- INTERVAL = 5 ----- T = 212.5 |
---|
| 3765 | |
---|
| 3766 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3767 | ! DATA (GA( 3, 5,IC),IC=1,3) / |
---|
| 3768 | ! S 0.16548628E+00,-0.23269898E-01, 0.00000000E+00/ |
---|
| 3769 | ! DATA (GB( 3, 5,IC),IC=1,3) / |
---|
| 3770 | ! S 0.16548628E+00, 0.39613651E+00, 0.10000000E+01/ |
---|
| 3771 | ! DATA (GA( 3, 6,IC),IC=1,3) / |
---|
| 3772 | ! S 0.18527967E+00,-0.26025624E-01, 0.00000000E+00/ |
---|
| 3773 | ! DATA (GB( 3, 6,IC),IC=1,3) / |
---|
| 3774 | ! S 0.18527967E+00, 0.42937476E+00, 0.10000000E+01/ |
---|
| 3775 | |
---|
| 3776 | ! ----- INTERVAL = 5 ----- T = 225.0 |
---|
| 3777 | |
---|
| 3778 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3779 | ! DATA (GA( 4, 5,IC),IC=1,3) / |
---|
| 3780 | ! S 0.16881124E+00,-0.23732392E-01, 0.00000000E+00/ |
---|
| 3781 | ! DATA (GB( 4, 5,IC),IC=1,3) / |
---|
| 3782 | ! S 0.16881124E+00, 0.40222421E+00, 0.10000000E+01/ |
---|
| 3783 | ! DATA (GA( 4, 6,IC),IC=1,3) / |
---|
| 3784 | ! S 0.18833348E+00,-0.26450280E-01, 0.00000000E+00/ |
---|
| 3785 | ! DATA (GB( 4, 6,IC),IC=1,3) / |
---|
| 3786 | ! S 0.18833348E+00, 0.43444062E+00, 0.10000000E+01/ |
---|
| 3787 | |
---|
| 3788 | ! ----- INTERVAL = 5 ----- T = 237.5 |
---|
| 3789 | |
---|
| 3790 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3791 | ! DATA (GA( 5, 5,IC),IC=1,3) / |
---|
| 3792 | ! S 0.17177839E+00,-0.24145123E-01, 0.00000000E+00/ |
---|
| 3793 | ! DATA (GB( 5, 5,IC),IC=1,3) / |
---|
| 3794 | ! S 0.17177839E+00, 0.40756010E+00, 0.10000000E+01/ |
---|
| 3795 | ! DATA (GA( 5, 6,IC),IC=1,3) / |
---|
| 3796 | ! S 0.19100108E+00,-0.26821236E-01, 0.00000000E+00/ |
---|
| 3797 | ! DATA (GB( 5, 6,IC),IC=1,3) / |
---|
| 3798 | ! S 0.19100108E+00, 0.43880316E+00, 0.10000000E+01/ |
---|
| 3799 | |
---|
| 3800 | ! ----- INTERVAL = 5 ----- T = 250.0 |
---|
| 3801 | |
---|
| 3802 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3803 | ! DATA (GA( 6, 5,IC),IC=1,3) / |
---|
| 3804 | ! S 0.17443933E+00,-0.24515269E-01, 0.00000000E+00/ |
---|
| 3805 | ! DATA (GB( 6, 5,IC),IC=1,3) / |
---|
| 3806 | ! S 0.17443933E+00, 0.41226954E+00, 0.10000000E+01/ |
---|
| 3807 | ! DATA (GA( 6, 6,IC),IC=1,3) / |
---|
| 3808 | ! S 0.19334122E+00,-0.27146657E-01, 0.00000000E+00/ |
---|
| 3809 | ! DATA (GB( 6, 6,IC),IC=1,3) / |
---|
| 3810 | ! S 0.19334122E+00, 0.44258354E+00, 0.10000000E+01/ |
---|
| 3811 | |
---|
| 3812 | ! ----- INTERVAL = 5 ----- T = 262.5 |
---|
| 3813 | |
---|
| 3814 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3815 | ! DATA (GA( 7, 5,IC),IC=1,3) / |
---|
| 3816 | ! S 0.17683622E+00,-0.24848690E-01, 0.00000000E+00/ |
---|
| 3817 | ! DATA (GB( 7, 5,IC),IC=1,3) / |
---|
| 3818 | ! S 0.17683622E+00, 0.41645142E+00, 0.10000000E+01/ |
---|
| 3819 | ! DATA (GA( 7, 6,IC),IC=1,3) / |
---|
| 3820 | ! S 0.19540288E+00,-0.27433354E-01, 0.00000000E+00/ |
---|
| 3821 | ! DATA (GB( 7, 6,IC),IC=1,3) / |
---|
| 3822 | ! S 0.19540288E+00, 0.44587882E+00, 0.10000000E+01/ |
---|
| 3823 | |
---|
| 3824 | ! ----- INTERVAL = 5 ----- T = 275.0 |
---|
| 3825 | |
---|
| 3826 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3827 | ! DATA (GA( 8, 5,IC),IC=1,3) / |
---|
| 3828 | ! S 0.17900375E+00,-0.25150210E-01, 0.00000000E+00/ |
---|
| 3829 | ! DATA (GB( 8, 5,IC),IC=1,3) / |
---|
| 3830 | ! S 0.17900375E+00, 0.42018474E+00, 0.10000000E+01/ |
---|
| 3831 | ! DATA (GA( 8, 6,IC),IC=1,3) / |
---|
| 3832 | ! S 0.19722732E+00,-0.27687065E-01, 0.00000000E+00/ |
---|
| 3833 | ! DATA (GB( 8, 6,IC),IC=1,3) / |
---|
| 3834 | ! S 0.19722732E+00, 0.44876776E+00, 0.10000000E+01/ |
---|
| 3835 | |
---|
| 3836 | ! ----- INTERVAL = 5 ----- T = 287.5 |
---|
| 3837 | |
---|
| 3838 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3839 | ! DATA (GA( 9, 5,IC),IC=1,3) / |
---|
| 3840 | ! S 0.18097099E+00,-0.25423873E-01, 0.00000000E+00/ |
---|
| 3841 | ! DATA (GB( 9, 5,IC),IC=1,3) / |
---|
| 3842 | ! S 0.18097099E+00, 0.42353379E+00, 0.10000000E+01/ |
---|
| 3843 | ! DATA (GA( 9, 6,IC),IC=1,3) / |
---|
| 3844 | ! S 0.19884918E+00,-0.27912608E-01, 0.00000000E+00/ |
---|
| 3845 | ! DATA (GB( 9, 6,IC),IC=1,3) / |
---|
| 3846 | ! S 0.19884918E+00, 0.45131451E+00, 0.10000000E+01/ |
---|
| 3847 | |
---|
| 3848 | ! ----- INTERVAL = 5 ----- T = 300.0 |
---|
| 3849 | |
---|
| 3850 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3851 | ! DATA (GA(10, 5,IC),IC=1,3) / |
---|
| 3852 | ! S 0.18276283E+00,-0.25673139E-01, 0.00000000E+00/ |
---|
| 3853 | ! DATA (GB(10, 5,IC),IC=1,3) / |
---|
| 3854 | ! S 0.18276283E+00, 0.42655211E+00, 0.10000000E+01/ |
---|
| 3855 | ! DATA (GA(10, 6,IC),IC=1,3) / |
---|
| 3856 | ! S 0.20029696E+00,-0.28113944E-01, 0.00000000E+00/ |
---|
| 3857 | ! DATA (GB(10, 6,IC),IC=1,3) / |
---|
| 3858 | ! S 0.20029696E+00, 0.45357095E+00, 0.10000000E+01/ |
---|
| 3859 | |
---|
| 3860 | ! ----- INTERVAL = 5 ----- T = 312.5 |
---|
| 3861 | |
---|
| 3862 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3863 | ! DATA (GA(11, 5,IC),IC=1,3) / |
---|
| 3864 | ! S 0.18440117E+00,-0.25901055E-01, 0.00000000E+00/ |
---|
| 3865 | ! DATA (GB(11, 5,IC),IC=1,3) / |
---|
| 3866 | ! S 0.18440117E+00, 0.42928533E+00, 0.10000000E+01/ |
---|
| 3867 | ! DATA (GA(11, 6,IC),IC=1,3) / |
---|
| 3868 | ! S 0.20159300E+00,-0.28294180E-01, 0.00000000E+00/ |
---|
| 3869 | ! DATA (GB(11, 6,IC),IC=1,3) / |
---|
| 3870 | ! S 0.20159300E+00, 0.45557797E+00, 0.10000000E+01/ |
---|
| 3871 | |
---|
| 3872 | |
---|
| 3873 | |
---|
| 3874 | |
---|
| 3875 | ! - WATER VAPOR - WINGS OF VIBRATION-ROTATION BAND - 1250-1450+1880-2820 - |
---|
| 3876 | ! --- G = 0.0 |
---|
| 3877 | |
---|
| 3878 | |
---|
| 3879 | ! ----- INTERVAL = 6 ----- T = 187.5 |
---|
| 3880 | |
---|
| 3881 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3882 | ! DATA (GA( 1,11,IC),IC=1,3) / |
---|
| 3883 | ! S 0.11990218E+02,-0.12823142E+01, 0.00000000E+00/ |
---|
| 3884 | ! DATA (GB( 1,11,IC),IC=1,3) / |
---|
| 3885 | ! S 0.11990218E+02, 0.26681588E+02, 0.10000000E+01/ |
---|
| 3886 | ! DATA (GA( 1,12,IC),IC=1,3) / |
---|
| 3887 | ! S 0.79709806E+01,-0.74805226E+00, 0.00000000E+00/ |
---|
| 3888 | ! DATA (GB( 1,12,IC),IC=1,3) / |
---|
| 3889 | ! S 0.79709806E+01, 0.18377807E+02, 0.10000000E+01/ |
---|
| 3890 | |
---|
| 3891 | ! ----- INTERVAL = 6 ----- T = 200.0 |
---|
| 3892 | |
---|
| 3893 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3894 | ! DATA (GA( 2,11,IC),IC=1,3) / |
---|
| 3895 | ! S 0.10904073E+02,-0.10571588E+01, 0.00000000E+00/ |
---|
| 3896 | ! DATA (GB( 2,11,IC),IC=1,3) / |
---|
| 3897 | ! S 0.10904073E+02, 0.24728346E+02, 0.10000000E+01/ |
---|
| 3898 | ! DATA (GA( 2,12,IC),IC=1,3) / |
---|
| 3899 | ! S 0.75400737E+01,-0.56252739E+00, 0.00000000E+00/ |
---|
| 3900 | ! DATA (GB( 2,12,IC),IC=1,3) / |
---|
| 3901 | ! S 0.75400737E+01, 0.17643148E+02, 0.10000000E+01/ |
---|
| 3902 | |
---|
| 3903 | ! ----- INTERVAL = 6 ----- T = 212.5 |
---|
| 3904 | |
---|
| 3905 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3906 | ! DATA (GA( 3,11,IC),IC=1,3) / |
---|
| 3907 | ! S 0.89126838E+01,-0.74864953E+00, 0.00000000E+00/ |
---|
| 3908 | ! DATA (GB( 3,11,IC),IC=1,3) / |
---|
| 3909 | ! S 0.89126838E+01, 0.20551342E+02, 0.10000000E+01/ |
---|
| 3910 | ! DATA (GA( 3,12,IC),IC=1,3) / |
---|
| 3911 | ! S 0.81804377E+01,-0.46188072E+00, 0.00000000E+00/ |
---|
| 3912 | ! DATA (GB( 3,12,IC),IC=1,3) / |
---|
| 3913 | ! S 0.81804377E+01, 0.19296161E+02, 0.10000000E+01/ |
---|
| 3914 | |
---|
| 3915 | ! ----- INTERVAL = 6 ----- T = 225.0 |
---|
| 3916 | |
---|
| 3917 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3918 | ! DATA (GA( 4,11,IC),IC=1,3) / |
---|
| 3919 | ! S 0.85622405E+01,-0.58705980E+00, 0.00000000E+00/ |
---|
| 3920 | ! DATA (GB( 4,11,IC),IC=1,3) / |
---|
| 3921 | ! S 0.85622405E+01, 0.19955244E+02, 0.10000000E+01/ |
---|
| 3922 | ! DATA (GA( 4,12,IC),IC=1,3) / |
---|
| 3923 | ! S 0.10564339E+02,-0.40712065E+00, 0.00000000E+00/ |
---|
| 3924 | ! DATA (GB( 4,12,IC),IC=1,3) / |
---|
| 3925 | ! S 0.10564339E+02, 0.24951120E+02, 0.10000000E+01/ |
---|
| 3926 | |
---|
| 3927 | ! ----- INTERVAL = 6 ----- T = 237.5 |
---|
| 3928 | |
---|
| 3929 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3930 | ! DATA (GA( 5,11,IC),IC=1,3) / |
---|
| 3931 | ! S 0.94892164E+01,-0.49305772E+00, 0.00000000E+00/ |
---|
| 3932 | ! DATA (GB( 5,11,IC),IC=1,3) / |
---|
| 3933 | ! S 0.94892164E+01, 0.22227100E+02, 0.10000000E+01/ |
---|
| 3934 | ! DATA (GA( 5,12,IC),IC=1,3) / |
---|
| 3935 | ! S 0.46896789E+02,-0.15295996E+01, 0.00000000E+00/ |
---|
| 3936 | ! DATA (GB( 5,12,IC),IC=1,3) / |
---|
| 3937 | ! S 0.46896789E+02, 0.10957372E+03, 0.10000000E+01/ |
---|
| 3938 | |
---|
| 3939 | ! ----- INTERVAL = 6 ----- T = 250.0 |
---|
| 3940 | |
---|
| 3941 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3942 | ! DATA (GA( 6,11,IC),IC=1,3) / |
---|
| 3943 | ! S 0.13580937E+02,-0.51461431E+00, 0.00000000E+00/ |
---|
| 3944 | ! DATA (GB( 6,11,IC),IC=1,3) / |
---|
| 3945 | ! S 0.13580937E+02, 0.31770288E+02, 0.10000000E+01/ |
---|
| 3946 | ! DATA (GA( 6,12,IC),IC=1,3) / |
---|
| 3947 | ! S-0.30926524E+01, 0.43555255E+00, 0.00000000E+00/ |
---|
| 3948 | ! DATA (GB( 6,12,IC),IC=1,3) / |
---|
| 3949 | ! S-0.30926524E+01,-0.67432659E+01, 0.10000000E+01/ |
---|
| 3950 | |
---|
| 3951 | ! ----- INTERVAL = 6 ----- T = 262.5 |
---|
| 3952 | |
---|
| 3953 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3954 | ! DATA (GA( 7,11,IC),IC=1,3) / |
---|
| 3955 | ! S-0.32050918E+03, 0.12373350E+02, 0.00000000E+00/ |
---|
| 3956 | ! DATA (GB( 7,11,IC),IC=1,3) / |
---|
| 3957 | ! S-0.32050918E+03,-0.74061287E+03, 0.10000000E+01/ |
---|
| 3958 | ! DATA (GA( 7,12,IC),IC=1,3) / |
---|
| 3959 | ! S 0.85742941E+00, 0.50380874E+00, 0.00000000E+00/ |
---|
| 3960 | ! DATA (GB( 7,12,IC),IC=1,3) / |
---|
| 3961 | ! S 0.85742941E+00, 0.24550746E+01, 0.10000000E+01/ |
---|
| 3962 | |
---|
| 3963 | ! ----- INTERVAL = 6 ----- T = 275.0 |
---|
| 3964 | |
---|
| 3965 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3966 | ! DATA (GA( 8,11,IC),IC=1,3) / |
---|
| 3967 | ! S-0.37133165E+01, 0.44809588E+00, 0.00000000E+00/ |
---|
| 3968 | ! DATA (GB( 8,11,IC),IC=1,3) / |
---|
| 3969 | ! S-0.37133165E+01,-0.81329826E+01, 0.10000000E+01/ |
