1 | |
---|
2 | ! $Id$ |
---|
3 | |
---|
4 | SUBROUTINE ocean_albedo(knon,zrmu0,knindex,pwind,SFRWL,alb_dir_new,alb_dif_new) |
---|
5 | !! |
---|
6 | !!**** *ALBEDO_RS14* |
---|
7 | !! |
---|
8 | !! PURPOSE |
---|
9 | !! ------- |
---|
10 | !! computes the direct & diffuse albedo over open water |
---|
11 | !! |
---|
12 | !!** METHOD |
---|
13 | !! ------ |
---|
14 | !! |
---|
15 | !! EXTERNAL |
---|
16 | !! -------- |
---|
17 | !! |
---|
18 | !! IMPLICIT ARGUMENTS |
---|
19 | !! ------------------ |
---|
20 | !! |
---|
21 | !! REFERENCE |
---|
22 | !! --------- |
---|
23 | !! |
---|
24 | !! AUTHOR |
---|
25 | !! ------ |
---|
26 | !! R. Séférian * Meteo-France * |
---|
27 | !! |
---|
28 | !! MODIFICATIONS |
---|
29 | !! ------------- |
---|
30 | !! Original 03/2014 |
---|
31 | !! 05/2014 R. Séférian & B. Decharme :: Adaptation to spectral |
---|
32 | !! computation for diffuse and direct albedo |
---|
33 | !! 08/2014 S. Baek :: for wider wavelength range 200-4000nm and |
---|
34 | !! adaptation to LMDZ + whitecap effect by Koepke + chrolophyll |
---|
35 | !! map from climatology file |
---|
36 | !! 10/2016 O. Boucher :: some optimisation following R. |
---|
37 | !! Seferian's work in the CNRM Model |
---|
38 | !! |
---|
39 | !------------------------------------------------------------------------------- |
---|
40 | |
---|
41 | !* DECLARATIONS |
---|
42 | ! ------------ |
---|
43 | |
---|
44 | USE ocean_albedo_para |
---|
45 | USE dimphy |
---|
46 | USE phys_state_var_mod, ONLY: chl_con |
---|
47 | |
---|
48 | |
---|
49 | IMPLICIT NONE |
---|
50 | |
---|
51 | !* 0.1 declarations of arguments |
---|
52 | ! ------------------------- |
---|
53 | |
---|
54 | include "clesphys.h" |
---|
55 | |
---|
56 | INTEGER, INTENT(IN) :: knon |
---|
57 | INTEGER, DIMENSION(klon), INTENT(IN) :: knindex |
---|
58 | REAL, DIMENSION(klon), INTENT(IN) :: zrmu0 !--cos(SZA) on full vector |
---|
59 | REAL, DIMENSION(klon), INTENT(IN) :: pwind !--wind speed on compressed vector |
---|
60 | REAL, DIMENSION(6),INTENT(IN) :: SFRWL |
---|
61 | REAL, DIMENSION(klon,nsw), INTENT(OUT) :: alb_dir_new, alb_dif_new |
---|
62 | |
---|
63 | !* 0.2 declarations of local variables |
---|
64 | ! ------------------------- |
---|
65 | |
---|
66 | REAL, DIMENSION(klon) :: ZCHL ! surface chlorophyll |
---|
67 | REAL, DIMENSION(klon) :: ZCOSZEN ! Cosine of the zenith solar angle |
---|
68 | |
---|
69 | INTEGER :: JWL, INU ! indexes |
---|
70 | INTEGER :: JI |
---|
71 | REAL :: ZWL ! input parameter: wavelength and diffuse/direct fraction of light |
---|
72 | REAL:: ZCHLABS, ZAW, ZBW, ZREFM, ZYLMD, ZUE, ZUE2 ! scalar computation variables |
---|
73 | |
---|
74 | REAL, DIMENSION(klon) :: ZAP, ZXX2, ZR00, ZRR0, ZRRR ! computation variables |
---|
75 | REAL, DIMENSION(klon) :: ZR22, ZR11DF ! computation variables |
---|
76 | REAL, DIMENSION(klon) :: ZBBP, ZNU, ZHB ! computation variables |
---|
77 | REAL, DIMENSION(klon) :: ZR11, ZRW, ZRWDF, ZRDF ! 4 components of the OSA |
---|
78 | REAL, DIMENSION(klon) :: ZSIG, ZFWC, ZWORK1, ZWORK2, ZWORK3 |
---|
