1 | ! $Id: orografi.F90 5160 2024-08-03 12:56:58Z evignon $ |
---|
2 | |
---|
3 | SUBROUTINE drag_noro(nlon, nlev, dtime, paprs, pplay, pmea, pstd, psig, pgam, & |
---|
4 | pthe, ppic, pval, kgwd, kdx, ktest, t, u, v, pulow, pvlow, pustr, pvstr, & |
---|
5 | d_t, d_u, d_v) |
---|
6 | |
---|
7 | USE dimphy |
---|
8 | USE lmdz_yomcst |
---|
9 | |
---|
10 | IMPLICIT NONE |
---|
11 | ! ====================================================================== |
---|
12 | ! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
13 | ! Objet: Frottement de la montagne Interface |
---|
14 | ! ====================================================================== |
---|
15 | ! Arguments: |
---|
16 | ! dtime---input-R- pas d'integration (s) |
---|
17 | ! paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
18 | ! pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
19 | ! t-------input-R-temperature (K) |
---|
20 | ! u-------input-R-vitesse horizontale (m/s) |
---|
21 | ! v-------input-R-vitesse horizontale (m/s) |
---|
22 | |
---|
23 | ! d_t-----output-R-increment de la temperature |
---|
24 | ! d_u-----output-R-increment de la vitesse u |
---|
25 | ! d_v-----output-R-increment de la vitesse v |
---|
26 | ! ====================================================================== |
---|
27 | |
---|
28 | ! ARGUMENTS |
---|
29 | |
---|
30 | INTEGER nlon, nlev |
---|
31 | REAL dtime |
---|
32 | REAL paprs(klon, klev + 1) |
---|
33 | REAL pplay(klon, klev) |
---|
34 | REAL pmea(nlon), pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon) |
---|
35 | REAL ppic(nlon), pval(nlon) |
---|
36 | REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
---|
37 | REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
---|
38 | REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
---|
39 | |
---|
40 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
---|
41 | |
---|
42 | ! Variables locales: |
---|
43 | |
---|
44 | REAL zgeom(klon, klev) |
---|
45 | REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
---|
46 | REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
---|
47 | REAL papmf(klon, klev), papmh(klon, klev + 1) |
---|
48 | |
---|
49 | ! initialiser les variables de sortie (pour securite) |
---|
50 | |
---|
51 | DO i = 1, klon |
---|
52 | pulow(i) = 0.0 |
---|
53 | pvlow(i) = 0.0 |
---|
54 | pustr(i) = 0.0 |
---|
55 | pvstr(i) = 0.0 |
---|
56 | END DO |
---|
57 | DO k = 1, klev |
---|
58 | DO i = 1, klon |
---|
59 | d_t(i, k) = 0.0 |
---|
60 | d_u(i, k) = 0.0 |
---|
61 | d_v(i, k) = 0.0 |
---|
62 | pdudt(i, k) = 0.0 |
---|
63 | pdvdt(i, k) = 0.0 |
---|
64 | pdtdt(i, k) = 0.0 |
---|
65 | END DO |
---|
66 | END DO |
---|
67 | |
---|
68 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
69 | ! verticaux augmente du haut vers le bas) |
---|
70 | |
---|
71 | DO k = 1, klev |
---|
72 | DO i = 1, klon |
---|
73 | pt(i, k) = t(i, klev - k + 1) |
---|
74 | pu(i, k) = u(i, klev - k + 1) |
---|
75 | pv(i, k) = v(i, klev - k + 1) |
---|
76 | papmf(i, k) = pplay(i, klev - k + 1) |
---|
77 | END DO |
---|
78 | END DO |
---|
79 | DO k = 1, klev + 1 |
---|
80 | DO i = 1, klon |
---|
81 | papmh(i, k) = paprs(i, klev - k + 2) |
---|
82 | END DO |
---|
83 | END DO |
---|
84 | DO i = 1, klon |
---|
85 | zgeom(i, klev) = rd * pt(i, klev) * log(papmh(i, klev + 1) / papmf(i, klev)) |
---|
86 | END DO |
---|
87 | DO k = klev - 1, 1, -1 |
---|
88 | DO i = 1, klon |
---|
89 | zgeom(i, k) = zgeom(i, k + 1) + rd * (pt(i, k) + pt(i, k + 1)) / 2.0 * log(papmf(i, k + & |
---|
90 | 1) / papmf(i, k)) |
---|
91 | END DO |
---|
92 | END DO |
---|
93 | |
---|
94 | ! appeler la routine principale |
---|
95 | |
---|
96 | CALL orodrag(klon, klev, kgwd, kdx, ktest, dtime, papmh, papmf, zgeom, pt, & |
---|
97 | pu, pv, pmea, pstd, psig, pgam, pthe, ppic, pval, pulow, pvlow, pdudt, & |
---|
98 | pdvdt, pdtdt) |
---|
99 | |
---|
100 | DO k = 1, klev |
---|
101 | DO i = 1, klon |
---|
102 | d_u(i, klev + 1 - k) = dtime * pdudt(i, k) |
---|
103 | d_v(i, klev + 1 - k) = dtime * pdvdt(i, k) |
---|
104 | d_t(i, klev + 1 - k) = dtime * pdtdt(i, k) |
---|
105 | pustr(i) = pustr(i) & ! IM BUG . |
---|
106 | ! +rg*pdudt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
107 | + pdudt(i, k) * (papmh(i, k + 1) - papmh(i, k)) / rg |
---|
108 | pvstr(i) = pvstr(i) & ! IM BUG . |
---|
109 | ! +rg*pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
110 | + pdvdt(i, k) * (papmh(i, k + 1) - papmh(i, k)) / rg |
---|
111 | END DO |
---|
112 | END DO |
---|
113 | |
---|
114 | END SUBROUTINE drag_noro |
---|
115 | SUBROUTINE orodrag(nlon, nlev, kgwd, kdx, ktest, ptsphy, paphm1, papm1, & |
---|
116 | pgeom1, ptm1, pum1, pvm1, pmea, pstd, psig, pgamma, ptheta, ppic, pval & |
---|
117 | ! outputs |
---|
118 | , pulow, pvlow, pvom, pvol, pte) |
---|
119 | |
---|
120 | USE dimphy |
---|
121 | USE lmdz_YOEGWD, ONLY: GFRCRIT, GKWAKE, GRCRIT, GVCRIT, GKDRAG, GKLIFT, GHMAX, GRAHILO, GSIGCR, NKTOPG, NSTRA, GSSEC, GTSEC, GVSEC, & |
---|
122 | GWD_RANDO_RUWMAX, gwd_rando_sat, GWD_FRONT_RUWMAX, gwd_front_sat |
---|
123 | USE lmdz_libmath, ONLY: ismax, ismin |
---|
124 | USE lmdz_yomcst |
---|
125 | |
---|
126 | IMPLICIT NONE |
---|
127 | |
---|
128 | |
---|
129 | |
---|
130 | ! **** *gwdrag* - does the gravity wave parametrization. |
---|
131 | |
---|
132 | ! purpose. |
---|
133 | ! -------- |
---|
134 | |
---|
135 | ! this routine computes the physical tendencies of the |
---|
136 | ! prognostic variables u,v and t due to vertical transports by |
---|
137 | ! subgridscale orographically excited gravity waves |
---|
138 | |
---|
139 | ! ** interface. |
---|
140 | ! ---------- |
---|
141 | ! called from *callpar*. |
---|
142 | |
---|
143 | ! the routine takes its input from the long-term storage: |
---|
144 | ! u,v,t and p at t-1. |
---|
145 | |
---|
146 | ! explicit arguments : |
---|
147 | ! -------------------- |
---|
148 | ! ==== inputs === |
---|
149 | ! ==== outputs === |
---|
150 | |
---|
151 | ! implicit arguments : none |
---|
152 | ! -------------------- |
---|
153 | |
---|
154 | ! implicit LOGICAL (l) |
---|
155 | |
---|
156 | ! author. |
---|
157 | ! ------- |
---|
158 | ! m.miller + b.ritter e.c.m.w.f. 15/06/86. |
---|
159 | |
---|
160 | ! f.lott + m. miller e.c.m.w.f. 22/11/94 |
---|
161 | ! ----------------------------------------------------------------------- |
---|
162 | |
---|
163 | ! * 0.1 arguments |
---|
164 | ! --------- |
---|
165 | |
---|
166 | |
---|
167 | ! ym integer nlon, nlev, klevm1 |
---|
168 | INTEGER nlon, nlev |
---|
169 | INTEGER kgwd, jl, ilevp1, jk, ji |
---|
170 | REAL zdelp, ztemp, zforc, ztend |
---|
171 | REAL rover, zb, zc, zconb, zabsv |
---|
172 | REAL zzd1, ratio, zbet, zust, zvst, zdis |
---|
173 | REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(klon), & |
---|
174 | pvlow(klon) |
---|
175 | REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), pmea(nlon), & |
---|
176 | pstd(nlon), psig(nlon), pgamma(nlon), ptheta(nlon), ppic(nlon), & |
---|
177 | pval(nlon), pgeom1(nlon, nlev), papm1(nlon, nlev), paphm1(nlon, nlev + 1) |
---|
178 | |
---|
179 | INTEGER kdx(nlon), ktest(nlon) |
---|
180 | ! ----------------------------------------------------------------------- |
---|
181 | |
---|
182 | ! * 0.2 local arrays |
---|
183 | ! ------------ |
---|
184 | INTEGER isect(klon), icrit(klon), ikcrith(klon), ikenvh(klon), iknu(klon), & |
---|
185 | iknu2(klon), ikcrit(klon), ikhlim(klon) |
---|
186 | |
---|
187 | REAL ztau(klon, klev + 1), ztauf(klon, klev + 1), zstab(klon, klev + 1), & |
---|
188 | zvph(klon, klev + 1), zrho(klon, klev + 1), zri(klon, klev + 1), & |
---|
189 | zpsi(klon, klev + 1), zzdep(klon, klev) |
---|
190 | REAL zdudt(klon), zdvdt(klon), zdtdt(klon), zdedt(klon), zvidis(klon), & |