---|
| 3970 | ! DATA (GA( 8,12,IC),IC=1,3) / |
---|
| 3971 | ! S 0.19164038E+01, 0.68537352E+00, 0.00000000E+00/ |
---|
| 3972 | ! DATA (GB( 8,12,IC),IC=1,3) / |
---|
| 3973 | ! S 0.19164038E+01, 0.49089917E+01, 0.10000000E+01/ |
---|
| 3974 | |
---|
| 3975 | ! ----- INTERVAL = 6 ----- T = 287.5 |
---|
| 3976 | |
---|
| 3977 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3978 | ! DATA (GA( 9,11,IC),IC=1,3) / |
---|
| 3979 | ! S 0.18890836E+00, 0.46548918E+00, 0.00000000E+00/ |
---|
| 3980 | ! DATA (GB( 9,11,IC),IC=1,3) / |
---|
| 3981 | ! S 0.18890836E+00, 0.90279822E+00, 0.10000000E+01/ |
---|
| 3982 | ! DATA (GA( 9,12,IC),IC=1,3) / |
---|
| 3983 | ! S 0.23513199E+01, 0.89437630E+00, 0.00000000E+00/ |
---|
| 3984 | ! DATA (GB( 9,12,IC),IC=1,3) / |
---|
| 3985 | ! S 0.23513199E+01, 0.59008712E+01, 0.10000000E+01/ |
---|
| 3986 | |
---|
| 3987 | ! ----- INTERVAL = 6 ----- T = 300.0 |
---|
| 3988 | |
---|
| 3989 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3990 | ! DATA (GA(10,11,IC),IC=1,3) / |
---|
| 3991 | ! S 0.14209226E+01, 0.59121475E+00, 0.00000000E+00/ |
---|
| 3992 | ! DATA (GB(10,11,IC),IC=1,3) / |
---|
| 3993 | ! S 0.14209226E+01, 0.37532746E+01, 0.10000000E+01/ |
---|
| 3994 | ! DATA (GA(10,12,IC),IC=1,3) / |
---|
| 3995 | ! S 0.25566644E+01, 0.11127003E+01, 0.00000000E+00/ |
---|
| 3996 | ! DATA (GB(10,12,IC),IC=1,3) / |
---|
| 3997 | ! S 0.25566644E+01, 0.63532616E+01, 0.10000000E+01/ |
---|
| 3998 | |
---|
| 3999 | ! ----- INTERVAL = 6 ----- T = 312.5 |
---|
| 4000 | |
---|
| 4001 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4002 | ! DATA (GA(11,11,IC),IC=1,3) / |
---|
| 4003 | ! S 0.19817679E+01, 0.74676119E+00, 0.00000000E+00/ |
---|
| 4004 | ! DATA (GB(11,11,IC),IC=1,3) / |
---|
| 4005 | ! S 0.19817679E+01, 0.50437916E+01, 0.10000000E+01/ |
---|
| 4006 | ! DATA (GA(11,12,IC),IC=1,3) / |
---|
| 4007 | ! S 0.26555181E+01, 0.13329782E+01, 0.00000000E+00/ |
---|
| 4008 | ! DATA (GB(11,12,IC),IC=1,3) / |
---|
| 4009 | ! S 0.26555181E+01, 0.65558627E+01, 0.10000000E+01/ |
---|
| 4010 | |
---|
| 4011 | |
---|
| 4012 | |
---|
| 4013 | |
---|
| 4014 | |
---|
| 4015 | ! -- END WATER VAPOR |
---|
| 4016 | |
---|
| 4017 | |
---|
| 4018 | ! -- CO2 -- INT.2 -- 500-800 CM-1 --- FROM ABS225 ---------------------- |
---|
| 4019 | |
---|
| 4020 | |
---|
| 4021 | |
---|
| 4022 | ! -- FIU = 0.8 + MAX(0.35,(7-IU)*0.9) , X/T, 9 |
---|
| 4023 | |
---|
| 4024 | ! ----- INTERVAL = 2 ----- T = 187.5 |
---|
| 4025 | |
---|
| 4026 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4027 | ! DATA (GA( 1,13,IC),IC=1,3) / |
---|
| 4028 | ! S 0.87668459E-01, 0.13845511E+01, 0.00000000E+00/ |
---|
| 4029 | ! DATA (GB( 1,13,IC),IC=1,3) / |
---|
| 4030 | ! S 0.87668459E-01, 0.23203798E+01, 0.10000000E+01/ |
---|
| 4031 | ! DATA (GA( 1,14,IC),IC=1,3) / |
---|
| 4032 | ! S 0.74878820E-01, 0.11718758E+01, 0.00000000E+00/ |
---|
| 4033 | ! DATA (GB( 1,14,IC),IC=1,3) / |
---|
| 4034 | ! S 0.74878820E-01, 0.20206726E+01, 0.10000000E+01/ |
---|
| 4035 | |
---|
| 4036 | ! ----- INTERVAL = 2 ----- T = 200.0 |
---|
| 4037 | |
---|
| 4038 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4039 | ! DATA (GA( 2,13,IC),IC=1,3) / |
---|
| 4040 | ! S 0.83754276E-01, 0.13187042E+01, 0.00000000E+00/ |
---|
| 4041 | ! DATA (GB( 2,13,IC),IC=1,3) / |
---|
| 4042 | ! S 0.83754276E-01, 0.22288925E+01, 0.10000000E+01/ |
---|
| 4043 | ! DATA (GA( 2,14,IC),IC=1,3) / |
---|
| 4044 | ! S 0.71650966E-01, 0.11216131E+01, 0.00000000E+00/ |
---|
| 4045 | ! DATA (GB( 2,14,IC),IC=1,3) / |
---|
| 4046 | ! S 0.71650966E-01, 0.19441824E+01, 0.10000000E+01/ |
---|
| 4047 | |
---|
| 4048 | ! ----- INTERVAL = 2 ----- T = 212.5 |
---|
| 4049 | |
---|
| 4050 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4051 | ! DATA (GA( 3,13,IC),IC=1,3) / |
---|
| 4052 | ! S 0.80460283E-01, 0.12644396E+01, 0.00000000E+00/ |
---|
| 4053 | ! DATA (GB( 3,13,IC),IC=1,3) / |
---|
| 4054 | ! S 0.80460283E-01, 0.21515593E+01, 0.10000000E+01/ |
---|
| 4055 | ! DATA (GA( 3,14,IC),IC=1,3) / |
---|
| 4056 | ! S 0.68979615E-01, 0.10809473E+01, 0.00000000E+00/ |
---|
| 4057 | ! DATA (GB( 3,14,IC),IC=1,3) / |
---|
| 4058 | ! S 0.68979615E-01, 0.18807257E+01, 0.10000000E+01/ |
---|
| 4059 | |
---|
| 4060 | ! ----- INTERVAL = 2 ----- T = 225.0 |
---|
| 4061 | |
---|
| 4062 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4063 | ! DATA (GA( 4,13,IC),IC=1,3) / |
---|
| 4064 | ! S 0.77659686E-01, 0.12191543E+01, 0.00000000E+00/ |
---|
| 4065 | ! DATA (GB( 4,13,IC),IC=1,3) / |
---|
| 4066 | ! S 0.77659686E-01, 0.20855896E+01, 0.10000000E+01/ |
---|
| 4067 | ! DATA (GA( 4,14,IC),IC=1,3) / |
---|
| 4068 | ! S 0.66745345E-01, 0.10476396E+01, 0.00000000E+00/ |
---|
| 4069 | ! DATA (GB( 4,14,IC),IC=1,3) / |
---|
| 4070 | ! S 0.66745345E-01, 0.18275618E+01, 0.10000000E+01/ |
---|
| 4071 | |
---|
| 4072 | ! ----- INTERVAL = 2 ----- T = 237.5 |
---|
| 4073 | |
---|
| 4074 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4075 | ! DATA (GA( 5,13,IC),IC=1,3) / |
---|
| 4076 | ! S 0.75257056E-01, 0.11809511E+01, 0.00000000E+00/ |
---|
| 4077 | ! DATA (GB( 5,13,IC),IC=1,3) / |
---|
| 4078 | ! S 0.75257056E-01, 0.20288489E+01, 0.10000000E+01/ |
---|
| 4079 | ! DATA (GA( 5,14,IC),IC=1,3) / |
---|
| 4080 | ! S 0.64857571E-01, 0.10200373E+01, 0.00000000E+00/ |
---|
| 4081 | ! DATA (GB( 5,14,IC),IC=1,3) / |
---|
| 4082 | ! S 0.64857571E-01, 0.17825910E+01, 0.10000000E+01/ |
---|
| 4083 | |
---|
| 4084 | ! ----- INTERVAL = 2 ----- T = 250.0 |
---|
| 4085 | |
---|
| 4086 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4087 | ! DATA (GA( 6,13,IC),IC=1,3) / |
---|
| 4088 | ! S 0.73179175E-01, 0.11484154E+01, 0.00000000E+00/ |
---|
| 4089 | ! DATA (GB( 6,13,IC),IC=1,3) / |
---|
| 4090 | ! S 0.73179175E-01, 0.19796791E+01, 0.10000000E+01/ |
---|
| 4091 | ! DATA (GA( 6,14,IC),IC=1,3) / |
---|
| 4092 | ! S 0.63248495E-01, 0.99692726E+00, 0.00000000E+00/ |
---|
| 4093 | ! DATA (GB( 6,14,IC),IC=1,3) / |
---|
| 4094 | ! S 0.63248495E-01, 0.17442308E+01, 0.10000000E+01/ |
---|
| 4095 | |
---|
| 4096 | ! ----- INTERVAL = 2 ----- T = 262.5 |
---|
| 4097 | |
---|
| 4098 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4099 | ! DATA (GA( 7,13,IC),IC=1,3) / |
---|
| 4100 | ! S 0.71369063E-01, 0.11204723E+01, 0.00000000E+00/ |
---|
| 4101 | ! DATA (GB( 7,13,IC),IC=1,3) / |
---|
| 4102 | ! S 0.71369063E-01, 0.19367778E+01, 0.10000000E+01/ |
---|
| 4103 | ! DATA (GA( 7,14,IC),IC=1,3) / |
---|
| 4104 | ! S 0.61866970E-01, 0.97740923E+00, 0.00000000E+00/ |
---|
| 4105 | ! DATA (GB( 7,14,IC),IC=1,3) / |
---|
| 4106 | ! S 0.61866970E-01, 0.17112809E+01, 0.10000000E+01/ |
---|
| 4107 | |
---|
| 4108 | ! ----- INTERVAL = 2 ----- T = 275.0 |
---|
| 4109 | |
---|
| 4110 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4111 | ! DATA (GA( 8,13,IC),IC=1,3) / |
---|
| 4112 | ! S 0.69781812E-01, 0.10962918E+01, 0.00000000E+00/ |
---|
| 4113 | ! DATA (GB( 8,13,IC),IC=1,3) / |
---|
| 4114 | ! S 0.69781812E-01, 0.18991112E+01, 0.10000000E+01/ |
---|
| 4115 | ! DATA (GA( 8,14,IC),IC=1,3) / |
---|
| 4116 | ! S 0.60673632E-01, 0.96080188E+00, 0.00000000E+00/ |
---|
| 4117 | ! DATA (GB( 8,14,IC),IC=1,3) / |
---|
| 4118 | ! S 0.60673632E-01, 0.16828137E+01, 0.10000000E+01/ |
---|
| 4119 | |
---|
| 4120 | ! ----- INTERVAL = 2 ----- T = 287.5 |
---|
| 4121 | |
---|
| 4122 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4123 | ! DATA (GA( 9,13,IC),IC=1,3) / |
---|
| 4124 | ! S 0.68381606E-01, 0.10752229E+01, 0.00000000E+00/ |
---|
| 4125 | ! DATA (GB( 9,13,IC),IC=1,3) / |
---|
| 4126 | ! S 0.68381606E-01, 0.18658501E+01, 0.10000000E+01/ |
---|
| 4127 | ! DATA (GA( 9,14,IC),IC=1,3) / |
---|
| 4128 | ! S 0.59637277E-01, 0.94657562E+00, 0.00000000E+00/ |
---|
| 4129 | ! DATA (GB( 9,14,IC),IC=1,3) / |
---|
| 4130 | ! S 0.59637277E-01, 0.16580908E+01, 0.10000000E+01/ |
---|
| 4131 | |
---|
| 4132 | ! ----- INTERVAL = 2 ----- T = 300.0 |
---|
| 4133 | |
---|
| 4134 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4135 | ! DATA (GA(10,13,IC),IC=1,3) / |
---|
| 4136 | ! S 0.67139539E-01, 0.10567474E+01, 0.00000000E+00/ |
---|
| 4137 | ! DATA (GB(10,13,IC),IC=1,3) / |
---|
| 4138 | ! S 0.67139539E-01, 0.18363226E+01, 0.10000000E+01/ |
---|
| 4139 | ! DATA (GA(10,14,IC),IC=1,3) / |
---|
| 4140 | ! S 0.58732178E-01, 0.93430511E+00, 0.00000000E+00/ |
---|
| 4141 | ! DATA (GB(10,14,IC),IC=1,3) / |
---|
| 4142 | ! S 0.58732178E-01, 0.16365014E+01, 0.10000000E+01/ |
---|
| 4143 | |
---|
| 4144 | ! ----- INTERVAL = 2 ----- T = 312.5 |
---|
| 4145 | |
---|
| 4146 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4147 | ! DATA (GA(11,13,IC),IC=1,3) / |
---|
| 4148 | ! S 0.66032012E-01, 0.10404465E+01, 0.00000000E+00/ |
---|
| 4149 | ! DATA (GB(11,13,IC),IC=1,3) / |
---|
| 4150 | ! S 0.66032012E-01, 0.18099779E+01, 0.10000000E+01/ |
---|
| 4151 | ! DATA (GA(11,14,IC),IC=1,3) / |
---|
| 4152 | ! S 0.57936092E-01, 0.92363528E+00, 0.00000000E+00/ |
---|
| 4153 | ! DATA (GB(11,14,IC),IC=1,3) / |
---|
| 4154 | ! S 0.57936092E-01, 0.16175164E+01, 0.10000000E+01/ |
---|
| 4155 | |
---|
| 4156 | |
---|
| 4157 | |
---|
| 4158 | |
---|
| 4159 | |
---|
| 4160 | |
---|
| 4161 | |
---|
| 4162 | |
---|
| 4163 | |
---|
| 4164 | |
---|
| 4165 | ! -- CARBON DIOXIDE LINES IN THE WINDOW REGION (800-1250 CM-1) |
---|
| 4166 | |
---|
| 4167 | |
---|
| 4168 | ! -- G = 0.0 |
---|
| 4169 | |
---|
| 4170 | |
---|
| 4171 | ! ----- INTERVAL = 4 ----- T = 187.5 |
---|
| 4172 | |
---|
| 4173 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4174 | ! DATA (GA( 1,15,IC),IC=1,3) / |
---|
| 4175 | ! S 0.13230067E+02, 0.22042132E+02, 0.00000000E+00/ |
---|
| 4176 | ! DATA (GB( 1,15,IC),IC=1,3) / |
---|
| 4177 | ! S 0.13230067E+02, 0.22051750E+02, 0.10000000E+01/ |
---|
| 4178 | ! DATA (GA( 1,16,IC),IC=1,3) / |
---|
| 4179 | ! S 0.13183816E+02, 0.22169501E+02, 0.00000000E+00/ |
---|
| 4180 | ! DATA (GB( 1,16,IC),IC=1,3) / |
---|
| 4181 | ! S 0.13183816E+02, 0.22178972E+02, 0.10000000E+01/ |
---|
| 4182 | |
---|
| 4183 | ! ----- INTERVAL = 4 ----- T = 200.0 |
---|
| 4184 | |
---|
| 4185 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4186 | ! DATA (GA( 2,15,IC),IC=1,3) / |
---|
| 4187 | ! S 0.13213564E+02, 0.22107298E+02, 0.00000000E+00/ |