79 | |
---|
80 | !--initialisations------------- |
---|
81 | |
---|
82 | IF (knon==0) RETURN ! A verifier pourquoi on en a besoin... |
---|
83 | |
---|
84 | alb_dir_new(:,:) = 0. |
---|
85 | alb_dif_new(:,:) = 0. |
---|
86 | |
---|
87 | ! Initialisation of chlorophyll content |
---|
88 | ! ZCHL(:) = CHL_CON!0.05 ! averaged global values for surface chlorophyll |
---|
89 | IF (ok_chlorophyll) THEN |
---|
90 | ZCHL(1:knon)=CHL_CON(knindex(1:knon)) |
---|
91 | ELSE |
---|
92 | ZCHL(1:knon) = 0.05 |
---|
93 | ENDIF |
---|
94 | |
---|
95 | ! variables that do not depend on wavelengths |
---|
96 | ! loop over the grid points |
---|
97 | ! functions of chlorophyll content |
---|
98 | ZWORK1(1:knon)= EXP(LOG(ZCHL(1:knon))*0.65) |
---|
99 | ZWORK2(1:knon)= 0.416 * EXP(LOG(ZCHL(1:knon))*0.766) |
---|
100 | ZWORK3(1:knon)= LOG10(ZCHL(1:knon)) |
---|
101 | ! store the cosine of the solar zenith angle |
---|
102 | ZCOSZEN(1:knon) = zrmu0(knindex(1:knon)) |
---|
103 | ! Compute sigma derived from wind speed (Cox & Munk reflectance model) |
---|
104 | ZSIG(1:knon)=SQRT(0.003+0.00512*PWIND(1:knon)) |
---|
105 | ! original : correction for foam (Eq 16-17) |
---|
106 | ! has to be update once we have information from wave model (discussion with G. Madec) |
---|
107 | ZFWC(1:knon)=3.97e-4*PWIND(1:knon)**1.59 ! Salisbury 2014 eq(2) at 37GHz, value in fraction |
---|
108 | |
---|
109 | DO JWL=1,NNWL ! loop over the wavelengths |
---|
110 | |
---|
111 | !--------------------------------------------------------------------------------- |
---|
112 | ! 0- Compute baseline values |
---|
113 | !--------------------------------------------------------------------------------- |
---|
114 | |
---|
115 | ! Get refractive index for the correspoding wavelength |
---|
116 | ZWL=XAKWL(JWL) !!!--------- wavelength value |
---|
117 | ZREFM= XAKREFM(JWL) !!!--------- refraction index value |
---|
118 | |
---|
119 | !--------------------------------------------------------------------------------- |
---|
120 | ! 1- Compute direct surface albedo (ZR11) |
---|
121 | !--------------------------------------------------------------------------------- |
---|
122 | |
---|
123 | ZXX2(1:knon)=SQRT(1.0-(1.0-ZCOSZEN(1:knon)**2)/ZREFM**2) |
---|
124 | ZRR0(1:knon)=0.50*(((ZXX2(1:knon)-ZREFM*ZCOSZEN(1:knon))/(ZXX2(1:knon)+ZREFM*ZCOSZEN(1:knon)))**2 + & |
---|
125 | ((ZCOSZEN(1:knon)-ZREFM*ZXX2(1:knon))/(ZCOSZEN(1:knon)+ZREFM*ZXX2(1:knon)))**2) |
---|
126 | ZRRR(1:knon)=0.50*(((ZXX2(1:knon)-1.34*ZCOSZEN(1:knon))/(ZXX2(1:knon)+1.34*ZCOSZEN(1:knon)))**2 + & |
---|
127 | ((ZCOSZEN(1:knon)-1.34*ZXX2(1:knon))/(ZCOSZEN(1:knon)+1.34*ZXX2(1:knon)))**2) |
---|
128 | ZR11(1:knon)=ZRR0(1:knon)-(0.0152-1.7873*ZCOSZEN(1:knon)+6.8972*ZCOSZEN(1:knon)**2-8.5778*ZCOSZEN(1:knon)**3+ & |
---|
129 | 4.071*ZSIG(1:knon)-7.6446*ZCOSZEN(1:knon)*ZSIG(1:knon)) * & |
---|
130 | EXP(0.1643-7.8409*ZCOSZEN(1:knon)-3.5639*ZCOSZEN(1:knon)**2-2.3588*ZSIG(1:knon)+ & |
---|
131 | 10.0538*ZCOSZEN(1:knon)*ZSIG(1:knon))*ZRR0(1:knon)/ZRRR(1:knon) |
---|
132 | |
---|