---|
191 | znu(klon), zd1(klon), zd2(klon), zdmod(klon) |
---|
192 | REAL ztmst, ptsphy, zrtmst |
---|
193 | |
---|
194 | ! ------------------------------------------------------------------ |
---|
195 | |
---|
196 | ! * 1. initialization |
---|
197 | ! -------------- |
---|
198 | |
---|
199 | |
---|
200 | ! ------------------------------------------------------------------ |
---|
201 | |
---|
202 | ! * 1.1 computational constants |
---|
203 | ! ----------------------- |
---|
204 | |
---|
205 | |
---|
206 | ! ztmst=twodt |
---|
207 | ! IF(nstep.EQ.nstart) ztmst=0.5*twodt |
---|
208 | ! ym klevm1=klev-1 |
---|
209 | ztmst = ptsphy |
---|
210 | zrtmst = 1. / ztmst |
---|
211 | |
---|
212 | ! ------------------------------------------------------------------ |
---|
213 | |
---|
214 | ! * 1.3 check whether row contains point for printing |
---|
215 | ! --------------------------------------------- |
---|
216 | |
---|
217 | |
---|
218 | ! ------------------------------------------------------------------ |
---|
219 | |
---|
220 | ! * 2. precompute basic state variables. |
---|
221 | ! * ---------- ----- ----- ---------- |
---|
222 | ! * define low level wind, project winds in plane of |
---|
223 | ! * low level wind, determine sector in which to take |
---|
224 | ! * the variance and set indicator for critical levels. |
---|
225 | |
---|
226 | CALL orosetup(nlon, ktest, ikcrit, ikcrith, icrit, ikenvh, iknu, iknu2, & |
---|
227 | paphm1, papm1, pum1, pvm1, ptm1, pgeom1, pstd, zrho, zri, zstab, ztau, & |
---|
228 | zvph, zpsi, zzdep, pulow, pvlow, ptheta, pgamma, pmea, ppic, pval, znu, & |
---|
229 | zd1, zd2, zdmod) |
---|
230 | |
---|
231 | ! *********************************************************** |
---|
232 | |
---|
233 | |
---|
234 | ! * 3. compute low level stresses using subcritical and |
---|
235 | ! * supercritical forms.computes anisotropy coefficient |
---|
236 | ! * as measure of orographic twodimensionality. |
---|
237 | |
---|
238 | CALL gwstress(nlon, nlev, ktest, icrit, ikenvh, iknu, zrho, zstab, zvph, & |
---|
239 | pstd, psig, pmea, ppic, ztau, pgeom1, zdmod) |
---|
240 | |
---|
241 | ! * 4. compute stress profile. |
---|
242 | ! * ------- ------ -------- |
---|
243 | |
---|
244 | CALL gwprofil(nlon, nlev, kgwd, kdx, ktest, ikcrith, icrit, paphm1, zrho, & |
---|
245 | zstab, zvph, zri, ztau, zdmod, psig, pstd) |
---|
246 | |
---|
247 | ! * 5. compute tendencies. |
---|
248 | ! * ------------------- |
---|
249 | |
---|
250 | |
---|
251 | ! explicit solution at all levels for the gravity wave |
---|
252 | ! implicit solution for the blocked levels |
---|
253 | |
---|
254 | DO jl = kidia, kfdia |
---|
255 | zvidis(jl) = 0.0 |
---|
256 | zdudt(jl) = 0.0 |
---|
257 | zdvdt(jl) = 0.0 |
---|
258 | zdtdt(jl) = 0.0 |
---|
259 | END DO |
---|
260 | |
---|
261 | ilevp1 = klev + 1 |
---|
262 | |
---|
263 | DO jk = 1, klev |
---|
264 | |
---|
265 | |
---|
266 | ! do 523 jl=1,kgwd |
---|
267 | ! ji=kdx(jl) |
---|
268 | ! Modif vectorisation 02/04/2004 |
---|
269 | DO ji = kidia, kfdia |
---|
270 | IF (ktest(ji)==1) THEN |
---|
271 | |
---|
272 | zdelp = paphm1(ji, jk + 1) - paphm1(ji, jk) |
---|
273 | ztemp = -rg * (ztau(ji, jk + 1) - ztau(ji, jk)) / (zvph(ji, ilevp1) * zdelp) |
---|
274 | zdudt(ji) = (pulow(ji) * zd1(ji) - pvlow(ji) * zd2(ji)) * ztemp / zdmod(ji) |
---|
275 | zdvdt(ji) = (pvlow(ji) * zd1(ji) + pulow(ji) * zd2(ji)) * ztemp / zdmod(ji) |
---|
276 | |
---|
277 | ! controle des overshoots: |
---|
278 | |
---|
279 | zforc = sqrt(zdudt(ji)**2 + zdvdt(ji)**2) + 1.E-12 |
---|
280 | ztend = sqrt(pum1(ji, jk)**2 + pvm1(ji, jk)**2) / ztmst + 1.E-12 |
---|
281 | rover = 0.25 |
---|
282 | IF (zforc>=rover * ztend) THEN |
---|
283 | zdudt(ji) = rover * ztend / zforc * zdudt(ji) |
---|
284 | zdvdt(ji) = rover * ztend / zforc * zdvdt(ji) |
---|
285 | END IF |
---|
286 | |
---|
287 | ! fin du controle des overshoots |
---|
288 | |
---|
289 | IF (jk>=ikenvh(ji)) THEN |
---|
290 | zb = 1.0 - 0.18 * pgamma(ji) - 0.04 * pgamma(ji)**2 |
---|
291 | zc = 0.48 * pgamma(ji) + 0.3 * pgamma(ji)**2 |
---|
292 | zconb = 2. * ztmst * gkwake * psig(ji) / (4. * pstd(ji)) |
---|
293 | zabsv = sqrt(pum1(ji, jk)**2 + pvm1(ji, jk)**2) / 2. |
---|
294 | zzd1 = zb * cos(zpsi(ji, jk))**2 + zc * sin(zpsi(ji, jk))**2 |
---|
295 | ratio = (cos(zpsi(ji, jk))**2 + pgamma(ji) * sin(zpsi(ji, & |
---|
296 | jk))**2) / (pgamma(ji) * cos(zpsi(ji, jk))**2 + sin(zpsi(ji, jk))**2) |
---|
297 | zbet = max(0., 2. - 1. / ratio) * zconb * zzdep(ji, jk) * zzd1 * zabsv |
---|
298 | |
---|
299 | ! simplement oppose au vent |
---|
300 | |
---|
301 | zdudt(ji) = -pum1(ji, jk) / ztmst |
---|
302 | zdvdt(ji) = -pvm1(ji, jk) / ztmst |
---|
303 | |
---|
304 | ! projection dans la direction de l'axe principal de l'orographie |
---|
305 | ! mod zdudt(ji)=-(pum1(ji,jk)*cos(ptheta(ji)*rpi/180.) |
---|
306 | ! mod * +pvm1(ji,jk)*sin(ptheta(ji)*rpi/180.)) |
---|
307 | ! mod * *cos(ptheta(ji)*rpi/180.)/ztmst |
---|
308 | ! mod zdvdt(ji)=-(pum1(ji,jk)*cos(ptheta(ji)*rpi/180.) |
---|
309 | ! mod * +pvm1(ji,jk)*sin(ptheta(ji)*rpi/180.)) |
---|
310 | ! mod * *sin(ptheta(ji)*rpi/180.)/ztmst |
---|
311 | zdudt(ji) = zdudt(ji) * (zbet / (1. + zbet)) |
---|
312 | zdvdt(ji) = zdvdt(ji) * (zbet / (1. + zbet)) |
---|
313 | END IF |
---|
314 | pvom(ji, jk) = zdudt(ji) |
---|
315 | pvol(ji, jk) = zdvdt(ji) |
---|
316 | zust = pum1(ji, jk) + ztmst * zdudt(ji) |
---|
317 | zvst = pvm1(ji, jk) + ztmst * zdvdt(ji) |
---|
318 | zdis = 0.5 * (pum1(ji, jk)**2 + pvm1(ji, jk)**2 - zust**2 - zvst**2) |
---|
319 | zdedt(ji) = zdis / ztmst |
---|
320 | zvidis(ji) = zvidis(ji) + zdis * zdelp |
---|
321 | zdtdt(ji) = zdedt(ji) / rcpd |
---|
322 | ! pte(ji,jk)=zdtdt(ji) |
---|
323 | |
---|
324 | ! ENCORE UN TRUC POUR EVITER LES EXPLOSIONS |
---|
325 | |
---|
326 | pte(ji, jk) = 0.0 |
---|
327 | |
---|
328 | END IF |
---|
329 | END DO |
---|
330 | |
---|
331 | END DO |
---|
332 | |
---|
333 | END SUBROUTINE orodrag |
---|
334 | SUBROUTINE orosetup(nlon, ktest, kkcrit, kkcrith, kcrit, kkenvh, kknu, kknu2, & |
---|
335 | paphm1, papm1, pum1, pvm1, ptm1, pgeom1, pstd, prho, pri, pstab, ptau, & |
---|
336 | pvph, ppsi, pzdep, pulow, pvlow, ptheta, pgamma, pmea, ppic, pval, pnu, & |
---|
337 | pd1, pd2, pdmod) |
---|
338 | |
---|
339 | ! **** *gwsetup* |
---|
340 | |
---|
341 | ! purpose. |
---|
342 | ! -------- |
---|
343 | |
---|
344 | ! ** interface. |
---|
345 | ! ---------- |
---|
346 | ! from *orodrag* |
---|
347 | |
---|
348 | ! explicit arguments : |
---|
349 | ! -------------------- |
---|
350 | ! ==== inputs === |
---|
351 | ! ==== outputs === |
---|
352 | |
---|
353 | ! implicit arguments : none |
---|
354 | ! -------------------- |
---|
355 | |
---|
356 | ! method. |
---|
357 | ! ------- |
---|
358 | |
---|
359 | |
---|
360 | ! externals. |
---|
361 | ! ---------- |
---|
362 | |
---|
363 | |
---|
364 | ! reference. |
---|
365 | ! ---------- |
---|
366 | |
---|
367 | ! see ecmwf research department documentation of the "i.f.s." |
---|
368 | |
---|
369 | ! author. |
---|
370 | ! ------- |
---|
371 | |
---|
372 | ! modifications. |
---|
373 | ! -------------- |
---|
374 | ! f.lott for the new-gwdrag scheme november 1993 |
---|
375 | |
---|
376 | ! ----------------------------------------------------------------------- |
---|
377 | USE dimphy |
---|
378 | USE lmdz_YOEGWD, ONLY: GFRCRIT, GKWAKE, GRCRIT, GVCRIT, GKDRAG, GKLIFT, GHMAX, GRAHILO, GSIGCR, NKTOPG, NSTRA, GSSEC, GTSEC, GVSEC, & |
---|
379 | GWD_RANDO_RUWMAX, gwd_rando_sat, GWD_FRONT_RUWMAX, gwd_front_sat |
---|
380 | USE lmdz_yomcst |
---|
381 | |
---|
382 | IMPLICIT NONE |
---|
383 | |
---|