---|
| 4188 | ! DATA (GB( 2,15,IC),IC=1,3) / |
---|
| 4189 | ! S 0.13213564E+02, 0.22116850E+02, 0.10000000E+01/ |
---|
| 4190 | ! DATA (GA( 2,16,IC),IC=1,3) / |
---|
| 4191 | ! S 0.13189991E+02, 0.22270075E+02, 0.00000000E+00/ |
---|
| 4192 | ! DATA (GB( 2,16,IC),IC=1,3) / |
---|
| 4193 | ! S 0.13189991E+02, 0.22279484E+02, 0.10000000E+01/ |
---|
| 4194 | |
---|
| 4195 | ! ----- INTERVAL = 4 ----- T = 212.5 |
---|
| 4196 | |
---|
| 4197 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4198 | ! DATA (GA( 3,15,IC),IC=1,3) / |
---|
| 4199 | ! S 0.13209140E+02, 0.22180915E+02, 0.00000000E+00/ |
---|
| 4200 | ! DATA (GB( 3,15,IC),IC=1,3) / |
---|
| 4201 | ! S 0.13209140E+02, 0.22190410E+02, 0.10000000E+01/ |
---|
| 4202 | ! DATA (GA( 3,16,IC),IC=1,3) / |
---|
| 4203 | ! S 0.13209485E+02, 0.22379193E+02, 0.00000000E+00/ |
---|
| 4204 | ! DATA (GB( 3,16,IC),IC=1,3) / |
---|
| 4205 | ! S 0.13209485E+02, 0.22388551E+02, 0.10000000E+01/ |
---|
| 4206 | |
---|
| 4207 | ! ----- INTERVAL = 4 ----- T = 225.0 |
---|
| 4208 | |
---|
| 4209 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4210 | ! DATA (GA( 4,15,IC),IC=1,3) / |
---|
| 4211 | ! S 0.13213894E+02, 0.22259478E+02, 0.00000000E+00/ |
---|
| 4212 | ! DATA (GB( 4,15,IC),IC=1,3) / |
---|
| 4213 | ! S 0.13213894E+02, 0.22268925E+02, 0.10000000E+01/ |
---|
| 4214 | ! DATA (GA( 4,16,IC),IC=1,3) / |
---|
| 4215 | ! S 0.13238789E+02, 0.22492992E+02, 0.00000000E+00/ |
---|
| 4216 | ! DATA (GB( 4,16,IC),IC=1,3) / |
---|
| 4217 | ! S 0.13238789E+02, 0.22502309E+02, 0.10000000E+01/ |
---|
| 4218 | |
---|
| 4219 | ! ----- INTERVAL = 4 ----- T = 237.5 |
---|
| 4220 | |
---|
| 4221 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4222 | ! DATA (GA( 5,15,IC),IC=1,3) / |
---|
| 4223 | ! S 0.13225963E+02, 0.22341039E+02, 0.00000000E+00/ |
---|
| 4224 | ! DATA (GB( 5,15,IC),IC=1,3) / |
---|
| 4225 | ! S 0.13225963E+02, 0.22350445E+02, 0.10000000E+01/ |
---|
| 4226 | ! DATA (GA( 5,16,IC),IC=1,3) / |
---|
| 4227 | ! S 0.13275017E+02, 0.22608508E+02, 0.00000000E+00/ |
---|
| 4228 | ! DATA (GB( 5,16,IC),IC=1,3) / |
---|
| 4229 | ! S 0.13275017E+02, 0.22617792E+02, 0.10000000E+01/ |
---|
| 4230 | |
---|
| 4231 | ! ----- INTERVAL = 4 ----- T = 250.0 |
---|
| 4232 | |
---|
| 4233 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4234 | ! DATA (GA( 6,15,IC),IC=1,3) / |
---|
| 4235 | ! S 0.13243806E+02, 0.22424247E+02, 0.00000000E+00/ |
---|
| 4236 | ! DATA (GB( 6,15,IC),IC=1,3) / |
---|
| 4237 | ! S 0.13243806E+02, 0.22433617E+02, 0.10000000E+01/ |
---|
| 4238 | ! DATA (GA( 6,16,IC),IC=1,3) / |
---|
| 4239 | ! S 0.13316096E+02, 0.22723843E+02, 0.00000000E+00/ |
---|
| 4240 | ! DATA (GB( 6,16,IC),IC=1,3) / |
---|
| 4241 | ! S 0.13316096E+02, 0.22733099E+02, 0.10000000E+01/ |
---|
| 4242 | |
---|
| 4243 | ! ----- INTERVAL = 4 ----- T = 262.5 |
---|
| 4244 | |
---|
| 4245 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4246 | ! DATA (GA( 7,15,IC),IC=1,3) / |
---|
| 4247 | ! S 0.13266104E+02, 0.22508089E+02, 0.00000000E+00/ |
---|
| 4248 | ! DATA (GB( 7,15,IC),IC=1,3) / |
---|
| 4249 | ! S 0.13266104E+02, 0.22517429E+02, 0.10000000E+01/ |
---|
| 4250 | ! DATA (GA( 7,16,IC),IC=1,3) / |
---|
| 4251 | ! S 0.13360555E+02, 0.22837837E+02, 0.00000000E+00/ |
---|
| 4252 | ! DATA (GB( 7,16,IC),IC=1,3) / |
---|
| 4253 | ! S 0.13360555E+02, 0.22847071E+02, 0.10000000E+01/ |
---|
| 4254 | |
---|
| 4255 | ! ----- INTERVAL = 4 ----- T = 275.0 |
---|
| 4256 | |
---|
| 4257 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4258 | ! DATA (GA( 8,15,IC),IC=1,3) / |
---|
| 4259 | ! S 0.13291782E+02, 0.22591771E+02, 0.00000000E+00/ |
---|
| 4260 | ! DATA (GB( 8,15,IC),IC=1,3) / |
---|
| 4261 | ! S 0.13291782E+02, 0.22601086E+02, 0.10000000E+01/ |
---|
| 4262 | ! DATA (GA( 8,16,IC),IC=1,3) / |
---|
| 4263 | ! S 0.13407324E+02, 0.22949751E+02, 0.00000000E+00/ |
---|
| 4264 | ! DATA (GB( 8,16,IC),IC=1,3) / |
---|
| 4265 | ! S 0.13407324E+02, 0.22958967E+02, 0.10000000E+01/ |
---|
| 4266 | |
---|
| 4267 | ! ----- INTERVAL = 4 ----- T = 287.5 |
---|
| 4268 | |
---|
| 4269 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4270 | ! DATA (GA( 9,15,IC),IC=1,3) / |
---|
| 4271 | ! S 0.13319961E+02, 0.22674661E+02, 0.00000000E+00/ |
---|
| 4272 | ! DATA (GB( 9,15,IC),IC=1,3) / |
---|
| 4273 | ! S 0.13319961E+02, 0.22683956E+02, 0.10000000E+01/ |
---|
| 4274 | ! DATA (GA( 9,16,IC),IC=1,3) / |
---|
| 4275 | ! S 0.13455544E+02, 0.23059032E+02, 0.00000000E+00/ |
---|
| 4276 | ! DATA (GB( 9,16,IC),IC=1,3) / |
---|
| 4277 | ! S 0.13455544E+02, 0.23068234E+02, 0.10000000E+01/ |
---|
| 4278 | |
---|
| 4279 | ! ----- INTERVAL = 4 ----- T = 300.0 |
---|
| 4280 | |
---|
| 4281 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4282 | ! DATA (GA(10,15,IC),IC=1,3) / |
---|
| 4283 | ! S 0.13349927E+02, 0.22756246E+02, 0.00000000E+00/ |
---|
| 4284 | ! DATA (GB(10,15,IC),IC=1,3) / |
---|
| 4285 | ! S 0.13349927E+02, 0.22765522E+02, 0.10000000E+01/ |
---|
| 4286 | ! DATA (GA(10,16,IC),IC=1,3) / |
---|
| 4287 | ! S 0.13504450E+02, 0.23165146E+02, 0.00000000E+00/ |
---|
| 4288 | ! DATA (GB(10,16,IC),IC=1,3) / |
---|
| 4289 | ! S 0.13504450E+02, 0.23174336E+02, 0.10000000E+01/ |
---|
| 4290 | |
---|
| 4291 | ! ----- INTERVAL = 4 ----- T = 312.5 |
---|
| 4292 | |
---|
| 4293 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4294 | ! DATA (GA(11,15,IC),IC=1,3) / |
---|
| 4295 | ! S 0.13381108E+02, 0.22836093E+02, 0.00000000E+00/ |
---|
| 4296 | ! DATA (GB(11,15,IC),IC=1,3) / |
---|
| 4297 | ! S 0.13381108E+02, 0.22845354E+02, 0.10000000E+01/ |
---|
| 4298 | ! DATA (GA(11,16,IC),IC=1,3) / |
---|
| 4299 | ! S 0.13553282E+02, 0.23267456E+02, 0.00000000E+00/ |
---|
| 4300 | ! DATA (GB(11,16,IC),IC=1,3) / |
---|
| 4301 | ! S 0.13553282E+02, 0.23276638E+02, 0.10000000E+01/ |
---|
| 4302 | |
---|
| 4303 | ! ------------------------------------------------------------------ |
---|
| 4304 | ! DATA (( XP( J,K),J=1,6), K=1,6) / |
---|
| 4305 | ! S 0.46430621E+02, 0.12928299E+03, 0.20732648E+03, |
---|
| 4306 | ! S 0.31398411E+03, 0.18373177E+03,-0.11412303E+03, |
---|
| 4307 | ! S 0.73604774E+02, 0.27887914E+03, 0.27076947E+03, |
---|
| 4308 | ! S-0.57322111E+02,-0.64742459E+02, 0.87238280E+02, |
---|
| 4309 | ! S 0.37050866E+02, 0.20498759E+03, 0.37558029E+03, |
---|
| 4310 | ! S 0.17401171E+03,-0.13350302E+03,-0.37651795E+02, |
---|
| 4311 | ! S 0.14930141E+02, 0.89161160E+02, 0.17793062E+03, |
---|
| 4312 | ! S 0.93433860E+02,-0.70646020E+02,-0.26373150E+02, |
---|
| 4313 | ! S 0.40386780E+02, 0.10855270E+03, 0.50755010E+02, |
---|
| 4314 | ! S-0.31496190E+02, 0.12791300E+00, 0.18017770E+01, |
---|
| 4315 | ! S 0.90811926E+01, 0.75073923E+02, 0.24654438E+03, |
---|
| 4316 | ! S 0.39332612E+03, 0.29385281E+03, 0.89107921E+02 / |
---|
| 4317 | |
---|
| 4318 | |
---|
| 4319 | |
---|
| 4320 | ! * 1.0 PLANCK FUNCTIONS AND GRADIENTS |
---|
| 4321 | ! ------------------------------ |
---|
| 4322 | |
---|
| 4323 | |
---|
| 4324 | ! cdir collapse |
---|
| 4325 | DO jk = 1, kflev + 1 |
---|
| 4326 | DO jl = 1, kdlon |
---|
| 4327 | pbint(jl, jk) = 0. |
---|
| 4328 | END DO |
---|
| 4329 | END DO |
---|
| 4330 | DO jl = 1, kdlon |
---|
| 4331 | pbsuin(jl) = 0. |
---|
| 4332 | END DO |
---|
| 4333 | |
---|
| 4334 | DO jnu = 1, ninter |
---|
| 4335 | |
---|
| 4336 | ! * 1.1 LEVELS FROM SURFACE TO KFLEV |
---|
| 4337 | ! ---------------------------- |
---|
| 4338 | |
---|
| 4339 | DO jk = 1, kflev |
---|
| 4340 | DO jl = 1, kdlon |
---|
[5144] | 4341 | zti(jl) = (ptl(jl, jk) - tstand) / tstand |
---|
| 4342 | zres(jl) = xp(1, jnu) + zti(jl) * (xp(2, jnu) + zti(jl) * (xp(3, & |
---|
| 4343 | jnu) + zti(jl) * (xp(4, jnu) + zti(jl) * (xp(5, jnu) + zti(jl) * (xp(6, jnu)))))) |
---|
[1992] | 4344 | pbint(jl, jk) = pbint(jl, jk) + zres(jl) |
---|
| 4345 | pb(jl, jnu, jk) = zres(jl) |
---|
| 4346 | zblev(jl, jk) = zres(jl) |
---|
[5144] | 4347 | zti2(jl) = (ptave(jl, jk) - tstand) / tstand |
---|
| 4348 | zres2(jl) = xp(1, jnu) + zti2(jl) * (xp(2, jnu) + zti2(jl) * (xp(3, & |
---|
| 4349 | jnu) + zti2(jl) * (xp(4, jnu) + zti2(jl) * (xp(5, jnu) + zti2(jl) * (xp(6, jnu)))) & |
---|
| 4350 | )) |
---|
[1992] | 4351 | zblay(jl, jk) = zres2(jl) |
---|
| 4352 | END DO |
---|
| 4353 | END DO |
---|
| 4354 | |
---|
| 4355 | ! * 1.2 TOP OF THE ATMOSPHERE AND SURFACE |
---|
| 4356 | ! --------------------------------- |
---|
| 4357 | |
---|
| 4358 | DO jl = 1, kdlon |
---|
[5144] | 4359 | zti(jl) = (ptl(jl, kflev + 1) - tstand) / tstand |
---|
| 4360 | zti2(jl) = (ptl(jl, 1) + pdt0(jl) - tstand) / tstand |
---|
| 4361 | zres(jl) = xp(1, jnu) + zti(jl) * (xp(2, jnu) + zti(jl) * (xp(3, & |
---|
| 4362 | jnu) + zti(jl) * (xp(4, jnu) + zti(jl) * (xp(5, jnu) + zti(jl) * (xp(6, jnu)))))) |
---|
| 4363 | zres2(jl) = xp(1, jnu) + zti2(jl) * (xp(2, jnu) + zti2(jl) * (xp(3, & |
---|
| 4364 | jnu) + zti2(jl) * (xp(4, jnu) + zti2(jl) * (xp(5, jnu) + zti2(jl) * (xp(6, jnu)))))) |
---|
| 4365 | pbint(jl, kflev + 1) = pbint(jl, kflev + 1) + zres(jl) |
---|
| 4366 | pb(jl, jnu, kflev + 1) = zres(jl) |
---|
| 4367 | zblev(jl, kflev + 1) = zres(jl) |
---|
[1992] | 4368 | pbtop(jl, jnu) = zres(jl) |
---|
| 4369 | pbsur(jl, jnu) = zres2(jl) |
---|
| 4370 | pbsuin(jl) = pbsuin(jl) + zres2(jl) |
---|
| 4371 | END DO |
---|
| 4372 | |
---|
| 4373 | ! * 1.3 GRADIENTS IN SUB-LAYERS |
---|
| 4374 | ! ----------------------- |
---|
| 4375 | |
---|
| 4376 | DO jk = 1, kflev |
---|
[5144] | 4377 | jk2 = 2 * jk |
---|
[1992] | 4378 | jk1 = jk2 - 1 |
---|
| 4379 | DO jl = 1, kdlon |
---|
| 4380 | pdbsl(jl, jnu, jk1) = zblay(jl, jk) - zblev(jl, jk) |
---|
[5144] | 4381 | pdbsl(jl, jnu, jk2) = zblev(jl, jk + 1) - zblay(jl, jk) |
---|
[1992] | 4382 | END DO |
---|
| 4383 | END DO |
---|
| 4384 | |
---|
| 4385 | END DO |
---|
| 4386 | |
---|
| 4387 | ! * 2.0 CHOOSE THE RELEVANT SETS OF PADE APPROXIMANTS |
---|
| 4388 | ! --------------------------------------------- |
---|
| 4389 | |
---|
| 4390 | DO jl = 1, kdlon |
---|
[5144] | 4391 | zdsto1 = (ptl(jl, kflev + 1) - tintp(1)) / tstp |
---|
| 4392 | ixtox = max(1, min(mxixt, int(zdsto1 + 1.))) |
---|
| 4393 | zdstox = (ptl(jl, kflev + 1) - tintp(ixtox)) / tstp |
---|
[1992] | 4394 | IF (zdstox<0.5) THEN |
---|