133 | !--------------------------------------------------------------------------------- |
---|
134 | ! 2- Compute surface diffuse albedo (ZRDF) |
---|
135 | !--------------------------------------------------------------------------------- |
---|
136 | ! Diffuse albedo from Jin et al., 2006 + estimation from diffuse fraction of |
---|
137 | ! light (relying later on AOD). CNRM model has opted for Eq 5b |
---|
138 | ZRDF(1:knon)=-0.1482-0.012*ZSIG(1:knon)+0.1609*ZREFM-0.0244*ZSIG(1:knon)*ZREFM ! surface diffuse (Eq 5a) |
---|
139 | !!ZRDF(1:knon)=-0.1479+0.1502*ZREFM-0.0176*ZSIG(1:knon)*ZREFM ! surface diffuse (Eq 5b) |
---|
140 | |
---|
141 | !--------------------------------------------------------------------------------- |
---|
142 | ! *- Determine absorption and backscattering |
---|
143 | ! coefficients to determine reflectance below the surface (Ro) once for all |
---|
144 | |
---|
145 | ! *.1- Absorption by chlorophyll |
---|
146 | ZCHLABS= XAKACHL(JWL) |
---|
147 | ! *.2- Absorption by seawater |
---|
148 | ZAW= XAKAW3(JWL) |
---|
149 | ! *.3- Backscattering by seawater |
---|
150 | ZBW= XAKBW(JWL) |
---|
151 | ! *.4- Backscattering by chlorophyll |
---|
152 | ZYLMD = EXP(0.014*(440.0-ZWL)) |
---|
153 | ZAP(1:knon) = 0.06*ZCHLABS*ZWORK1(1:knon) +0.2*(XAW440+0.06*ZWORK1(1:knon))*ZYLMD |
---|
154 | |
---|
155 | !! WHERE ( ZCHL(1:knon) > 0.02 ) |
---|
156 | !! ZNU(:)=MIN(0.0,0.5*(ZWORK3(:)-0.3)) |
---|
157 | !! ZBBP(:)=(0.002+0.01*(0.5-0.25*ZWORK3(:))*(ZWL/550.)**ZNU(:))*ZWORK2(:) |
---|
158 | !! ELSEWHERE |
---|
159 | !! ZBBP(:)=0.019*(550./ZWL)*ZWORK2(:) !ZBBPf=0.0113 at chl<=0.02 |
---|
160 | !! ENDWHERE |
---|
161 | |
---|
162 | do JI = 1, knon |
---|
163 | IF (ZCHL(JI) > 0.02) THEN |
---|
164 | ZNU(JI)=MIN(0.0,0.5*(ZWORK3(JI)-0.3)) |
---|
165 | ZBBP(JI)=(0.002+0.01*(0.5-0.25*ZWORK3(JI))*(ZWL/550.)**ZNU(JI)) & |
---|
166 | *ZWORK2(JI) |
---|
167 | ELSE |
---|
168 | ZBBP(JI)=0.019*(550./ZWL)*ZWORK2(JI) !ZBBPf=0.0113 at chl<=0.02 |
---|
169 | ENDIF |
---|
170 | ENDDO |
---|
171 | |
---|
172 | ! Morel-Gentili(1991), Eq (12) |
---|
173 | ! ZHB=h/(h+2*ZBBPf*(1.-h)) |
---|
174 | ZHB(1:knon)=0.5*ZBW/(0.5*ZBW+ZBBP(1:knon)) |
---|
175 | |
---|
176 | !--------------------------------------------------------------------------------- |
---|
177 | ! 3- Compute direct water-leaving albedo (ZRW) |
---|
178 | !--------------------------------------------------------------------------------- |
---|
179 | ! Based on Morel & Gentilli 1991 parametrization |
---|
180 | ZR22(1:knon)=0.48168549-0.014894708*ZSIG(1:knon)-0.20703885*ZSIG(1:knon)**2 |
---|
181 | |
---|
182 | ! Use Morel 91 formula to compute the direct reflectance |
---|
183 | ! below the surface |
---|
184 | ZR00(1:knon)=(0.5*ZBW+ZBBP(1:knon))/(ZAW+ZAP(1:knon)) * & |
---|
185 | (0.6279-0.2227*ZHB(1:knon)-0.0513*ZHB(1:knon)**2 + & |
---|
186 | (-0.3119+0.2465*ZHB(1:knon))*ZCOSZEN(1:knon)) |
---|
187 | ZRW(1:knon)=ZR00(1:knon)*(1.-ZR22(1:knon))/(1.-ZR00(1:knon)*ZR22(1:knon)) |
---|
188 | |
---|
189 | !--------------------------------------------------------------------------------- |
