| 1 | SUBROUTINE drag_noro_strato(partdrag, nlon, nlev, dtime, paprs, pplay, pmea, pstd, & |
|---|
| 2 | psig, pgam, pthe, ppic, pval, kgwd, kdx, ktest, t, u, v, pulow, pvlow, & |
|---|
| 3 | pustr, pvstr, d_t, d_u, d_v) |
|---|
| 4 | |
|---|
| 5 | USE dimphy |
|---|
| 6 | IMPLICIT NONE |
|---|
| 7 | ! ====================================================================== |
|---|
| 8 | ! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
|---|
| 9 | ! Object: Mountain drag interface. Made necessary because: |
|---|
| 10 | ! 1. in the LMD-GCM Layers are from bottom to top, |
|---|
| 11 | ! contrary to most European GCM. |
|---|
| 12 | ! 2. the altitude above ground of each model layers |
|---|
| 13 | ! needs to be known (variable zgeom) |
|---|
| 14 | ! ====================================================================== |
|---|
| 15 | ! Explicit Arguments: |
|---|
| 16 | ! ================== |
|---|
| 17 | ! partdrag-input-I-control which part of the drag we consider (total part or GW part) |
|---|
| 18 | ! nlon----input-I-Total number of horizontal points that get into physics |
|---|
| 19 | ! nlev----input-I-Number of vertical levels |
|---|
| 20 | ! dtime---input-R-Time-step (s) |
|---|
| 21 | ! paprs---input-R-Pressure in semi layers (Pa) |
|---|
| 22 | ! pplay---input-R-Pressure model-layers (Pa) |
|---|
| 23 | ! t-------input-R-temperature (K) |
|---|
| 24 | ! u-------input-R-Horizontal wind (m/s) |
|---|
| 25 | ! v-------input-R-Meridional wind (m/s) |
|---|
| 26 | ! pmea----input-R-Mean Orography (m) |
|---|
| 27 | ! pstd----input-R-SSO standard deviation (m) |
|---|
| 28 | ! psig----input-R-SSO slope |
|---|
| 29 | ! pgam----input-R-SSO Anisotropy |
|---|
| 30 | ! pthe----input-R-SSO Angle |
|---|
| 31 | ! ppic----input-R-SSO Peacks elevation (m) |
|---|
| 32 | ! pval----input-R-SSO Valleys elevation (m) |
|---|
| 33 | |
|---|
| 34 | ! kgwd- -input-I: Total nb of points where the orography schemes are active |
|---|
| 35 | ! ktest--input-I: Flags to indicate active points |
|---|
| 36 | ! kdx----input-I: Locate the physical location of an active point. |
|---|
| 37 | |
|---|
| 38 | ! pulow, pvlow -output-R: Low-level wind |
|---|
| 39 | ! pustr, pvstr -output-R: Surface stress due to SSO drag (Pa) |
|---|
| 40 | |
|---|
| 41 | ! d_t-----output-R: T increment |
|---|
| 42 | ! d_u-----output-R: U increment |
|---|
| 43 | ! d_v-----output-R: V increment |
|---|
| 44 | |
|---|
| 45 | ! Implicit Arguments: |
|---|
| 46 | ! =================== |
|---|
| 47 | |
|---|
| 48 | ! iim--common-I: Number of longitude intervals |
|---|
| 49 | ! jjm--common-I: Number of latitude intervals |
|---|
| 50 | ! klon-common-I: Number of points seen by the physics |
|---|
| 51 | ! (iim+1)*(jjm+1) for instance |
|---|
| 52 | ! klev-common-I: Number of vertical layers |
|---|
| 53 | ! ====================================================================== |
|---|
| 54 | ! Local Variables: |
|---|
| 55 | ! ================ |
|---|
| 56 | |
|---|
| 57 | ! zgeom-----R: Altitude of layer above ground |
|---|
| 58 | ! pt, pu, pv --R: t u v from top to bottom |
|---|
| 59 | ! pdtdt, pdudt, pdvdt --R: t u v tendencies (from top to bottom) |
|---|
| 60 | ! papmf: pressure at model layer (from top to bottom) |
|---|
| 61 | ! papmh: pressure at model 1/2 layer (from top to bottom) |
|---|
| 62 | |
|---|
| 63 | ! ====================================================================== |
|---|
| 64 | include "YOMCST.h" |
|---|
| 65 | include "YOEGWD.h" |
|---|
| 66 | |
|---|
| 67 | ! ARGUMENTS |
|---|
| 68 | |
|---|
| 69 | INTEGER partdrag, nlon, nlev |
|---|
| 70 | REAL dtime |
|---|
| 71 | REAL paprs(nlon, nlev + 1) |
|---|
| 72 | REAL pplay(nlon, nlev) |
|---|
| 73 | REAL pmea(nlon), pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon) |
|---|
| 74 | REAL ppic(nlon), pval(nlon) |
|---|
| 75 | REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
|---|
| 76 | REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
|---|
| 77 | REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
|---|
| 78 | |
|---|
| 79 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
|---|
| 80 | |
|---|
| 81 | ! LOCAL VARIABLES: |
|---|
| 82 | |
|---|
| 83 | REAL zgeom(klon, klev) |
|---|
| 84 | REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
|---|
| 85 | REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
|---|
| 86 | REAL papmf(klon, klev), papmh(klon, klev + 1) |
|---|
| 87 | CHARACTER (LEN = 20) :: modname = 'orografi_strato' |
|---|
| 88 | CHARACTER (LEN = 80) :: abort_message |
|---|
| 89 | |
|---|
| 90 | ! INITIALIZE OUTPUT VARIABLES |
|---|
| 91 | |
|---|
| 92 | DO i = 1, klon |
|---|
| 93 | pulow(i) = 0.0 |
|---|
| 94 | pvlow(i) = 0.0 |
|---|
| 95 | pustr(i) = 0.0 |
|---|
| 96 | pvstr(i) = 0.0 |
|---|
| 97 | END DO |
|---|
| 98 | DO k = 1, klev |
|---|
| 99 | DO i = 1, klon |
|---|
| 100 | d_t(i, k) = 0.0 |
|---|
| 101 | d_u(i, k) = 0.0 |
|---|
| 102 | d_v(i, k) = 0.0 |
|---|
| 103 | pdudt(i, k) = 0.0 |
|---|
| 104 | pdvdt(i, k) = 0.0 |
|---|
| 105 | pdtdt(i, k) = 0.0 |
|---|
| 106 | END DO |
|---|
| 107 | END DO |
|---|
| 108 | |
|---|
| 109 | ! PREPARE INPUT VARIABLES FOR ORODRAG (i.e., ORDERED FROM TOP TO BOTTOM) |
|---|
| 110 | ! CALCULATE LAYERS HEIGHT ABOVE GROUND) |
|---|
| 111 | |
|---|
| 112 | DO k = 1, klev |
|---|
| 113 | DO i = 1, klon |
|---|
| 114 | pt(i, k) = t(i, klev - k + 1) |
|---|
| 115 | pu(i, k) = u(i, klev - k + 1) |
|---|
| 116 | pv(i, k) = v(i, klev - k + 1) |
|---|
| 117 | papmf(i, k) = pplay(i, klev - k + 1) |
|---|
| 118 | END DO |
|---|
| 119 | END DO |
|---|
| 120 | DO k = 1, klev + 1 |
|---|
| 121 | DO i = 1, klon |
|---|
| 122 | papmh(i, k) = paprs(i, klev - k + 2) |
|---|
| 123 | END DO |
|---|
| 124 | END DO |
|---|
| 125 | DO i = 1, klon |
|---|
| 126 | zgeom(i, klev) = rd * pt(i, klev) * log(papmh(i, klev + 1) / papmf(i, klev)) |
|---|
| 127 | END DO |
|---|
| 128 | DO k = klev - 1, 1, -1 |
|---|
| 129 | DO i = 1, klon |
|---|
| 130 | zgeom(i, k) = zgeom(i, k + 1) + rd * (pt(i, k) + pt(i, k + 1)) / 2.0 * log(papmf(i, k + & |
|---|
| 131 | 1) / papmf(i, k)) |
|---|
| 132 | END DO |
|---|
| 133 | END DO |
|---|
| 134 | |
|---|
| 135 | ! CALL SSO DRAG ROUTINES |
|---|
| 136 | |
|---|
| 137 | CALL orodrag_strato(partdrag, klon, klev, kgwd, kdx, ktest, dtime, papmh, papmf, & |
|---|
| 138 | zgeom, pt, pu, pv, pmea, pstd, psig, pgam, pthe, ppic, pval, pulow, & |
|---|
| 139 | pvlow, pdudt, pdvdt, pdtdt) |
|---|
| 140 | |
|---|
| 141 | ! COMPUTE INCREMENTS AND STRESS FROM TENDENCIES |
|---|
| 142 | |
|---|
| 143 | DO k = 1, klev |
|---|
| 144 | DO i = 1, klon |
|---|
| 145 | d_u(i, klev + 1 - k) = dtime * pdudt(i, k) |
|---|
| 146 | d_v(i, klev + 1 - k) = dtime * pdvdt(i, k) |
|---|
| 147 | d_t(i, klev + 1 - k) = dtime * pdtdt(i, k) |
|---|
| 148 | pustr(i) = pustr(i) + pdudt(i, k) * (papmh(i, k + 1) - papmh(i, k)) / rg |
|---|
| 149 | pvstr(i) = pvstr(i) + pdvdt(i, k) * (papmh(i, k + 1) - papmh(i, k)) / rg |
|---|
| 150 | END DO |
|---|
| 151 | END DO |
|---|
| 152 | |
|---|
| 153 | END SUBROUTINE drag_noro_strato |
|---|
| 154 | |
|---|
| 155 | SUBROUTINE orodrag_strato(partdrag, nlon, nlev, kgwd, kdx, ktest, ptsphy, paphm1, & |
|---|
| 156 | papm1, pgeom1, ptm1, pum1, pvm1, pmea, pstd, psig, pgam, pthe, ppic, pval & |
|---|
| 157 | ! outputs |
|---|
| 158 | , pulow, pvlow, pvom, pvol, pte) |
|---|
| 159 | |
|---|
| 160 | USE dimphy |
|---|
| 161 | IMPLICIT NONE |
|---|
| 162 | |
|---|
| 163 | |
|---|
| 164 | ! **** *orodrag* - does the SSO drag parametrization. |
|---|
| 165 | |
|---|
| 166 | ! purpose. |
|---|
| 167 | ! -------- |
|---|
| 168 | |
|---|
| 169 | ! this routine computes the physical tendencies of the |
|---|
| 170 | ! prognostic variables u,v and t due to vertical transports by |
|---|
| 171 | ! subgridscale orographically excited gravity waves, and to |
|---|
| 172 | ! low level blocked flow drag. |
|---|
| 173 | |
|---|
| 174 | ! ** interface. |
|---|
| 175 | ! ---------- |
|---|
| 176 | ! called from *drag_noro*. |
|---|
| 177 | |
|---|
| 178 | ! the routine takes its input from the long-term storage: |
|---|
| 179 | ! u,v,t and p at t-1. |
|---|
| 180 | |
|---|
| 181 | ! explicit arguments : |
|---|
| 182 | ! -------------------- |
|---|
| 183 | ! ==== inputs === |
|---|
| 184 | ! partdrag-input-I-control which part of the drag we consider (total part or GW part) |
|---|
| 185 | ! nlon----input-I-Total number of horizontal points that get into physics |
|---|
| 186 | ! nlev----input-I-Number of vertical levels |
|---|
| 187 | |
|---|
| 188 | ! kgwd- -input-I: Total nb of points where the orography schemes are active |
|---|
| 189 | ! ktest--input-I: Flags to indicate active points |
|---|
| 190 | ! kdx----input-I: Locate the physical location of an active point. |
|---|
| 191 | ! ptsphy--input-R-Time-step (s) |
|---|
| 192 | ! paphm1--input-R: pressure at model 1/2 layer |
|---|
| 193 | ! papm1---input-R: pressure at model layer |
|---|
| 194 | ! pgeom1--input-R: Altitude of layer above ground |
|---|
| 195 | ! ptm1, pum1, pvm1--R-: t, u and v |
|---|
| 196 | ! pmea----input-R-Mean Orography (m) |
|---|
| 197 | ! pstd----input-R-SSO standard deviation (m) |
|---|
| 198 | ! psig----input-R-SSO slope |
|---|
| 199 | ! pgam----input-R-SSO Anisotropy |
|---|
| 200 | ! pthe----input-R-SSO Angle |
|---|
| 201 | ! ppic----input-R-SSO Peacks elevation (m) |
|---|
| 202 | ! pval----input-R-SSO Valleys elevation (m) |
|---|
| 203 | |
|---|
| 204 | INTEGER nlon, nlev, kgwd |
|---|
| 205 | REAL ptsphy |
|---|
| 206 | |
|---|
| 207 | ! ==== outputs === |
|---|
| 208 | ! pulow, pvlow -output-R: Low-level wind |
|---|
| 209 | |
|---|
| 210 | ! pte -----output-R: T tendency |
|---|
| 211 | ! pvom-----output-R: U tendency |
|---|
| 212 | ! pvol-----output-R: V tendency |
|---|
| 213 | |
|---|
| 214 | |
|---|
| 215 | ! Implicit Arguments: |
|---|
| 216 | ! =================== |
|---|
| 217 | |
|---|
| 218 | ! klon-common-I: Number of points seen by the physics |
|---|
| 219 | ! klev-common-I: Number of vertical layers |
|---|
| 220 | |
|---|
| 221 | ! method. |
|---|