| 4395 | indto = ixtox |
---|
| 4396 | ELSE |
---|
| 4397 | indto = ixtox + 1 |
---|
| 4398 | END IF |
---|
| 4399 | indb(jl) = indto |
---|
[5144] | 4400 | zdst1 = (ptl(jl, 1) - tintp(1)) / tstp |
---|
| 4401 | ixtx = max(1, min(mxixt, int(zdst1 + 1.))) |
---|
| 4402 | zdstx = (ptl(jl, 1) - tintp(ixtx)) / tstp |
---|
[1992] | 4403 | IF (zdstx<0.5) THEN |
---|
| 4404 | indt = ixtx |
---|
| 4405 | ELSE |
---|
| 4406 | indt = ixtx + 1 |
---|
| 4407 | END IF |
---|
| 4408 | inds(jl) = indt |
---|
| 4409 | END DO |
---|
| 4410 | |
---|
| 4411 | DO jf = 1, 2 |
---|
| 4412 | DO jg = 1, 8 |
---|
| 4413 | DO jl = 1, kdlon |
---|
| 4414 | indsu = inds(jl) |
---|
[5144] | 4415 | pgasur(jl, jg, jf) = ga(indsu, 2 * jg - 1, jf) |
---|
| 4416 | pgbsur(jl, jg, jf) = gb(indsu, 2 * jg - 1, jf) |
---|
[1992] | 4417 | indtp = indb(jl) |
---|
[5144] | 4418 | pgatop(jl, jg, jf) = ga(indtp, 2 * jg - 1, jf) |
---|
| 4419 | pgbtop(jl, jg, jf) = gb(indtp, 2 * jg - 1, jf) |
---|
[1992] | 4420 | END DO |
---|
| 4421 | END DO |
---|
| 4422 | END DO |
---|
| 4423 | |
---|
| 4424 | DO jk = 1, kflev |
---|
| 4425 | DO jl = 1, kdlon |
---|
[5144] | 4426 | zdst1 = (ptave(jl, jk) - tintp(1)) / tstp |
---|
| 4427 | ixtx = max(1, min(mxixt, int(zdst1 + 1.))) |
---|
| 4428 | zdstx = (ptave(jl, jk) - tintp(ixtx)) / tstp |
---|
[1992] | 4429 | IF (zdstx<0.5) THEN |
---|
| 4430 | indt = ixtx |
---|
[998] | 4431 | ELSE |
---|
[1992] | 4432 | indt = ixtx + 1 |
---|
[998] | 4433 | END IF |
---|
[1992] | 4434 | indb(jl) = indt |
---|
| 4435 | END DO |
---|
| 4436 | |
---|
| 4437 | DO jf = 1, 2 |
---|
| 4438 | DO jg = 1, 8 |
---|
| 4439 | DO jl = 1, kdlon |
---|
| 4440 | indt = indb(jl) |
---|
[5144] | 4441 | pga(jl, jg, jf, jk) = ga(indt, 2 * jg, jf) |
---|
| 4442 | pgb(jl, jg, jf, jk) = gb(indt, 2 * jg, jf) |
---|
[1992] | 4443 | END DO |
---|
| 4444 | END DO |
---|
| 4445 | END DO |
---|
| 4446 | END DO |
---|
| 4447 | |
---|
| 4448 | ! ------------------------------------------------------------------ |
---|
| 4449 | |
---|
| 4450 | END SUBROUTINE lwb_lmdar4 |
---|
| 4451 | SUBROUTINE lwv_lmdar4(kuaer, ktraer, klim, pabcu, pb, pbint, pbsuin, pbsur, & |
---|
[5144] | 4452 | pbtop, pdbsl, pemis, ppmb, ptave, pga, pgb, pgasur, pgbsur, pgatop, & |
---|
| 4453 | pgbtop, pcntrb, pcts, pfluc) |
---|
[1992] | 4454 | USE dimphy |
---|
[5144] | 4455 | USE lmdz_yomcst |
---|
| 4456 | |
---|
[1992] | 4457 | IMPLICIT NONE |
---|
| 4458 | include "raddimlw.h" |
---|
| 4459 | |
---|
| 4460 | ! ----------------------------------------------------------------------- |
---|
| 4461 | ! PURPOSE. |
---|
| 4462 | ! -------- |
---|
| 4463 | ! CARRIES OUT THE VERTICAL INTEGRATION TO GIVE LONGWAVE |
---|
| 4464 | ! FLUXES OR RADIANCES |
---|
| 4465 | |
---|
| 4466 | ! METHOD. |
---|
| 4467 | ! ------- |
---|
| 4468 | |
---|
| 4469 | ! 1. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING BETWEEN |
---|
| 4470 | ! CONTRIBUTIONS BY - THE NEARBY LAYERS |
---|
| 4471 | ! - THE DISTANT LAYERS |
---|
| 4472 | ! - THE BOUNDARY TERMS |
---|
| 4473 | ! 2. COMPUTES THE CLEAR-SKY DOWNWARD AND UPWARD EMISSIVITIES. |
---|
| 4474 | |
---|
| 4475 | ! REFERENCE. |
---|
| 4476 | ! ---------- |
---|
| 4477 | |
---|
| 4478 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 4479 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 4480 | |
---|
| 4481 | ! AUTHOR. |
---|
| 4482 | ! ------- |
---|
| 4483 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 4484 | |
---|
| 4485 | ! MODIFICATIONS. |
---|
| 4486 | ! -------------- |
---|
| 4487 | ! ORIGINAL : 89-07-14 |
---|
| 4488 | ! ----------------------------------------------------------------------- |
---|
| 4489 | |
---|
| 4490 | ! * ARGUMENTS: |
---|
| 4491 | INTEGER kuaer, ktraer, klim |
---|
| 4492 | |
---|
[5144] | 4493 | REAL (KIND = 8) pabcu(kdlon, nua, 3 * kflev + 1) ! EFFECTIVE ABSORBER AMOUNTS |
---|
| 4494 | REAL (KIND = 8) pb(kdlon, ninter, kflev + 1) ! SPECTRAL HALF-LEVEL PLANCK FUNCTIONS |
---|
| 4495 | REAL (KIND = 8) pbint(kdlon, kflev + 1) ! HALF-LEVEL PLANCK FUNCTIONS |
---|
| 4496 | REAL (KIND = 8) pbsur(kdlon, ninter) ! SURFACE SPECTRAL PLANCK FUNCTION |
---|
| 4497 | REAL (KIND = 8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
---|
| 4498 | REAL (KIND = 8) pbtop(kdlon, ninter) ! T.O.A. SPECTRAL PLANCK FUNCTION |
---|
| 4499 | REAL (KIND = 8) pdbsl(kdlon, ninter, kflev * 2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
| 4500 | REAL (KIND = 8) pemis(kdlon) ! SURFACE EMISSIVITY |
---|
| 4501 | REAL (KIND = 8) ppmb(kdlon, kflev + 1) ! HALF-LEVEL PRESSURE (MB) |
---|
| 4502 | REAL (KIND = 8) ptave(kdlon, kflev) ! TEMPERATURE |
---|
| 4503 | REAL (KIND = 8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
| 4504 | REAL (KIND = 8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
| 4505 | REAL (KIND = 8) pgasur(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
| 4506 | REAL (KIND = 8) pgbsur(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
| 4507 | REAL (KIND = 8) pgatop(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
| 4508 | REAL (KIND = 8) pgbtop(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
[1992] | 4509 | |
---|
[5144] | 4510 | REAL (KIND = 8) pcntrb(kdlon, kflev + 1, kflev + 1) ! CLEAR-SKY ENERGY EXCHANGE MATRIX |
---|
| 4511 | REAL (KIND = 8) pcts(kdlon, kflev) ! COOLING-TO-SPACE TERM |
---|
| 4512 | REAL (KIND = 8) pfluc(kdlon, 2, kflev + 1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
[1992] | 4513 | ! ----------------------------------------------------------------------- |
---|
| 4514 | ! LOCAL VARIABLES: |
---|
[5144] | 4515 | REAL (KIND = 8) zadjd(kdlon, kflev + 1) |
---|
| 4516 | REAL (KIND = 8) zadju(kdlon, kflev + 1) |
---|
| 4517 | REAL (KIND = 8) zdbdt(kdlon, ninter, kflev) |
---|
| 4518 | REAL (KIND = 8) zdisd(kdlon, kflev + 1) |
---|
| 4519 | REAL (KIND = 8) zdisu(kdlon, kflev + 1) |
---|
[1992] | 4520 | |
---|
| 4521 | INTEGER jk, jl |
---|
| 4522 | ! ----------------------------------------------------------------------- |
---|
| 4523 | |
---|
| 4524 | DO jk = 1, kflev + 1 |
---|
| 4525 | DO jl = 1, kdlon |
---|
| 4526 | zadjd(jl, jk) = 0. |
---|
| 4527 | zadju(jl, jk) = 0. |
---|
| 4528 | zdisd(jl, jk) = 0. |
---|
| 4529 | zdisu(jl, jk) = 0. |
---|
| 4530 | END DO |
---|
| 4531 | END DO |
---|
| 4532 | |
---|
| 4533 | DO jk = 1, kflev |
---|
| 4534 | DO jl = 1, kdlon |
---|
| 4535 | pcts(jl, jk) = 0. |
---|
| 4536 | END DO |
---|
| 4537 | END DO |
---|
| 4538 | |
---|
| 4539 | ! * CONTRIBUTION FROM ADJACENT LAYERS |
---|
| 4540 | |
---|
| 4541 | CALL lwvn_lmdar4(kuaer, ktraer, pabcu, pdbsl, pga, pgb, zadjd, zadju, & |
---|
[5144] | 4542 | pcntrb, zdbdt) |
---|
[1992] | 4543 | ! * CONTRIBUTION FROM DISTANT LAYERS |
---|
| 4544 | |
---|
| 4545 | CALL lwvd_lmdar4(kuaer, ktraer, pabcu, zdbdt, pga, pgb, pcntrb, zdisd, & |
---|
[5144] | 4546 | zdisu) |
---|
[1992] | 4547 | |
---|
| 4548 | ! * EXCHANGE WITH THE BOUNDARIES |
---|
| 4549 | |
---|
| 4550 | CALL lwvb_lmdar4(kuaer, ktraer, klim, pabcu, zadjd, zadju, pb, pbint, & |
---|
[5144] | 4551 | pbsuin, pbsur, pbtop, zdisd, zdisu, pemis, ppmb, pga, pgb, pgasur, & |
---|
| 4552 | pgbsur, pgatop, pgbtop, pcts, pfluc) |
---|
[1992] | 4553 | |
---|
| 4554 | END SUBROUTINE lwv_lmdar4 |
---|
| 4555 | SUBROUTINE lwvb_lmdar4(kuaer, ktraer, klim, pabcu, padjd, padju, pb, pbint, & |
---|
[5144] | 4556 | pbsui, pbsur, pbtop, pdisd, pdisu, pemis, ppmb, pga, pgb, pgasur, pgbsur, & |
---|
| 4557 | pgatop, pgbtop, pcts, pfluc) |
---|
[1992] | 4558 | USE dimphy |
---|
| 4559 | IMPLICIT NONE |
---|
| 4560 | include "raddimlw.h" |
---|
| 4561 | include "radopt.h" |
---|
| 4562 | |
---|
| 4563 | ! ----------------------------------------------------------------------- |
---|
| 4564 | ! PURPOSE. |
---|
| 4565 | ! -------- |
---|
| 4566 | ! INTRODUCES THE EFFECTS OF THE BOUNDARIES IN THE VERTICAL |
---|
| 4567 | ! INTEGRATION |
---|
| 4568 | |
---|
| 4569 | ! METHOD. |
---|
| 4570 | ! ------- |
---|
| 4571 | |
---|
| 4572 | ! 1. COMPUTES THE ENERGY EXCHANGE WITH TOP AND SURFACE OF THE |
---|
| 4573 | ! ATMOSPHERE |
---|
| 4574 | ! 2. COMPUTES THE COOLING-TO-SPACE AND HEATING-FROM-GROUND |
---|
| 4575 | ! TERMS FOR THE APPROXIMATE COOLING RATE ABOVE 10 HPA |
---|
| 4576 | ! 3. ADDS UP ALL CONTRIBUTIONS TO GET THE CLEAR-SKY FLUXES |
---|
| 4577 | |
---|
| 4578 | ! REFERENCE. |
---|
| 4579 | ! ---------- |
---|
| 4580 | |
---|
| 4581 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 4582 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 4583 | |
---|
| 4584 | ! AUTHOR. |
---|
| 4585 | ! ------- |
---|
| 4586 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 4587 | |
---|
| 4588 | ! MODIFICATIONS. |
---|
| 4589 | ! -------------- |
---|
| 4590 | ! ORIGINAL : 89-07-14 |
---|
| 4591 | ! Voigt lines (loop 2413 to 2427) - JJM & PhD - 01/96 |
---|
| 4592 | ! ----------------------------------------------------------------------- |
---|
| 4593 | |
---|
| 4594 | ! * 0.1 ARGUMENTS |
---|
| 4595 | ! --------- |
---|
| 4596 | |
---|
| 4597 | INTEGER kuaer, ktraer, klim |
---|
| 4598 | |
---|
[5144] | 4599 | REAL (KIND = 8) pabcu(kdlon, nua, 3 * kflev + 1) ! ABSORBER AMOUNTS |
---|
| 4600 | REAL (KIND = 8) padjd(kdlon, kflev + 1) ! CONTRIBUTION BY ADJACENT LAYERS |
---|
| 4601 | REAL (KIND = 8) padju(kdlon, kflev + 1) ! CONTRIBUTION BY ADJACENT LAYERS |
---|
| 4602 | REAL (KIND = 8) pb(kdlon, ninter, kflev + 1) ! SPECTRAL HALF-LEVEL PLANCK FUNCTIONS |
---|
| 4603 | REAL (KIND = 8) pbint(kdlon, kflev + 1) ! HALF-LEVEL PLANCK FUNCTIONS |
---|
| 4604 | REAL (KIND = 8) pbsur(kdlon, ninter) ! SPECTRAL SURFACE PLANCK FUNCTION |
---|
| 4605 | REAL (KIND = 8) pbsui(kdlon) ! SURFACE PLANCK FUNCTION |
---|
| 4606 | REAL (KIND = 8) pbtop(kdlon, ninter) ! SPECTRAL T.O.A. PLANCK FUNCTION |
---|
| 4607 | REAL (KIND = 8) pdisd(kdlon, kflev + 1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
| 4608 | REAL (KIND = 8) pdisu(kdlon, kflev + 1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
| 4609 | REAL (KIND = 8) pemis(kdlon) ! SURFACE EMISSIVITY |
---|
| 4610 | REAL (KIND = 8) ppmb(kdlon, kflev + 1) ! PRESSURE MB |
---|
| 4611 | REAL (KIND = 8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