---|
190 | ! 4- Compute diffuse water-leaving albedo (ZRWDF) |
---|
191 | !--------------------------------------------------------------------------------- |
---|
192 | ! as previous water-leaving computation but assumes a uniform incidence of |
---|
193 | ! shortwave at surface (ue) |
---|
194 | ZUE=0.676 ! equivalent u_unif for diffuse incidence |
---|
195 | ZUE2=SQRT(1.0-(1.0-ZUE**2)/ZREFM**2) |
---|
196 | ZRR0(1:knon)=0.50*(((ZUE2-ZREFM*ZUE)/(ZUE2+ZREFM*ZUE))**2 +((ZUE-ZREFM*ZUE2)/(ZUE+ZREFM*ZUE2))**2) |
---|
197 | ZRRR(1:knon)=0.50*(((ZUE2-1.34*ZUE)/(ZUE2+1.34*ZUE))**2 +((ZUE-1.34*ZUE2)/(ZUE+1.34*ZUE2))**2) |
---|
198 | ZR11DF(1:knon)=ZRR0(1:knon)-(0.0152-1.7873*ZUE+6.8972*ZUE**2-8.5778*ZUE**3+4.071*ZSIG(1:knon)-7.6446*ZUE*ZSIG(1:knon)) * & |
---|
199 | EXP(0.1643-7.8409*ZUE-3.5639*ZUE**2-2.3588*ZSIG(1:knon)+10.0538*ZUE*ZSIG(1:knon))*ZRR0(1:knon)/ZRRR(1:knon) |
---|
200 | |
---|
201 | ! Use Morel 91 formula to compute the diffuse |
---|
202 | ! reflectance below the surface |
---|
203 | ZR00(1:knon) = (0.5*ZBW+ZBBP(1:knon)) / (ZAW+ZAP(1:knon)) & |
---|
204 | * (0.6279-0.2227*ZHB(1:knon)-0.0513*ZHB(1:knon)**2 & |
---|
205 | + (-0.3119+0.2465*ZHB(1:knon))*ZUE) |
---|
206 | ZRWDF(1:knon)=ZR00(1:knon)*(1.-ZR22(1:knon))*(1.-ZR11DF(1:knon))/(1.-ZR00(1:knon)*ZR22(1:knon)) |
---|
207 | |
---|
208 | ! get waveband index inu for each nsw band |
---|
209 | SELECT CASE(nsw) |
---|
210 | CASE(2) |
---|
211 | IF (JWL<=49) THEN ! from 200 to 680 nm |
---|
212 | inu=1 |
---|
213 | ELSE ! from 690 to 4000 nm |
---|
214 | inu=2 |
---|
215 | ENDIF |
---|
216 | CASE(4) |
---|
217 | IF (JWL<=49) THEN ! from 200 to 680 nm |
---|
218 | inu=1 |
---|
219 | ELSE IF (JWL<=99) THEN ! from 690 to 1180 nm |
---|
220 | inu=2 |
---|
221 | ELSE IF (JWL<=218) THEN ! from 1190 to 2370 nm |
---|
222 | inu=3 |
---|
223 | ELSE ! from 2380 to 4000 nm |
---|
224 | inu=4 |
---|
225 | ENDIF |
---|
226 | CASE(6) |
---|
227 | IF (JWL<=5) THEN ! from 200 to 240 nm |
---|
228 | inu=1 |
---|
229 | ELSE IF (JWL<=24) THEN ! from 250 to 430 nm |
---|
230 | inu=2 |
---|
231 | ELSE IF (JWL<=49) THEN ! from 440 to 680 nm |
---|
232 | inu=3 |
---|
233 | ELSE IF (JWL<=99) THEN ! from 690 to 1180 nm |
---|
234 | inu=4 |
---|
235 | ELSE IF (JWL<=218) THEN ! from 1190 to 2370 nm |
---|
236 | inu=5 |
---|
237 | ELSE ! from 2380 to 4000 nm |
---|
238 | inu=6 |
---|
239 | ENDIF |
---|
240 | END SELECT |
---|
241 | |
---|
242 | ! partitionning direct and diffuse albedo |
---|
243 | ! excluding diffuse albedo ZRW on ZDIR_ALB |
---|
244 | |
---|
245 | !--direct |
---|
246 | alb_dir_new(1:knon,inu)=alb_dir_new(1:knon,inu) + & |
---|
247 | ( XFRWL(JWL) * ((1.-ZFWC(1:knon)) * (ZR11(1:knon)+ZRW(1:knon)) + ZFWC(1:knon)*XRWC(JWL)) )/SFRWL(inu) |
---|
248 | !--diffuse |
---|
249 | alb_dif_new(1:knon,inu)=alb_dif_new(1:knon,inu) + & |
---|
250 | ( XFRWL(JWL) * ((1.-ZFWC(1:knon)) * (ZRDF(1:knon)+ZRWDF(1:knon)) + ZFWC(1:knon)*XRWC(JWL)) )/SFRWL(inu) |
---|
251 | |
---|
252 | ENDDO ! ending loop over wavelengths |
---|
253 | |
---|
254 | END SUBROUTINE ocean_albedo |
---|