384 | ! ----------------------------------------------------------------------- |
---|
385 | |
---|
386 | ! * 0.1 arguments |
---|
387 | ! --------- |
---|
388 | |
---|
389 | INTEGER nlon |
---|
390 | INTEGER jl, jk |
---|
391 | REAL zdelp |
---|
392 | |
---|
393 | INTEGER kkcrit(nlon), kkcrith(nlon), kcrit(nlon), ktest(nlon), kkenvh(nlon) |
---|
394 | |
---|
395 | REAL paphm1(nlon, klev + 1), papm1(nlon, klev), pum1(nlon, klev), & |
---|
396 | pvm1(nlon, klev), ptm1(nlon, klev), pgeom1(nlon, klev), & |
---|
397 | prho(nlon, klev + 1), pri(nlon, klev + 1), pstab(nlon, klev + 1), & |
---|
398 | ptau(nlon, klev + 1), pvph(nlon, klev + 1), ppsi(nlon, klev + 1), & |
---|
399 | pzdep(nlon, klev) |
---|
400 | REAL pulow(nlon), pvlow(nlon), ptheta(nlon), pgamma(nlon), pnu(nlon), & |
---|
401 | pd1(nlon), pd2(nlon), pdmod(nlon) |
---|
402 | REAL pstd(nlon), pmea(nlon), ppic(nlon), pval(nlon) |
---|
403 | |
---|
404 | ! ----------------------------------------------------------------------- |
---|
405 | |
---|
406 | ! * 0.2 local arrays |
---|
407 | ! ------------ |
---|
408 | |
---|
409 | INTEGER ilevm1, ilevm2, ilevh |
---|
410 | REAL zcons1, zcons2, zcons3, zhgeo |
---|
411 | REAL zu, zphi, zvt1, zvt2, zst, zvar, zdwind, zwind |
---|
412 | REAL zstabm, zstabp, zrhom, zrhop, alpha |
---|
413 | REAL zggeenv, zggeom1, zgvar |
---|
414 | LOGICAL lo |
---|
415 | LOGICAL ll1(klon, klev + 1) |
---|
416 | INTEGER kknu(klon), kknu2(klon), kknub(klon), kknul(klon), kentp(klon), & |
---|
417 | ncount(klon) |
---|
418 | |
---|
419 | REAL zhcrit(klon, klev), zvpf(klon, klev), zdp(klon, klev) |
---|
420 | REAL znorm(klon), zb(klon), zc(klon), zulow(klon), zvlow(klon), znup(klon), & |
---|
421 | znum(klon) |
---|
422 | |
---|
423 | ! ------------------------------------------------------------------ |
---|
424 | |
---|
425 | ! * 1. initialization |
---|
426 | ! -------------- |
---|
427 | |
---|
428 | ! PRINT *,' entree gwsetup' |
---|
429 | |
---|
430 | ! ------------------------------------------------------------------ |
---|
431 | |
---|
432 | ! * 1.1 computational constants |
---|
433 | ! ----------------------- |
---|
434 | |
---|
435 | ilevm1 = klev - 1 |
---|
436 | ilevm2 = klev - 2 |
---|
437 | ilevh = klev / 3 |
---|
438 | |
---|
439 | zcons1 = 1. / rd |
---|
440 | ! old zcons2=g**2/cpd |
---|
441 | zcons2 = rg**2 / rcpd |
---|
442 | ! old zcons3=1.5*api |
---|
443 | zcons3 = 1.5 * rpi |
---|
444 | |
---|
445 | ! ------------------------------------------------------------------ |
---|
446 | |
---|
447 | ! * 2. |
---|
448 | ! -------------- |
---|
449 | |
---|
450 | |
---|
451 | ! ------------------------------------------------------------------ |
---|
452 | |
---|
453 | ! * 2.1 define low level wind, project winds in plane of |
---|
454 | ! * low level wind, determine sector in which to take |
---|
455 | ! * the variance and set indicator for critical levels. |
---|
456 | |
---|
457 | DO jl = kidia, kfdia |
---|
458 | kknu(jl) = klev |
---|
459 | kknu2(jl) = klev |
---|
460 | kknub(jl) = klev |
---|
461 | kknul(jl) = klev |
---|
462 | pgamma(jl) = max(pgamma(jl), gtsec) |
---|
463 | ll1(jl, klev + 1) = .FALSE. |
---|
464 | END DO |
---|
465 | |
---|
466 | ! Ajouter une initialisation (L. Li, le 23fev99): |
---|
467 | |
---|
468 | DO jk = klev, ilevh, -1 |
---|
469 | DO jl = kidia, kfdia |
---|
470 | ll1(jl, jk) = .FALSE. |
---|
471 | END DO |
---|
472 | END DO |
---|
473 | |
---|
474 | ! * define top of low level flow |
---|
475 | ! ---------------------------- |
---|
476 | DO jk = klev, ilevh, -1 |
---|
477 | DO jl = kidia, kfdia |
---|
478 | lo = (paphm1(jl, jk) / paphm1(jl, klev + 1)) >= gsigcr |
---|
479 | IF (lo) THEN |
---|
480 | kkcrit(jl) = jk |
---|
481 | END IF |
---|
482 | zhcrit(jl, jk) = ppic(jl) |
---|
483 | zhgeo = pgeom1(jl, jk) / rg |
---|
484 | ll1(jl, jk) = (zhgeo>zhcrit(jl, jk)) |
---|
485 | IF (ll1(jl, jk) .NEQV. ll1(jl, jk + 1)) THEN |
---|
486 | kknu(jl) = jk |
---|
487 | END IF |
---|
488 | IF (.NOT. ll1(jl, ilevh)) kknu(jl) = ilevh |
---|
489 | END DO |
---|
490 | END DO |
---|
491 | DO jk = klev, ilevh, -1 |
---|
492 | DO jl = kidia, kfdia |
---|
493 | zhcrit(jl, jk) = ppic(jl) - pval(jl) |
---|
494 | zhgeo = pgeom1(jl, jk) / rg |
---|
495 | ll1(jl, jk) = (zhgeo>zhcrit(jl, jk)) |
---|
496 | IF (ll1(jl, jk) .NEQV. ll1(jl, jk + 1)) THEN |
---|
497 | kknu2(jl) = jk |
---|
498 | END IF |
---|
499 | IF (.NOT. ll1(jl, ilevh)) kknu2(jl) = ilevh |
---|
500 | END DO |
---|
501 | END DO |
---|
502 | DO jk = klev, ilevh, -1 |
---|
503 | DO jl = kidia, kfdia |
---|
504 | zhcrit(jl, jk) = amax1(ppic(jl) - pmea(jl), pmea(jl) - pval(jl)) |
---|
505 | zhgeo = pgeom1(jl, jk) / rg |
---|
506 | ll1(jl, jk) = (zhgeo>zhcrit(jl, jk)) |
---|
507 | IF (ll1(jl, jk) .NEQV. ll1(jl, jk + 1)) THEN |
---|
508 | kknub(jl) = jk |
---|
509 | END IF |
---|
510 | IF (.NOT. ll1(jl, ilevh)) kknub(jl) = ilevh |
---|
511 | END DO |
---|
512 | END DO |
---|
513 | |
---|
514 | DO jl = kidia, kfdia |
---|
515 | kknu(jl) = min(kknu(jl), nktopg) |
---|
516 | kknu2(jl) = min(kknu2(jl), nktopg) |
---|
517 | kknub(jl) = min(kknub(jl), nktopg) |
---|
518 | kknul(jl) = klev |
---|
519 | END DO |
---|
520 | |
---|
521 | ! c* initialize various arrays |
---|
522 | |
---|
523 | DO jl = kidia, kfdia |
---|
524 | prho(jl, klev + 1) = 0.0 |
---|
525 | pstab(jl, klev + 1) = 0.0 |
---|
526 | pstab(jl, 1) = 0.0 |
---|
527 | pri(jl, klev + 1) = 9999.0 |
---|
528 | ppsi(jl, klev + 1) = 0.0 |
---|
529 | pri(jl, 1) = 0.0 |
---|
530 | pvph(jl, 1) = 0.0 |
---|
531 | pulow(jl) = 0.0 |
---|
532 | pvlow(jl) = 0.0 |
---|
533 | zulow(jl) = 0.0 |
---|
534 | zvlow(jl) = 0.0 |
---|
535 | kkcrith(jl) = klev |
---|
536 | kkenvh(jl) = klev |
---|
537 | kentp(jl) = klev |
---|
538 | kcrit(jl) = 1 |
---|
539 | ncount(jl) = 0 |
---|
540 | ll1(jl, klev + 1) = .FALSE. |
---|
541 | END DO |
---|
542 | |
---|
543 | ! * define low-level flow |
---|
544 | ! --------------------- |
---|
545 | |
---|
546 | DO jk = klev, 2, -1 |
---|
547 | DO jl = kidia, kfdia |
---|
548 | IF (ktest(jl)==1) THEN |
---|
549 | zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk - 1) |
---|
550 | prho(jl, jk) = 2. * paphm1(jl, jk) * zcons1 / (ptm1(jl, jk) + ptm1(jl, jk - 1)) |
---|
551 | pstab(jl, jk) = 2. * zcons2 / (ptm1(jl, jk) + ptm1(jl, jk - 1)) * & |
---|
552 | (1. - rcpd * prho(jl, jk) * (ptm1(jl, jk) - ptm1(jl, jk - 1)) / zdp(jl, jk)) |
---|
553 | pstab(jl, jk) = max(pstab(jl, jk), gssec) |
---|
554 | END IF |
---|
555 | END DO |
---|
556 | END DO |
---|
557 | |
---|
558 | ! ******************************************************************** |
---|
559 | |
---|
560 | ! * define blocked flow |
---|
561 | ! ------------------- |
---|
562 | DO jk = klev, ilevh, -1 |
---|
563 | DO jl = kidia, kfdia |
---|
564 | IF (jk>=kknub(jl) .AND. jk<=kknul(jl)) THEN |
---|
565 | pulow(jl) = pulow(jl) + pum1(jl, jk) * (paphm1(jl, jk + 1) - paphm1(jl, jk)) |
---|
566 | pvlow(jl) = pvlow(jl) + pvm1(jl, jk) * (paphm1(jl, jk + 1) - paphm1(jl, jk)) |
---|
567 | END IF |
---|
568 | END DO |
---|
569 | END DO |
---|
570 | DO jl = kidia, kfdia |
---|
571 | pulow(jl) = pulow(jl) / (paphm1(jl, kknul(jl) + 1) - paphm1(jl, kknub(jl))) |
---|
572 | pvlow(jl) = pvlow(jl) / (paphm1(jl, kknul(jl) + 1) - paphm1(jl, kknub(jl))) |
---|
573 | znorm(jl) = max(sqrt(pulow(jl)**2 + pvlow(jl)**2), gvsec) |
---|
574 | pvph(jl, klev + 1) = znorm(jl) |
---|
575 | END DO |
---|
576 | |
---|
577 | ! ******* setup orography axes and define plane of profiles ******* |
---|
578 | |
---|
579 | DO jl = kidia, kfdia |
---|
580 | lo = (pulow(jl)<gvsec) .AND. (pulow(jl)>=-gvsec) |
---|
581 | IF (lo) THEN |
---|
582 | zu = pulow(jl) + 2. * gvsec |
---|
583 | ELSE |
---|
584 | zu = pulow(jl) |
---|