| 4612 | REAL (KIND = 8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
| 4613 | REAL (KIND = 8) pgasur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
---|
| 4614 | REAL (KIND = 8) pgbsur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
---|
| 4615 | REAL (KIND = 8) pgatop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
---|
| 4616 | REAL (KIND = 8) pgbtop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
---|
[1992] | 4617 | |
---|
[5144] | 4618 | REAL (KIND = 8) pfluc(kdlon, 2, kflev + 1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
| 4619 | REAL (KIND = 8) pcts(kdlon, kflev) ! COOLING-TO-SPACE TERM |
---|
[1992] | 4620 | |
---|
| 4621 | ! * LOCAL VARIABLES: |
---|
| 4622 | |
---|
[5144] | 4623 | REAL (KIND = 8) zbgnd(kdlon) |
---|
| 4624 | REAL (KIND = 8) zfd(kdlon) |
---|
| 4625 | REAL (KIND = 8) zfn10(kdlon) |
---|
| 4626 | REAL (KIND = 8) zfu(kdlon) |
---|
| 4627 | REAL (KIND = 8) ztt(kdlon, ntra) |
---|
| 4628 | REAL (KIND = 8) ztt1(kdlon, ntra) |
---|
| 4629 | REAL (KIND = 8) ztt2(kdlon, ntra) |
---|
| 4630 | REAL (KIND = 8) zuu(kdlon, nua) |
---|
| 4631 | REAL (KIND = 8) zcnsol(kdlon) |
---|
| 4632 | REAL (KIND = 8) zcntop(kdlon) |
---|
[1992] | 4633 | |
---|
| 4634 | INTEGER jk, jl, ja |
---|
| 4635 | INTEGER jstra, jstru |
---|
| 4636 | INTEGER ind1, ind2, ind3, ind4, in, jlim |
---|
[5144] | 4637 | REAL (KIND = 8) zctstr |
---|
[1992] | 4638 | |
---|
| 4639 | ! ----------------------------------------------------------------------- |
---|
| 4640 | |
---|
| 4641 | ! * 1. INITIALIZATION |
---|
| 4642 | ! -------------- |
---|
| 4643 | |
---|
| 4644 | |
---|
| 4645 | |
---|
| 4646 | ! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
---|
| 4647 | ! --------------------------------- |
---|
| 4648 | |
---|
| 4649 | DO ja = 1, ntra |
---|
| 4650 | DO jl = 1, kdlon |
---|
| 4651 | ztt(jl, ja) = 1.0 |
---|
| 4652 | ztt1(jl, ja) = 1.0 |
---|
| 4653 | ztt2(jl, ja) = 1.0 |
---|
| 4654 | END DO |
---|
| 4655 | END DO |
---|
| 4656 | |
---|
| 4657 | DO ja = 1, nua |
---|
| 4658 | DO jl = 1, kdlon |
---|
| 4659 | zuu(jl, ja) = 1.0 |
---|
| 4660 | END DO |
---|
| 4661 | END DO |
---|
| 4662 | |
---|
| 4663 | ! ------------------------------------------------------------------ |
---|
| 4664 | |
---|
| 4665 | ! * 2. VERTICAL INTEGRATION |
---|
| 4666 | ! -------------------- |
---|
| 4667 | |
---|
| 4668 | ind1 = 0 |
---|
| 4669 | ind3 = 0 |
---|
| 4670 | ind4 = 1 |
---|
| 4671 | ind2 = 1 |
---|
| 4672 | |
---|
| 4673 | ! * 2.3 EXCHANGE WITH TOP OF THE ATMOSPHERE |
---|
| 4674 | ! ----------------------------------- |
---|
| 4675 | |
---|
| 4676 | DO jk = 1, kflev |
---|
[5144] | 4677 | in = (jk - 1) * ng1p1 + 1 |
---|
[1992] | 4678 | |
---|
| 4679 | DO ja = 1, kuaer |
---|
| 4680 | DO jl = 1, kdlon |
---|
| 4681 | zuu(jl, ja) = pabcu(jl, ja, in) |
---|
| 4682 | END DO |
---|
| 4683 | END DO |
---|
| 4684 | |
---|
[5144] | 4685 | CALL lwtt_lmdar4(pgatop(1, 1, 1), pgbtop(1, 1, 1), zuu, ztt) |
---|
[1992] | 4686 | |
---|
| 4687 | DO jl = 1, kdlon |
---|
[5144] | 4688 | zcntop(jl) = pbtop(jl, 1) * ztt(jl, 1) * ztt(jl, 10) + & |
---|
| 4689 | pbtop(jl, 2) * ztt(jl, 2) * ztt(jl, 7) * ztt(jl, 11) + & |
---|
| 4690 | pbtop(jl, 3) * ztt(jl, 4) * ztt(jl, 8) * ztt(jl, 12) + & |
---|
| 4691 | pbtop(jl, 4) * ztt(jl, 5) * ztt(jl, 9) * ztt(jl, 13) + & |
---|
| 4692 | pbtop(jl, 5) * ztt(jl, 3) * ztt(jl, 14) + pbtop(jl, 6) * ztt(jl, 6) * ztt(jl, & |
---|
| 4693 | 15) |
---|
[1992] | 4694 | zfd(jl) = zcntop(jl) - pbint(jl, jk) - pdisd(jl, jk) - padjd(jl, jk) |
---|
| 4695 | pfluc(jl, 2, jk) = zfd(jl) |
---|
| 4696 | END DO |
---|
| 4697 | |
---|
| 4698 | END DO |
---|
| 4699 | |
---|
| 4700 | jk = kflev + 1 |
---|
[5144] | 4701 | in = (jk - 1) * ng1p1 + 1 |
---|
[1992] | 4702 | |
---|
| 4703 | DO jl = 1, kdlon |
---|
| 4704 | zcntop(jl) = pbtop(jl, 1) + pbtop(jl, 2) + pbtop(jl, 3) + pbtop(jl, 4) + & |
---|
[5144] | 4705 | pbtop(jl, 5) + pbtop(jl, 6) |
---|
[1992] | 4706 | zfd(jl) = zcntop(jl) - pbint(jl, jk) - pdisd(jl, jk) - padjd(jl, jk) |
---|
| 4707 | pfluc(jl, 2, jk) = zfd(jl) |
---|
| 4708 | END DO |
---|
| 4709 | |
---|
| 4710 | ! * 2.4 COOLING-TO-SPACE OF LAYERS ABOVE 10 HPA |
---|
| 4711 | ! --------------------------------------- |
---|
| 4712 | |
---|
| 4713 | |
---|
| 4714 | |
---|
| 4715 | ! * 2.4.1 INITIALIZATION |
---|
| 4716 | ! -------------- |
---|
| 4717 | |
---|
| 4718 | jlim = kflev |
---|
| 4719 | |
---|
| 4720 | IF (.NOT. levoigt) THEN |
---|
| 4721 | DO jk = kflev, 1, -1 |
---|
[5144] | 4722 | IF (ppmb(1, jk)<10.0) THEN |
---|
[1992] | 4723 | jlim = jk |
---|
[998] | 4724 | END IF |
---|
[1992] | 4725 | END DO |
---|
| 4726 | END IF |
---|
| 4727 | klim = jlim |
---|
| 4728 | |
---|
| 4729 | IF (.NOT. levoigt) THEN |
---|
| 4730 | DO ja = 1, ktraer |
---|
| 4731 | DO jl = 1, kdlon |
---|
| 4732 | ztt1(jl, ja) = 1.0 |
---|
| 4733 | END DO |
---|
| 4734 | END DO |
---|
| 4735 | |
---|
| 4736 | ! * 2.4.2 LOOP OVER LAYERS ABOVE 10 HPA |
---|
| 4737 | ! ----------------------------- |
---|
| 4738 | |
---|
| 4739 | DO jstra = kflev, jlim, -1 |
---|
[5144] | 4740 | jstru = (jstra - 1) * ng1p1 + 1 |
---|
[1992] | 4741 | |
---|
| 4742 | DO ja = 1, kuaer |
---|
| 4743 | DO jl = 1, kdlon |
---|
| 4744 | zuu(jl, ja) = pabcu(jl, ja, jstru) |
---|
| 4745 | END DO |
---|
| 4746 | END DO |
---|
| 4747 | |
---|
[5144] | 4748 | CALL lwtt_lmdar4(pga(1, 1, 1, jstra), pgb(1, 1, 1, jstra), zuu, ztt) |
---|
[1992] | 4749 | |
---|
| 4750 | DO jl = 1, kdlon |
---|
[5144] | 4751 | zctstr = (pb(jl, 1, jstra) + pb(jl, 1, jstra + 1)) * & |
---|
| 4752 | (ztt1(jl, 1) * ztt1(jl, 10) - ztt(jl, 1) * ztt(jl, 10)) + & |
---|
| 4753 | (pb(jl, 2, jstra) + pb(jl, 2, jstra + 1)) * (ztt1(jl, 2) * ztt1(jl, 7) * ztt1(jl, 11 & |
---|
| 4754 | ) - ztt(jl, 2) * ztt(jl, 7) * ztt(jl, 11)) + (pb(jl, 3, jstra) + pb(jl, 3, jstra + 1 & |
---|
| 4755 | )) * (ztt1(jl, 4) * ztt1(jl, 8) * ztt1(jl, 12) - ztt(jl, 4) * ztt(jl, 8) * ztt(jl, 12 & |
---|
| 4756 | )) + (pb(jl, 4, jstra) + pb(jl, 4, jstra + 1)) * (ztt1(jl, 5) * ztt1(jl, 9) * ztt1(& |
---|
| 4757 | jl, 13) - ztt(jl, 5) * ztt(jl, 9) * ztt(jl, 13)) + (pb(jl, 5, jstra) + pb(jl, 5, & |
---|
| 4758 | jstra + 1)) * (ztt1(jl, 3) * ztt1(jl, 14) - ztt(jl, 3) * ztt(jl, 14)) + & |
---|
| 4759 | (pb(jl, 6, jstra) + pb(jl, 6, jstra + 1)) * (ztt1(jl, 6) * ztt1(jl, 15) - ztt(jl, 6) & |
---|
| 4760 | * ztt(jl, 15)) |
---|
| 4761 | pcts(jl, jstra) = zctstr * 0.5 |
---|
[1992] | 4762 | END DO |
---|
| 4763 | DO ja = 1, ktraer |
---|
| 4764 | DO jl = 1, kdlon |
---|
| 4765 | ztt1(jl, ja) = ztt(jl, ja) |
---|
| 4766 | END DO |
---|
| 4767 | END DO |
---|
| 4768 | END DO |
---|
| 4769 | END IF |
---|
| 4770 | ! Mise a zero de securite pour PCTS en cas de LEVOIGT |
---|
| 4771 | IF (levoigt) THEN |
---|
| 4772 | DO jstra = 1, kflev |
---|
| 4773 | DO jl = 1, kdlon |
---|
| 4774 | pcts(jl, jstra) = 0. |
---|
| 4775 | END DO |
---|
| 4776 | END DO |
---|
| 4777 | END IF |
---|
| 4778 | |
---|
| 4779 | ! * 2.5 EXCHANGE WITH LOWER LIMIT |
---|
| 4780 | ! ------------------------- |
---|
| 4781 | |
---|
| 4782 | DO jl = 1, kdlon |
---|
[5144] | 4783 | zbgnd(jl) = pbsui(jl) * pemis(jl) - (1. - pemis(jl)) * pfluc(jl, 2, 1) - & |
---|
| 4784 | pbint(jl, 1) |
---|
[1992] | 4785 | END DO |
---|
| 4786 | |
---|
| 4787 | jk = 1 |
---|
[5144] | 4788 | in = (jk - 1) * ng1p1 + 1 |
---|
[1992] | 4789 | |
---|
| 4790 | DO jl = 1, kdlon |
---|
| 4791 | zcnsol(jl) = pbsur(jl, 1) + pbsur(jl, 2) + pbsur(jl, 3) + pbsur(jl, 4) + & |
---|
[5144] | 4792 | pbsur(jl, 5) + pbsur(jl, 6) |
---|
| 4793 | zcnsol(jl) = zcnsol(jl) * zbgnd(jl) / pbsui(jl) |
---|
[1992] | 4794 | zfu(jl) = zcnsol(jl) + pbint(jl, jk) - pdisu(jl, jk) - padju(jl, jk) |
---|
| 4795 | pfluc(jl, 1, jk) = zfu(jl) |
---|
| 4796 | END DO |
---|
| 4797 | |
---|
| 4798 | DO jk = 2, kflev + 1 |
---|
[5144] | 4799 | in = (jk - 1) * ng1p1 + 1 |
---|
[1992] | 4800 | |
---|
| 4801 | DO ja = 1, kuaer |
---|
| 4802 | DO jl = 1, kdlon |
---|
| 4803 | zuu(jl, ja) = pabcu(jl, ja, 1) - pabcu(jl, ja, in) |
---|
| 4804 | END DO |
---|
| 4805 | END DO |
---|
| 4806 | |
---|
[5144] | 4807 | CALL lwtt_lmdar4(pgasur(1, 1, 1), pgbsur(1, 1, 1), zuu, ztt) |
---|
[1992] | 4808 | |
---|
| 4809 | DO jl = 1, kdlon |
---|
[5144] | 4810 | zcnsol(jl) = pbsur(jl, 1) * ztt(jl, 1) * ztt(jl, 10) + & |
---|
| 4811 | pbsur(jl, 2) * ztt(jl, 2) * ztt(jl, 7) * ztt(jl, 11) + & |
---|
| 4812 | pbsur(jl, 3) * ztt(jl, 4) * ztt(jl, 8) * ztt(jl, 12) + & |
---|
| 4813 | pbsur(jl, 4) * ztt(jl, 5) * ztt(jl, 9) * ztt(jl, 13) + & |
---|
| 4814 | pbsur(jl, 5) * ztt(jl, 3) * ztt(jl, 14) + pbsur(jl, 6) * ztt(jl, 6) * ztt(jl, & |
---|
| 4815 | 15) |
---|
| 4816 | zcnsol(jl) = zcnsol(jl) * zbgnd(jl) / pbsui(jl) |
---|
[1992] | 4817 | zfu(jl) = zcnsol(jl) + pbint(jl, jk) - pdisu(jl, jk) - padju(jl, jk) |
---|
| 4818 | pfluc(jl, 1, jk) = zfu(jl) |
---|
| 4819 | END DO |
---|
| 4820 | |
---|
| 4821 | END DO |
---|
| 4822 | |
---|
| 4823 | ! * 2.7 CLEAR-SKY FLUXES |
---|
| 4824 | ! ---------------- |
---|
| 4825 | |
---|
| 4826 | IF (.NOT. levoigt) THEN |
---|
| 4827 | DO jl = 1, kdlon |
---|
| 4828 | zfn10(jl) = pfluc(jl, 1, jlim) + pfluc(jl, 2, jlim) |
---|
| 4829 | END DO |
---|
| 4830 | DO jk = jlim + 1, kflev + 1 |
---|
| 4831 | DO jl = 1, kdlon |
---|
[5144] | 4832 | zfn10(jl) = zfn10(jl) + pcts(jl, jk - 1) |
---|
[1992] | 4833 | pfluc(jl, 1, jk) = zfn10(jl) |
---|
| 4834 | pfluc(jl, 2, jk) = 0. |
---|
| 4835 | END DO |
---|
| 4836 | END DO |
---|
| 4837 | END IF |
---|
| 4838 | |
---|
| 4839 | ! ------------------------------------------------------------------ |
---|
| 4840 | |
---|
| 4841 | END SUBROUTINE lwvb_lmdar4 |
---|
| 4842 | SUBROUTINE lwvd_lmdar4(kuaer, ktraer, pabcu, pdbdt, pga, pgb, pcntrb, pdisd, & |
---|
[5144] | 4843 | pdisu) |
---|
[1992] | 4844 | USE dimphy |
---|
| 4845 | IMPLICIT NONE |
---|
| 4846 | include "raddimlw.h" |
---|
| 4847 | |
---|
| 4848 | ! ----------------------------------------------------------------------- |
---|
| 4849 | ! PURPOSE. |
---|
| 4850 | ! -------- |
---|
| 4851 | ! CARRIES OUT THE VERTICAL INTEGRATION ON THE DISTANT LAYERS |
---|
| 4852 | |
---|
| 4853 | ! METHOD. |
---|
| 4854 | ! ------- |
---|
| 4855 | |
---|
| 4856 | ! 1. PERFORMS THE VERTICAL INTEGRATION CORRESPONDING TO THE |