| 222 | ! ------- |
|---|
| 223 | |
|---|
| 224 | ! externals. |
|---|
| 225 | ! ---------- |
|---|
| 226 | INTEGER ismin, ismax |
|---|
| 227 | EXTERNAL ismin, ismax |
|---|
| 228 | |
|---|
| 229 | ! reference. |
|---|
| 230 | ! ---------- |
|---|
| 231 | |
|---|
| 232 | ! author. |
|---|
| 233 | ! ------- |
|---|
| 234 | ! m.miller + b.ritter e.c.m.w.f. 15/06/86. |
|---|
| 235 | |
|---|
| 236 | ! f.lott + m. miller e.c.m.w.f. 22/11/94 |
|---|
| 237 | ! ----------------------------------------------------------------------- |
|---|
| 238 | |
|---|
| 239 | include "YOMCST.h" |
|---|
| 240 | include "YOEGWD.h" |
|---|
| 241 | |
|---|
| 242 | ! ----------------------------------------------------------------------- |
|---|
| 243 | |
|---|
| 244 | ! * 0.1 arguments |
|---|
| 245 | ! --------- |
|---|
| 246 | |
|---|
| 247 | INTEGER partdrag |
|---|
| 248 | REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(nlon), & |
|---|
| 249 | pvlow(nlon) |
|---|
| 250 | REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), pmea(nlon), & |
|---|
| 251 | pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon), ppic(nlon), pval(nlon), & |
|---|
| 252 | pgeom1(nlon, nlev), papm1(nlon, nlev), paphm1(nlon, nlev + 1) |
|---|
| 253 | |
|---|
| 254 | INTEGER kdx(nlon), ktest(nlon) |
|---|
| 255 | ! ----------------------------------------------------------------------- |
|---|
| 256 | |
|---|
| 257 | ! * 0.2 local arrays |
|---|
| 258 | ! ------------ |
|---|
| 259 | INTEGER isect(klon), icrit(klon), ikcrith(klon), ikenvh(klon), iknu(klon), & |
|---|
| 260 | iknu2(klon), ikcrit(klon), ikhlim(klon) |
|---|
| 261 | |
|---|
| 262 | REAL ztau(klon, klev + 1), zstab(klon, klev + 1), zvph(klon, klev + 1), & |
|---|
| 263 | zrho(klon, klev + 1), zri(klon, klev + 1), zpsi(klon, klev + 1), & |
|---|
| 264 | zzdep(klon, klev) |
|---|
| 265 | REAL zdudt(klon), zdvdt(klon), zdtdt(klon), zdedt(klon), zvidis(klon), & |
|---|
| 266 | ztfr(klon), znu(klon), zd1(klon), zd2(klon), zdmod(klon) |
|---|
| 267 | |
|---|
| 268 | |
|---|
| 269 | ! local quantities: |
|---|
| 270 | |
|---|
| 271 | INTEGER jl, jk, ji |
|---|
| 272 | REAL ztmst, zdelp, ztemp, zforc, ztend, rover, facpart |
|---|
| 273 | REAL zb, zc, zconb, zabsv, zzd1, ratio, zbet, zust, zvst, zdis |
|---|
| 274 | |
|---|
| 275 | ! ------------------------------------------------------------------ |
|---|
| 276 | |
|---|
| 277 | ! * 1. initialization |
|---|
| 278 | ! -------------- |
|---|
| 279 | |
|---|
| 280 | ! print *,' in orodrag' |
|---|
| 281 | |
|---|
| 282 | ! ------------------------------------------------------------------ |
|---|
| 283 | |
|---|
| 284 | ! * 1.1 computational constants |
|---|
| 285 | ! ----------------------- |
|---|
| 286 | |
|---|
| 287 | |
|---|
| 288 | ! ztmst=twodt |
|---|
| 289 | ! IF(nstep.EQ.nstart) ztmst=0.5*twodt |
|---|
| 290 | ztmst = ptsphy |
|---|
| 291 | |
|---|
| 292 | ! ------------------------------------------------------------------ |
|---|
| 293 | |
|---|
| 294 | ! * 1.3 check whether row contains point for printing |
|---|
| 295 | ! --------------------------------------------- |
|---|
| 296 | |
|---|
| 297 | |
|---|
| 298 | ! ------------------------------------------------------------------ |
|---|
| 299 | |
|---|
| 300 | ! * 2. precompute basic state variables. |
|---|
| 301 | ! * ---------- ----- ----- ---------- |
|---|
| 302 | ! * define low level wind, project winds in plane of |
|---|
| 303 | ! * low level wind, determine sector in which to take |
|---|
| 304 | ! * the variance and set indicator for critical levels. |
|---|
| 305 | |
|---|
| 306 | CALL orosetup_strato(nlon, nlev, ktest, ikcrit, ikcrith, icrit, isect, & |
|---|
| 307 | ikhlim, ikenvh, iknu, iknu2, paphm1, papm1, pum1, pvm1, ptm1, pgeom1, & |
|---|
| 308 | pstd, zrho, zri, zstab, ztau, zvph, zpsi, zzdep, pulow, pvlow, pthe, & |
|---|
| 309 | pgam, pmea, ppic, pval, znu, zd1, zd2, zdmod) |
|---|
| 310 | |
|---|
| 311 | ! *********************************************************** |
|---|
| 312 | |
|---|
| 313 | |
|---|
| 314 | ! * 3. compute low level stresses using subcritical and |
|---|
| 315 | ! * supercritical forms.computes anisotropy coefficient |
|---|
| 316 | ! * as measure of orographic twodimensionality. |
|---|
| 317 | |
|---|
| 318 | CALL gwstress_strato(nlon, nlev, ikcrit, isect, ikhlim, ktest, ikcrith, & |
|---|
| 319 | icrit, ikenvh, iknu, zrho, zstab, zvph, pstd, psig, pmea, ppic, pval, & |
|---|
| 320 | ztfr, ztau, pgeom1, pgam, zd1, zd2, zdmod, znu) |
|---|
| 321 | |
|---|
| 322 | ! * 4. compute stress profile including |
|---|
| 323 | ! trapped waves, wave breaking, |
|---|
| 324 | ! linear decay in stratosphere. |
|---|
| 325 | |
|---|
| 326 | CALL gwprofil_strato(nlon, nlev, kgwd, kdx, ktest, ikcrit, ikcrith, icrit, & |
|---|
| 327 | ikenvh, iknu, iknu2, paphm1, zrho, zstab, ztfr, zvph, zri, ztau & |
|---|
| 328 | , zdmod, znu, psig, pgam, pstd, ppic, pval) |
|---|
| 329 | |
|---|
| 330 | ! * 5. Compute tendencies from waves stress profile. |
|---|
| 331 | ! Compute low level blocked flow drag. |
|---|
| 332 | ! * -------------------------------------------- |
|---|
| 333 | |
|---|
| 334 | |
|---|
| 335 | |
|---|
| 336 | |
|---|
| 337 | ! explicit solution at all levels for the gravity wave |
|---|
| 338 | ! implicit solution for the blocked levels |
|---|
| 339 | |
|---|
| 340 | DO jl = kidia, kfdia |
|---|
| 341 | zvidis(jl) = 0.0 |
|---|
| 342 | zdudt(jl) = 0.0 |
|---|
| 343 | zdvdt(jl) = 0.0 |
|---|
| 344 | zdtdt(jl) = 0.0 |
|---|
| 345 | END DO |
|---|
| 346 | |
|---|
| 347 | DO jk = 1, klev |
|---|
| 348 | |
|---|
| 349 | |
|---|
| 350 | ! WAVE STRESS |
|---|
| 351 | ! ------------- |
|---|
| 352 | |
|---|
| 353 | DO ji = kidia, kfdia |
|---|
| 354 | |
|---|
| 355 | IF (ktest(ji)==1) THEN |
|---|
| 356 | |
|---|
| 357 | zdelp = paphm1(ji, jk + 1) - paphm1(ji, jk) |
|---|
| 358 | ztemp = -rg * (ztau(ji, jk + 1) - ztau(ji, jk)) / (zvph(ji, klev + 1) * zdelp) |
|---|
| 359 | |
|---|
| 360 | zdudt(ji) = (pulow(ji) * zd1(ji) - pvlow(ji) * zd2(ji)) * ztemp / zdmod(ji) |
|---|
| 361 | zdvdt(ji) = (pvlow(ji) * zd1(ji) + pulow(ji) * zd2(ji)) * ztemp / zdmod(ji) |
|---|
| 362 | |
|---|
| 363 | ! Control Overshoots |
|---|
| 364 | |
|---|
| 365 | IF (jk>=nstra) THEN |
|---|
| 366 | rover = 0.10 |
|---|
| 367 | IF (abs(zdudt(ji))>rover * abs(pum1(ji, jk)) / ztmst) zdudt(ji) = rover * & |
|---|
| 368 | abs(pum1(ji, jk)) / ztmst * zdudt(ji) / (abs(zdudt(ji)) + 1.E-10) |
|---|
| 369 | IF (abs(zdvdt(ji))>rover * abs(pvm1(ji, jk)) / ztmst) zdvdt(ji) = rover * & |
|---|
| 370 | abs(pvm1(ji, jk)) / ztmst * zdvdt(ji) / (abs(zdvdt(ji)) + 1.E-10) |
|---|
| 371 | END IF |
|---|
| 372 | |
|---|
| 373 | rover = 0.25 |
|---|
| 374 | zforc = sqrt(zdudt(ji)**2 + zdvdt(ji)**2) |
|---|
| 375 | ztend = sqrt(pum1(ji, jk)**2 + pvm1(ji, jk)**2) / ztmst |
|---|
| 376 | |
|---|
| 377 | IF (zforc>=rover * ztend) THEN |
|---|
| 378 | zdudt(ji) = rover * ztend / zforc * zdudt(ji) |
|---|
| 379 | zdvdt(ji) = rover * ztend / zforc * zdvdt(ji) |
|---|
| 380 | END IF |
|---|
| 381 | |
|---|
| 382 | ! BLOCKED FLOW DRAG: |
|---|
| 383 | ! ----------------- |
|---|
| 384 | |
|---|
| 385 | IF (partdrag >= 2) THEN |
|---|
| 386 | facpart = 0. |
|---|
| 387 | ELSE |
|---|
| 388 | facpart = gkwake |
|---|
| 389 | ENDIF |
|---|
| 390 | |
|---|
| 391 | IF (jk>ikenvh(ji)) THEN |
|---|
| 392 | zb = 1.0 - 0.18 * pgam(ji) - 0.04 * pgam(ji)**2 |
|---|
| 393 | zc = 0.48 * pgam(ji) + 0.3 * pgam(ji)**2 |
|---|
| 394 | zconb = 2. * ztmst * facpart * psig(ji) / (4. * pstd(ji)) |
|---|
| 395 | zabsv = sqrt(pum1(ji, jk)**2 + pvm1(ji, jk)**2) / 2. |
|---|
| 396 | zzd1 = zb * cos(zpsi(ji, jk))**2 + zc * sin(zpsi(ji, jk))**2 |
|---|
| 397 | ratio = (cos(zpsi(ji, jk))**2 + pgam(ji) * sin(zpsi(ji, & |
|---|
| 398 | jk))**2) / (pgam(ji) * cos(zpsi(ji, jk))**2 + sin(zpsi(ji, jk))**2) |
|---|
| 399 | zbet = max(0., 2. - 1. / ratio) * zconb * zzdep(ji, jk) * zzd1 * zabsv |
|---|
| 400 | |
|---|
| 401 | ! OPPOSED TO THE WIND |
|---|
| 402 | |
|---|
| 403 | zdudt(ji) = -pum1(ji, jk) / ztmst |
|---|
| 404 | zdvdt(ji) = -pvm1(ji, jk) / ztmst |
|---|
| 405 | |
|---|
| 406 | ! PERPENDICULAR TO THE SSO MAIN AXIS: |
|---|
| 407 | |
|---|
| 408 | ! mod zdudt(ji)=-(pum1(ji,jk)*cos(pthe(ji)*rpi/180.) |
|---|
| 409 | ! mod * +pvm1(ji,jk)*sin(pthe(ji)*rpi/180.)) |
|---|
| 410 | ! mod * *cos(pthe(ji)*rpi/180.)/ztmst |
|---|
| 411 | ! mod zdvdt(ji)=-(pum1(ji,jk)*cos(pthe(ji)*rpi/180.) |
|---|
| 412 | ! mod * +pvm1(ji,jk)*sin(pthe(ji)*rpi/180.)) |
|---|
| 413 | ! mod * *sin(pthe(ji)*rpi/180.)/ztmst |
|---|
| 414 | |
|---|
| 415 | zdudt(ji) = zdudt(ji) * (zbet / (1. + zbet)) |
|---|
| 416 | zdvdt(ji) = zdvdt(ji) * (zbet / (1. + zbet)) |
|---|
| 417 | END IF |
|---|
| 418 | pvom(ji, jk) = zdudt(ji) |
|---|
| 419 | pvol(ji, jk) = zdvdt(ji) |
|---|
| 420 | zust = pum1(ji, jk) + ztmst * zdudt(ji) |
|---|
| 421 | zvst = pvm1(ji, jk) + ztmst * zdvdt(ji) |
|---|
| 422 | zdis = 0.5 * (pum1(ji, jk)**2 + pvm1(ji, jk)**2 - zust**2 - zvst**2) |
|---|
| 423 | zdedt(ji) = zdis / ztmst |
|---|
| 424 | zvidis(ji) = zvidis(ji) + zdis * zdelp |
|---|
| 425 | zdtdt(ji) = zdedt(ji) / rcpd |
|---|
| 426 | |
|---|
| 427 | ! NO TENDENCIES ON TEMPERATURE ..... |
|---|
| 428 | |
|---|
| 429 | ! Instead of, pte(ji,jk)=zdtdt(ji), due to mechanical dissipation |
|---|
| 430 | |
|---|
| 431 | pte(ji, jk) = 0.0 |
|---|
| 432 | |
|---|
| 433 | END IF |
|---|
| 434 | |
|---|
| 435 | END DO |
|---|
| 436 | END DO |
|---|
| 437 | |
|---|
| 438 | END SUBROUTINE orodrag_strato |
|---|
| 439 | SUBROUTINE orosetup_strato(nlon, nlev, ktest, kkcrit, kkcrith, kcrit, ksect, & |
|---|
| 440 | kkhlim, kkenvh, kknu, kknu2, paphm1, papm1, pum1, pvm1, ptm1, pgeom1, & |
|---|
| 441 | pstd, prho, pri, pstab, ptau, pvph, ppsi, pzdep, pulow, pvlow, ptheta, & |
|---|
| 442 | pgam, pmea, ppic, pval, pnu, pd1, pd2, pdmod) |
|---|
| 443 | |
|---|
| 444 | ! **** *gwsetup* |
|---|
| 445 | |
|---|
| 446 | ! purpose. |
|---|
| 447 | ! -------- |
|---|
| 448 | ! SET-UP THE ESSENTIAL PARAMETERS OF THE SSO DRAG SCHEME: |
|---|
| 449 | ! DEPTH OF LOW WBLOCKED LAYER, LOW-LEVEL FLOW, BACKGROUND |