585 | END IF |
---|
586 | zphi = atan(pvlow(jl) / zu) |
---|
587 | ppsi(jl, klev + 1) = ptheta(jl) * rpi / 180. - zphi |
---|
588 | zb(jl) = 1. - 0.18 * pgamma(jl) - 0.04 * pgamma(jl)**2 |
---|
589 | zc(jl) = 0.48 * pgamma(jl) + 0.3 * pgamma(jl)**2 |
---|
590 | pd1(jl) = zb(jl) - (zb(jl) - zc(jl)) * (sin(ppsi(jl, klev + 1))**2) |
---|
591 | pd2(jl) = (zb(jl) - zc(jl)) * sin(ppsi(jl, klev + 1)) * cos(ppsi(jl, klev + 1)) |
---|
592 | pdmod(jl) = sqrt(pd1(jl)**2 + pd2(jl)**2) |
---|
593 | END DO |
---|
594 | |
---|
595 | ! ************ define flow in plane of lowlevel stress ************* |
---|
596 | |
---|
597 | DO jk = 1, klev |
---|
598 | DO jl = kidia, kfdia |
---|
599 | IF (ktest(jl)==1) THEN |
---|
600 | zvt1 = pulow(jl) * pum1(jl, jk) + pvlow(jl) * pvm1(jl, jk) |
---|
601 | zvt2 = -pvlow(jl) * pum1(jl, jk) + pulow(jl) * pvm1(jl, jk) |
---|
602 | zvpf(jl, jk) = (zvt1 * pd1(jl) + zvt2 * pd2(jl)) / (znorm(jl) * pdmod(jl)) |
---|
603 | END IF |
---|
604 | ptau(jl, jk) = 0.0 |
---|
605 | pzdep(jl, jk) = 0.0 |
---|
606 | ppsi(jl, jk) = 0.0 |
---|
607 | ll1(jl, jk) = .FALSE. |
---|
608 | END DO |
---|
609 | END DO |
---|
610 | DO jk = 2, klev |
---|
611 | DO jl = kidia, kfdia |
---|
612 | IF (ktest(jl)==1) THEN |
---|
613 | zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk - 1) |
---|
614 | pvph(jl, jk) = ((paphm1(jl, jk) - papm1(jl, jk - 1)) * zvpf(jl, jk) + (papm1(jl, & |
---|
615 | jk) - paphm1(jl, jk)) * zvpf(jl, jk - 1)) / zdp(jl, jk) |
---|
616 | IF (pvph(jl, jk)<gvsec) THEN |
---|
617 | pvph(jl, jk) = gvsec |
---|
618 | kcrit(jl) = jk |
---|
619 | END IF |
---|
620 | END IF |
---|
621 | END DO |
---|
622 | END DO |
---|
623 | |
---|
624 | ! * 2.2 brunt-vaisala frequency and density at half levels. |
---|
625 | |
---|
626 | DO jk = ilevh, klev |
---|
627 | DO jl = kidia, kfdia |
---|
628 | IF (ktest(jl)==1) THEN |
---|
629 | IF (jk>=(kknub(jl) + 1) .AND. jk<=kknul(jl)) THEN |
---|
630 | zst = zcons2 / ptm1(jl, jk) * (1. - rcpd * prho(jl, jk) * (ptm1(jl, & |
---|
631 | jk) - ptm1(jl, jk - 1)) / zdp(jl, jk)) |
---|
632 | pstab(jl, klev + 1) = pstab(jl, klev + 1) + zst * zdp(jl, jk) |
---|
633 | pstab(jl, klev + 1) = max(pstab(jl, klev + 1), gssec) |
---|
634 | prho(jl, klev + 1) = prho(jl, klev + 1) + paphm1(jl, jk) * 2. * zdp(jl, jk) & |
---|
635 | * zcons1 / (ptm1(jl, jk) + ptm1(jl, jk - 1)) |
---|
636 | END IF |
---|
637 | END IF |
---|
638 | END DO |
---|
639 | END DO |
---|
640 | |
---|
641 | DO jl = kidia, kfdia |
---|
642 | pstab(jl, klev + 1) = pstab(jl, klev + 1) / (papm1(jl, kknul(jl)) - papm1(jl, kknub & |
---|
643 | (jl))) |
---|
644 | prho(jl, klev + 1) = prho(jl, klev + 1) / (papm1(jl, kknul(jl)) - papm1(jl, kknub(& |
---|
645 | jl))) |
---|
646 | zvar = pstd(jl) |
---|
647 | END DO |
---|
648 | |
---|
649 | ! * 2.3 mean flow richardson number. |
---|
650 | ! * and critical height for froude layer |
---|
651 | |
---|
652 | DO jk = 2, klev |
---|
653 | DO jl = kidia, kfdia |
---|
654 | IF (ktest(jl)==1) THEN |
---|
655 | zdwind = max(abs(zvpf(jl, jk) - zvpf(jl, jk - 1)), gvsec) |
---|
656 | pri(jl, jk) = pstab(jl, jk) * (zdp(jl, jk) / (rg * prho(jl, jk) * zdwind))**2 |
---|
657 | pri(jl, jk) = max(pri(jl, jk), grcrit) |
---|
658 | END IF |
---|
659 | END DO |
---|
660 | END DO |
---|
661 | |
---|
662 | |
---|
663 | |
---|
664 | ! * define top of 'envelope' layer |
---|
665 | ! ---------------------------- |
---|
666 | |
---|
667 | DO jl = kidia, kfdia |
---|
668 | pnu(jl) = 0.0 |
---|
669 | znum(jl) = 0.0 |
---|
670 | END DO |
---|
671 | |
---|
672 | DO jk = 2, klev - 1 |
---|
673 | DO jl = kidia, kfdia |
---|
674 | |
---|
675 | IF (ktest(jl)==1) THEN |
---|
676 | |
---|
677 | IF (jk>=kknub(jl)) THEN |
---|
678 | |
---|
679 | znum(jl) = pnu(jl) |
---|
680 | zwind = (pulow(jl) * pum1(jl, jk) + pvlow(jl) * pvm1(jl, jk)) / & |
---|
681 | max(sqrt(pulow(jl)**2 + pvlow(jl)**2), gvsec) |
---|
682 | zwind = max(sqrt(zwind**2), gvsec) |
---|
683 | zdelp = paphm1(jl, jk + 1) - paphm1(jl, jk) |
---|
684 | zstabm = sqrt(max(pstab(jl, jk), gssec)) |
---|
685 | zstabp = sqrt(max(pstab(jl, jk + 1), gssec)) |
---|
686 | zrhom = prho(jl, jk) |
---|
687 | zrhop = prho(jl, jk + 1) |
---|
688 | pnu(jl) = pnu(jl) + (zdelp / rg) * ((zstabp / zrhop + zstabm / zrhom) / 2.) / & |
---|
689 | zwind |
---|
690 | IF ((znum(jl)<=gfrcrit) .AND. (pnu(jl)>gfrcrit) .AND. (kkenvh(& |
---|
691 | jl)==klev)) kkenvh(jl) = jk |
---|
692 | |
---|
693 | END IF |
---|
694 | |
---|
695 | END IF |
---|
696 | |
---|
697 | END DO |
---|
698 | END DO |
---|
699 | |
---|
700 | ! calculation of a dynamical mixing height for the breaking |
---|
701 | ! of gravity waves: |
---|
702 | |
---|
703 | DO jl = kidia, kfdia |
---|
704 | znup(jl) = 0.0 |
---|
705 | znum(jl) = 0.0 |
---|
706 | END DO |
---|
707 | |
---|
708 | DO jk = klev - 1, 2, -1 |
---|
709 | DO jl = kidia, kfdia |
---|
710 | |
---|
711 | IF (ktest(jl)==1) THEN |
---|
712 | |
---|
713 | znum(jl) = znup(jl) |
---|
714 | zwind = (pulow(jl) * pum1(jl, jk) + pvlow(jl) * pvm1(jl, jk)) / & |
---|
715 | max(sqrt(pulow(jl)**2 + pvlow(jl)**2), gvsec) |
---|
716 | zwind = max(sqrt(zwind**2), gvsec) |
---|
717 | zdelp = paphm1(jl, jk + 1) - paphm1(jl, jk) |
---|
718 | zstabm = sqrt(max(pstab(jl, jk), gssec)) |
---|
719 | zstabp = sqrt(max(pstab(jl, jk + 1), gssec)) |
---|
720 | zrhom = prho(jl, jk) |
---|
721 | zrhop = prho(jl, jk + 1) |
---|
722 | znup(jl) = znup(jl) + (zdelp / rg) * ((zstabp / zrhop + zstabm / zrhom) / 2.) / & |
---|
723 | zwind |
---|
724 | IF ((znum(jl)<=rpi / 2.) .AND. (znup(jl)>rpi / 2.) .AND. (kkcrith(& |
---|
725 | jl)==klev)) kkcrith(jl) = jk |
---|
726 | |
---|
727 | END IF |
---|
728 | |
---|
729 | END DO |
---|
730 | END DO |
---|
731 | |
---|
732 | DO jl = kidia, kfdia |
---|
733 | kkcrith(jl) = min0(kkcrith(jl), kknu2(jl)) |
---|
734 | kkcrith(jl) = max0(kkcrith(jl), ilevh * 2) |
---|
735 | END DO |
---|
736 | |
---|
737 | ! directional info for flow blocking ************************* |
---|
738 | |
---|
739 | DO jk = ilevh, klev |
---|
740 | DO jl = kidia, kfdia |
---|
741 | IF (jk>=kkenvh(jl)) THEN |
---|
742 | lo = (pum1(jl, jk)<gvsec) .AND. (pum1(jl, jk)>=-gvsec) |
---|
743 | IF (lo) THEN |
---|
744 | zu = pum1(jl, jk) + 2. * gvsec |
---|
745 | ELSE |
---|
746 | zu = pum1(jl, jk) |
---|
747 | END IF |
---|
748 | zphi = atan(pvm1(jl, jk) / zu) |
---|
749 | ppsi(jl, jk) = ptheta(jl) * rpi / 180. - zphi |
---|
750 | END IF |
---|
751 | END DO |
---|
752 | END DO |
---|
753 | ! forms the vertical 'leakiness' ************************** |
---|
754 | |
---|
755 | alpha = 3. |
---|
756 | |
---|
757 | DO jk = ilevh, klev |
---|
758 | DO jl = kidia, kfdia |
---|
759 | IF (jk>=kkenvh(jl)) THEN |
---|
760 | zggeenv = amax1(1., (pgeom1(jl, kkenvh(jl)) + pgeom1(jl, & |
---|
761 | kkenvh(jl) - 1)) / 2.) |
---|
762 | zggeom1 = amax1(pgeom1(jl, jk), 1.) |
---|
763 | zgvar = amax1(pstd(jl) * rg, 1.) |
---|
764 | ! mod pzdep(jl,jk)=sqrt((zggeenv-zggeom1)/(zggeom1+zgvar)) |
---|
765 | pzdep(jl, jk) = (pgeom1(jl, kkenvh(jl) - 1) - pgeom1(jl, jk)) / & |
---|
766 | (pgeom1(jl, kkenvh(jl) - 1) - pgeom1(jl, klev)) |
---|
767 | END IF |
---|
768 | END DO |
---|
769 | END DO |
---|
770 | |
---|
771 | END SUBROUTINE orosetup |
---|
772 | SUBROUTINE gwstress(nlon, nlev, ktest, kcrit, kkenvh, kknu, prho, pstab, & |
---|
773 | pvph, pstd, psig, pmea, ppic, ptau, pgeom1, pdmod) |
---|
774 | |
---|
775 | ! **** *gwstress* |
---|
776 | |
---|
777 | ! purpose. |
---|
778 | ! -------- |
---|
779 | |
---|
780 | ! ** interface. |
---|
781 | ! ---------- |
---|
782 | ! CALL *gwstress* from *gwdrag* |
---|
783 | |
---|
784 | ! explicit arguments : |
---|
785 | ! -------------------- |
---|
786 | ! ==== inputs === |
---|