---|
| 4857 | ! CONTRIBUTIONS OF THE DISTANT LAYERS USING TRAPEZOIDAL RULE |
---|
| 4858 | |
---|
| 4859 | ! REFERENCE. |
---|
| 4860 | ! ---------- |
---|
| 4861 | |
---|
| 4862 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 4863 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 4864 | |
---|
| 4865 | ! AUTHOR. |
---|
| 4866 | ! ------- |
---|
| 4867 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 4868 | |
---|
| 4869 | ! MODIFICATIONS. |
---|
| 4870 | ! -------------- |
---|
| 4871 | ! ORIGINAL : 89-07-14 |
---|
| 4872 | ! ----------------------------------------------------------------------- |
---|
| 4873 | ! * ARGUMENTS: |
---|
| 4874 | |
---|
| 4875 | INTEGER kuaer, ktraer |
---|
| 4876 | |
---|
[5144] | 4877 | REAL (KIND = 8) pabcu(kdlon, nua, 3 * kflev + 1) ! ABSORBER AMOUNTS |
---|
| 4878 | REAL (KIND = 8) pdbdt(kdlon, ninter, kflev) ! LAYER PLANCK FUNCTION GRADIENT |
---|
| 4879 | REAL (KIND = 8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
| 4880 | REAL (KIND = 8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
[1992] | 4881 | |
---|
[5144] | 4882 | REAL (KIND = 8) pcntrb(kdlon, kflev + 1, kflev + 1) ! ENERGY EXCHANGE MATRIX |
---|
| 4883 | REAL (KIND = 8) pdisd(kdlon, kflev + 1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
| 4884 | REAL (KIND = 8) pdisu(kdlon, kflev + 1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
[1992] | 4885 | |
---|
| 4886 | ! * LOCAL VARIABLES: |
---|
| 4887 | |
---|
[5144] | 4888 | REAL (KIND = 8) zglayd(kdlon) |
---|
| 4889 | REAL (KIND = 8) zglayu(kdlon) |
---|
| 4890 | REAL (KIND = 8) ztt(kdlon, ntra) |
---|
| 4891 | REAL (KIND = 8) ztt1(kdlon, ntra) |
---|
| 4892 | REAL (KIND = 8) ztt2(kdlon, ntra) |
---|
[1992] | 4893 | |
---|
| 4894 | INTEGER jl, jk, ja, ikp1, ikn, ikd1, jkj, ikd2 |
---|
| 4895 | INTEGER ikjp1, ikm1, ikj, jlk, iku1, ijkl, iku2 |
---|
| 4896 | INTEGER ind1, ind2, ind3, ind4, itt |
---|
[5144] | 4897 | REAL (KIND = 8) zww, zdzxdg, zdzxmg |
---|
[1992] | 4898 | |
---|
| 4899 | ! * 1. INITIALIZATION |
---|
| 4900 | ! -------------- |
---|
| 4901 | |
---|
| 4902 | |
---|
| 4903 | ! * 1.1 INITIALIZE LAYER CONTRIBUTIONS |
---|
| 4904 | ! ------------------------------ |
---|
| 4905 | |
---|
| 4906 | DO jk = 1, kflev + 1 |
---|
| 4907 | DO jl = 1, kdlon |
---|
| 4908 | pdisd(jl, jk) = 0. |
---|
| 4909 | pdisu(jl, jk) = 0. |
---|
| 4910 | END DO |
---|
| 4911 | END DO |
---|
| 4912 | |
---|
| 4913 | ! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
---|
| 4914 | ! --------------------------------- |
---|
| 4915 | |
---|
| 4916 | DO ja = 1, ntra |
---|
| 4917 | DO jl = 1, kdlon |
---|
| 4918 | ztt(jl, ja) = 1.0 |
---|
| 4919 | ztt1(jl, ja) = 1.0 |
---|
| 4920 | ztt2(jl, ja) = 1.0 |
---|
| 4921 | END DO |
---|
| 4922 | END DO |
---|
| 4923 | |
---|
| 4924 | ! ------------------------------------------------------------------ |
---|
| 4925 | |
---|
| 4926 | ! * 2. VERTICAL INTEGRATION |
---|
| 4927 | ! -------------------- |
---|
| 4928 | |
---|
| 4929 | ind1 = 0 |
---|
| 4930 | ind3 = 0 |
---|
| 4931 | ind4 = 1 |
---|
| 4932 | ind2 = 1 |
---|
| 4933 | |
---|
| 4934 | ! * 2.2 CONTRIBUTION FROM DISTANT LAYERS |
---|
| 4935 | ! --------------------------------- |
---|
| 4936 | |
---|
| 4937 | |
---|
| 4938 | |
---|
| 4939 | ! * 2.2.1 DISTANT AND ABOVE LAYERS |
---|
| 4940 | ! ------------------------ |
---|
| 4941 | |
---|
| 4942 | |
---|
| 4943 | |
---|
| 4944 | |
---|
| 4945 | ! * 2.2.2 FIRST UPPER LEVEL |
---|
| 4946 | ! ----------------- |
---|
| 4947 | |
---|
| 4948 | DO jk = 1, kflev - 1 |
---|
| 4949 | ikp1 = jk + 1 |
---|
[5144] | 4950 | ikn = (jk - 1) * ng1p1 + 1 |
---|
| 4951 | ikd1 = jk * ng1p1 + 1 |
---|
[1992] | 4952 | |
---|
[5144] | 4953 | CALL lwttm_lmdar4(pga(1, 1, 1, jk), pgb(1, 1, 1, jk), pabcu(1, 1, ikn), & |
---|
| 4954 | pabcu(1, 1, ikd1), ztt1) |
---|
[1992] | 4955 | |
---|
| 4956 | ! * 2.2.3 HIGHER UP |
---|
| 4957 | ! --------- |
---|
| 4958 | |
---|
| 4959 | itt = 1 |
---|
| 4960 | DO jkj = ikp1, kflev |
---|
| 4961 | IF (itt==1) THEN |
---|
| 4962 | itt = 2 |
---|
| 4963 | ELSE |
---|
| 4964 | itt = 1 |
---|
[998] | 4965 | END IF |
---|
[1992] | 4966 | ikjp1 = jkj + 1 |
---|
[5144] | 4967 | ikd2 = jkj * ng1p1 + 1 |
---|
[998] | 4968 | |
---|
[1992] | 4969 | IF (itt==1) THEN |
---|
[5144] | 4970 | CALL lwttm_lmdar4(pga(1, 1, 1, jkj), pgb(1, 1, 1, jkj), pabcu(1, 1, ikn), & |
---|
| 4971 | pabcu(1, 1, ikd2), ztt1) |
---|
[998] | 4972 | ELSE |
---|
[5144] | 4973 | CALL lwttm_lmdar4(pga(1, 1, 1, jkj), pgb(1, 1, 1, jkj), pabcu(1, 1, ikn), & |
---|
| 4974 | pabcu(1, 1, ikd2), ztt2) |
---|
[998] | 4975 | END IF |
---|
[1992] | 4976 | |
---|
| 4977 | DO ja = 1, ktraer |
---|
| 4978 | DO jl = 1, kdlon |
---|
[5144] | 4979 | ztt(jl, ja) = (ztt1(jl, ja) + ztt2(jl, ja)) * 0.5 |
---|
[1992] | 4980 | END DO |
---|
| 4981 | END DO |
---|
| 4982 | |
---|
| 4983 | DO jl = 1, kdlon |
---|
[5144] | 4984 | zww = pdbdt(jl, 1, jkj) * ztt(jl, 1) * ztt(jl, 10) + & |
---|
| 4985 | pdbdt(jl, 2, jkj) * ztt(jl, 2) * ztt(jl, 7) * ztt(jl, 11) + & |
---|
| 4986 | pdbdt(jl, 3, jkj) * ztt(jl, 4) * ztt(jl, 8) * ztt(jl, 12) + & |
---|
| 4987 | pdbdt(jl, 4, jkj) * ztt(jl, 5) * ztt(jl, 9) * ztt(jl, 13) + & |
---|
| 4988 | pdbdt(jl, 5, jkj) * ztt(jl, 3) * ztt(jl, 14) + & |
---|
| 4989 | pdbdt(jl, 6, jkj) * ztt(jl, 6) * ztt(jl, 15) |
---|
[1992] | 4990 | zglayd(jl) = zww |
---|
| 4991 | zdzxdg = zglayd(jl) |
---|
| 4992 | pdisd(jl, jk) = pdisd(jl, jk) + zdzxdg |
---|
| 4993 | pcntrb(jl, jk, ikjp1) = zdzxdg |
---|
| 4994 | END DO |
---|
| 4995 | |
---|
| 4996 | END DO |
---|
| 4997 | END DO |
---|
| 4998 | |
---|
| 4999 | ! * 2.2.4 DISTANT AND BELOW LAYERS |
---|
| 5000 | ! ------------------------ |
---|
| 5001 | |
---|
| 5002 | |
---|
| 5003 | |
---|
| 5004 | |
---|
| 5005 | ! * 2.2.5 FIRST LOWER LEVEL |
---|
| 5006 | ! ----------------- |
---|
| 5007 | |
---|
| 5008 | DO jk = 3, kflev + 1 |
---|
[5144] | 5009 | ikn = (jk - 1) * ng1p1 + 1 |
---|
[1992] | 5010 | ikm1 = jk - 1 |
---|
| 5011 | ikj = jk - 2 |
---|
[5144] | 5012 | iku1 = ikj * ng1p1 + 1 |
---|
[1992] | 5013 | |
---|
[5144] | 5014 | CALL lwttm_lmdar4(pga(1, 1, 1, ikj), pgb(1, 1, 1, ikj), pabcu(1, 1, iku1), & |
---|
| 5015 | pabcu(1, 1, ikn), ztt1) |
---|
[1992] | 5016 | |
---|
| 5017 | ! * 2.2.6 DOWN BELOW |
---|
| 5018 | ! ---------- |
---|
| 5019 | |
---|
| 5020 | itt = 1 |
---|
| 5021 | DO jlk = 1, ikj |
---|
| 5022 | IF (itt==1) THEN |
---|
| 5023 | itt = 2 |
---|
[998] | 5024 | ELSE |
---|
[1992] | 5025 | itt = 1 |
---|
[998] | 5026 | END IF |
---|
[1992] | 5027 | ijkl = ikm1 - jlk |
---|
[5144] | 5028 | iku2 = (ijkl - 1) * ng1p1 + 1 |
---|
[1992] | 5029 | |
---|
| 5030 | IF (itt==1) THEN |
---|
[5144] | 5031 | CALL lwttm_lmdar4(pga(1, 1, 1, ijkl), pgb(1, 1, 1, ijkl), pabcu(1, 1, iku2), & |
---|
| 5032 | pabcu(1, 1, ikn), ztt1) |
---|
[998] | 5033 | ELSE |
---|
[5144] | 5034 | CALL lwttm_lmdar4(pga(1, 1, 1, ijkl), pgb(1, 1, 1, ijkl), pabcu(1, 1, iku2), & |
---|
| 5035 | pabcu(1, 1, ikn), ztt2) |
---|
[998] | 5036 | END IF |
---|
[1279] | 5037 | |
---|
[1992] | 5038 | DO ja = 1, ktraer |
---|
| 5039 | DO jl = 1, kdlon |
---|
[5144] | 5040 | ztt(jl, ja) = (ztt1(jl, ja) + ztt2(jl, ja)) * 0.5 |
---|
[1992] | 5041 | END DO |
---|
| 5042 | END DO |
---|
[1279] | 5043 | |
---|
[1992] | 5044 | DO jl = 1, kdlon |
---|
[5144] | 5045 | zww = pdbdt(jl, 1, ijkl) * ztt(jl, 1) * ztt(jl, 10) + & |
---|
| 5046 | pdbdt(jl, 2, ijkl) * ztt(jl, 2) * ztt(jl, 7) * ztt(jl, 11) + & |
---|
| 5047 | pdbdt(jl, 3, ijkl) * ztt(jl, 4) * ztt(jl, 8) * ztt(jl, 12) + & |
---|
| 5048 | pdbdt(jl, 4, ijkl) * ztt(jl, 5) * ztt(jl, 9) * ztt(jl, 13) + & |
---|
| 5049 | pdbdt(jl, 5, ijkl) * ztt(jl, 3) * ztt(jl, 14) + & |
---|
| 5050 | pdbdt(jl, 6, ijkl) * ztt(jl, 6) * ztt(jl, 15) |
---|
[1992] | 5051 | zglayu(jl) = zww |
---|
| 5052 | zdzxmg = zglayu(jl) |
---|
| 5053 | pdisu(jl, jk) = pdisu(jl, jk) + zdzxmg |
---|
| 5054 | pcntrb(jl, jk, ijkl) = zdzxmg |
---|
| 5055 | END DO |
---|
| 5056 | |
---|
| 5057 | END DO |
---|
| 5058 | END DO |
---|
| 5059 | |
---|
| 5060 | END SUBROUTINE lwvd_lmdar4 |
---|
| 5061 | SUBROUTINE lwvn_lmdar4(kuaer, ktraer, pabcu, pdbsl, pga, pgb, padjd, padju, & |
---|
[5144] | 5062 | pcntrb, pdbdt) |
---|
[1992] | 5063 | USE dimphy |
---|
| 5064 | USE radiation_ar4_param, ONLY: wg1 |
---|
| 5065 | IMPLICIT NONE |
---|
| 5066 | include "raddimlw.h" |
---|
| 5067 | |
---|
| 5068 | ! ----------------------------------------------------------------------- |
---|
| 5069 | ! PURPOSE. |
---|
| 5070 | ! -------- |
---|
| 5071 | ! CARRIES OUT THE VERTICAL INTEGRATION ON NEARBY LAYERS |
---|
| 5072 | ! TO GIVE LONGWAVE FLUXES OR RADIANCES |
---|
| 5073 | |
---|
| 5074 | ! METHOD. |
---|
| 5075 | ! ------- |
---|
| 5076 | |
---|
| 5077 | ! 1. PERFORMS THE VERTICAL INTEGRATION CORRESPONDING TO THE |
---|
| 5078 | ! CONTRIBUTIONS OF THE ADJACENT LAYERS USING A GAUSSIAN QUADRATURE |
---|
| 5079 | |
---|
| 5080 | ! REFERENCE. |
---|
| 5081 | ! ---------- |
---|
| 5082 | |
---|
| 5083 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 5084 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 5085 | |
---|
| 5086 | ! AUTHOR. |
---|
| 5087 | ! ------- |
---|
| 5088 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 5089 | |
---|
| 5090 | ! MODIFICATIONS. |
---|
| 5091 | ! -------------- |
---|
| 5092 | ! ORIGINAL : 89-07-14 |
---|
| 5093 | ! ----------------------------------------------------------------------- |
---|
| 5094 | |
---|
| 5095 | ! * ARGUMENTS: |
---|
| 5096 | |
---|
| 5097 | INTEGER kuaer, ktraer |
---|
| 5098 | |
---|
[5144] | 5099 | REAL (KIND = 8) pabcu(kdlon, nua, 3 * kflev + 1) ! ABSORBER AMOUNTS |
---|
| 5100 | REAL (KIND = 8) pdbsl(kdlon, ninter, kflev * 2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
| 5101 | REAL (KIND = 8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
| 5102 | REAL (KIND = 8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
[1992] | 5103 | |
---|
[5144] | 5104 | REAL (KIND = 8) padjd(kdlon, kflev + 1) ! CONTRIBUTION OF ADJACENT LAYERS |
---|
| 5105 | REAL (KIND = 8) padju(kdlon, kflev + 1) ! CONTRIBUTION OF ADJACENT LAYERS |
---|
| 5106 | REAL (KIND = 8) pcntrb(kdlon, kflev + 1, kflev + 1) ! CLEAR-SKY ENERGY EXCHANGE MATRIX |