|---|
| 450 | ! STRATIFICATION..... |
|---|
| 451 | |
|---|
| 452 | ! ** interface. |
|---|
| 453 | ! ---------- |
|---|
| 454 | ! from *orodrag* |
|---|
| 455 | |
|---|
| 456 | ! explicit arguments : |
|---|
| 457 | ! -------------------- |
|---|
| 458 | ! ==== inputs === |
|---|
| 459 | |
|---|
| 460 | ! nlon----input-I-Total number of horizontal points that get into physics |
|---|
| 461 | ! nlev----input-I-Number of vertical levels |
|---|
| 462 | ! ktest--input-I: Flags to indicate active points |
|---|
| 463 | |
|---|
| 464 | ! ptsphy--input-R-Time-step (s) |
|---|
| 465 | ! paphm1--input-R: pressure at model 1/2 layer |
|---|
| 466 | ! papm1---input-R: pressure at model layer |
|---|
| 467 | ! pgeom1--input-R: Altitude of layer above ground |
|---|
| 468 | ! ptm1, pum1, pvm1--R-: t, u and v |
|---|
| 469 | ! pmea----input-R-Mean Orography (m) |
|---|
| 470 | ! pstd----input-R-SSO standard deviation (m) |
|---|
| 471 | ! psig----input-R-SSO slope |
|---|
| 472 | ! pgam----input-R-SSO Anisotropy |
|---|
| 473 | ! pthe----input-R-SSO Angle |
|---|
| 474 | ! ppic----input-R-SSO Peacks elevation (m) |
|---|
| 475 | ! pval----input-R-SSO Valleys elevation (m) |
|---|
| 476 | |
|---|
| 477 | ! ==== outputs === |
|---|
| 478 | ! pulow, pvlow -output-R: Low-level wind |
|---|
| 479 | ! kkcrit----I-: Security value for top of low level flow |
|---|
| 480 | ! kcrit-----I-: Critical level |
|---|
| 481 | ! ksect-----I-: Not used |
|---|
| 482 | ! kkhlim----I-: Not used |
|---|
| 483 | ! kkenvh----I-: Top of blocked flow layer |
|---|
| 484 | ! kknu------I-: Layer that sees mountain peacks |
|---|
| 485 | ! kknu2-----I-: Layer that sees mountain peacks above mountain mean |
|---|
| 486 | ! kknub-----I-: Layer that sees mountain mean above valleys |
|---|
| 487 | ! prho------R-: Density at 1/2 layers |
|---|
| 488 | ! pri-------R-: Background Richardson Number, Wind shear measured along GW |
|---|
| 489 | ! stress |
|---|
| 490 | ! pstab-----R-: Brunt-Vaisala freq. at 1/2 layers |
|---|
| 491 | ! pvph------R-: Wind in plan of GW stress, Half levels. |
|---|
| 492 | ! ppsi------R-: Angle between low level wind and SS0 main axis. |
|---|
| 493 | ! pd1-------R-| Compared the ratio of the stress |
|---|
| 494 | ! pd2-------R-| that is along the wind to that Normal to it. |
|---|
| 495 | ! pdi define the plane of low level stress |
|---|
| 496 | ! compared to the low level wind. |
|---|
| 497 | ! see p. 108 Lott & Miller (1997). |
|---|
| 498 | ! pdmod-----R-: Norme of pdi |
|---|
| 499 | |
|---|
| 500 | ! === local arrays === |
|---|
| 501 | |
|---|
| 502 | ! zvpf------R-: Wind projected in the plan of the low-level stress. |
|---|
| 503 | |
|---|
| 504 | ! ==== outputs === |
|---|
| 505 | |
|---|
| 506 | ! implicit arguments : none |
|---|
| 507 | ! -------------------- |
|---|
| 508 | |
|---|
| 509 | ! method. |
|---|
| 510 | ! ------- |
|---|
| 511 | |
|---|
| 512 | |
|---|
| 513 | ! externals. |
|---|
| 514 | ! ---------- |
|---|
| 515 | |
|---|
| 516 | |
|---|
| 517 | ! reference. |
|---|
| 518 | ! ---------- |
|---|
| 519 | |
|---|
| 520 | ! see ecmwf research department documentation of the "i.f.s." |
|---|
| 521 | |
|---|
| 522 | ! author. |
|---|
| 523 | ! ------- |
|---|
| 524 | |
|---|
| 525 | ! modifications. |
|---|
| 526 | ! -------------- |
|---|
| 527 | ! f.lott for the new-gwdrag scheme november 1993 |
|---|
| 528 | |
|---|
| 529 | ! ----------------------------------------------------------------------- |
|---|
| 530 | USE dimphy |
|---|
| 531 | IMPLICIT NONE |
|---|
| 532 | |
|---|
| 533 | include "YOMCST.h" |
|---|
| 534 | include "YOEGWD.h" |
|---|
| 535 | |
|---|
| 536 | ! ----------------------------------------------------------------------- |
|---|
| 537 | |
|---|
| 538 | ! * 0.1 arguments |
|---|
| 539 | ! --------- |
|---|
| 540 | |
|---|
| 541 | INTEGER nlon, nlev |
|---|
| 542 | INTEGER kkcrit(nlon), kkcrith(nlon), kcrit(nlon), ksect(nlon), & |
|---|
| 543 | kkhlim(nlon), ktest(nlon), kkenvh(nlon) |
|---|
| 544 | |
|---|
| 545 | REAL paphm1(nlon, klev + 1), papm1(nlon, klev), pum1(nlon, klev), & |
|---|
| 546 | pvm1(nlon, klev), ptm1(nlon, klev), pgeom1(nlon, klev), & |
|---|
| 547 | prho(nlon, klev + 1), pri(nlon, klev + 1), pstab(nlon, klev + 1), & |
|---|
| 548 | ptau(nlon, klev + 1), pvph(nlon, klev + 1), ppsi(nlon, klev + 1), & |
|---|
| 549 | pzdep(nlon, klev) |
|---|
| 550 | REAL pulow(nlon), pvlow(nlon), ptheta(nlon), pgam(nlon), pnu(nlon), & |
|---|
| 551 | pd1(nlon), pd2(nlon), pdmod(nlon) |
|---|
| 552 | REAL pstd(nlon), pmea(nlon), ppic(nlon), pval(nlon) |
|---|
| 553 | |
|---|
| 554 | ! ----------------------------------------------------------------------- |
|---|
| 555 | |
|---|
| 556 | ! * 0.2 local arrays |
|---|
| 557 | ! ------------ |
|---|
| 558 | |
|---|
| 559 | INTEGER ilevh, jl, jk |
|---|
| 560 | REAL zcons1, zcons2, zhgeo, zu, zphi |
|---|
| 561 | REAL zvt1, zvt2, zdwind, zwind, zdelp |
|---|
| 562 | REAL zstabm, zstabp, zrhom, zrhop |
|---|
| 563 | LOGICAL lo |
|---|
| 564 | LOGICAL ll1(klon, klev + 1) |
|---|
| 565 | INTEGER kknu(klon), kknu2(klon), kknub(klon), kknul(klon), kentp(klon), & |
|---|
| 566 | ncount(klon) |
|---|
| 567 | |
|---|
| 568 | REAL zhcrit(klon, klev), zvpf(klon, klev), zdp(klon, klev) |
|---|
| 569 | REAL znorm(klon), zb(klon), zc(klon), zulow(klon), zvlow(klon), znup(klon), & |
|---|
| 570 | znum(klon) |
|---|
| 571 | |
|---|
| 572 | ! ------------------------------------------------------------------ |
|---|
| 573 | |
|---|
| 574 | ! * 1. initialization |
|---|
| 575 | ! -------------- |
|---|
| 576 | |
|---|
| 577 | ! PRINT *,' in orosetup' |
|---|
| 578 | |
|---|
| 579 | ! ------------------------------------------------------------------ |
|---|
| 580 | |
|---|
| 581 | ! * 1.1 computational constants |
|---|
| 582 | ! ----------------------- |
|---|
| 583 | |
|---|
| 584 | ilevh = klev / 3 |
|---|
| 585 | |
|---|
| 586 | zcons1 = 1. / rd |
|---|
| 587 | zcons2 = rg**2 / rcpd |
|---|
| 588 | |
|---|
| 589 | ! ------------------------------------------------------------------ |
|---|
| 590 | |
|---|
| 591 | ! * 2. |
|---|
| 592 | ! -------------- |
|---|
| 593 | |
|---|
| 594 | |
|---|
| 595 | ! ------------------------------------------------------------------ |
|---|
| 596 | |
|---|
| 597 | ! * 2.1 define low level wind, project winds in plane of |
|---|
| 598 | ! * low level wind, determine sector in which to take |
|---|
| 599 | ! * the variance and set indicator for critical levels. |
|---|
| 600 | |
|---|
| 601 | DO jl = kidia, kfdia |
|---|
| 602 | kknu(jl) = klev |
|---|
| 603 | kknu2(jl) = klev |
|---|
| 604 | kknub(jl) = klev |
|---|
| 605 | kknul(jl) = klev |
|---|
| 606 | pgam(jl) = max(pgam(jl), gtsec) |
|---|
| 607 | ll1(jl, klev + 1) = .FALSE. |
|---|
| 608 | END DO |
|---|
| 609 | |
|---|
| 610 | ! Ajouter une initialisation (L. Li, le 23fev99): |
|---|
| 611 | |
|---|
| 612 | DO jk = klev, ilevh, -1 |
|---|
| 613 | DO jl = kidia, kfdia |
|---|
| 614 | ll1(jl, jk) = .FALSE. |
|---|
| 615 | END DO |
|---|
| 616 | END DO |
|---|
| 617 | |
|---|
| 618 | ! * define top of low level flow |
|---|
| 619 | ! ---------------------------- |
|---|
| 620 | DO jk = klev, ilevh, -1 |
|---|
| 621 | DO jl = kidia, kfdia |
|---|
| 622 | IF (ktest(jl)==1) THEN |
|---|
| 623 | lo = (paphm1(jl, jk) / paphm1(jl, klev + 1)) >= gsigcr |
|---|
| 624 | IF (lo) THEN |
|---|
| 625 | kkcrit(jl) = jk |
|---|
| 626 | END IF |
|---|
| 627 | zhcrit(jl, jk) = ppic(jl) - pval(jl) |
|---|
| 628 | zhgeo = pgeom1(jl, jk) / rg |
|---|
| 629 | ll1(jl, jk) = (zhgeo>zhcrit(jl, jk)) |
|---|
| 630 | IF (ll1(jl, jk) .NEQV. ll1(jl, jk + 1)) THEN |
|---|
| 631 | kknu(jl) = jk |
|---|
| 632 | END IF |
|---|
| 633 | IF (.NOT. ll1(jl, ilevh)) kknu(jl) = ilevh |
|---|
| 634 | END IF |
|---|
| 635 | END DO |
|---|
| 636 | END DO |
|---|
| 637 | DO jk = klev, ilevh, -1 |
|---|
| 638 | DO jl = kidia, kfdia |
|---|
| 639 | IF (ktest(jl)==1) THEN |
|---|
| 640 | zhcrit(jl, jk) = ppic(jl) - pmea(jl) |
|---|
| 641 | zhgeo = pgeom1(jl, jk) / rg |
|---|
| 642 | ll1(jl, jk) = (zhgeo>zhcrit(jl, jk)) |
|---|
| 643 | IF (ll1(jl, jk) .NEQV. ll1(jl, jk + 1)) THEN |
|---|
| 644 | kknu2(jl) = jk |
|---|
| 645 | END IF |
|---|
| 646 | IF (.NOT. ll1(jl, ilevh)) kknu2(jl) = ilevh |
|---|
| 647 | END IF |
|---|
| 648 | END DO |
|---|
| 649 | END DO |
|---|
| 650 | DO jk = klev, ilevh, -1 |
|---|
| 651 | DO jl = kidia, kfdia |
|---|
| 652 | IF (ktest(jl)==1) THEN |
|---|
| 653 | zhcrit(jl, jk) = amin1(ppic(jl) - pmea(jl), pmea(jl) - pval(jl)) |
|---|
| 654 | zhgeo = pgeom1(jl, jk) / rg |
|---|
| 655 | ll1(jl, jk) = (zhgeo>zhcrit(jl, jk)) |
|---|
| 656 | IF (ll1(jl, jk) .NEQV. ll1(jl, jk + 1)) THEN |
|---|
| 657 | kknub(jl) = jk |
|---|
| 658 | END IF |
|---|
| 659 | IF (.NOT. ll1(jl, ilevh)) kknub(jl) = ilevh |
|---|
| 660 | END IF |
|---|
| 661 | END DO |
|---|
| 662 | END DO |
|---|
| 663 | |
|---|
| 664 | DO jl = kidia, kfdia |
|---|
| 665 | IF (ktest(jl)==1) THEN |
|---|
| 666 | kknu(jl) = min(kknu(jl), nktopg) |
|---|
| 667 | kknu2(jl) = min(kknu2(jl), nktopg) |
|---|
| 668 | kknub(jl) = min(kknub(jl), nktopg) |
|---|
| 669 | kknul(jl) = klev |
|---|
| 670 | END IF |
|---|
| 671 | END DO |
|---|
| 672 | |
|---|
| 673 | ! c* initialize various arrays |
|---|
| 674 | |
|---|
| 675 | DO jl = kidia, kfdia |
|---|
| 676 | prho(jl, klev + 1) = 0.0 |
|---|
| 677 | ! ym correction en attendant mieux |
|---|
| 678 | prho(jl, 1) = 0.0 |
|---|
| 679 | pstab(jl, klev + 1) = 0.0 |
|---|
| 680 | pstab(jl, 1) = 0.0 |
|---|
| 681 | pri(jl, klev + 1) = 9999.0 |
|---|
| 682 | ppsi(jl, klev + 1) = 0.0 |
|---|
| 683 | pri(jl, 1) = 0.0 |
|---|
| 684 | pvph(jl, 1) = 0.0 |
|---|
| 685 | pvph(jl, klev + 1) = 0.0 |
|---|
| 686 | ! ym correction en attendant mieux |
|---|
| 687 | ! ym pvph(jl,klev) =0.0 |
|---|
| 688 | pulow(jl) = 0.0 |
|---|
| 689 | pvlow(jl) = 0.0 |
|---|
| 690 | zulow(jl) = 0.0 |
|---|
| 691 | zvlow(jl) = 0.0 |
|---|
| 692 | kkcrith(jl) = klev |
|---|
| 693 | kkenvh(jl) = klev |
|---|
| 694 | kentp(jl) = klev |
|---|
| 695 | kcrit(jl) = 1 |