787 | ! ==== outputs === |
---|
788 | |
---|
789 | ! implicit arguments : none |
---|
790 | ! -------------------- |
---|
791 | |
---|
792 | ! method. |
---|
793 | ! ------- |
---|
794 | |
---|
795 | |
---|
796 | ! externals. |
---|
797 | ! ---------- |
---|
798 | |
---|
799 | |
---|
800 | ! reference. |
---|
801 | ! ---------- |
---|
802 | |
---|
803 | ! see ecmwf research department documentation of the "i.f.s." |
---|
804 | |
---|
805 | ! author. |
---|
806 | ! ------- |
---|
807 | |
---|
808 | ! modifications. |
---|
809 | ! -------------- |
---|
810 | ! f. lott put the new gwd on ifs 22/11/93 |
---|
811 | |
---|
812 | ! ----------------------------------------------------------------------- |
---|
813 | USE dimphy |
---|
814 | USE lmdz_YOEGWD, ONLY: GFRCRIT, GKWAKE, GRCRIT, GVCRIT, GKDRAG, GKLIFT, GHMAX, GRAHILO, GSIGCR, NKTOPG, NSTRA, GSSEC, GTSEC, GVSEC, & |
---|
815 | GWD_RANDO_RUWMAX, gwd_rando_sat, GWD_FRONT_RUWMAX, gwd_front_sat |
---|
816 | USE lmdz_yomcst |
---|
817 | |
---|
818 | IMPLICIT NONE |
---|
819 | |
---|
820 | ! ----------------------------------------------------------------------- |
---|
821 | |
---|
822 | ! * 0.1 arguments |
---|
823 | ! --------- |
---|
824 | |
---|
825 | INTEGER nlon, nlev |
---|
826 | INTEGER kcrit(nlon), ktest(nlon), kkenvh(nlon), kknu(nlon) |
---|
827 | |
---|
828 | REAL prho(nlon, nlev + 1), pstab(nlon, nlev + 1), ptau(nlon, nlev + 1), & |
---|
829 | pvph(nlon, nlev + 1), pgeom1(nlon, nlev), pstd(nlon) |
---|
830 | |
---|
831 | REAL psig(nlon) |
---|
832 | REAL pmea(nlon), ppic(nlon) |
---|
833 | REAL pdmod(nlon) |
---|
834 | |
---|
835 | ! ----------------------------------------------------------------------- |
---|
836 | |
---|
837 | ! * 0.2 local arrays |
---|
838 | ! ------------ |
---|
839 | INTEGER jl |
---|
840 | REAL zblock, zvar, zeff |
---|
841 | LOGICAL lo |
---|
842 | |
---|
843 | ! ----------------------------------------------------------------------- |
---|
844 | |
---|
845 | ! * 0.3 functions |
---|
846 | ! --------- |
---|
847 | ! ------------------------------------------------------------------ |
---|
848 | |
---|
849 | ! * 1. initialization |
---|
850 | ! -------------- |
---|
851 | |
---|
852 | |
---|
853 | ! * 3.1 gravity wave stress. |
---|
854 | |
---|
855 | DO jl = kidia, kfdia |
---|
856 | IF (ktest(jl)==1) THEN |
---|
857 | |
---|
858 | ! effective mountain height above the blocked flow |
---|
859 | |
---|
860 | IF (kkenvh(jl)==klev) THEN |
---|
861 | zblock = 0.0 |
---|
862 | ELSE |
---|
863 | zblock = (pgeom1(jl, kkenvh(jl)) + pgeom1(jl, kkenvh(jl) + 1)) / 2. / rg |
---|
864 | END IF |
---|
865 | |
---|
866 | zvar = ppic(jl) - pmea(jl) |
---|
867 | zeff = amax1(0., zvar - zblock) |
---|
868 | |
---|
869 | ptau(jl, klev + 1) = prho(jl, klev + 1) * gkdrag * psig(jl) * zeff**2 / 4. / & |
---|
870 | pstd(jl) * pvph(jl, klev + 1) * pdmod(jl) * sqrt(pstab(jl, klev + 1)) |
---|
871 | |
---|
872 | ! too small value of stress or low level flow include critical level |
---|
873 | ! or low level flow: gravity wave stress nul. |
---|
874 | |
---|
875 | lo = (ptau(jl, klev + 1)<gtsec) .OR. (kcrit(jl)>=kknu(jl)) .OR. & |
---|
876 | (pvph(jl, klev + 1)<gvcrit) |
---|
877 | ! IF(lo) ptau(jl,klev+1)=0.0 |
---|
878 | |
---|
879 | ELSE |
---|
880 | |
---|
881 | ptau(jl, klev + 1) = 0.0 |
---|
882 | |
---|
883 | END IF |
---|
884 | |
---|
885 | END DO |
---|
886 | |
---|
887 | END SUBROUTINE gwstress |
---|
888 | SUBROUTINE gwprofil(nlon, nlev, kgwd, kdx, ktest, kkcrith, kcrit, paphm1, & |
---|
889 | prho, pstab, pvph, pri, ptau, pdmod, psig, pvar) |
---|
890 | |
---|
891 | ! **** *GWPROFIL* |
---|
892 | |
---|
893 | ! PURPOSE. |
---|
894 | ! -------- |
---|
895 | |
---|
896 | ! ** INTERFACE. |
---|
897 | ! ---------- |
---|
898 | ! FROM *GWDRAG* |
---|
899 | |
---|
900 | ! EXPLICIT ARGUMENTS : |
---|
901 | ! -------------------- |
---|
902 | ! ==== INPUTS === |
---|
903 | ! ==== OUTPUTS === |
---|
904 | |
---|
905 | ! IMPLICIT ARGUMENTS : NONE |
---|
906 | ! -------------------- |
---|
907 | |
---|
908 | ! METHOD: |
---|
909 | ! ------- |
---|
910 | ! THE STRESS PROFILE FOR GRAVITY WAVES IS COMPUTED AS FOLLOWS: |
---|
911 | ! IT IS CONSTANT (NO GWD) AT THE LEVELS BETWEEN THE GROUND |
---|
912 | ! AND THE TOP OF THE BLOCKED LAYER (KKENVH). |
---|
913 | ! IT DECREASES LINEARLY WITH HEIGHTS FROM THE TOP OF THE |
---|
914 | ! BLOCKED LAYER TO 3*VAROR (kKNU), TO SIMULATES LEE WAVES OR |
---|
915 | ! NONLINEAR GRAVITY WAVE BREAKING. |
---|
916 | ! ABOVE IT IS CONSTANT, EXCEPT WHEN THE WAVE ENCOUNTERS A CRITICAL |
---|
917 | ! LEVEL (KCRIT) OR WHEN IT BREAKS. |
---|
918 | |
---|
919 | |
---|
920 | |
---|
921 | ! EXTERNALS. |
---|
922 | ! ---------- |
---|
923 | |
---|
924 | |
---|
925 | ! REFERENCE. |
---|
926 | ! ---------- |
---|
927 | |
---|
928 | ! SEE ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE "I.F.S." |
---|
929 | |
---|
930 | ! AUTHOR. |
---|
931 | ! ------- |
---|
932 | |
---|
933 | ! MODIFICATIONS. |
---|
934 | ! -------------- |
---|
935 | ! PASSAGE OF THE NEW GWDRAG TO I.F.S. (F. LOTT, 22/11/93) |
---|
936 | ! ----------------------------------------------------------------------- |
---|
937 | USE dimphy |
---|
938 | USE lmdz_YOEGWD, ONLY: GFRCRIT, GKWAKE, GRCRIT, GVCRIT, GKDRAG, GKLIFT, GHMAX, GRAHILO, GSIGCR, NKTOPG, NSTRA, GSSEC, GTSEC, GVSEC, & |
---|
939 | GWD_RANDO_RUWMAX, gwd_rando_sat, GWD_FRONT_RUWMAX, gwd_front_sat |
---|
940 | USE lmdz_yomcst |
---|
941 | |
---|
942 | IMPLICIT NONE |
---|
943 | |
---|
944 | ! ----------------------------------------------------------------------- |
---|
945 | |
---|
946 | ! * 0.1 ARGUMENTS |
---|
947 | ! --------- |
---|
948 | |
---|
949 | INTEGER nlon, nlev |
---|
950 | INTEGER kkcrith(nlon), kcrit(nlon), kdx(nlon), ktest(nlon) |
---|
951 | |
---|
952 | REAL paphm1(nlon, nlev + 1), pstab(nlon, nlev + 1), prho(nlon, nlev + 1), & |
---|
953 | pvph(nlon, nlev + 1), pri(nlon, nlev + 1), ptau(nlon, nlev + 1) |
---|
954 | |
---|
955 | REAL pdmod(nlon), psig(nlon), pvar(nlon) |
---|
956 | |
---|
957 | ! ----------------------------------------------------------------------- |
---|
958 | |
---|
959 | ! * 0.2 LOCAL ARRAYS |
---|
960 | ! ------------ |
---|
961 | |
---|
962 | INTEGER ilevh, ji, kgwd, jl, jk |
---|
963 | REAL zsqr, zalfa, zriw, zdel, zb, zalpha, zdz2n |
---|
964 | REAL zdelp, zdelpt |
---|
965 | REAL zdz2(klon, klev), znorm(klon), zoro(klon) |
---|
966 | REAL ztau(klon, klev + 1) |
---|
967 | |
---|
968 | ! ----------------------------------------------------------------------- |
---|
969 | |
---|
970 | ! * 1. INITIALIZATION |
---|
971 | ! -------------- |
---|
972 | |
---|
973 | ! PRINT *,' entree gwprofil' |
---|
974 | |
---|
975 | |
---|
976 | ! * COMPUTATIONAL CONSTANTS. |
---|
977 | ! ------------- ---------- |
---|
978 | |
---|
979 | ilevh = klev / 3 |
---|
980 | |
---|
981 | ! DO 400 ji=1,kgwd |
---|
982 | ! jl=kdx(ji) |
---|
983 | ! Modif vectorisation 02/04/2004 |
---|
984 | DO jl = kidia, kfdia |
---|
985 | IF (ktest(jl)==1) THEN |
---|
986 | zoro(jl) = psig(jl) * pdmod(jl) / 4. / max(pvar(jl), 1.0) |
---|
987 | ztau(jl, klev + 1) = ptau(jl, klev + 1) |
---|
988 | END IF |
---|
989 | END DO |
---|
990 | |
---|
991 | DO jk = klev, 2, -1 |
---|
992 | |
---|
993 | ! * 4.1 CONSTANT WAVE STRESS UNTIL TOP OF THE |
---|
994 | ! BLOCKING LAYER. |
---|
995 | |
---|
996 | ! DO 411 ji=1,kgwd |
---|
997 | ! jl=kdx(ji) |
---|
998 | ! Modif vectorisation 02/04/2004 |
---|
999 | DO jl = kidia, kfdia |
---|
1000 | IF (ktest(jl)==1) THEN |
---|
1001 | IF (jk>kkcrith(jl)) THEN |
---|
1002 | ptau(jl, jk) = ztau(jl, klev + 1) |
---|
1003 | ! ENDIF |
---|
1004 | ! IF(JK.EQ.KKCRITH(JL)) THEN |
---|
1005 | ELSE |
---|