---|
| 5107 | REAL (KIND = 8) pdbdt(kdlon, ninter, kflev) ! LAYER PLANCK FUNCTION GRADIENT |
---|
[1992] | 5108 | |
---|
| 5109 | ! * LOCAL ARRAYS: |
---|
| 5110 | |
---|
[5144] | 5111 | REAL (KIND = 8) zglayd(kdlon) |
---|
| 5112 | REAL (KIND = 8) zglayu(kdlon) |
---|
| 5113 | REAL (KIND = 8) ztt(kdlon, ntra) |
---|
| 5114 | REAL (KIND = 8) ztt1(kdlon, ntra) |
---|
| 5115 | REAL (KIND = 8) ztt2(kdlon, ntra) |
---|
| 5116 | REAL (KIND = 8) zuu(kdlon, nua) |
---|
[1992] | 5117 | |
---|
| 5118 | INTEGER jk, jl, ja, im12, ind, inu, ixu, jg |
---|
| 5119 | INTEGER ixd, ibs, idd, imu, jk1, jk2, jnu |
---|
[5144] | 5120 | REAL (KIND = 8) zwtr |
---|
[1992] | 5121 | |
---|
| 5122 | ! ----------------------------------------------------------------------- |
---|
| 5123 | |
---|
| 5124 | ! * 1. INITIALIZATION |
---|
| 5125 | ! -------------- |
---|
| 5126 | |
---|
| 5127 | |
---|
| 5128 | ! * 1.1 INITIALIZE LAYER CONTRIBUTIONS |
---|
| 5129 | ! ------------------------------ |
---|
| 5130 | |
---|
| 5131 | DO jk = 1, kflev + 1 |
---|
| 5132 | DO jl = 1, kdlon |
---|
| 5133 | padjd(jl, jk) = 0. |
---|
| 5134 | padju(jl, jk) = 0. |
---|
| 5135 | END DO |
---|
| 5136 | END DO |
---|
| 5137 | |
---|
| 5138 | ! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
---|
| 5139 | ! --------------------------------- |
---|
| 5140 | |
---|
| 5141 | DO ja = 1, ntra |
---|
| 5142 | DO jl = 1, kdlon |
---|
| 5143 | ztt(jl, ja) = 1.0 |
---|
| 5144 | ztt1(jl, ja) = 1.0 |
---|
| 5145 | ztt2(jl, ja) = 1.0 |
---|
| 5146 | END DO |
---|
| 5147 | END DO |
---|
| 5148 | |
---|
| 5149 | DO ja = 1, nua |
---|
| 5150 | DO jl = 1, kdlon |
---|
| 5151 | zuu(jl, ja) = 0. |
---|
| 5152 | END DO |
---|
| 5153 | END DO |
---|
| 5154 | |
---|
| 5155 | ! ------------------------------------------------------------------ |
---|
| 5156 | |
---|
| 5157 | ! * 2. VERTICAL INTEGRATION |
---|
| 5158 | ! -------------------- |
---|
| 5159 | |
---|
| 5160 | |
---|
| 5161 | |
---|
| 5162 | ! * 2.1 CONTRIBUTION FROM ADJACENT LAYERS |
---|
| 5163 | ! --------------------------------- |
---|
| 5164 | |
---|
| 5165 | DO jk = 1, kflev |
---|
| 5166 | ! * 2.1.1 DOWNWARD LAYERS |
---|
| 5167 | ! --------------- |
---|
| 5168 | |
---|
[5144] | 5169 | im12 = 2 * (jk - 1) |
---|
| 5170 | ind = (jk - 1) * ng1p1 + 1 |
---|
[1992] | 5171 | ixd = ind |
---|
[5144] | 5172 | inu = jk * ng1p1 + 1 |
---|
[1992] | 5173 | ixu = ind |
---|
| 5174 | |
---|
| 5175 | DO jl = 1, kdlon |
---|
| 5176 | zglayd(jl) = 0. |
---|
| 5177 | zglayu(jl) = 0. |
---|
| 5178 | END DO |
---|
| 5179 | |
---|
| 5180 | DO jg = 1, ng1 |
---|
| 5181 | ibs = im12 + jg |
---|
| 5182 | idd = ixd + jg |
---|
| 5183 | DO ja = 1, kuaer |
---|
| 5184 | DO jl = 1, kdlon |
---|
| 5185 | zuu(jl, ja) = pabcu(jl, ja, ind) - pabcu(jl, ja, idd) |
---|
| 5186 | END DO |
---|
| 5187 | END DO |
---|
| 5188 | |
---|
[5144] | 5189 | CALL lwtt_lmdar4(pga(1, 1, 1, jk), pgb(1, 1, 1, jk), zuu, ztt) |
---|
[1992] | 5190 | |
---|
| 5191 | DO jl = 1, kdlon |
---|
[5144] | 5192 | zwtr = pdbsl(jl, 1, ibs) * ztt(jl, 1) * ztt(jl, 10) + & |
---|
| 5193 | pdbsl(jl, 2, ibs) * ztt(jl, 2) * ztt(jl, 7) * ztt(jl, 11) + & |
---|
| 5194 | pdbsl(jl, 3, ibs) * ztt(jl, 4) * ztt(jl, 8) * ztt(jl, 12) + & |
---|
| 5195 | pdbsl(jl, 4, ibs) * ztt(jl, 5) * ztt(jl, 9) * ztt(jl, 13) + & |
---|
| 5196 | pdbsl(jl, 5, ibs) * ztt(jl, 3) * ztt(jl, 14) + & |
---|
| 5197 | pdbsl(jl, 6, ibs) * ztt(jl, 6) * ztt(jl, 15) |
---|
| 5198 | zglayd(jl) = zglayd(jl) + zwtr * wg1(jg) |
---|
[1992] | 5199 | END DO |
---|
| 5200 | |
---|
| 5201 | ! * 2.1.2 DOWNWARD LAYERS |
---|
| 5202 | ! --------------- |
---|
| 5203 | |
---|
| 5204 | imu = ixu + jg |
---|
| 5205 | DO ja = 1, kuaer |
---|
| 5206 | DO jl = 1, kdlon |
---|
| 5207 | zuu(jl, ja) = pabcu(jl, ja, imu) - pabcu(jl, ja, inu) |
---|
| 5208 | END DO |
---|
| 5209 | END DO |
---|
| 5210 | |
---|
[5144] | 5211 | CALL lwtt_lmdar4(pga(1, 1, 1, jk), pgb(1, 1, 1, jk), zuu, ztt) |
---|
[1992] | 5212 | |
---|
| 5213 | DO jl = 1, kdlon |
---|
[5144] | 5214 | zwtr = pdbsl(jl, 1, ibs) * ztt(jl, 1) * ztt(jl, 10) + & |
---|
| 5215 | pdbsl(jl, 2, ibs) * ztt(jl, 2) * ztt(jl, 7) * ztt(jl, 11) + & |
---|
| 5216 | pdbsl(jl, 3, ibs) * ztt(jl, 4) * ztt(jl, 8) * ztt(jl, 12) + & |
---|
| 5217 | pdbsl(jl, 4, ibs) * ztt(jl, 5) * ztt(jl, 9) * ztt(jl, 13) + & |
---|
| 5218 | pdbsl(jl, 5, ibs) * ztt(jl, 3) * ztt(jl, 14) + & |
---|
| 5219 | pdbsl(jl, 6, ibs) * ztt(jl, 6) * ztt(jl, 15) |
---|
| 5220 | zglayu(jl) = zglayu(jl) + zwtr * wg1(jg) |
---|
[1992] | 5221 | END DO |
---|
| 5222 | |
---|
| 5223 | END DO |
---|
| 5224 | |
---|
| 5225 | DO jl = 1, kdlon |
---|
| 5226 | padjd(jl, jk) = zglayd(jl) |
---|
[5144] | 5227 | pcntrb(jl, jk, jk + 1) = zglayd(jl) |
---|
| 5228 | padju(jl, jk + 1) = zglayu(jl) |
---|
| 5229 | pcntrb(jl, jk + 1, jk) = zglayu(jl) |
---|
[1992] | 5230 | pcntrb(jl, jk, jk) = 0.0 |
---|
| 5231 | END DO |
---|
| 5232 | |
---|
| 5233 | END DO |
---|
| 5234 | |
---|
| 5235 | DO jk = 1, kflev |
---|
[5144] | 5236 | jk2 = 2 * jk |
---|
[1992] | 5237 | jk1 = jk2 - 1 |
---|
| 5238 | DO jnu = 1, ninter |
---|
| 5239 | DO jl = 1, kdlon |
---|
| 5240 | pdbdt(jl, jnu, jk) = pdbsl(jl, jnu, jk1) + pdbsl(jl, jnu, jk2) |
---|
| 5241 | END DO |
---|
| 5242 | END DO |
---|
| 5243 | END DO |
---|
| 5244 | |
---|
| 5245 | END SUBROUTINE lwvn_lmdar4 |
---|
| 5246 | SUBROUTINE lwtt_lmdar4(pga, pgb, puu, ptt) |
---|
| 5247 | USE dimphy |
---|
| 5248 | IMPLICIT NONE |
---|
| 5249 | include "raddimlw.h" |
---|
| 5250 | |
---|
| 5251 | ! ----------------------------------------------------------------------- |
---|
| 5252 | ! PURPOSE. |
---|
| 5253 | ! -------- |
---|
| 5254 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
| 5255 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
---|
| 5256 | ! INTERVALS. |
---|
| 5257 | |
---|
| 5258 | ! METHOD. |
---|
| 5259 | ! ------- |
---|
| 5260 | |
---|
| 5261 | ! 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
---|
| 5262 | ! COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
---|
| 5263 | ! 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
---|
| 5264 | ! 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
---|
| 5265 | ! A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
---|
| 5266 | |
---|
| 5267 | ! REFERENCE. |
---|
| 5268 | ! ---------- |
---|
| 5269 | |
---|
| 5270 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 5271 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 5272 | |
---|
| 5273 | ! AUTHOR. |
---|
| 5274 | ! ------- |
---|
| 5275 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 5276 | |
---|
| 5277 | ! MODIFICATIONS. |
---|
| 5278 | ! -------------- |
---|
| 5279 | ! ORIGINAL : 88-12-15 |
---|
| 5280 | |
---|
| 5281 | ! ----------------------------------------------------------------------- |
---|
[5144] | 5282 | REAL (KIND = 8) o1h, o2h |
---|
| 5283 | PARAMETER (o1h = 2230.) |
---|
| 5284 | PARAMETER (o2h = 100.) |
---|
| 5285 | REAL (KIND = 8) rpialf0 |
---|
| 5286 | PARAMETER (rpialf0 = 2.0) |
---|
[1992] | 5287 | |
---|
| 5288 | ! * ARGUMENTS: |
---|
| 5289 | |
---|
[5144] | 5290 | REAL (KIND = 8) puu(kdlon, nua) |
---|
| 5291 | REAL (KIND = 8) ptt(kdlon, ntra) |
---|
| 5292 | REAL (KIND = 8) pga(kdlon, 8, 2) |
---|
| 5293 | REAL (KIND = 8) pgb(kdlon, 8, 2) |
---|
[1992] | 5294 | |
---|
| 5295 | ! * LOCAL VARIABLES: |
---|
| 5296 | |
---|
[5144] | 5297 | REAL (KIND = 8) zz, zxd, zxn |
---|
| 5298 | REAL (KIND = 8) zpu, zpu10, zpu11, zpu12, zpu13 |
---|
| 5299 | REAL (KIND = 8) zeu, zeu10, zeu11, zeu12, zeu13 |
---|
| 5300 | REAL (KIND = 8) zx, zy, zsq1, zsq2, zvxy, zuxy |
---|
| 5301 | REAL (KIND = 8) zaercn, zto1, zto2, zxch4, zych4, zxn2o, zyn2o |
---|
| 5302 | REAL (KIND = 8) zsqn21, zodn21, zsqh42, zodh42 |
---|
| 5303 | REAL (KIND = 8) zsqh41, zodh41, zsqn22, zodn22, zttf11, zttf12 |
---|
| 5304 | REAL (KIND = 8) zuu11, zuu12, za11, za12 |
---|
[1992] | 5305 | INTEGER jl, ja |
---|
| 5306 | |
---|
| 5307 | ! ------------------------------------------------------------------ |
---|
| 5308 | |
---|
| 5309 | ! * 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
---|
| 5310 | ! ----------------------------------------------- |
---|
| 5311 | |
---|
| 5312 | |
---|
| 5313 | |
---|
| 5314 | ! cdir collapse |
---|
| 5315 | DO ja = 1, 8 |
---|
| 5316 | DO jl = 1, kdlon |
---|
[5144] | 5317 | zz = sqrt(puu(jl, ja)) |
---|
[1992] | 5318 | ! ZXD(JL,1)=PGB( JL, 1,1) + ZZ(JL, 1)*(PGB( JL, 1,2) + ZZ(JL, 1)) |
---|
| 5319 | ! ZXN(JL,1)=PGA( JL, 1,1) + ZZ(JL, 1)*(PGA( JL, 1,2) ) |
---|
| 5320 | ! PTT(JL,1)=ZXN(JL,1)/ZXD(JL,1) |
---|
[5144] | 5321 | zxd = pgb(jl, ja, 1) + zz * (pgb(jl, ja, 2) + zz) |
---|
| 5322 | zxn = pga(jl, ja, 1) + zz * (pga(jl, ja, 2)) |
---|
| 5323 | ptt(jl, ja) = zxn / zxd |
---|
[1992] | 5324 | END DO |
---|
| 5325 | END DO |
---|
| 5326 | |
---|
| 5327 | ! ------------------------------------------------------------------ |
---|
| 5328 | |
---|
| 5329 | ! * 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
---|
| 5330 | ! --------------------------------------------------- |
---|
| 5331 | |
---|
| 5332 | DO jl = 1, kdlon |
---|
| 5333 | ptt(jl, 9) = ptt(jl, 8) |
---|
| 5334 | |
---|
| 5335 | ! - CONTINUUM ABSORPTION: E- AND P-TYPE |
---|
| 5336 | |
---|
[5144] | 5337 | zpu = 0.002 * puu(jl, 10) |
---|
| 5338 | zpu10 = 112. * zpu |
---|
| 5339 | zpu11 = 6.25 * zpu |
---|
| 5340 | zpu12 = 5.00 * zpu |
---|
| 5341 | zpu13 = 80.0 * zpu |
---|
[1992] | 5342 | zeu = puu(jl, 11) |
---|
[5144] | 5343 | zeu10 = 12. * zeu |
---|
| 5344 | zeu11 = 6.25 * zeu |
---|
| 5345 | zeu12 = 5.00 * zeu |
---|
| 5346 | zeu13 = 80.0 * zeu |
---|
[1992] | 5347 | |
---|
| 5348 | ! - OZONE ABSORPTION |
---|
| 5349 | |
---|
| 5350 | zx = puu(jl, 12) |
---|
| 5351 | zy = puu(jl, 13) |
---|
[5144] | 5352 | zuxy = 4. * zx * zx / (rpialf0 * zy) |
---|
| 5353 | zsq1 = sqrt(1. + o1h * zuxy) - 1. |
---|
| 5354 | zsq2 = sqrt(1. + o2h * zuxy) - 1. |
---|
| 5355 | zvxy = rpialf0 * zy / (2. * zx) |
---|
[1992] | 5356 | zaercn = puu(jl, 17) + zeu12 + zpu12 |
---|
[5144] | 5357 | zto1 = exp(-zvxy * zsq1 - zaercn) |
---|
| 5358 | zto2 = exp(-zvxy * zsq2 - zaercn) |
---|
[1992] | 5359 | |
---|