|---|
| 696 | ncount(jl) = 0 |
|---|
| 697 | ll1(jl, klev + 1) = .FALSE. |
|---|
| 698 | END DO |
|---|
| 699 | |
|---|
| 700 | ! * define flow density and stratification (rho and N2) |
|---|
| 701 | ! at semi layers. |
|---|
| 702 | ! ------------------------------------------------------- |
|---|
| 703 | |
|---|
| 704 | DO jk = klev, 2, -1 |
|---|
| 705 | DO jl = kidia, kfdia |
|---|
| 706 | IF (ktest(jl)==1) THEN |
|---|
| 707 | zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk - 1) |
|---|
| 708 | prho(jl, jk) = 2. * paphm1(jl, jk) * zcons1 / (ptm1(jl, jk) + ptm1(jl, jk - 1)) |
|---|
| 709 | pstab(jl, jk) = 2. * zcons2 / (ptm1(jl, jk) + ptm1(jl, jk - 1)) * & |
|---|
| 710 | (1. - rcpd * prho(jl, jk) * (ptm1(jl, jk) - ptm1(jl, jk - 1)) / zdp(jl, jk)) |
|---|
| 711 | pstab(jl, jk) = max(pstab(jl, jk), gssec) |
|---|
| 712 | END IF |
|---|
| 713 | END DO |
|---|
| 714 | END DO |
|---|
| 715 | |
|---|
| 716 | ! ******************************************************************** |
|---|
| 717 | |
|---|
| 718 | ! * define Low level flow (between ground and peacks-valleys) |
|---|
| 719 | ! --------------------------------------------------------- |
|---|
| 720 | DO jk = klev, ilevh, -1 |
|---|
| 721 | DO jl = kidia, kfdia |
|---|
| 722 | IF (ktest(jl)==1) THEN |
|---|
| 723 | IF (jk>=kknu2(jl) .AND. jk<=kknul(jl)) THEN |
|---|
| 724 | pulow(jl) = pulow(jl) + pum1(jl, jk) * (paphm1(jl, jk + 1) - paphm1(jl, jk) & |
|---|
| 725 | ) |
|---|
| 726 | pvlow(jl) = pvlow(jl) + pvm1(jl, jk) * (paphm1(jl, jk + 1) - paphm1(jl, jk) & |
|---|
| 727 | ) |
|---|
| 728 | pstab(jl, klev + 1) = pstab(jl, klev + 1) + pstab(jl, jk) * (paphm1(jl, jk & |
|---|
| 729 | + 1) - paphm1(jl, jk)) |
|---|
| 730 | prho(jl, klev + 1) = prho(jl, klev + 1) + prho(jl, jk) * (paphm1(jl, jk + 1) & |
|---|
| 731 | - paphm1(jl, jk)) |
|---|
| 732 | END IF |
|---|
| 733 | END IF |
|---|
| 734 | END DO |
|---|
| 735 | END DO |
|---|
| 736 | DO jl = kidia, kfdia |
|---|
| 737 | IF (ktest(jl)==1) THEN |
|---|
| 738 | pulow(jl) = pulow(jl) / (paphm1(jl, kknul(jl) + 1) - paphm1(jl, kknu2(jl))) |
|---|
| 739 | pvlow(jl) = pvlow(jl) / (paphm1(jl, kknul(jl) + 1) - paphm1(jl, kknu2(jl))) |
|---|
| 740 | znorm(jl) = max(sqrt(pulow(jl)**2 + pvlow(jl)**2), gvsec) |
|---|
| 741 | pvph(jl, klev + 1) = znorm(jl) |
|---|
| 742 | pstab(jl, klev + 1) = pstab(jl, klev + 1) / (paphm1(jl, kknul(jl) + 1) - paphm1(jl & |
|---|
| 743 | , kknu2(jl))) |
|---|
| 744 | prho(jl, klev + 1) = prho(jl, klev + 1) / (paphm1(jl, kknul(jl) + 1) - paphm1(jl, & |
|---|
| 745 | kknu2(jl))) |
|---|
| 746 | END IF |
|---|
| 747 | END DO |
|---|
| 748 | |
|---|
| 749 | |
|---|
| 750 | ! ******* setup orography orientation relative to the low level |
|---|
| 751 | ! wind and define parameters of the Anisotropic wave stress. |
|---|
| 752 | |
|---|
| 753 | DO jl = kidia, kfdia |
|---|
| 754 | IF (ktest(jl)==1) THEN |
|---|
| 755 | lo = (pulow(jl)<gvsec) .AND. (pulow(jl)>=-gvsec) |
|---|
| 756 | IF (lo) THEN |
|---|
| 757 | zu = pulow(jl) + 2. * gvsec |
|---|
| 758 | ELSE |
|---|
| 759 | zu = pulow(jl) |
|---|
| 760 | END IF |
|---|
| 761 | zphi = atan(pvlow(jl) / zu) |
|---|
| 762 | ppsi(jl, klev + 1) = ptheta(jl) * rpi / 180. - zphi |
|---|
| 763 | zb(jl) = 1. - 0.18 * pgam(jl) - 0.04 * pgam(jl)**2 |
|---|
| 764 | zc(jl) = 0.48 * pgam(jl) + 0.3 * pgam(jl)**2 |
|---|
| 765 | pd1(jl) = zb(jl) - (zb(jl) - zc(jl)) * (sin(ppsi(jl, klev + 1))**2) |
|---|
| 766 | pd2(jl) = (zb(jl) - zc(jl)) * sin(ppsi(jl, klev + 1)) * cos(ppsi(jl, klev + 1)) |
|---|
| 767 | pdmod(jl) = sqrt(pd1(jl)**2 + pd2(jl)**2) |
|---|
| 768 | END IF |
|---|
| 769 | END DO |
|---|
| 770 | |
|---|
| 771 | ! ************ projet flow in plane of lowlevel stress ************* |
|---|
| 772 | ! ************ Find critical levels... ************* |
|---|
| 773 | |
|---|
| 774 | DO jk = 1, klev |
|---|
| 775 | DO jl = kidia, kfdia |
|---|
| 776 | IF (ktest(jl)==1) THEN |
|---|
| 777 | zvt1 = pulow(jl) * pum1(jl, jk) + pvlow(jl) * pvm1(jl, jk) |
|---|
| 778 | zvt2 = -pvlow(jl) * pum1(jl, jk) + pulow(jl) * pvm1(jl, jk) |
|---|
| 779 | zvpf(jl, jk) = (zvt1 * pd1(jl) + zvt2 * pd2(jl)) / (znorm(jl) * pdmod(jl)) |
|---|
| 780 | END IF |
|---|
| 781 | ptau(jl, jk) = 0.0 |
|---|
| 782 | pzdep(jl, jk) = 0.0 |
|---|
| 783 | ppsi(jl, jk) = 0.0 |
|---|
| 784 | ll1(jl, jk) = .FALSE. |
|---|
| 785 | END DO |
|---|
| 786 | END DO |
|---|
| 787 | DO jk = 2, klev |
|---|
| 788 | DO jl = kidia, kfdia |
|---|
| 789 | IF (ktest(jl)==1) THEN |
|---|
| 790 | zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk - 1) |
|---|
| 791 | pvph(jl, jk) = ((paphm1(jl, jk) - papm1(jl, jk - 1)) * zvpf(jl, jk) + (papm1(jl, & |
|---|
| 792 | jk) - paphm1(jl, jk)) * zvpf(jl, jk - 1)) / zdp(jl, jk) |
|---|
| 793 | IF (pvph(jl, jk)<gvsec) THEN |
|---|
| 794 | pvph(jl, jk) = gvsec |
|---|
| 795 | kcrit(jl) = jk |
|---|
| 796 | END IF |
|---|
| 797 | END IF |
|---|
| 798 | END DO |
|---|
| 799 | END DO |
|---|
| 800 | |
|---|
| 801 | ! * 2.3 mean flow richardson number. |
|---|
| 802 | |
|---|
| 803 | DO jk = 2, klev |
|---|
| 804 | DO jl = kidia, kfdia |
|---|
| 805 | IF (ktest(jl)==1) THEN |
|---|
| 806 | zdwind = max(abs(zvpf(jl, jk) - zvpf(jl, jk - 1)), gvsec) |
|---|
| 807 | pri(jl, jk) = pstab(jl, jk) * (zdp(jl, jk) / (rg * prho(jl, jk) * zdwind))**2 |
|---|
| 808 | pri(jl, jk) = max(pri(jl, jk), grcrit) |
|---|
| 809 | END IF |
|---|
| 810 | END DO |
|---|
| 811 | END DO |
|---|
| 812 | |
|---|
| 813 | |
|---|
| 814 | |
|---|
| 815 | ! * define top of 'envelope' layer |
|---|
| 816 | ! ---------------------------- |
|---|
| 817 | |
|---|
| 818 | DO jl = kidia, kfdia |
|---|
| 819 | pnu(jl) = 0.0 |
|---|
| 820 | znum(jl) = 0.0 |
|---|
| 821 | END DO |
|---|
| 822 | |
|---|
| 823 | DO jk = 2, klev - 1 |
|---|
| 824 | DO jl = kidia, kfdia |
|---|
| 825 | |
|---|
| 826 | IF (ktest(jl)==1) THEN |
|---|
| 827 | |
|---|
| 828 | IF (jk>=kknu2(jl)) THEN |
|---|
| 829 | |
|---|
| 830 | znum(jl) = pnu(jl) |
|---|
| 831 | zwind = (pulow(jl) * pum1(jl, jk) + pvlow(jl) * pvm1(jl, jk)) / & |
|---|
| 832 | max(sqrt(pulow(jl)**2 + pvlow(jl)**2), gvsec) |
|---|
| 833 | zwind = max(sqrt(zwind**2), gvsec) |
|---|
| 834 | zdelp = paphm1(jl, jk + 1) - paphm1(jl, jk) |
|---|
| 835 | zstabm = sqrt(max(pstab(jl, jk), gssec)) |
|---|
| 836 | zstabp = sqrt(max(pstab(jl, jk + 1), gssec)) |
|---|
| 837 | zrhom = prho(jl, jk) |
|---|
| 838 | zrhop = prho(jl, jk + 1) |
|---|
| 839 | pnu(jl) = pnu(jl) + (zdelp / rg) * ((zstabp / zrhop + zstabm / zrhom) / 2.) / & |
|---|
| 840 | zwind |
|---|
| 841 | IF ((znum(jl)<=gfrcrit) .AND. (pnu(jl)>gfrcrit) .AND. (kkenvh(& |
|---|
| 842 | jl)==klev)) kkenvh(jl) = jk |
|---|
| 843 | |
|---|
| 844 | END IF |
|---|
| 845 | |
|---|
| 846 | END IF |
|---|
| 847 | |
|---|
| 848 | END DO |
|---|
| 849 | END DO |
|---|
| 850 | |
|---|
| 851 | ! calculation of a dynamical mixing height for when the waves |
|---|
| 852 | ! BREAK AT LOW LEVEL: The drag will be repartited over |
|---|
| 853 | ! a depths that depends on waves vertical wavelength, |
|---|
| 854 | ! not just between two adjacent model layers. |
|---|
| 855 | ! of gravity waves: |
|---|
| 856 | |
|---|
| 857 | DO jl = kidia, kfdia |
|---|
| 858 | znup(jl) = 0.0 |
|---|
| 859 | znum(jl) = 0.0 |
|---|
| 860 | END DO |
|---|
| 861 | |
|---|
| 862 | DO jk = klev - 1, 2, -1 |
|---|
| 863 | DO jl = kidia, kfdia |
|---|
| 864 | |
|---|
| 865 | IF (ktest(jl)==1) THEN |
|---|
| 866 | |
|---|
| 867 | znum(jl) = znup(jl) |
|---|
| 868 | zwind = (pulow(jl) * pum1(jl, jk) + pvlow(jl) * pvm1(jl, jk)) / & |
|---|
| 869 | max(sqrt(pulow(jl)**2 + pvlow(jl)**2), gvsec) |
|---|
| 870 | zwind = max(sqrt(zwind**2), gvsec) |
|---|
| 871 | zdelp = paphm1(jl, jk + 1) - paphm1(jl, jk) |
|---|
| 872 | zstabm = sqrt(max(pstab(jl, jk), gssec)) |
|---|
| 873 | zstabp = sqrt(max(pstab(jl, jk + 1), gssec)) |
|---|
| 874 | zrhom = prho(jl, jk) |
|---|
| 875 | zrhop = prho(jl, jk + 1) |
|---|
| 876 | znup(jl) = znup(jl) + (zdelp / rg) * ((zstabp / zrhop + zstabm / zrhom) / 2.) / & |
|---|
| 877 | zwind |
|---|
| 878 | IF ((znum(jl)<=rpi / 4.) .AND. (znup(jl)>rpi / 4.) .AND. (kkcrith(& |
|---|
| 879 | jl)==klev)) kkcrith(jl) = jk |
|---|
| 880 | |
|---|
| 881 | END IF |
|---|
| 882 | |
|---|
| 883 | END DO |
|---|
| 884 | END DO |
|---|
| 885 | |
|---|
| 886 | DO jl = kidia, kfdia |
|---|
| 887 | IF (ktest(jl)==1) THEN |
|---|
| 888 | kkcrith(jl) = max0(kkcrith(jl), ilevh * 2) |
|---|
| 889 | kkcrith(jl) = max0(kkcrith(jl), kknu(jl)) |
|---|
| 890 | IF (kcrit(jl)>=kkcrith(jl)) kcrit(jl) = 1 |
|---|
| 891 | END IF |
|---|
| 892 | END DO |
|---|
| 893 | |
|---|
| 894 | ! directional info for flow blocking ************************* |
|---|
| 895 | |
|---|
| 896 | DO jk = 1, klev |
|---|
| 897 | DO jl = kidia, kfdia |
|---|
| 898 | IF (ktest(jl)==1) THEN |
|---|
| 899 | lo = (pum1(jl, jk)<gvsec) .AND. (pum1(jl, jk)>=-gvsec) |
|---|
| 900 | IF (lo) THEN |
|---|
| 901 | zu = pum1(jl, jk) + 2. * gvsec |
|---|
| 902 | ELSE |
|---|
| 903 | zu = pum1(jl, jk) |
|---|
| 904 | END IF |
|---|
| 905 | zphi = atan(pvm1(jl, jk) / zu) |
|---|
| 906 | ppsi(jl, jk) = ptheta(jl) * rpi / 180. - zphi |
|---|
| 907 | END IF |
|---|
| 908 | END DO |
|---|
| 909 | END DO |
|---|
| 910 | |
|---|
| 911 | ! forms the vertical 'leakiness' ************************** |
|---|
| 912 | |
|---|
| 913 | DO jk = ilevh, klev |
|---|
| 914 | DO jl = kidia, kfdia |
|---|
| 915 | IF (ktest(jl)==1) THEN |
|---|
| 916 | pzdep(jl, jk) = 0 |
|---|
| 917 | IF (jk>=kkenvh(jl) .AND. kkenvh(jl)/=klev) THEN |
|---|
| 918 | pzdep(jl, jk) = (pgeom1(jl, kkenvh(jl)) - pgeom1(jl, jk)) / & |
|---|
| 919 | (pgeom1(jl, kkenvh(jl)) - pgeom1(jl, klev)) |
|---|
| 920 | END IF |
|---|
| 921 | END IF |
|---|
| 922 | END DO |
|---|
| 923 | END DO |
|---|
| 924 | |
|---|
| 925 | END SUBROUTINE orosetup_strato |
|---|
| 926 | SUBROUTINE gwstress_strato(nlon, nlev, kkcrit, ksect, kkhlim, ktest, kkcrith, & |
|---|
| 927 | kcrit, kkenvh, kknu, prho, pstab, pvph, pstd, psig, pmea, ppic, pval, & |
|---|
| 928 | ptfr, ptau, pgeom1, pgamma, pd1, pd2, pdmod, pnu) |
|---|
| 929 | |