1006 | ptau(jl, jk) = grahilo * ztau(jl, klev + 1) |
---|
1007 | END IF |
---|
1008 | END IF |
---|
1009 | END DO |
---|
1010 | |
---|
1011 | ! * 4.15 CONSTANT SHEAR STRESS UNTIL THE TOP OF THE |
---|
1012 | ! LOW LEVEL FLOW LAYER. |
---|
1013 | |
---|
1014 | |
---|
1015 | ! * 4.2 WAVE DISPLACEMENT AT NEXT LEVEL. |
---|
1016 | |
---|
1017 | |
---|
1018 | ! DO 421 ji=1,kgwd |
---|
1019 | ! jl=kdx(ji) |
---|
1020 | ! Modif vectorisation 02/04/2004 |
---|
1021 | DO jl = kidia, kfdia |
---|
1022 | IF (ktest(jl)==1) THEN |
---|
1023 | IF (jk<kkcrith(jl)) THEN |
---|
1024 | znorm(jl) = gkdrag * prho(jl, jk) * sqrt(pstab(jl, jk)) * pvph(jl, jk) * & |
---|
1025 | zoro(jl) |
---|
1026 | zdz2(jl, jk) = ptau(jl, jk + 1) / max(znorm(jl), gssec) |
---|
1027 | END IF |
---|
1028 | END IF |
---|
1029 | END DO |
---|
1030 | |
---|
1031 | ! * 4.3 WAVE RICHARDSON NUMBER, NEW WAVE DISPLACEMENT |
---|
1032 | ! * AND STRESS: BREAKING EVALUATION AND CRITICAL |
---|
1033 | ! LEVEL |
---|
1034 | |
---|
1035 | |
---|
1036 | ! DO 431 ji=1,kgwd |
---|
1037 | ! jl=Kdx(ji) |
---|
1038 | ! Modif vectorisation 02/04/2004 |
---|
1039 | DO jl = kidia, kfdia |
---|
1040 | IF (ktest(jl)==1) THEN |
---|
1041 | |
---|
1042 | IF (jk<kkcrith(jl)) THEN |
---|
1043 | IF ((ptau(jl, jk + 1)<gtsec) .OR. (jk<=kcrit(jl))) THEN |
---|
1044 | ptau(jl, jk) = 0.0 |
---|
1045 | ELSE |
---|
1046 | zsqr = sqrt(pri(jl, jk)) |
---|
1047 | zalfa = sqrt(pstab(jl, jk) * zdz2(jl, jk)) / pvph(jl, jk) |
---|
1048 | zriw = pri(jl, jk) * (1. - zalfa) / (1 + zalfa * zsqr)**2 |
---|
1049 | IF (zriw<grcrit) THEN |
---|
1050 | zdel = 4. / zsqr / grcrit + 1. / grcrit**2 + 4. / grcrit |
---|
1051 | zb = 1. / grcrit + 2. / zsqr |
---|
1052 | zalpha = 0.5 * (-zb + sqrt(zdel)) |
---|
1053 | zdz2n = (pvph(jl, jk) * zalpha)**2 / pstab(jl, jk) |
---|
1054 | ptau(jl, jk) = znorm(jl) * zdz2n |
---|
1055 | ELSE |
---|
1056 | ptau(jl, jk) = znorm(jl) * zdz2(jl, jk) |
---|
1057 | END IF |
---|
1058 | ptau(jl, jk) = min(ptau(jl, jk), ptau(jl, jk + 1)) |
---|
1059 | END IF |
---|
1060 | END IF |
---|
1061 | END IF |
---|
1062 | END DO |
---|
1063 | |
---|
1064 | END DO |
---|
1065 | |
---|
1066 | ! REORGANISATION OF THE STRESS PROFILE AT LOW LEVEL |
---|
1067 | |
---|
1068 | ! DO 530 ji=1,kgwd |
---|
1069 | ! jl=kdx(ji) |
---|
1070 | ! Modif vectorisation 02/04/2004 |
---|
1071 | DO jl = kidia, kfdia |
---|
1072 | IF (ktest(jl)==1) THEN |
---|
1073 | ztau(jl, kkcrith(jl)) = ptau(jl, kkcrith(jl)) |
---|
1074 | ztau(jl, nstra) = ptau(jl, nstra) |
---|
1075 | END IF |
---|
1076 | END DO |
---|
1077 | |
---|
1078 | DO jk = 1, klev |
---|
1079 | |
---|
1080 | ! DO 532 ji=1,kgwd |
---|
1081 | ! jl=kdx(ji) |
---|
1082 | ! Modif vectorisation 02/04/2004 |
---|
1083 | DO jl = kidia, kfdia |
---|
1084 | IF (ktest(jl)==1) THEN |
---|
1085 | |
---|
1086 | IF (jk>kkcrith(jl)) THEN |
---|
1087 | |
---|
1088 | zdelp = paphm1(jl, jk) - paphm1(jl, klev + 1) |
---|
1089 | zdelpt = paphm1(jl, kkcrith(jl)) - paphm1(jl, klev + 1) |
---|
1090 | ptau(jl, jk) = ztau(jl, klev + 1) + (ztau(jl, kkcrith(jl)) - ztau(jl, & |
---|
1091 | klev + 1)) * zdelp / zdelpt |
---|
1092 | |
---|
1093 | END IF |
---|
1094 | |
---|
1095 | END IF |
---|
1096 | END DO |
---|
1097 | |
---|
1098 | ! REORGANISATION IN THE STRATOSPHERE |
---|
1099 | |
---|
1100 | ! DO 533 ji=1,kgwd |
---|
1101 | ! jl=kdx(ji) |
---|
1102 | ! Modif vectorisation 02/04/2004 |
---|
1103 | DO jl = kidia, kfdia |
---|
1104 | IF (ktest(jl)==1) THEN |
---|
1105 | |
---|
1106 | IF (jk<nstra) THEN |
---|
1107 | |
---|
1108 | zdelp = paphm1(jl, nstra) |
---|
1109 | zdelpt = paphm1(jl, jk) |
---|
1110 | ptau(jl, jk) = ztau(jl, nstra) * zdelpt / zdelp |
---|
1111 | |
---|
1112 | END IF |
---|
1113 | |
---|
1114 | END IF |
---|
1115 | END DO |
---|
1116 | |
---|
1117 | ! REORGANISATION IN THE TROPOSPHERE |
---|
1118 | |
---|
1119 | ! DO 534 ji=1,kgwd |
---|
1120 | ! jl=kdx(ji) |
---|
1121 | ! Modif vectorisation 02/04/2004 |
---|
1122 | DO jl = kidia, kfdia |
---|
1123 | IF (ktest(jl)==1) THEN |
---|
1124 | |
---|
1125 | IF (jk<kkcrith(jl) .AND. jk>nstra) THEN |
---|
1126 | |
---|
1127 | zdelp = paphm1(jl, jk) - paphm1(jl, kkcrith(jl)) |
---|
1128 | zdelpt = paphm1(jl, nstra) - paphm1(jl, kkcrith(jl)) |
---|
1129 | ptau(jl, jk) = ztau(jl, kkcrith(jl)) + (ztau(jl, nstra) - ztau(jl, & |
---|
1130 | kkcrith(jl))) * zdelp / zdelpt |
---|
1131 | |
---|
1132 | END IF |
---|
1133 | END IF |
---|
1134 | END DO |
---|
1135 | |
---|
1136 | END DO |
---|
1137 | |
---|
1138 | END SUBROUTINE gwprofil |
---|
1139 | SUBROUTINE lift_noro(nlon, nlev, dtime, paprs, pplay, plat, pmea, pstd, ppic, & |
---|
1140 | ktest, t, u, v, pulow, pvlow, pustr, pvstr, d_t, d_u, d_v) |
---|
1141 | |
---|
1142 | USE dimphy |
---|
1143 | USE lmdz_yomcst |
---|
1144 | |
---|
1145 | IMPLICIT NONE |
---|
1146 | ! ====================================================================== |
---|
1147 | ! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
1148 | ! Objet: Frottement de la montagne Interface |
---|
1149 | ! ====================================================================== |
---|
1150 | ! Arguments: |
---|
1151 | ! dtime---input-R- pas d'integration (s) |
---|
1152 | ! paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
1153 | ! pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
1154 | ! t-------input-R-temperature (K) |
---|
1155 | ! u-------input-R-vitesse horizontale (m/s) |
---|
1156 | ! v-------input-R-vitesse horizontale (m/s) |
---|
1157 | |
---|
1158 | ! d_t-----output-R-increment de la temperature |
---|
1159 | ! d_u-----output-R-increment de la vitesse u |
---|
1160 | ! d_v-----output-R-increment de la vitesse v |
---|
1161 | ! ====================================================================== |
---|
1162 | |
---|
1163 | ! ARGUMENTS |
---|
1164 | |
---|
1165 | INTEGER nlon, nlev |
---|
1166 | REAL dtime |
---|
1167 | REAL paprs(klon, klev + 1) |
---|
1168 | REAL pplay(klon, klev) |
---|
1169 | REAL plat(nlon), pmea(nlon) |
---|
1170 | REAL pstd(nlon) |
---|
1171 | REAL ppic(nlon) |
---|
1172 | REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
---|
1173 | REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
---|
1174 | REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
---|
1175 | |
---|
1176 | INTEGER i, k, ktest(nlon) |
---|
1177 | |
---|
1178 | ! Variables locales: |
---|
1179 | |
---|
1180 | REAL zgeom(klon, klev) |
---|
1181 | REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
---|
1182 | REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
---|
1183 | REAL papmf(klon, klev), papmh(klon, klev + 1) |
---|
1184 | |
---|
1185 | ! initialiser les variables de sortie (pour securite) |
---|
1186 | |
---|
1187 | DO i = 1, klon |
---|
1188 | pulow(i) = 0.0 |
---|
1189 | pvlow(i) = 0.0 |
---|
1190 | pustr(i) = 0.0 |
---|
1191 | pvstr(i) = 0.0 |
---|
1192 | END DO |
---|
1193 | DO k = 1, klev |
---|
1194 | DO i = 1, klon |
---|
1195 | d_t(i, k) = 0.0 |
---|
1196 | d_u(i, k) = 0.0 |
---|
1197 | d_v(i, k) = 0.0 |
---|
1198 | pdudt(i, k) = 0.0 |
---|
1199 | pdvdt(i, k) = 0.0 |
---|
1200 | pdtdt(i, k) = 0.0 |
---|
1201 | END DO |
---|
1202 | END DO |
---|
1203 | |
---|
1204 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
1205 | ! verticaux augmente du haut vers le bas) |
---|
1206 | |
---|
1207 | DO k = 1, klev |
---|
1208 | DO i = 1, klon |
---|
1209 | pt(i, k) = t(i, klev - k + 1) |
---|
1210 | pu(i, k) = u(i, klev - k + 1) |
---|
1211 | pv(i, k) = v(i, klev - k + 1) |
---|
1212 | papmf(i, k) = pplay(i, klev - k + 1) |
---|
1213 | END DO |
---|
1214 | END DO |
---|
1215 | DO k = 1, klev + 1 |
---|
1216 | DO i = 1, klon |
---|
1217 | papmh(i, k) = paprs(i, klev - k + 2) |
---|
1218 | END DO |