| 5360 | ! -- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
---|
| 5361 | |
---|
| 5362 | ! * CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5363 | |
---|
| 5364 | ! NEXOTIC=1 |
---|
| 5365 | ! IF (NEXOTIC.EQ.1) THEN |
---|
| 5366 | zxch4 = puu(jl, 19) |
---|
| 5367 | zych4 = puu(jl, 20) |
---|
[5144] | 5368 | zuxy = 4. * zxch4 * zxch4 / (0.103 * zych4) |
---|
| 5369 | zsqh41 = sqrt(1. + 33.7 * zuxy) - 1. |
---|
| 5370 | zvxy = 0.103 * zych4 / (2. * zxch4) |
---|
| 5371 | zodh41 = zvxy * zsqh41 |
---|
[1992] | 5372 | |
---|
| 5373 | ! * N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5374 | |
---|
| 5375 | zxn2o = puu(jl, 21) |
---|
| 5376 | zyn2o = puu(jl, 22) |
---|
[5144] | 5377 | zuxy = 4. * zxn2o * zxn2o / (0.416 * zyn2o) |
---|
| 5378 | zsqn21 = sqrt(1. + 21.3 * zuxy) - 1. |
---|
| 5379 | zvxy = 0.416 * zyn2o / (2. * zxn2o) |
---|
| 5380 | zodn21 = zvxy * zsqn21 |
---|
[1992] | 5381 | |
---|
| 5382 | ! * CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 5383 | |
---|
[5144] | 5384 | zuxy = 4. * zxch4 * zxch4 / (0.113 * zych4) |
---|
| 5385 | zsqh42 = sqrt(1. + 400. * zuxy) - 1. |
---|
| 5386 | zvxy = 0.113 * zych4 / (2. * zxch4) |
---|
| 5387 | zodh42 = zvxy * zsqh42 |
---|
[1992] | 5388 | |
---|
| 5389 | ! * N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 5390 | |
---|
[5144] | 5391 | zuxy = 4. * zxn2o * zxn2o / (0.197 * zyn2o) |
---|
| 5392 | zsqn22 = sqrt(1. + 2000. * zuxy) - 1. |
---|
| 5393 | zvxy = 0.197 * zyn2o / (2. * zxn2o) |
---|
| 5394 | zodn22 = zvxy * zsqn22 |
---|
[1992] | 5395 | |
---|
| 5396 | ! * CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5397 | |
---|
[5144] | 5398 | za11 = 2. * puu(jl, 23) * 4.404E+05 |
---|
| 5399 | zttf11 = 1. - za11 * 0.003225 |
---|
[1992] | 5400 | |
---|
| 5401 | ! * CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5402 | |
---|
[5144] | 5403 | za12 = 2. * puu(jl, 24) * 6.7435E+05 |
---|
| 5404 | zttf12 = 1. - za12 * 0.003225 |
---|
[1992] | 5405 | |
---|
| 5406 | zuu11 = -puu(jl, 15) - zeu10 - zpu10 |
---|
| 5407 | zuu12 = -puu(jl, 16) - zeu11 - zpu11 - zodh41 - zodn21 |
---|
[5144] | 5408 | ptt(jl, 10) = exp(-puu(jl, 14)) |
---|
[1992] | 5409 | ptt(jl, 11) = exp(zuu11) |
---|
[5144] | 5410 | ptt(jl, 12) = exp(zuu12) * zttf11 * zttf12 |
---|
| 5411 | ptt(jl, 13) = 0.7554 * zto1 + 0.2446 * zto2 |
---|
| 5412 | ptt(jl, 14) = ptt(jl, 10) * exp(-zeu13 - zpu13) |
---|
| 5413 | ptt(jl, 15) = exp(-puu(jl, 14) - zodh42 - zodn22) |
---|
[1992] | 5414 | END DO |
---|
| 5415 | |
---|
| 5416 | END SUBROUTINE lwtt_lmdar4 |
---|
| 5417 | SUBROUTINE lwttm_lmdar4(pga, pgb, puu1, puu2, ptt) |
---|
| 5418 | USE dimphy |
---|
| 5419 | IMPLICIT NONE |
---|
| 5420 | include "raddimlw.h" |
---|
| 5421 | |
---|
| 5422 | ! ------------------------------------------------------------------ |
---|
| 5423 | ! PURPOSE. |
---|
| 5424 | ! -------- |
---|
| 5425 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
| 5426 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
---|
| 5427 | ! INTERVALS. |
---|
| 5428 | |
---|
| 5429 | ! METHOD. |
---|
| 5430 | ! ------- |
---|
| 5431 | |
---|
| 5432 | ! 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
---|
| 5433 | ! COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
---|
| 5434 | ! 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
---|
| 5435 | ! 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
---|
| 5436 | ! A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
---|
| 5437 | |
---|
| 5438 | ! REFERENCE. |
---|
| 5439 | ! ---------- |
---|
| 5440 | |
---|
| 5441 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 5442 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 5443 | |
---|
| 5444 | ! AUTHOR. |
---|
| 5445 | ! ------- |
---|
| 5446 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 5447 | |
---|
| 5448 | ! MODIFICATIONS. |
---|
| 5449 | ! -------------- |
---|
| 5450 | ! ORIGINAL : 88-12-15 |
---|
| 5451 | |
---|
| 5452 | ! ----------------------------------------------------------------------- |
---|
[5144] | 5453 | REAL (KIND = 8) o1h, o2h |
---|
| 5454 | PARAMETER (o1h = 2230.) |
---|
| 5455 | PARAMETER (o2h = 100.) |
---|
| 5456 | REAL (KIND = 8) rpialf0 |
---|
| 5457 | PARAMETER (rpialf0 = 2.0) |
---|
[1992] | 5458 | |
---|
| 5459 | ! * ARGUMENTS: |
---|
| 5460 | |
---|
[5144] | 5461 | REAL (KIND = 8) pga(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
| 5462 | REAL (KIND = 8) pgb(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
| 5463 | REAL (KIND = 8) puu1(kdlon, nua) ! ABSORBER AMOUNTS FROM TOP TO LEVEL 1 |
---|
| 5464 | REAL (KIND = 8) puu2(kdlon, nua) ! ABSORBER AMOUNTS FROM TOP TO LEVEL 2 |
---|
| 5465 | REAL (KIND = 8) ptt(kdlon, ntra) ! TRANSMISSION FUNCTIONS |
---|
[1992] | 5466 | |
---|
| 5467 | ! * LOCAL VARIABLES: |
---|
| 5468 | |
---|
| 5469 | INTEGER ja, jl |
---|
[5144] | 5470 | REAL (KIND = 8) zz, zxd, zxn |
---|
| 5471 | REAL (KIND = 8) zpu, zpu10, zpu11, zpu12, zpu13 |
---|
| 5472 | REAL (KIND = 8) zeu, zeu10, zeu11, zeu12, zeu13 |
---|
| 5473 | REAL (KIND = 8) zx, zy, zuxy, zsq1, zsq2, zvxy, zaercn, zto1, zto2 |
---|
| 5474 | REAL (KIND = 8) zxch4, zych4, zsqh41, zodh41 |
---|
| 5475 | REAL (KIND = 8) zxn2o, zyn2o, zsqn21, zodn21, zsqh42, zodh42 |
---|
| 5476 | REAL (KIND = 8) zsqn22, zodn22, za11, zttf11, za12, zttf12 |
---|
| 5477 | REAL (KIND = 8) zuu11, zuu12 |
---|
[1992] | 5478 | |
---|
| 5479 | ! ------------------------------------------------------------------ |
---|
| 5480 | |
---|
| 5481 | ! * 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
---|
| 5482 | ! ----------------------------------------------- |
---|
| 5483 | |
---|
| 5484 | |
---|
| 5485 | |
---|
| 5486 | |
---|
| 5487 | ! CDIR ON_ADB(PUU1) |
---|
| 5488 | ! CDIR ON_ADB(PUU2) |
---|
| 5489 | ! CDIR COLLAPSE |
---|
| 5490 | DO ja = 1, 8 |
---|
| 5491 | DO jl = 1, kdlon |
---|
[5144] | 5492 | zz = sqrt(puu1(jl, ja) - puu2(jl, ja)) |
---|
| 5493 | zxd = pgb(jl, ja, 1) + zz * (pgb(jl, ja, 2) + zz) |
---|
| 5494 | zxn = pga(jl, ja, 1) + zz * (pga(jl, ja, 2)) |
---|
| 5495 | ptt(jl, ja) = zxn / zxd |
---|
[1992] | 5496 | END DO |
---|
| 5497 | END DO |
---|
| 5498 | |
---|
| 5499 | ! ------------------------------------------------------------------ |
---|
| 5500 | |
---|
| 5501 | ! * 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
---|
| 5502 | ! --------------------------------------------------- |
---|
| 5503 | |
---|
| 5504 | DO jl = 1, kdlon |
---|
| 5505 | ptt(jl, 9) = ptt(jl, 8) |
---|
| 5506 | |
---|
| 5507 | ! - CONTINUUM ABSORPTION: E- AND P-TYPE |
---|
| 5508 | |
---|
[5144] | 5509 | zpu = 0.002 * (puu1(jl, 10) - puu2(jl, 10)) |
---|
| 5510 | zpu10 = 112. * zpu |
---|
| 5511 | zpu11 = 6.25 * zpu |
---|
| 5512 | zpu12 = 5.00 * zpu |
---|
| 5513 | zpu13 = 80.0 * zpu |
---|
| 5514 | zeu = (puu1(jl, 11) - puu2(jl, 11)) |
---|
| 5515 | zeu10 = 12. * zeu |
---|
| 5516 | zeu11 = 6.25 * zeu |
---|
| 5517 | zeu12 = 5.00 * zeu |
---|
| 5518 | zeu13 = 80.0 * zeu |
---|
[1992] | 5519 | |
---|
| 5520 | ! - OZONE ABSORPTION |
---|
| 5521 | |
---|
[5144] | 5522 | zx = (puu1(jl, 12) - puu2(jl, 12)) |
---|
| 5523 | zy = (puu1(jl, 13) - puu2(jl, 13)) |
---|
| 5524 | zuxy = 4. * zx * zx / (rpialf0 * zy) |
---|
| 5525 | zsq1 = sqrt(1. + o1h * zuxy) - 1. |
---|
| 5526 | zsq2 = sqrt(1. + o2h * zuxy) - 1. |
---|
| 5527 | zvxy = rpialf0 * zy / (2. * zx) |
---|
| 5528 | zaercn = (puu1(jl, 17) - puu2(jl, 17)) + zeu12 + zpu12 |
---|
| 5529 | zto1 = exp(-zvxy * zsq1 - zaercn) |
---|
| 5530 | zto2 = exp(-zvxy * zsq2 - zaercn) |
---|
[1992] | 5531 | |
---|
| 5532 | ! -- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
---|
| 5533 | |
---|
| 5534 | ! * CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5535 | |
---|
[5144] | 5536 | zxch4 = (puu1(jl, 19) - puu2(jl, 19)) |
---|
| 5537 | zych4 = (puu1(jl, 20) - puu2(jl, 20)) |
---|
| 5538 | zuxy = 4. * zxch4 * zxch4 / (0.103 * zych4) |
---|
| 5539 | zsqh41 = sqrt(1. + 33.7 * zuxy) - 1. |
---|
| 5540 | zvxy = 0.103 * zych4 / (2. * zxch4) |
---|
| 5541 | zodh41 = zvxy * zsqh41 |
---|
[1992] | 5542 | |
---|
| 5543 | ! * N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5544 | |
---|
[5144] | 5545 | zxn2o = (puu1(jl, 21) - puu2(jl, 21)) |
---|
| 5546 | zyn2o = (puu1(jl, 22) - puu2(jl, 22)) |
---|
| 5547 | zuxy = 4. * zxn2o * zxn2o / (0.416 * zyn2o) |
---|
| 5548 | zsqn21 = sqrt(1. + 21.3 * zuxy) - 1. |
---|
| 5549 | zvxy = 0.416 * zyn2o / (2. * zxn2o) |
---|
| 5550 | zodn21 = zvxy * zsqn21 |
---|
[1992] | 5551 | |
---|
| 5552 | ! * CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 5553 | |
---|
[5144] | 5554 | zuxy = 4. * zxch4 * zxch4 / (0.113 * zych4) |
---|
| 5555 | zsqh42 = sqrt(1. + 400. * zuxy) - 1. |
---|
| 5556 | zvxy = 0.113 * zych4 / (2. * zxch4) |
---|
| 5557 | zodh42 = zvxy * zsqh42 |
---|
[1992] | 5558 | |
---|
| 5559 | ! * N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 5560 | |
---|
[5144] | 5561 | zuxy = 4. * zxn2o * zxn2o / (0.197 * zyn2o) |
---|
| 5562 | zsqn22 = sqrt(1. + 2000. * zuxy) - 1. |
---|
| 5563 | zvxy = 0.197 * zyn2o / (2. * zxn2o) |
---|
| 5564 | zodn22 = zvxy * zsqn22 |
---|
[1992] | 5565 | |
---|
| 5566 | ! * CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5567 | |
---|
[5144] | 5568 | za11 = (puu1(jl, 23) - puu2(jl, 23)) * 4.404E+05 |
---|
| 5569 | zttf11 = 1. - za11 * 0.003225 |
---|
[1992] | 5570 | |
---|
| 5571 | ! * CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5572 | |
---|
[5144] | 5573 | za12 = (puu1(jl, 24) - puu2(jl, 24)) * 6.7435E+05 |
---|
| 5574 | zttf12 = 1. - za12 * 0.003225 |
---|
[1992] | 5575 | |
---|
[5144] | 5576 | zuu11 = -(puu1(jl, 15) - puu2(jl, 15)) - zeu10 - zpu10 |
---|
| 5577 | zuu12 = -(puu1(jl, 16) - puu2(jl, 16)) - zeu11 - zpu11 - zodh41 - zodn21 |
---|
| 5578 | ptt(jl, 10) = exp(-(puu1(jl, 14) - puu2(jl, 14))) |
---|
[1992] | 5579 | ptt(jl, 11) = exp(zuu11) |
---|
[5144] | 5580 | ptt(jl, 12) = exp(zuu12) * zttf11 * zttf12 |
---|
| 5581 | ptt(jl, 13) = 0.7554 * zto1 + 0.2446 * zto2 |
---|
| 5582 | ptt(jl, 14) = ptt(jl, 10) * exp(-zeu13 - zpu13) |
---|
| 5583 | ptt(jl, 15) = exp(-(puu1(jl, 14) - puu2(jl, 14)) - zodh42 - zodn22) |
---|
[1992] | 5584 | END DO |
---|
| 5585 | |
---|
| 5586 | END SUBROUTINE lwttm_lmdar4 |
---|