|---|
| 930 | ! **** *gwstress* |
|---|
| 931 | |
|---|
| 932 | ! purpose. |
|---|
| 933 | ! -------- |
|---|
| 934 | ! Compute the surface stress due to Gravity Waves, according |
|---|
| 935 | ! to the Phillips (1979) theory of 3-D flow above |
|---|
| 936 | ! anisotropic elliptic ridges. |
|---|
| 937 | |
|---|
| 938 | ! The stress is reduced two account for cut-off flow over |
|---|
| 939 | ! hill. The flow only see that part of the ridge located |
|---|
| 940 | ! above the blocked layer (see zeff). |
|---|
| 941 | |
|---|
| 942 | ! ** interface. |
|---|
| 943 | ! ---------- |
|---|
| 944 | ! CALL *gwstress* from *gwdrag* |
|---|
| 945 | |
|---|
| 946 | ! explicit arguments : |
|---|
| 947 | ! -------------------- |
|---|
| 948 | ! ==== inputs === |
|---|
| 949 | ! ==== outputs === |
|---|
| 950 | |
|---|
| 951 | ! implicit arguments : none |
|---|
| 952 | ! -------------------- |
|---|
| 953 | |
|---|
| 954 | ! method. |
|---|
| 955 | ! ------- |
|---|
| 956 | |
|---|
| 957 | |
|---|
| 958 | ! externals. |
|---|
| 959 | ! ---------- |
|---|
| 960 | |
|---|
| 961 | |
|---|
| 962 | ! reference. |
|---|
| 963 | ! ---------- |
|---|
| 964 | |
|---|
| 965 | ! LOTT and MILLER (1997) & LOTT (1999) |
|---|
| 966 | |
|---|
| 967 | ! author. |
|---|
| 968 | ! ------- |
|---|
| 969 | |
|---|
| 970 | ! modifications. |
|---|
| 971 | ! -------------- |
|---|
| 972 | ! f. lott put the new gwd on ifs 22/11/93 |
|---|
| 973 | |
|---|
| 974 | ! ----------------------------------------------------------------------- |
|---|
| 975 | USE dimphy |
|---|
| 976 | IMPLICIT NONE |
|---|
| 977 | |
|---|
| 978 | include "YOMCST.h" |
|---|
| 979 | include "YOEGWD.h" |
|---|
| 980 | |
|---|
| 981 | ! ----------------------------------------------------------------------- |
|---|
| 982 | |
|---|
| 983 | ! * 0.1 arguments |
|---|
| 984 | ! --------- |
|---|
| 985 | |
|---|
| 986 | INTEGER nlon, nlev |
|---|
| 987 | INTEGER kkcrit(nlon), kkcrith(nlon), kcrit(nlon), ksect(nlon), & |
|---|
| 988 | kkhlim(nlon), ktest(nlon), kkenvh(nlon), kknu(nlon) |
|---|
| 989 | |
|---|
| 990 | REAL prho(nlon, nlev + 1), pstab(nlon, nlev + 1), ptau(nlon, nlev + 1), & |
|---|
| 991 | pvph(nlon, nlev + 1), ptfr(nlon), pgeom1(nlon, nlev), pstd(nlon) |
|---|
| 992 | |
|---|
| 993 | REAL pd1(nlon), pd2(nlon), pnu(nlon), psig(nlon), pgamma(nlon) |
|---|
| 994 | REAL pmea(nlon), ppic(nlon), pval(nlon) |
|---|
| 995 | REAL pdmod(nlon) |
|---|
| 996 | |
|---|
| 997 | ! ----------------------------------------------------------------------- |
|---|
| 998 | |
|---|
| 999 | ! * 0.2 local arrays |
|---|
| 1000 | ! ------------ |
|---|
| 1001 | ! zeff--real: effective height seen by the flow when there is blocking |
|---|
| 1002 | |
|---|
| 1003 | INTEGER jl |
|---|
| 1004 | REAL zeff |
|---|
| 1005 | |
|---|
| 1006 | ! ----------------------------------------------------------------------- |
|---|
| 1007 | |
|---|
| 1008 | ! * 0.3 functions |
|---|
| 1009 | ! --------- |
|---|
| 1010 | ! ------------------------------------------------------------------ |
|---|
| 1011 | |
|---|
| 1012 | ! * 1. initialization |
|---|
| 1013 | ! -------------- |
|---|
| 1014 | |
|---|
| 1015 | ! PRINT *,' in gwstress' |
|---|
| 1016 | |
|---|
| 1017 | ! * 3.1 gravity wave stress. |
|---|
| 1018 | |
|---|
| 1019 | DO jl = kidia, kfdia |
|---|
| 1020 | IF (ktest(jl)==1) THEN |
|---|
| 1021 | |
|---|
| 1022 | ! effective mountain height above the blocked flow |
|---|
| 1023 | |
|---|
| 1024 | zeff = ppic(jl) - pval(jl) |
|---|
| 1025 | IF (kkenvh(jl)<klev) THEN |
|---|
| 1026 | zeff = amin1(gfrcrit * pvph(jl, klev + 1) / sqrt(pstab(jl, klev + 1)), zeff) |
|---|
| 1027 | END IF |
|---|
| 1028 | |
|---|
| 1029 | ptau(jl, klev + 1) = gkdrag * prho(jl, klev + 1) * psig(jl) * pdmod(jl) / 4. / & |
|---|
| 1030 | pstd(jl) * pvph(jl, klev + 1) * sqrt(pstab(jl, klev + 1)) * zeff**2 |
|---|
| 1031 | |
|---|
| 1032 | |
|---|
| 1033 | ! too small value of stress or low level flow include critical level |
|---|
| 1034 | ! or low level flow: gravity wave stress nul. |
|---|
| 1035 | |
|---|
| 1036 | ! lo=(ptau(jl,klev+1).lt.gtsec).OR.(kcrit(jl).ge.kknu(jl)) |
|---|
| 1037 | ! * .OR.(pvph(jl,klev+1).lt.gvcrit) |
|---|
| 1038 | ! IF(lo) ptau(jl,klev+1)=0.0 |
|---|
| 1039 | |
|---|
| 1040 | ! print *,jl,ptau(jl,klev+1) |
|---|
| 1041 | |
|---|
| 1042 | ELSE |
|---|
| 1043 | |
|---|
| 1044 | ptau(jl, klev + 1) = 0.0 |
|---|
| 1045 | |
|---|
| 1046 | END IF |
|---|
| 1047 | |
|---|
| 1048 | END DO |
|---|
| 1049 | |
|---|
| 1050 | ! WRITE(21)(ptau(jl,klev+1),jl=kidia,kfdia) |
|---|
| 1051 | |
|---|
| 1052 | END SUBROUTINE gwstress_strato |
|---|
| 1053 | |
|---|
| 1054 | SUBROUTINE gwprofil_strato(nlon, nlev, kgwd, kdx, ktest, kkcrit, kkcrith, & |
|---|
| 1055 | kcrit, kkenvh, kknu, kknu2, paphm1, prho, pstab, ptfr, pvph, pri, ptau, & |
|---|
| 1056 | pdmod, pnu, psig, pgamma, pstd, ppic, pval) |
|---|
| 1057 | |
|---|
| 1058 | ! **** *gwprofil* |
|---|
| 1059 | |
|---|
| 1060 | ! purpose. |
|---|
| 1061 | ! -------- |
|---|
| 1062 | |
|---|
| 1063 | ! ** interface. |
|---|
| 1064 | ! ---------- |
|---|
| 1065 | ! from *gwdrag* |
|---|
| 1066 | |
|---|
| 1067 | ! explicit arguments : |
|---|
| 1068 | ! -------------------- |
|---|
| 1069 | ! ==== inputs === |
|---|
| 1070 | |
|---|
| 1071 | ! ==== outputs === |
|---|
| 1072 | |
|---|
| 1073 | ! implicit arguments : none |
|---|
| 1074 | ! -------------------- |
|---|
| 1075 | |
|---|
| 1076 | ! method: |
|---|
| 1077 | ! ------- |
|---|
| 1078 | ! the stress profile for gravity waves is computed as follows: |
|---|
| 1079 | ! it decreases linearly with heights from the ground |
|---|
| 1080 | ! to the low-level indicated by kkcrith, |
|---|
| 1081 | ! to simulates lee waves or |
|---|
| 1082 | ! low-level gravity wave breaking. |
|---|
| 1083 | ! above it is constant, except when the waves encounter a critical |
|---|
| 1084 | ! level (kcrit) or when they break. |
|---|
| 1085 | ! The stress is also uniformly distributed above the level |
|---|
| 1086 | ! nstra. |
|---|
| 1087 | |
|---|
| 1088 | USE dimphy |
|---|
| 1089 | IMPLICIT NONE |
|---|
| 1090 | |
|---|
| 1091 | include "YOMCST.h" |
|---|
| 1092 | include "YOEGWD.h" |
|---|
| 1093 | |
|---|
| 1094 | ! ----------------------------------------------------------------------- |
|---|
| 1095 | |
|---|
| 1096 | ! * 0.1 ARGUMENTS |
|---|
| 1097 | ! --------- |
|---|
| 1098 | |
|---|
| 1099 | INTEGER nlon, nlev, kgwd |
|---|
| 1100 | INTEGER kkcrit(nlon), kkcrith(nlon), kcrit(nlon), kdx(nlon), ktest(nlon), & |
|---|
| 1101 | kkenvh(nlon), kknu(nlon), kknu2(nlon) |
|---|
| 1102 | |
|---|
| 1103 | REAL paphm1(nlon, nlev + 1), pstab(nlon, nlev + 1), prho(nlon, nlev + 1), & |
|---|
| 1104 | pvph(nlon, nlev + 1), pri(nlon, nlev + 1), ptfr(nlon), ptau(nlon, nlev + 1) |
|---|
| 1105 | |
|---|
| 1106 | REAL pdmod(nlon), pnu(nlon), psig(nlon), pgamma(nlon), pstd(nlon), & |
|---|
| 1107 | ppic(nlon), pval(nlon) |
|---|
| 1108 | |
|---|
| 1109 | ! ----------------------------------------------------------------------- |
|---|
| 1110 | |
|---|
| 1111 | ! * 0.2 local arrays |
|---|
| 1112 | ! ------------ |
|---|
| 1113 | |
|---|
| 1114 | INTEGER jl, jk |
|---|
| 1115 | REAL zsqr, zalfa, zriw, zdel, zb, zalpha, zdz2n, zdelp, zdelpt |
|---|
| 1116 | |
|---|
| 1117 | REAL zdz2(klon, klev), znorm(klon), zoro(klon) |
|---|
| 1118 | REAL ztau(klon, klev + 1) |
|---|
| 1119 | |
|---|
| 1120 | ! ----------------------------------------------------------------------- |
|---|
| 1121 | |
|---|
| 1122 | ! * 1. INITIALIZATION |
|---|
| 1123 | ! -------------- |
|---|
| 1124 | |
|---|
| 1125 | ! print *,' entree gwprofil' |
|---|
| 1126 | |
|---|
| 1127 | |
|---|
| 1128 | ! * COMPUTATIONAL CONSTANTS. |
|---|
| 1129 | ! ------------- ---------- |
|---|
| 1130 | |
|---|
| 1131 | DO jl = kidia, kfdia |
|---|
| 1132 | IF (ktest(jl)==1) THEN |
|---|
| 1133 | zoro(jl) = psig(jl) * pdmod(jl) / 4. / pstd(jl) |
|---|
| 1134 | ztau(jl, klev + 1) = ptau(jl, klev + 1) |
|---|
| 1135 | ! print *,jl,ptau(jl,klev+1) |
|---|
| 1136 | ztau(jl, kkcrith(jl)) = grahilo * ptau(jl, klev + 1) |
|---|
| 1137 | END IF |
|---|
| 1138 | END DO |
|---|
| 1139 | |
|---|
| 1140 | DO jk = klev + 1, 1, -1 |
|---|
| 1141 | ! * 4.1 constant shear stress until top of the |
|---|
| 1142 | ! low-level breaking/trapped layer |
|---|
| 1143 | |
|---|
| 1144 | DO jl = kidia, kfdia |
|---|
| 1145 | IF (ktest(jl)==1) THEN |
|---|
| 1146 | IF (jk>kkcrith(jl)) THEN |
|---|
| 1147 | zdelp = paphm1(jl, jk) - paphm1(jl, klev + 1) |
|---|
| 1148 | zdelpt = paphm1(jl, kkcrith(jl)) - paphm1(jl, klev + 1) |
|---|
| 1149 | ptau(jl, jk) = ztau(jl, klev + 1) + zdelp / zdelpt * (ztau(jl, kkcrith(jl) & |
|---|
| 1150 | ) - ztau(jl, klev + 1)) |
|---|
| 1151 | ELSE |
|---|
| 1152 | ptau(jl, jk) = ztau(jl, kkcrith(jl)) |
|---|
| 1153 | END IF |
|---|
| 1154 | END IF |
|---|
| 1155 | END DO |
|---|
| 1156 | |
|---|
| 1157 | ! * 4.15 constant shear stress until the top of the |
|---|
| 1158 | ! low level flow layer. |
|---|
| 1159 | |
|---|
| 1160 | |
|---|
| 1161 | ! * 4.2 wave displacement at next level. |
|---|
| 1162 | |
|---|
| 1163 | END DO |
|---|
| 1164 | |
|---|
| 1165 | |
|---|
| 1166 | ! * 4.4 wave richardson number, new wave displacement |
|---|
| 1167 | ! * and stress: breaking evaluation and critical |
|---|
| 1168 | ! level |
|---|
| 1169 | |
|---|
| 1170 | DO jk = klev, 1, -1 |
|---|
| 1171 | |
|---|
| 1172 | DO jl = kidia, kfdia |
|---|
| 1173 | IF (ktest(jl)==1) THEN |
|---|
| 1174 | znorm(jl) = prho(jl, jk) * sqrt(pstab(jl, jk)) * pvph(jl, jk) |
|---|
| 1175 | zdz2(jl, jk) = ptau(jl, jk) / amax1(znorm(jl), gssec) / zoro(jl) |
|---|
| 1176 | END IF |
|---|
| 1177 | END DO |
|---|
| 1178 | |
|---|
| 1179 | DO jl = kidia, kfdia |
|---|
| 1180 | IF (ktest(jl)==1) THEN |
|---|
| 1181 | IF (jk<kkcrith(jl)) THEN |
|---|
| 1182 | IF ((ptau(jl, jk + 1)<gtsec) .OR. (jk<=kcrit(jl))) THEN |
|---|
| 1183 | ptau(jl, jk) = 0.0 |
|---|
| 1184 | ELSE |
|---|
| 1185 | zsqr = sqrt(pri(jl, jk)) |
|---|
| 1186 | zalfa = sqrt(pstab(jl, jk) * zdz2(jl, jk)) / pvph(jl, jk) |