---|
1219 | END DO |
---|
1220 | DO i = 1, klon |
---|
1221 | zgeom(i, klev) = rd * pt(i, klev) * log(papmh(i, klev + 1) / papmf(i, klev)) |
---|
1222 | END DO |
---|
1223 | DO k = klev - 1, 1, -1 |
---|
1224 | DO i = 1, klon |
---|
1225 | zgeom(i, k) = zgeom(i, k + 1) + rd * (pt(i, k) + pt(i, k + 1)) / 2.0 * log(papmf(i, k + & |
---|
1226 | 1) / papmf(i, k)) |
---|
1227 | END DO |
---|
1228 | END DO |
---|
1229 | |
---|
1230 | ! appeler la routine principale |
---|
1231 | |
---|
1232 | CALL orolift(klon, klev, ktest, dtime, papmh, zgeom, pt, pu, pv, plat, & |
---|
1233 | pmea, pstd, ppic, pulow, pvlow, pdudt, pdvdt, pdtdt) |
---|
1234 | |
---|
1235 | DO k = 1, klev |
---|
1236 | DO i = 1, klon |
---|
1237 | d_u(i, klev + 1 - k) = dtime * pdudt(i, k) |
---|
1238 | d_v(i, klev + 1 - k) = dtime * pdvdt(i, k) |
---|
1239 | d_t(i, klev + 1 - k) = dtime * pdtdt(i, k) |
---|
1240 | pustr(i) = pustr(i) & ! IM BUG . |
---|
1241 | ! +RG*pdudt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
1242 | + pdudt(i, k) * (papmh(i, k + 1) - papmh(i, k)) / rg |
---|
1243 | pvstr(i) = pvstr(i) & ! IM BUG . |
---|
1244 | ! +RG*pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
1245 | + pdvdt(i, k) * (papmh(i, k + 1) - papmh(i, k)) / rg |
---|
1246 | END DO |
---|
1247 | END DO |
---|
1248 | |
---|
1249 | END SUBROUTINE lift_noro |
---|
1250 | SUBROUTINE orolift(nlon, nlev, ktest, ptsphy, paphm1, pgeom1, ptm1, pum1, & |
---|
1251 | pvm1, plat, pmea, pvaror, ppic & ! OUTPUTS |
---|
1252 | , pulow, pvlow, pvom, pvol, pte) |
---|
1253 | |
---|
1254 | |
---|
1255 | ! **** *OROLIFT: SIMULATE THE GEOSTROPHIC LIFT. |
---|
1256 | |
---|
1257 | ! PURPOSE. |
---|
1258 | ! -------- |
---|
1259 | |
---|
1260 | ! ** INTERFACE. |
---|
1261 | ! ---------- |
---|
1262 | ! CALLED FROM *lift_noro |
---|
1263 | ! ---------- |
---|
1264 | |
---|
1265 | ! AUTHOR. |
---|
1266 | ! ------- |
---|
1267 | ! F.LOTT LMD 22/11/95 |
---|
1268 | |
---|
1269 | USE dimphy |
---|
1270 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
1271 | USE lmdz_YOEGWD, ONLY: GFRCRIT, GKWAKE, GRCRIT, GVCRIT, GKDRAG, GKLIFT, GHMAX, GRAHILO, GSIGCR, NKTOPG, NSTRA, GSSEC, GTSEC, GVSEC, & |
---|
1272 | GWD_RANDO_RUWMAX, gwd_rando_sat, GWD_FRONT_RUWMAX, gwd_front_sat |
---|
1273 | USE lmdz_yomcst |
---|
1274 | |
---|
1275 | IMPLICIT NONE |
---|
1276 | |
---|
1277 | ! * 0.1 ARGUMENTS |
---|
1278 | ! --------- |
---|
1279 | |
---|
1280 | INTEGER nlon, nlev |
---|
1281 | REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(nlon), & |
---|
1282 | pvlow(nlon) |
---|
1283 | REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), plat(nlon), & |
---|
1284 | pmea(nlon), pvaror(nlon), ppic(nlon), pgeom1(nlon, nlev), & |
---|
1285 | paphm1(nlon, nlev + 1) |
---|
1286 | |
---|
1287 | INTEGER ktest(nlon) |
---|
1288 | REAL ptsphy |
---|
1289 | ! ----------------------------------------------------------------------- |
---|
1290 | |
---|
1291 | ! * 0.2 LOCAL ARRAYS |
---|
1292 | ! ------------ |
---|
1293 | LOGICAL lifthigh |
---|
1294 | ! ym integer klevm1, jl, ilevh, jk |
---|
1295 | INTEGER jl, ilevh, jk |
---|
1296 | REAL zcons1, ztmst, zrtmst, zpi, zhgeo |
---|
1297 | REAL zdelp, zslow, zsqua, zscav, zbet |
---|
1298 | INTEGER iknub(klon), iknul(klon) |
---|
1299 | LOGICAL ll1(klon, klev + 1) |
---|
1300 | |
---|
1301 | REAL ztau(klon, klev + 1), ztav(klon, klev + 1), zrho(klon, klev + 1) |
---|
1302 | REAL zdudt(klon), zdvdt(klon) |
---|
1303 | REAL zhcrit(klon, klev) |
---|
1304 | CHARACTER (LEN = 20) :: modname = 'orografi' |
---|
1305 | CHARACTER (LEN = 80) :: abort_message |
---|
1306 | ! ----------------------------------------------------------------------- |
---|
1307 | |
---|
1308 | ! * 1.1 INITIALIZATIONS |
---|
1309 | ! --------------- |
---|
1310 | |
---|
1311 | lifthigh = .FALSE. |
---|
1312 | |
---|
1313 | IF (nlon/=klon .OR. nlev/=klev) THEN |
---|
1314 | abort_message = 'pb dimension' |
---|
1315 | CALL abort_physic(modname, abort_message, 1) |
---|
1316 | END IF |
---|
1317 | zcons1 = 1. / rd |
---|
1318 | ! ym KLEVM1=KLEV-1 |
---|
1319 | ztmst = ptsphy |
---|
1320 | zrtmst = 1. / ztmst |
---|
1321 | zpi = acos(-1.) |
---|
1322 | |
---|
1323 | DO jl = kidia, kfdia |
---|
1324 | zrho(jl, klev + 1) = 0.0 |
---|
1325 | pulow(jl) = 0.0 |
---|
1326 | pvlow(jl) = 0.0 |
---|
1327 | iknub(jl) = klev |
---|
1328 | iknul(jl) = klev |
---|
1329 | ilevh = klev / 3 |
---|
1330 | ll1(jl, klev + 1) = .FALSE. |
---|
1331 | DO jk = 1, klev |
---|
1332 | pvom(jl, jk) = 0.0 |
---|
1333 | pvol(jl, jk) = 0.0 |
---|
1334 | pte(jl, jk) = 0.0 |
---|
1335 | END DO |
---|
1336 | END DO |
---|
1337 | |
---|
1338 | |
---|
1339 | ! * 2.1 DEFINE LOW LEVEL WIND, PROJECT WINDS IN PLANE OF |
---|
1340 | ! * LOW LEVEL WIND, DETERMINE SECTOR IN WHICH TO TAKE |
---|
1341 | ! * THE VARIANCE AND SET INDICATOR FOR CRITICAL LEVELS. |
---|
1342 | |
---|
1343 | DO jk = klev, 1, -1 |
---|
1344 | DO jl = kidia, kfdia |
---|
1345 | IF (ktest(jl)==1) THEN |
---|
1346 | zhcrit(jl, jk) = amax1(ppic(jl) - pmea(jl), 100.) |
---|
1347 | zhgeo = pgeom1(jl, jk) / rg |
---|
1348 | ll1(jl, jk) = (zhgeo>zhcrit(jl, jk)) |
---|
1349 | IF (ll1(jl, jk) .NEQV. ll1(jl, jk + 1)) THEN |
---|
1350 | iknub(jl) = jk |
---|
1351 | END IF |
---|
1352 | END IF |
---|
1353 | END DO |
---|
1354 | END DO |
---|
1355 | |
---|
1356 | DO jl = kidia, kfdia |
---|
1357 | IF (ktest(jl)==1) THEN |
---|
1358 | iknub(jl) = max(iknub(jl), klev / 2) |
---|
1359 | iknul(jl) = max(iknul(jl), 2 * klev / 3) |
---|
1360 | IF (iknub(jl)>nktopg) iknub(jl) = nktopg |
---|
1361 | IF (iknub(jl)==nktopg) iknul(jl) = klev |
---|
1362 | IF (iknub(jl)==iknul(jl)) iknub(jl) = iknul(jl) - 1 |
---|
1363 | END IF |
---|
1364 | END DO |
---|
1365 | |
---|
1366 | ! do 2011 jl=kidia,kfdia |
---|
1367 | ! IF(KTEST(JL).EQ.1) THEN |
---|
1368 | ! PRINT *,' iknul= ',iknul(jl),' iknub=',iknub(jl) |
---|
1369 | ! ENDIF |
---|
1370 | ! 2011 continue |
---|
1371 | |
---|
1372 | ! PRINT *,' DANS OROLIFT: 2010' |
---|
1373 | |
---|
1374 | DO jk = klev, 2, -1 |
---|
1375 | DO jl = kidia, kfdia |
---|
1376 | zrho(jl, jk) = 2. * paphm1(jl, jk) * zcons1 / (ptm1(jl, jk) + ptm1(jl, jk - 1)) |
---|
1377 | END DO |
---|
1378 | END DO |
---|
1379 | ! PRINT *,' DANS OROLIFT: 223' |
---|
1380 | |
---|
1381 | ! ******************************************************************** |
---|
1382 | |
---|
1383 | ! * DEFINE LOW LEVEL FLOW |
---|
1384 | ! ------------------- |
---|
1385 | DO jk = klev, 1, -1 |
---|
1386 | DO jl = kidia, kfdia |
---|
1387 | IF (ktest(jl)==1) THEN |
---|
1388 | IF (jk>=iknub(jl) .AND. jk<=iknul(jl)) THEN |
---|
1389 | pulow(jl) = pulow(jl) + pum1(jl, jk) * (paphm1(jl, jk + 1) - paphm1(jl, jk) & |
---|
1390 | ) |
---|
1391 | pvlow(jl) = pvlow(jl) + pvm1(jl, jk) * (paphm1(jl, jk + 1) - paphm1(jl, jk) & |
---|
1392 | ) |
---|
1393 | zrho(jl, klev + 1) = zrho(jl, klev + 1) + zrho(jl, jk) * (paphm1(jl, jk + 1) & |
---|
1394 | - paphm1(jl, jk)) |
---|
1395 | END IF |
---|
1396 | END IF |
---|
1397 | END DO |
---|
1398 | END DO |
---|
1399 | DO jl = kidia, kfdia |
---|
1400 | IF (ktest(jl)==1) THEN |
---|
1401 | pulow(jl) = pulow(jl) / (paphm1(jl, iknul(jl) + 1) - paphm1(jl, iknub(jl))) |
---|
1402 | pvlow(jl) = pvlow(jl) / (paphm1(jl, iknul(jl) + 1) - paphm1(jl, iknub(jl))) |
---|
1403 | zrho(jl, klev + 1) = zrho(jl, klev + 1) / (paphm1(jl, iknul(jl) + 1) - paphm1(jl, & |
---|
1404 | iknub(jl))) |
---|
1405 | END IF |
---|
1406 | END DO |
---|
1407 | |
---|
1408 | ! *********************************************************** |
---|
1409 | |
---|
1410 | ! * 3. COMPUTE MOUNTAIN LIFT |
---|
1411 | |
---|
1412 | DO jl = kidia, kfdia |
---|
1413 | IF (ktest(jl)==1) THEN |
---|