|---|
| 1187 | zriw = pri(jl, jk) * (1. - zalfa) / (1 + zalfa * zsqr)**2 |
|---|
| 1188 | IF (zriw<grcrit) THEN |
|---|
| 1189 | ! print *,' breaking!!!',ptau(jl,jk) |
|---|
| 1190 | zdel = 4. / zsqr / grcrit + 1. / grcrit**2 + 4. / grcrit |
|---|
| 1191 | zb = 1. / grcrit + 2. / zsqr |
|---|
| 1192 | zalpha = 0.5 * (-zb + sqrt(zdel)) |
|---|
| 1193 | zdz2n = (pvph(jl, jk) * zalpha)**2 / pstab(jl, jk) |
|---|
| 1194 | ptau(jl, jk) = znorm(jl) * zdz2n * zoro(jl) |
|---|
| 1195 | END IF |
|---|
| 1196 | |
|---|
| 1197 | ptau(jl, jk) = amin1(ptau(jl, jk), ptau(jl, jk + 1)) |
|---|
| 1198 | |
|---|
| 1199 | END IF |
|---|
| 1200 | END IF |
|---|
| 1201 | END IF |
|---|
| 1202 | END DO |
|---|
| 1203 | END DO |
|---|
| 1204 | |
|---|
| 1205 | ! REORGANISATION OF THE STRESS PROFILE AT LOW LEVEL |
|---|
| 1206 | |
|---|
| 1207 | DO jl = kidia, kfdia |
|---|
| 1208 | IF (ktest(jl)==1) THEN |
|---|
| 1209 | ztau(jl, kkcrith(jl) - 1) = ptau(jl, kkcrith(jl) - 1) |
|---|
| 1210 | ztau(jl, nstra) = ptau(jl, nstra) |
|---|
| 1211 | END IF |
|---|
| 1212 | END DO |
|---|
| 1213 | |
|---|
| 1214 | DO jk = 1, klev |
|---|
| 1215 | |
|---|
| 1216 | DO jl = kidia, kfdia |
|---|
| 1217 | IF (ktest(jl)==1) THEN |
|---|
| 1218 | |
|---|
| 1219 | IF (jk>kkcrith(jl) - 1) THEN |
|---|
| 1220 | |
|---|
| 1221 | zdelp = paphm1(jl, jk) - paphm1(jl, klev + 1) |
|---|
| 1222 | zdelpt = paphm1(jl, kkcrith(jl) - 1) - paphm1(jl, klev + 1) |
|---|
| 1223 | ptau(jl, jk) = ztau(jl, klev + 1) + (ztau(jl, kkcrith(jl) - 1) - ztau(jl, & |
|---|
| 1224 | klev + 1)) * zdelp / zdelpt |
|---|
| 1225 | |
|---|
| 1226 | END IF |
|---|
| 1227 | END IF |
|---|
| 1228 | |
|---|
| 1229 | END DO |
|---|
| 1230 | |
|---|
| 1231 | ! REORGANISATION AT THE MODEL TOP.... |
|---|
| 1232 | |
|---|
| 1233 | DO jl = kidia, kfdia |
|---|
| 1234 | IF (ktest(jl)==1) THEN |
|---|
| 1235 | |
|---|
| 1236 | IF (jk<nstra) THEN |
|---|
| 1237 | |
|---|
| 1238 | zdelp = paphm1(jl, nstra) |
|---|
| 1239 | zdelpt = paphm1(jl, jk) |
|---|
| 1240 | ptau(jl, jk) = ztau(jl, nstra) * zdelpt / zdelp |
|---|
| 1241 | ! ptau(jl,jk)=ztau(jl,nstra) |
|---|
| 1242 | |
|---|
| 1243 | END IF |
|---|
| 1244 | |
|---|
| 1245 | END IF |
|---|
| 1246 | |
|---|
| 1247 | END DO |
|---|
| 1248 | |
|---|
| 1249 | END DO |
|---|
| 1250 | |
|---|
| 1251 | 123 FORMAT (I4, 1X, 20(F6.3, 1X)) |
|---|
| 1252 | |
|---|
| 1253 | END SUBROUTINE gwprofil_strato |
|---|
| 1254 | SUBROUTINE lift_noro_strato(nlon, nlev, dtime, paprs, pplay, plat, pmea, & |
|---|
| 1255 | pstd, psig, pgam, pthe, ppic, pval, kgwd, kdx, ktest, t, u, v, pulow, & |
|---|
| 1256 | pvlow, pustr, pvstr, d_t, d_u, d_v) |
|---|
| 1257 | |
|---|
| 1258 | USE dimphy |
|---|
| 1259 | IMPLICIT NONE |
|---|
| 1260 | ! ====================================================================== |
|---|
| 1261 | ! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
|---|
| 1262 | ! Object: Mountain lift interface (enhanced vortex stretching). |
|---|
| 1263 | ! Made necessary because: |
|---|
| 1264 | ! 1. in the LMD-GCM Layers are from bottom to top, |
|---|
| 1265 | ! contrary to most European GCM. |
|---|
| 1266 | ! 2. the altitude above ground of each model layers |
|---|
| 1267 | ! needs to be known (variable zgeom) |
|---|
| 1268 | ! ====================================================================== |
|---|
| 1269 | ! Explicit Arguments: |
|---|
| 1270 | ! ================== |
|---|
| 1271 | ! nlon----input-I-Total number of horizontal points that get into physics |
|---|
| 1272 | ! nlev----input-I-Number of vertical levels |
|---|
| 1273 | ! dtime---input-R-Time-step (s) |
|---|
| 1274 | ! paprs---input-R-Pressure in semi layers (Pa) |
|---|
| 1275 | ! pplay---input-R-Pressure model-layers (Pa) |
|---|
| 1276 | ! t-------input-R-temperature (K) |
|---|
| 1277 | ! u-------input-R-Horizontal wind (m/s) |
|---|
| 1278 | ! v-------input-R-Meridional wind (m/s) |
|---|
| 1279 | ! pmea----input-R-Mean Orography (m) |
|---|
| 1280 | ! pstd----input-R-SSO standard deviation (m) |
|---|
| 1281 | ! psig----input-R-SSO slope |
|---|
| 1282 | ! pgam----input-R-SSO Anisotropy |
|---|
| 1283 | ! pthe----input-R-SSO Angle |
|---|
| 1284 | ! ppic----input-R-SSO Peacks elevation (m) |
|---|
| 1285 | ! pval----input-R-SSO Valleys elevation (m) |
|---|
| 1286 | |
|---|
| 1287 | ! kgwd- -input-I: Total nb of points where the orography schemes are active |
|---|
| 1288 | ! ktest--input-I: Flags to indicate active points |
|---|
| 1289 | ! kdx----input-I: Locate the physical location of an active point. |
|---|
| 1290 | |
|---|
| 1291 | ! pulow, pvlow -output-R: Low-level wind |
|---|
| 1292 | ! pustr, pvstr -output-R: Surface stress due to SSO drag (Pa) |
|---|
| 1293 | |
|---|
| 1294 | ! d_t-----output-R: T increment |
|---|
| 1295 | ! d_u-----output-R: U increment |
|---|
| 1296 | ! d_v-----output-R: V increment |
|---|
| 1297 | |
|---|
| 1298 | ! Implicit Arguments: |
|---|
| 1299 | ! =================== |
|---|
| 1300 | |
|---|
| 1301 | ! iim--common-I: Number of longitude intervals |
|---|
| 1302 | ! jjm--common-I: Number of latitude intervals |
|---|
| 1303 | ! klon-common-I: Number of points seen by the physics |
|---|
| 1304 | ! (iim+1)*(jjm+1) for instance |
|---|
| 1305 | ! klev-common-I: Number of vertical layers |
|---|
| 1306 | ! ====================================================================== |
|---|
| 1307 | ! Local Variables: |
|---|
| 1308 | ! ================ |
|---|
| 1309 | |
|---|
| 1310 | ! zgeom-----R: Altitude of layer above ground |
|---|
| 1311 | ! pt, pu, pv --R: t u v from top to bottom |
|---|
| 1312 | ! pdtdt, pdudt, pdvdt --R: t u v tendencies (from top to bottom) |
|---|
| 1313 | ! papmf: pressure at model layer (from top to bottom) |
|---|
| 1314 | ! papmh: pressure at model 1/2 layer (from top to bottom) |
|---|
| 1315 | |
|---|
| 1316 | ! ====================================================================== |
|---|
| 1317 | |
|---|
| 1318 | include "YOMCST.h" |
|---|
| 1319 | include "YOEGWD.h" |
|---|
| 1320 | |
|---|
| 1321 | ! ARGUMENTS |
|---|
| 1322 | |
|---|
| 1323 | INTEGER nlon, nlev |
|---|
| 1324 | REAL dtime |
|---|
| 1325 | REAL paprs(klon, klev + 1) |
|---|
| 1326 | REAL pplay(klon, klev) |
|---|
| 1327 | REAL plat(nlon), pmea(nlon) |
|---|
| 1328 | REAL pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon) |
|---|
| 1329 | REAL ppic(nlon), pval(nlon) |
|---|
| 1330 | REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
|---|
| 1331 | REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
|---|
| 1332 | REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
|---|
| 1333 | |
|---|
| 1334 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
|---|
| 1335 | |
|---|
| 1336 | ! Variables locales: |
|---|
| 1337 | |
|---|
| 1338 | REAL zgeom(klon, klev) |
|---|
| 1339 | REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
|---|
| 1340 | REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
|---|
| 1341 | REAL papmf(klon, klev), papmh(klon, klev + 1) |
|---|
| 1342 | |
|---|
| 1343 | ! initialiser les variables de sortie (pour securite) |
|---|
| 1344 | |
|---|
| 1345 | |
|---|
| 1346 | ! print *,'in lift_noro' |
|---|
| 1347 | DO i = 1, klon |
|---|
| 1348 | pulow(i) = 0.0 |
|---|
| 1349 | pvlow(i) = 0.0 |
|---|
| 1350 | pustr(i) = 0.0 |
|---|
| 1351 | pvstr(i) = 0.0 |
|---|
| 1352 | END DO |
|---|
| 1353 | DO k = 1, klev |
|---|
| 1354 | DO i = 1, klon |
|---|
| 1355 | d_t(i, k) = 0.0 |
|---|
| 1356 | d_u(i, k) = 0.0 |
|---|
| 1357 | d_v(i, k) = 0.0 |
|---|
| 1358 | pdudt(i, k) = 0.0 |
|---|
| 1359 | pdvdt(i, k) = 0.0 |
|---|
| 1360 | pdtdt(i, k) = 0.0 |
|---|
| 1361 | END DO |
|---|
| 1362 | END DO |
|---|
| 1363 | |
|---|
| 1364 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
|---|
| 1365 | ! verticaux augmente du haut vers le bas) |
|---|
| 1366 | |
|---|
| 1367 | DO k = 1, klev |
|---|
| 1368 | DO i = 1, klon |
|---|
| 1369 | pt(i, k) = t(i, klev - k + 1) |
|---|
| 1370 | pu(i, k) = u(i, klev - k + 1) |
|---|
| 1371 | pv(i, k) = v(i, klev - k + 1) |
|---|
| 1372 | papmf(i, k) = pplay(i, klev - k + 1) |
|---|
| 1373 | END DO |
|---|
| 1374 | END DO |
|---|
| 1375 | DO k = 1, klev + 1 |
|---|
| 1376 | DO i = 1, klon |
|---|
| 1377 | papmh(i, k) = paprs(i, klev - k + 2) |
|---|
| 1378 | END DO |
|---|
| 1379 | END DO |
|---|
| 1380 | DO i = 1, klon |
|---|
| 1381 | zgeom(i, klev) = rd * pt(i, klev) * log(papmh(i, klev + 1) / papmf(i, klev)) |
|---|
| 1382 | END DO |
|---|
| 1383 | DO k = klev - 1, 1, -1 |
|---|
| 1384 | DO i = 1, klon |
|---|
| 1385 | zgeom(i, k) = zgeom(i, k + 1) + rd * (pt(i, k) + pt(i, k + 1)) / 2.0 * log(papmf(i, k + & |
|---|
| 1386 | 1) / papmf(i, k)) |
|---|
| 1387 | END DO |
|---|
| 1388 | END DO |
|---|
| 1389 | |
|---|
| 1390 | ! appeler la routine principale |
|---|
| 1391 | |
|---|
| 1392 | CALL orolift_strato(klon, klev, kgwd, kdx, ktest, dtime, papmh, papmf, & |
|---|
| 1393 | zgeom, pt, pu, pv, plat, pmea, pstd, psig, pgam, pthe, ppic, pval, pulow, & |
|---|
| 1394 | pvlow, pdudt, pdvdt, pdtdt) |
|---|
| 1395 | |
|---|
| 1396 | DO k = 1, klev |
|---|
| 1397 | DO i = 1, klon |
|---|
| 1398 | d_u(i, klev + 1 - k) = dtime * pdudt(i, k) |
|---|
| 1399 | d_v(i, klev + 1 - k) = dtime * pdvdt(i, k) |
|---|
| 1400 | d_t(i, klev + 1 - k) = dtime * pdtdt(i, k) |
|---|
| 1401 | pustr(i) = pustr(i) + pdudt(i, k) * (papmh(i, k + 1) - papmh(i, k)) / rg |
|---|
| 1402 | pvstr(i) = pvstr(i) + pdvdt(i, k) * (papmh(i, k + 1) - papmh(i, k)) / rg |
|---|
| 1403 | END DO |
|---|
| 1404 | END DO |
|---|
| 1405 | |
|---|
| 1406 | ! print *,' out lift_noro' |
|---|
| 1407 | |
|---|
| 1408 | END SUBROUTINE lift_noro_strato |
|---|
| 1409 | SUBROUTINE orolift_strato(nlon, nlev, kgwd, kdx, ktest, ptsphy, paphm1, & |
|---|
| 1410 | papm1, pgeom1, ptm1, pum1, pvm1, plat, pmea, pstd, psig, pgam, pthe, & |
|---|
| 1411 | ppic, pval & ! OUTPUTS |
|---|
| 1412 | , pulow, pvlow, pvom, pvol, pte) |
|---|
| 1413 | |
|---|
| 1414 | |
|---|
| 1415 | ! **** *OROLIFT: SIMULATE THE GEOSTROPHIC LIFT. |
|---|
| 1416 | |
|---|
| 1417 | ! PURPOSE. |
|---|
| 1418 | ! -------- |