1414 | ztau(jl, klev + 1) = -gklift * zrho(jl, klev + 1) * 2. * romega * & ! * |
---|
1415 | ! (2*PVAROR(JL)+PMEA(JL))* |
---|
1416 | 2 * pvaror(jl) * sin(zpi / 180. * plat(jl)) * pvlow(jl) |
---|
1417 | ztav(jl, klev + 1) = gklift * zrho(jl, klev + 1) * 2. * romega * & ! * |
---|
1418 | ! (2*PVAROR(JL)+PMEA(JL))* |
---|
1419 | 2 * pvaror(jl) * sin(zpi / 180. * plat(jl)) * pulow(jl) |
---|
1420 | ELSE |
---|
1421 | ztau(jl, klev + 1) = 0.0 |
---|
1422 | ztav(jl, klev + 1) = 0.0 |
---|
1423 | END IF |
---|
1424 | END DO |
---|
1425 | |
---|
1426 | ! * 4. COMPUTE LIFT PROFILE |
---|
1427 | ! * -------------------- |
---|
1428 | |
---|
1429 | DO jk = 1, klev |
---|
1430 | DO jl = kidia, kfdia |
---|
1431 | IF (ktest(jl)==1) THEN |
---|
1432 | ztau(jl, jk) = ztau(jl, klev + 1) * paphm1(jl, jk) / paphm1(jl, klev + 1) |
---|
1433 | ztav(jl, jk) = ztav(jl, klev + 1) * paphm1(jl, jk) / paphm1(jl, klev + 1) |
---|
1434 | ELSE |
---|
1435 | ztau(jl, jk) = 0.0 |
---|
1436 | ztav(jl, jk) = 0.0 |
---|
1437 | END IF |
---|
1438 | END DO |
---|
1439 | END DO |
---|
1440 | |
---|
1441 | |
---|
1442 | ! * 5. COMPUTE TENDENCIES. |
---|
1443 | ! * ------------------- |
---|
1444 | IF (lifthigh) THEN |
---|
1445 | ! PRINT *,' DANS OROLIFT: 500' |
---|
1446 | |
---|
1447 | ! EXPLICIT SOLUTION AT ALL LEVELS |
---|
1448 | |
---|
1449 | DO jk = 1, klev |
---|
1450 | DO jl = kidia, kfdia |
---|
1451 | IF (ktest(jl)==1) THEN |
---|
1452 | zdelp = paphm1(jl, jk + 1) - paphm1(jl, jk) |
---|
1453 | zdudt(jl) = -rg * (ztau(jl, jk + 1) - ztau(jl, jk)) / zdelp |
---|
1454 | zdvdt(jl) = -rg * (ztav(jl, jk + 1) - ztav(jl, jk)) / zdelp |
---|
1455 | END IF |
---|
1456 | END DO |
---|
1457 | END DO |
---|
1458 | |
---|
1459 | ! PROJECT PERPENDICULARLY TO U NOT TO DESTROY ENERGY |
---|
1460 | |
---|
1461 | DO jk = 1, klev |
---|
1462 | DO jl = kidia, kfdia |
---|
1463 | IF (ktest(jl)==1) THEN |
---|
1464 | |
---|
1465 | zslow = sqrt(pulow(jl)**2 + pvlow(jl)**2) |
---|
1466 | zsqua = amax1(sqrt(pum1(jl, jk)**2 + pvm1(jl, jk)**2), gvsec) |
---|
1467 | zscav = -zdudt(jl) * pvm1(jl, jk) + zdvdt(jl) * pum1(jl, jk) |
---|
1468 | IF (zsqua>gvsec) THEN |
---|
1469 | pvom(jl, jk) = -zscav * pvm1(jl, jk) / zsqua**2 |
---|
1470 | pvol(jl, jk) = zscav * pum1(jl, jk) / zsqua**2 |
---|
1471 | ELSE |
---|
1472 | pvom(jl, jk) = 0.0 |
---|
1473 | pvol(jl, jk) = 0.0 |
---|
1474 | END IF |
---|
1475 | zsqua = sqrt(pum1(jl, jk)**2 + pum1(jl, jk)**2) |
---|
1476 | IF (zsqua<zslow) THEN |
---|
1477 | pvom(jl, jk) = zsqua / zslow * pvom(jl, jk) |
---|
1478 | pvol(jl, jk) = zsqua / zslow * pvol(jl, jk) |
---|
1479 | END IF |
---|
1480 | |
---|
1481 | END IF |
---|
1482 | END DO |
---|
1483 | END DO |
---|
1484 | |
---|
1485 | ! 6. LOW LEVEL LIFT, SEMI IMPLICIT: |
---|
1486 | ! ---------------------------------- |
---|
1487 | |
---|
1488 | ELSE |
---|
1489 | |
---|
1490 | DO jl = kidia, kfdia |
---|
1491 | IF (ktest(jl)==1) THEN |
---|
1492 | DO jk = klev, iknub(jl), -1 |
---|
1493 | zbet = gklift * 2. * romega * sin(zpi / 180. * plat(jl)) * ztmst * & |
---|
1494 | (pgeom1(jl, iknub(jl) - 1) - pgeom1(jl, jk)) / & |
---|
1495 | (pgeom1(jl, iknub(jl) - 1) - pgeom1(jl, klev)) |
---|
1496 | zdudt(jl) = -pum1(jl, jk) / ztmst / (1 + zbet**2) |
---|
1497 | zdvdt(jl) = -pvm1(jl, jk) / ztmst / (1 + zbet**2) |
---|
1498 | pvom(jl, jk) = zbet**2 * zdudt(jl) - zbet * zdvdt(jl) |
---|
1499 | pvol(jl, jk) = zbet * zdudt(jl) + zbet**2 * zdvdt(jl) |
---|
1500 | END DO |
---|
1501 | END IF |
---|
1502 | END DO |
---|
1503 | |
---|
1504 | END IF |
---|
1505 | |
---|
1506 | END SUBROUTINE orolift |
---|
1507 | |
---|
1508 | |
---|
1509 | SUBROUTINE sugwd(nlon, nlev, paprs, pplay) |
---|
1510 | USE dimphy |
---|
1511 | USE lmdz_phys_para |
---|
1512 | USE lmdz_grid_phy |
---|
1513 | USE lmdz_YOEGWD, ONLY: GFRCRIT, GKWAKE, GRCRIT, GVCRIT, GKDRAG, GKLIFT, GHMAX, GRAHILO, GSIGCR, NKTOPG, NSTRA, GSSEC, GTSEC, GVSEC, & |
---|
1514 | GWD_RANDO_RUWMAX, gwd_rando_sat, GWD_FRONT_RUWMAX, gwd_front_sat |
---|
1515 | ! USE parallel |
---|
1516 | |
---|
1517 | ! **** *SUGWD* INITIALIZE COMMON YOEGWD CONTROLLING GRAVITY WAVE DRAG |
---|
1518 | |
---|
1519 | ! PURPOSE. |
---|
1520 | ! -------- |
---|
1521 | ! INITIALIZE YOEGWD, THE COMMON THAT CONTROLS THE |
---|
1522 | ! GRAVITY WAVE DRAG PARAMETRIZATION. |
---|
1523 | |
---|
1524 | ! ** INTERFACE. |
---|
1525 | ! ---------- |
---|
1526 | ! CALL *SUGWD* FROM *SUPHEC* |
---|
1527 | ! ----- ------ |
---|
1528 | |
---|
1529 | ! EXPLICIT ARGUMENTS : |
---|
1530 | ! -------------------- |
---|
1531 | ! PSIG : VERTICAL COORDINATE TABLE |
---|
1532 | ! NLEV : NUMBER OF MODEL LEVELS |
---|
1533 | |
---|
1534 | ! IMPLICIT ARGUMENTS : |
---|
1535 | ! -------------------- |
---|
1536 | ! COMMON YOEGWD |
---|
1537 | |
---|
1538 | ! METHOD. |
---|
1539 | ! ------- |
---|
1540 | ! SEE DOCUMENTATION |
---|
1541 | |
---|
1542 | ! EXTERNALS. |
---|
1543 | ! ---------- |
---|
1544 | ! NONE |
---|
1545 | |
---|
1546 | ! REFERENCE. |
---|
1547 | ! ---------- |
---|
1548 | ! ECMWF Research Department documentation of the IFS |
---|
1549 | |
---|
1550 | ! AUTHOR. |
---|
1551 | ! ------- |
---|
1552 | ! MARTIN MILLER *ECMWF* |
---|
1553 | |
---|
1554 | ! MODIFICATIONS. |
---|
1555 | ! -------------- |
---|
1556 | ! ORIGINAL : 90-01-01 |
---|
1557 | ! ------------------------------------------------------------------ |
---|
1558 | IMPLICIT NONE |
---|
1559 | |
---|
1560 | INTEGER nlon, nlev, jk |
---|
1561 | REAL paprs(nlon, nlev + 1) |
---|
1562 | REAL pplay(nlon, nlev) |
---|
1563 | REAL zpr, zstra, zsigt, zpm1r |
---|
1564 | REAL :: pplay_glo(klon_glo, nlev) |
---|
1565 | REAL :: paprs_glo(klon_glo, nlev + 1) |
---|
1566 | |
---|
1567 | ! * 1. SET THE VALUES OF THE PARAMETERS |
---|
1568 | ! -------------------------------- |
---|
1569 | |
---|
1570 | PRINT *, ' DANS SUGWD NLEV=', nlev |
---|
1571 | ghmax = 10000. |
---|
1572 | |
---|
1573 | zpr = 100000. |
---|
1574 | zstra = 0.1 |
---|
1575 | zsigt = 0.94 |
---|
1576 | ! old ZPR=80000. |
---|
1577 | ! old ZSIGT=0.85 |
---|
1578 | |
---|
1579 | CALL gather(pplay, pplay_glo) |
---|
1580 | CALL bcast(pplay_glo) |
---|
1581 | CALL gather(paprs, paprs_glo) |
---|
1582 | CALL bcast(paprs_glo) |
---|
1583 | |
---|
1584 | DO jk = 1, nlev |
---|
1585 | zpm1r = pplay_glo((klon_glo / 2) + 1, jk) / paprs_glo((klon_glo / 2) + 1, 1) |
---|
1586 | IF (zpm1r>=zsigt) THEN |
---|
1587 | nktopg = jk |
---|
1588 | END IF |
---|
1589 | zpm1r = pplay_glo((klon_glo / 2) + 1, jk) / paprs_glo((klon_glo / 2) + 1, 1) |
---|
1590 | IF (zpm1r>=zstra) THEN |
---|
1591 | nstra = jk |
---|
1592 | END IF |
---|
1593 | END DO |
---|
1594 | |
---|
1595 | |
---|
1596 | |
---|
1597 | ! inversion car dans orodrag on compte les niveaux a l'envers |
---|
1598 | nktopg = nlev - nktopg + 1 |
---|
1599 | nstra = nlev - nstra |
---|
1600 | PRINT *, ' DANS SUGWD nktopg=', nktopg |
---|
1601 | PRINT *, ' DANS SUGWD nstra=', nstra |
---|
1602 | |
---|
1603 | gsigcr = 0.80 |
---|
1604 | |
---|
1605 | ! Values now specified in run.def, or conf_phys_m.F90 |
---|
1606 | ! gkdrag = 0.2 |
---|
1607 | ! grahilo = 1. |
---|
1608 | ! grcrit = 0.01 |
---|
1609 | ! gfrcrit = 1.0 |
---|
1610 | ! gkwake = 0.50 |
---|
1611 | ! gklift = 0.50 |
---|
1612 | gvcrit = 0.0 |
---|
1613 | |
---|
1614 | ! ---------------------------------------------------------------- |
---|
1615 | |
---|
1616 | ! * 2. SET VALUES OF SECURITY PARAMETERS |
---|
1617 | ! --------------------------------- |
---|
1618 | |
---|
1619 | gvsec = 0.10 |
---|
1620 | gssec = 1.E-12 |
---|
1621 | |
---|
1622 | gtsec = 1.E-07 |
---|
1623 | |
---|
1624 | ! ---------------------------------------------------------------- |
---|
1625 | |
---|
1626 | END SUBROUTINE sugwd |
---|