|---|
| 1419 | ! this routine computes the physical tendencies of the |
|---|
| 1420 | ! prognostic variables u,v when enhanced vortex stretching |
|---|
| 1421 | ! is needed. |
|---|
| 1422 | |
|---|
| 1423 | ! ** INTERFACE. |
|---|
| 1424 | ! ---------- |
|---|
| 1425 | ! CALLED FROM *lift_noro |
|---|
| 1426 | ! explicit arguments : |
|---|
| 1427 | ! -------------------- |
|---|
| 1428 | ! ==== inputs === |
|---|
| 1429 | ! nlon----input-I-Total number of horizontal points that get into physics |
|---|
| 1430 | ! nlev----input-I-Number of vertical levels |
|---|
| 1431 | |
|---|
| 1432 | ! kgwd- -input-I: Total nb of points where the orography schemes are active |
|---|
| 1433 | ! ktest--input-I: Flags to indicate active points |
|---|
| 1434 | ! kdx----input-I: Locate the physical location of an active point. |
|---|
| 1435 | ! ptsphy--input-R-Time-step (s) |
|---|
| 1436 | ! paphm1--input-R: pressure at model 1/2 layer |
|---|
| 1437 | ! papm1---input-R: pressure at model layer |
|---|
| 1438 | ! pgeom1--input-R: Altitude of layer above ground |
|---|
| 1439 | ! ptm1, pum1, pvm1--R-: t, u and v |
|---|
| 1440 | ! pmea----input-R-Mean Orography (m) |
|---|
| 1441 | ! pstd----input-R-SSO standard deviation (m) |
|---|
| 1442 | ! psig----input-R-SSO slope |
|---|
| 1443 | ! pgam----input-R-SSO Anisotropy |
|---|
| 1444 | ! pthe----input-R-SSO Angle |
|---|
| 1445 | ! ppic----input-R-SSO Peacks elevation (m) |
|---|
| 1446 | ! pval----input-R-SSO Valleys elevation (m) |
|---|
| 1447 | ! plat----input-R-Latitude (degree) |
|---|
| 1448 | |
|---|
| 1449 | ! ==== outputs === |
|---|
| 1450 | ! pulow, pvlow -output-R: Low-level wind |
|---|
| 1451 | |
|---|
| 1452 | ! pte -----output-R: T tendency |
|---|
| 1453 | ! pvom-----output-R: U tendency |
|---|
| 1454 | ! pvol-----output-R: V tendency |
|---|
| 1455 | |
|---|
| 1456 | |
|---|
| 1457 | ! Implicit Arguments: |
|---|
| 1458 | ! =================== |
|---|
| 1459 | |
|---|
| 1460 | ! klon-common-I: Number of points seen by the physics |
|---|
| 1461 | ! klev-common-I: Number of vertical layers |
|---|
| 1462 | |
|---|
| 1463 | |
|---|
| 1464 | ! ---------- |
|---|
| 1465 | |
|---|
| 1466 | ! AUTHOR. |
|---|
| 1467 | ! ------- |
|---|
| 1468 | ! F.LOTT LMD 22/11/95 |
|---|
| 1469 | |
|---|
| 1470 | USE dimphy |
|---|
| 1471 | USE lmdz_abort_physic, ONLY: abort_physic |
|---|
| 1472 | IMPLICIT NONE |
|---|
| 1473 | |
|---|
| 1474 | include "YOMCST.h" |
|---|
| 1475 | include "YOEGWD.h" |
|---|
| 1476 | ! ----------------------------------------------------------------------- |
|---|
| 1477 | |
|---|
| 1478 | ! * 0.1 ARGUMENTS |
|---|
| 1479 | ! --------- |
|---|
| 1480 | |
|---|
| 1481 | INTEGER nlon, nlev, kgwd |
|---|
| 1482 | REAL ptsphy |
|---|
| 1483 | REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(nlon), & |
|---|
| 1484 | pvlow(nlon) |
|---|
| 1485 | REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), plat(nlon), & |
|---|
| 1486 | pmea(nlon), pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon), ppic(nlon), & |
|---|
| 1487 | pval(nlon), pgeom1(nlon, nlev), papm1(nlon, nlev), paphm1(nlon, nlev + 1) |
|---|
| 1488 | |
|---|
| 1489 | INTEGER kdx(nlon), ktest(nlon) |
|---|
| 1490 | ! ----------------------------------------------------------------------- |
|---|
| 1491 | |
|---|
| 1492 | ! * 0.2 local arrays |
|---|
| 1493 | |
|---|
| 1494 | INTEGER jl, ilevh, jk |
|---|
| 1495 | REAL zhgeo, zdelp, zslow, zsqua, zscav, zbet |
|---|
| 1496 | ! ------------ |
|---|
| 1497 | INTEGER iknub(klon), iknul(klon) |
|---|
| 1498 | LOGICAL ll1(klon, klev + 1) |
|---|
| 1499 | |
|---|
| 1500 | REAL ztau(klon, klev + 1), ztav(klon, klev + 1), zrho(klon, klev + 1) |
|---|
| 1501 | REAL zdudt(klon), zdvdt(klon) |
|---|
| 1502 | REAL zhcrit(klon, klev) |
|---|
| 1503 | |
|---|
| 1504 | LOGICAL lifthigh |
|---|
| 1505 | REAL zcons1, ztmst |
|---|
| 1506 | CHARACTER (LEN = 20) :: modname = 'orolift_strato' |
|---|
| 1507 | CHARACTER (LEN = 80) :: abort_message |
|---|
| 1508 | |
|---|
| 1509 | |
|---|
| 1510 | ! ----------------------------------------------------------------------- |
|---|
| 1511 | |
|---|
| 1512 | ! * 1.1 initialisations |
|---|
| 1513 | ! --------------- |
|---|
| 1514 | |
|---|
| 1515 | lifthigh = .FALSE. |
|---|
| 1516 | |
|---|
| 1517 | IF (nlon/=klon .OR. nlev/=klev) THEN |
|---|
| 1518 | abort_message = 'pb dimension' |
|---|
| 1519 | CALL abort_physic(modname, abort_message, 1) |
|---|
| 1520 | END IF |
|---|
| 1521 | zcons1 = 1. / rd |
|---|
| 1522 | ztmst = ptsphy |
|---|
| 1523 | |
|---|
| 1524 | DO jl = kidia, kfdia |
|---|
| 1525 | zrho(jl, klev + 1) = 0.0 |
|---|
| 1526 | pulow(jl) = 0.0 |
|---|
| 1527 | pvlow(jl) = 0.0 |
|---|
| 1528 | iknub(jl) = klev |
|---|
| 1529 | iknul(jl) = klev |
|---|
| 1530 | ilevh = klev / 3 |
|---|
| 1531 | ll1(jl, klev + 1) = .FALSE. |
|---|
| 1532 | DO jk = 1, klev |
|---|
| 1533 | pvom(jl, jk) = 0.0 |
|---|
| 1534 | pvol(jl, jk) = 0.0 |
|---|
| 1535 | pte(jl, jk) = 0.0 |
|---|
| 1536 | END DO |
|---|
| 1537 | END DO |
|---|
| 1538 | |
|---|
| 1539 | |
|---|
| 1540 | ! * 2.1 DEFINE LOW LEVEL WIND, PROJECT WINDS IN PLANE OF |
|---|
| 1541 | ! * LOW LEVEL WIND, DETERMINE SECTOR IN WHICH TO TAKE |
|---|
| 1542 | ! * THE VARIANCE AND SET INDICATOR FOR CRITICAL LEVELS. |
|---|
| 1543 | |
|---|
| 1544 | DO jk = klev, 1, -1 |
|---|
| 1545 | DO jl = kidia, kfdia |
|---|
| 1546 | IF (ktest(jl)==1) THEN |
|---|
| 1547 | zhcrit(jl, jk) = amax1(ppic(jl) - pval(jl), 100.) |
|---|
| 1548 | zhgeo = pgeom1(jl, jk) / rg |
|---|
| 1549 | ll1(jl, jk) = (zhgeo>zhcrit(jl, jk)) |
|---|
| 1550 | IF (ll1(jl, jk) .NEQV. ll1(jl, jk + 1)) THEN |
|---|
| 1551 | iknub(jl) = jk |
|---|
| 1552 | END IF |
|---|
| 1553 | END IF |
|---|
| 1554 | END DO |
|---|
| 1555 | END DO |
|---|
| 1556 | |
|---|
| 1557 | DO jl = kidia, kfdia |
|---|
| 1558 | IF (ktest(jl)==1) THEN |
|---|
| 1559 | iknub(jl) = max(iknub(jl), klev / 2) |
|---|
| 1560 | iknul(jl) = max(iknul(jl), 2 * klev / 3) |
|---|
| 1561 | IF (iknub(jl)>nktopg) iknub(jl) = nktopg |
|---|
| 1562 | IF (iknub(jl)==nktopg) iknul(jl) = klev |
|---|
| 1563 | IF (iknub(jl)==iknul(jl)) iknub(jl) = iknul(jl) - 1 |
|---|
| 1564 | END IF |
|---|
| 1565 | END DO |
|---|
| 1566 | |
|---|
| 1567 | DO jk = klev, 2, -1 |
|---|
| 1568 | DO jl = kidia, kfdia |
|---|
| 1569 | zrho(jl, jk) = 2. * paphm1(jl, jk) * zcons1 / (ptm1(jl, jk) + ptm1(jl, jk - 1)) |
|---|
| 1570 | END DO |
|---|
| 1571 | END DO |
|---|
| 1572 | ! print *,' dans orolift: 223' |
|---|
| 1573 | |
|---|
| 1574 | ! ******************************************************************** |
|---|
| 1575 | |
|---|
| 1576 | ! * define low level flow |
|---|
| 1577 | ! ------------------- |
|---|
| 1578 | DO jk = klev, 1, -1 |
|---|
| 1579 | DO jl = kidia, kfdia |
|---|
| 1580 | IF (ktest(jl)==1) THEN |
|---|
| 1581 | IF (jk>=iknub(jl) .AND. jk<=iknul(jl)) THEN |
|---|
| 1582 | pulow(jl) = pulow(jl) + pum1(jl, jk) * (paphm1(jl, jk + 1) - paphm1(jl, jk) & |
|---|
| 1583 | ) |
|---|
| 1584 | pvlow(jl) = pvlow(jl) + pvm1(jl, jk) * (paphm1(jl, jk + 1) - paphm1(jl, jk) & |
|---|
| 1585 | ) |
|---|
| 1586 | zrho(jl, klev + 1) = zrho(jl, klev + 1) + zrho(jl, jk) * (paphm1(jl, jk + 1) & |
|---|
| 1587 | - paphm1(jl, jk)) |
|---|
| 1588 | END IF |
|---|
| 1589 | END IF |
|---|
| 1590 | END DO |
|---|
| 1591 | END DO |
|---|
| 1592 | DO jl = kidia, kfdia |
|---|
| 1593 | IF (ktest(jl)==1) THEN |
|---|
| 1594 | pulow(jl) = pulow(jl) / (paphm1(jl, iknul(jl) + 1) - paphm1(jl, iknub(jl))) |
|---|
| 1595 | pvlow(jl) = pvlow(jl) / (paphm1(jl, iknul(jl) + 1) - paphm1(jl, iknub(jl))) |
|---|
| 1596 | zrho(jl, klev + 1) = zrho(jl, klev + 1) / (paphm1(jl, iknul(jl) + 1) - paphm1(jl, & |
|---|
| 1597 | iknub(jl))) |
|---|
| 1598 | END IF |
|---|
| 1599 | END DO |
|---|
| 1600 | |
|---|
| 1601 | ! *********************************************************** |
|---|
| 1602 | |
|---|
| 1603 | ! * 3. COMPUTE MOUNTAIN LIFT |
|---|
| 1604 | |
|---|
| 1605 | DO jl = kidia, kfdia |
|---|
| 1606 | IF (ktest(jl)==1) THEN |
|---|
| 1607 | ztau(jl, klev + 1) = -gklift * zrho(jl, klev + 1) * 2. * romega * & ! * |
|---|
| 1608 | ! (2*pstd(jl)+pmea(jl))* |
|---|
| 1609 | 2 * pstd(jl) * sin(rpi / 180. * plat(jl)) * pvlow(jl) |
|---|
| 1610 | ztav(jl, klev + 1) = gklift * zrho(jl, klev + 1) * 2. * romega * & ! * |
|---|
| 1611 | ! (2*pstd(jl)+pmea(jl))* |
|---|
| 1612 | 2 * pstd(jl) * sin(rpi / 180. * plat(jl)) * pulow(jl) |
|---|
| 1613 | ELSE |
|---|
| 1614 | ztau(jl, klev + 1) = 0.0 |
|---|
| 1615 | ztav(jl, klev + 1) = 0.0 |
|---|
| 1616 | END IF |
|---|
| 1617 | END DO |
|---|
| 1618 | |
|---|
| 1619 | ! * 4. COMPUTE LIFT PROFILE |
|---|
| 1620 | ! * -------------------- |
|---|
| 1621 | |
|---|
| 1622 | DO jk = 1, klev |
|---|
| 1623 | DO jl = kidia, kfdia |
|---|
| 1624 | IF (ktest(jl)==1) THEN |
|---|
| 1625 | ztau(jl, jk) = ztau(jl, klev + 1) * paphm1(jl, jk) / paphm1(jl, klev + 1) |
|---|
| 1626 | ztav(jl, jk) = ztav(jl, klev + 1) * paphm1(jl, jk) / paphm1(jl, klev + 1) |
|---|
| 1627 | ELSE |
|---|
| 1628 | ztau(jl, jk) = 0.0 |
|---|
| 1629 | ztav(jl, jk) = 0.0 |
|---|
| 1630 | END IF |
|---|
| 1631 | END DO |
|---|
| 1632 | END DO |
|---|
| 1633 | |
|---|
| 1634 | |
|---|
| 1635 | ! * 5. COMPUTE TENDENCIES. |
|---|
| 1636 | ! * ------------------- |
|---|
| 1637 | IF (lifthigh) THEN |
|---|
| 1638 | ! EXPLICIT SOLUTION AT ALL LEVELS |
|---|
| 1639 | |
|---|
| 1640 | DO jk = 1, klev |
|---|
| 1641 | DO jl = kidia, kfdia |
|---|
| 1642 | IF (ktest(jl)==1) THEN |
|---|
| 1643 | zdelp = paphm1(jl, jk + 1) - paphm1(jl, jk) |
|---|
| 1644 | zdudt(jl) = -rg * (ztau(jl, jk + 1) - ztau(jl, jk)) / zdelp |
|---|
| 1645 | zdvdt(jl) = -rg * (ztav(jl, jk + 1) - ztav(jl, jk)) / zdelp |
|---|
| 1646 | END IF |
|---|
| 1647 | END DO |
|---|
| 1648 | END DO |
|---|
| 1649 | |
|---|
| 1650 | ! PROJECT PERPENDICULARLY TO U NOT TO DESTROY ENERGY |
|---|
| 1651 | |
|---|
| 1652 | DO jk = 1, klev |
|---|
| 1653 | DO jl = kidia, kfdia |
|---|
| 1654 | IF (ktest(jl)==1) THEN |
|---|
| 1655 | |
|---|
| 1656 | zslow = sqrt(pulow(jl)**2 + pvlow(jl)**2) |
|---|
| 1657 | zsqua = amax1(sqrt(pum1(jl, jk)**2 + pvm1(jl, jk)**2), gvsec) |
|---|
| 1658 | zscav = -zdudt(jl) * pvm1(jl, jk) + zdvdt(jl) * pum1(jl, jk) |
|---|
| 1659 | IF (zsqua>gvsec) THEN |
|---|
| 1660 | pvom(jl, jk) = -zscav * pvm1(jl, jk) / zsqua**2 |
|---|
| 1661 | pvol(jl, jk) = zscav * pum1(jl, jk) / zsqua**2 |
|---|
| 1662 | ELSE |
|---|
| 1663 | pvom(jl, jk) = 0.0 |
|---|
| 1664 | pvol(jl, jk) = 0.0 |
|---|
| 1665 | END IF |
|---|
| 1666 | zsqua = sqrt(pum1(jl, jk)**2 + pum1(jl, jk)**2) |
|---|
| 1667 | IF (zsqua<zslow) THEN |
|---|
| 1668 | pvom(jl, jk) = zsqua / zslow * pvom(jl, jk) |
|---|
| 1669 | pvol(jl, jk) = zsqua / zslow * pvol(jl, jk) |
|---|
| 1670 | END IF |
|---|
| 1671 | |
|---|
| 1672 | END IF |
|---|
| 1673 | END DO |
|---|
| 1674 | END DO |
|---|
| 1675 | |
|---|
| 1676 | ! 6. LOW LEVEL LIFT, SEMI IMPLICIT: |
|---|
| 1677 | ! ---------------------------------- |
|---|
| 1678 | |
|---|
| 1679 | ELSE |
|---|
| 1680 | |
|---|
| 1681 | DO jl = kidia, kfdia |
|---|
| 1682 | IF (ktest(jl)==1) THEN |
|---|
| 1683 | DO jk = klev, iknub(jl), -1 |
|---|
| 1684 | zbet = gklift * 2. * romega * sin(rpi / 180. * plat(jl)) * ztmst * & |
|---|
| 1685 | (pgeom1(jl, iknub(jl) - 1) - pgeom1(jl, jk)) / & |
|---|
| 1686 | (pgeom1(jl, iknub(jl) - 1) - pgeom1(jl, klev)) |
|---|
| 1687 | zdudt(jl) = -pum1(jl, jk) / ztmst / (1 + zbet**2) |
|---|
| 1688 | zdvdt(jl) = -pvm1(jl, jk) / ztmst / (1 + zbet**2) |
|---|
| 1689 | pvom(jl, jk) = zbet**2 * zdudt(jl) - zbet * zdvdt(jl) |
|---|
| 1690 | pvol(jl, jk) = zbet * zdudt(jl) + zbet**2 * zdvdt(jl) |
|---|
| 1691 | END DO |
|---|
| 1692 | END IF |
|---|
| 1693 | END DO |
|---|
| 1694 | |
|---|
| 1695 | END IF |
|---|
| 1696 | |
|---|
| 1697 | ! print *,' out orolift' |
|---|
| 1698 | |
|---|
| 1699 | END SUBROUTINE orolift_strato |
|---|
| 1700 | SUBROUTINE sugwd_strato(nlon, nlev, paprs, pplay) |
|---|
| 1701 | |
|---|
| 1702 | |
|---|
| 1703 | ! **** *SUGWD* INITIALIZE COMMON YOEGWD CONTROLLING GRAVITY WAVE DRAG |
|---|
| 1704 | |
|---|
| 1705 | ! PURPOSE. |
|---|
| 1706 | ! -------- |
|---|
| 1707 | ! INITIALIZE YOEGWD, THE COMMON THAT CONTROLS THE |
|---|
| 1708 | ! GRAVITY WAVE DRAG PARAMETRIZATION. |
|---|
| 1709 | ! VERY IMPORTANT: |
|---|
| 1710 | ! ______________ |
|---|
| 1711 | ! THIS ROUTINE SET_UP THE "TUNABLE PARAMETERS" OF THE |
|---|
| 1712 | ! VARIOUS SSO SCHEMES |
|---|
| 1713 | |
|---|
| 1714 | ! ** INTERFACE. |
|---|
| 1715 | ! ---------- |
|---|
| 1716 | ! CALL *SUGWD* FROM *SUPHEC* |
|---|
| 1717 | ! ----- ------ |
|---|
| 1718 | |
|---|
| 1719 | ! EXPLICIT ARGUMENTS : |
|---|
| 1720 | ! -------------------- |
|---|
| 1721 | ! PAPRS,PPLAY : Pressure at semi and full model levels |
|---|
| 1722 | ! NLEV : number of model levels |
|---|
| 1723 | ! NLON : number of points treated in the physics |
|---|
| 1724 | |
|---|
| 1725 | ! IMPLICIT ARGUMENTS : |
|---|
| 1726 | ! -------------------- |
|---|
| 1727 | ! COMMON YOEGWD |
|---|
| 1728 | ! -GFRCRIT-R: Critical Non-dimensional mountain Height |
|---|
| 1729 | ! (HNC in (1), LOTT 1999) |
|---|
| 1730 | ! -GKWAKE--R: Bluff-body drag coefficient for low level wake |
|---|
| 1731 | ! (Cd in (2), LOTT 1999) |
|---|
| 1732 | ! -GRCRIT--R: Critical Richardson Number |
|---|
| 1733 | ! (Ric, End of first column p791 of LOTT 1999) |
|---|
| 1734 | ! -GKDRAG--R: Gravity wave drag coefficient |
|---|
| 1735 | ! (G in (3), LOTT 1999) |
|---|
| 1736 | ! -GKLIFT--R: Mountain Lift coefficient |
|---|
| 1737 | ! (Cl in (4), LOTT 1999) |
|---|
| 1738 | ! -GHMAX---R: Not used |
|---|
| 1739 | ! -GRAHILO-R: Set-up the trapped waves fraction |
|---|
| 1740 | ! (Beta , End of first column, LOTT 1999) |
|---|
| 1741 | |
|---|
| 1742 | ! -GSIGCR--R: Security value for blocked flow depth |
|---|
| 1743 | ! -NKTOPG--I: Security value for blocked flow level |
|---|
| 1744 | ! -nstra----I: An estimate to qualify the upper levels of |
|---|
| 1745 | ! the model where one wants to impose strees |
|---|
| 1746 | ! profiles |
|---|
| 1747 | ! -GSSECC--R: Security min value for low-level B-V frequency |
|---|
| 1748 | ! -GTSEC---R: Security min value for anisotropy and GW stress. |
|---|
| 1749 | ! -GVSEC---R: Security min value for ulow |
|---|
| 1750 | |
|---|
| 1751 | |
|---|
| 1752 | ! METHOD. |
|---|
| 1753 | ! ------- |
|---|
| 1754 | ! SEE DOCUMENTATION |
|---|
| 1755 | |
|---|
| 1756 | ! EXTERNALS. |
|---|
| 1757 | ! ---------- |
|---|
| 1758 | ! NONE |
|---|
| 1759 | |
|---|
| 1760 | ! REFERENCE. |
|---|
| 1761 | ! ---------- |
|---|
| 1762 | ! Lott, 1999: Alleviation of stationary biases in a GCM through... |
|---|
| 1763 | ! Monthly Weather Review, 127, pp 788-801. |
|---|
| 1764 | |
|---|
| 1765 | ! AUTHOR. |
|---|
| 1766 | ! ------- |
|---|
| 1767 | ! FRANCOIS LOTT *LMD* |
|---|
| 1768 | |
|---|
| 1769 | ! MODIFICATIONS. |
|---|
| 1770 | ! -------------- |
|---|
| 1771 | ! ORIGINAL : 90-01-01 (MARTIN MILLER, ECMWF) |
|---|
| 1772 | ! LAST: 99-07-09 (FRANCOIS LOTT,LMD) |
|---|
| 1773 | ! ------------------------------------------------------------------ |
|---|
| 1774 | USE dimphy |
|---|
| 1775 | USE lmdz_phys_para |
|---|
| 1776 | USE lmdz_grid_phy |
|---|
| 1777 | USE lmdz_geometry |
|---|
| 1778 | USE lmdz_abort_physic, ONLY: abort_physic |
|---|
| 1779 | IMPLICIT NONE |
|---|
| 1780 | |
|---|
| 1781 | ! ----------------------------------------------------------------- |
|---|
| 1782 | include "YOEGWD.h" |
|---|
| 1783 | ! ---------------------------------------------------------------- |
|---|
| 1784 | |
|---|
| 1785 | ! ARGUMENTS |
|---|
| 1786 | INTEGER nlon, nlev |
|---|
| 1787 | REAL paprs(nlon, nlev + 1) |
|---|
| 1788 | REAL pplay(nlon, nlev) |
|---|
| 1789 | |
|---|
| 1790 | INTEGER jk |
|---|
| 1791 | REAL zpr, ztop, zsigt, zpm1r |
|---|
| 1792 | INTEGER :: cell, ij, nstra_tmp, nktopg_tmp |
|---|
| 1793 | REAL :: current_dist, dist_min, dist_min_glo |
|---|
| 1794 | |
|---|
| 1795 | ! * 1. SET THE VALUES OF THE PARAMETERS |
|---|
| 1796 | ! -------------------------------- |
|---|
| 1797 | |
|---|
| 1798 | PRINT *, ' DANS SUGWD NLEV=', nlev |
|---|
| 1799 | ghmax = 10000. |
|---|
| 1800 | |
|---|
| 1801 | zpr = 100000. |
|---|
| 1802 | ZTOP = 0.00005 |
|---|
| 1803 | zsigt = 0.94 |
|---|
| 1804 | ! old ZPR=80000. |
|---|
| 1805 | ! old ZSIGT=0.85 |
|---|
| 1806 | |
|---|
| 1807 | |
|---|
| 1808 | !ym Take the point at equator close to (0,0) coordinates. |
|---|
| 1809 | dist_min = 360 |
|---|
| 1810 | dist_min_glo = 360. |
|---|
| 1811 | cell = -1 |
|---|
| 1812 | DO ij = 1, klon |
|---|
| 1813 | current_dist = sqrt(longitude_deg(ij)**2 + latitude_deg(ij)**2) |
|---|
| 1814 | current_dist = current_dist * (1 + (1e-10 * ind_cell_glo(ij)) / klon_glo) ! For point unicity |
|---|
| 1815 | IF (dist_min>current_dist) THEN |
|---|
| 1816 | dist_min = current_dist |
|---|
| 1817 | cell = ij |
|---|
| 1818 | ENDIF |
|---|
| 1819 | ENDDO |
|---|
| 1820 | |
|---|
| 1821 | !PRINT *, 'SUGWD distmin cell=', dist_min,cell |
|---|
| 1822 | CALL reduce_min(dist_min, dist_min_glo) |
|---|
| 1823 | CALL bcast(dist_min_glo) |
|---|
| 1824 | IF (dist_min/=dist_min_glo) cell = -1 |
|---|
| 1825 | !ym in future find the point at equator close to (0,0) coordinates. |
|---|
| 1826 | PRINT *, 'SUGWD distmin dist_min_glo cell=', dist_min, dist_min_glo, cell |
|---|
| 1827 | |
|---|
| 1828 | nktopg_tmp = nktopg |
|---|
| 1829 | nstra_tmp = nstra |
|---|
| 1830 | |
|---|
| 1831 | IF (cell/=-1) THEN |
|---|
| 1832 | |
|---|
| 1833 | !PRINT*,'SUGWD shape ',shape(pplay),cell+1 |
|---|
| 1834 | |
|---|
| 1835 | DO jk = 1, nlev |
|---|
| 1836 | !zpm1r = pplay(cell+1, jk)/paprs(cell+1, 1) |
|---|
| 1837 | zpm1r = pplay(cell, jk) / paprs(cell, 1) |
|---|
| 1838 | IF (zpm1r>=zsigt) THEN |
|---|
| 1839 | nktopg_tmp = jk |
|---|
| 1840 | END IF |
|---|
| 1841 | IF (zpm1r>=ztop) THEN |
|---|
| 1842 | nstra_tmp = jk |
|---|
| 1843 | END IF |
|---|
| 1844 | END DO |
|---|
| 1845 | ELSE |
|---|
| 1846 | nktopg_tmp = 0 |
|---|
| 1847 | nstra_tmp = 0 |
|---|
| 1848 | ENDIF |
|---|
| 1849 | |
|---|
| 1850 | CALL reduce_sum(nktopg_tmp, nktopg) |
|---|
| 1851 | CALL bcast(nktopg) |
|---|
| 1852 | CALL reduce_sum(nstra_tmp, nstra) |
|---|
| 1853 | CALL bcast(nstra) |
|---|
| 1854 | |
|---|
| 1855 | ! inversion car dans orodrag on compte les niveaux a l'envers |
|---|
| 1856 | nktopg = nlev - nktopg + 1 |
|---|
| 1857 | nstra = nlev - nstra |
|---|
| 1858 | PRINT *, ' DANS SUGWD nktopg=', nktopg |
|---|
| 1859 | PRINT *, ' DANS SUGWD nstra=', nstra |
|---|
| 1860 | IF (nstra == 0) CALL abort_physic("sugwd_strato", "no level in stratosphere", 1) |
|---|
| 1861 | |
|---|
| 1862 | ! Valeurs lues dans les .def, ou attribues dans conf_phys |
|---|
| 1863 | !gkdrag = 0.2 |
|---|
| 1864 | !grahilo = 0.1 |
|---|
| 1865 | !grcrit = 1.00 |
|---|
| 1866 | !gfrcrit = 0.70 |
|---|
| 1867 | !gkwake = 0.40 |
|---|
| 1868 | !gklift = 0.25 |
|---|
| 1869 | |
|---|
| 1870 | gsigcr = 0.80 ! Top of low level flow |
|---|
| 1871 | gvcrit = 0.1 |
|---|
| 1872 | |
|---|
| 1873 | WRITE (UNIT = 6, FMT = '('' *** SSO essential constants ***'')') |
|---|
| 1874 | WRITE (UNIT = 6, FMT = '('' *** SPECIFIED IN SUGWD ***'')') |
|---|
| 1875 | WRITE (UNIT = 6, FMT = '('' Gravity wave ct '',E13.7,'' '')') gkdrag |
|---|
| 1876 | WRITE (UNIT = 6, FMT = '('' Trapped/total wave dag '',E13.7,'' '')') grahilo |
|---|
| 1877 | WRITE (UNIT = 6, FMT = '('' Critical Richardson = '',E13.7,'' '')') grcrit |
|---|
| 1878 | WRITE (UNIT = 6, FMT = '('' Critical Froude'',e13.7)') gfrcrit |
|---|
| 1879 | WRITE (UNIT = 6, FMT = '('' Low level Wake bluff cte'',e13.7)') gkwake |
|---|
| 1880 | WRITE (UNIT = 6, FMT = '('' Low level lift cte'',e13.7)') gklift |
|---|
| 1881 | |
|---|
| 1882 | ! ---------------------------------------------------------------- |
|---|
| 1883 | |
|---|
| 1884 | ! * 2. SET VALUES OF SECURITY PARAMETERS |
|---|
| 1885 | ! --------------------------------- |
|---|
| 1886 | |
|---|
| 1887 | gvsec = 0.10 |
|---|
| 1888 | gssec = 0.0001 |
|---|
| 1889 | |
|---|
| 1890 | gtsec = 0.00001 |
|---|
| 1891 | |
|---|
| 1892 | END SUBROUTINE sugwd_strato |
|---|