source: LMDZ6/branches/Amaury_dev/libf/phylmd/nuage.F90 @ 5220

Last change on this file since 5220 was 5153, checked in by abarral, 4 months ago

Revert FCTTRE to INCLUDE to assess impact of inlining

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 13.9 KB
RevLine 
[1279]1! $Id: nuage.F90 5153 2024-07-31 16:20:03Z abarral $
[524]2
[5144]3SUBROUTINE nuage(paprs, pplay, t, pqlwp, picefra, pclc, pcltau, pclemi, pch, pcl, pcm, &
4        pct, pctlwp, ok_aie, mass_solu_aero, mass_solu_aero_pi, bl95_b0, bl95_b1, distcltop, &
5        temp_cltop, cldtaupi, re, fl)
[1992]6  USE dimphy
[5116]7  USE lmdz_lscp_tools, ONLY: icefrac_lscp
[2109]8  USE icefrac_lsc_mod ! computes ice fraction (JBM 3/14)
[5101]9  USE lmdz_lscp_ini, ONLY: iflag_t_glace
[3999]10  USE phys_local_var_mod, ONLY: ptconv
[5137]11  USE lmdz_clesphys
[5139]12  USE lmdz_nuage_params ! JBM 3/14
[5144]13  USE lmdz_yomcst
[5137]14
[1992]15  IMPLICIT NONE
16  ! ======================================================================
17  ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910
18  ! Objet: Calculer epaisseur optique et emmissivite des nuages
19  ! ======================================================================
20  ! Arguments:
21  ! t-------input-R-temperature
22  ! pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg)
[3999]23  ! picefra--inout-R-fraction de glace dans les nuages (-)
[1992]24  ! pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1)
25  ! ok_aie--input-L-apply aerosol indirect effect or not
26  ! mass_solu_aero-----input-R-total mass concentration for all soluble
27  ! aerosols[ug/m^3]
28  ! mass_solu_aero_pi--input-R-dito, pre-industrial value
29  ! bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land)
30  ! bl95_b1-input-R-a parameter, may be varied for tests (    -"-      )
[524]31
[1992]32  ! cldtaupi-output-R-pre-industrial value of cloud optical thickness,
33  ! needed for the diagnostics of the aerosol indirect
34  ! radiative forcing (see radlwsw)
35  ! re------output-R-Cloud droplet effective radius multiplied by fl [um]
36  ! fl------output-R-Denominator to re, introduced to avoid problems in
37  ! the averaging of the output. fl is the fraction of liquid
38  ! water clouds within a grid cell
39
40  ! pcltau--output-R-epaisseur optique des nuages
41  ! pclemi--output-R-emissivite des nuages (0 a 1)
42  ! ======================================================================
43
[5144]44  REAL paprs(klon, klev + 1), pplay(klon, klev)
[1992]45  REAL t(klon, klev)
46
47  REAL pclc(klon, klev)
[5144]48  REAL pqlwp(klon, klev), picefra(klon, klev)
[1992]49  REAL pcltau(klon, klev), pclemi(klon, klev)
50
51  REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon)
[5144]52  REAL distcltop(klon, klev)
53  REAL temp_cltop(klon, klev)
[1992]54  LOGICAL lo
55
56  REAL cetahb, cetamb
[5144]57  PARAMETER (cetahb = 0.45, cetamb = 0.80)
[1992]58
59  INTEGER i, k
[2077]60  REAL zflwp, zradef, zfice(klon), zmsac
[1992]61
[2006]62  REAL radius, rad_chaud
[5144]63  ! JBM (3/14) parameters already defined in nuage.h:
64  ! REAL rad_froid, rad_chau1, rad_chau2
65  ! PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0)
[1992]66  ! cc      PARAMETER (rad_chaud=15.0, rad_froid=35.0)
67  ! sintex initial      PARAMETER (rad_chaud=10.0, rad_froid=30.0)
68  REAL coef, coef_froi, coef_chau
[5144]69  PARAMETER (coef_chau = 0.13, coef_froi = 0.09)
[2006]70  REAL seuil_neb
[5144]71  PARAMETER (seuil_neb = 0.001)
72  ! JBM (3/14) nexpo is replaced by exposant_glace
73  ! REAL nexpo ! exponentiel pour glace/eau
74  ! PARAMETER (nexpo=6.)
[2006]75  REAL, PARAMETER :: t_glace_min_old = 258.
76  INTEGER, PARAMETER :: exposant_glace_old = 6
[1992]77
[2006]78
[1992]79  ! jq for the aerosol indirect effect
80  ! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003
81  ! jq
82  LOGICAL ok_aie ! Apply AIE or not?
83
84  REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols[ug m-3]
85  REAL mass_solu_aero_pi(klon, klev) ! - " - pre-industrial value
86  REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3]
87  REAL re(klon, klev) ! cloud droplet effective radius [um]
88  REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value)
89  REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value)
90
91  REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds
92  ! within the grid cell)
93
94  REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula
95
96  REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag
[3999]97  REAl dzfice(klon)
[1992]98  ! jq-end
99
100  ! cc      PARAMETER (nexpo=1)
101
102  ! Calculer l'epaisseur optique et l'emmissivite des nuages
103
104  DO k = 1, klev
[5144]105    IF (iflag_t_glace==0) THEN
106      DO i = 1, klon
107        zfice(i) = 1.0 - (t(i, k) - t_glace_min_old) / (273.13 - t_glace_min_old)
108        zfice(i) = min(max(zfice(i), 0.0), 1.0)
[2077]109        zfice(i) = zfice(i)**exposant_glace_old
[5144]110      ENDDO
111    ELSE ! of IF (iflag_t_glace.EQ.0)
112      ! JBM: icefrac_lsc is now a function contained in icefrac_lsc_mod
113      !       zfice(i) = icefrac_lsc(t(i,k), t_glace_min, &
114      !                           t_glace_max, exposant_glace)
115      IF (ok_new_lscp) THEN
116        CALL icefrac_lscp(klon, t(:, k), iflag_ice_thermo, distcltop(:, k), temp_cltop(:, k), zfice(:), dzfice(:))
117      ELSE
118        CALL icefrac_lsc(klon, t(:, k), pplay(:, k) / paprs(:, 1), zfice(:))
[3999]119
[5144]120      ENDIF
[3999]121
[5144]122      IF (ok_new_lscp .AND. ok_icefra_lscp) THEN
123        ! EV: take the ice fraction directly from the lscp code
124        ! consistent only for non convective grid points
125        ! critical for mixed phase clouds
126        DO i = 1, klon
127          IF (.NOT. ptconv(i, k)) THEN
128            zfice(i) = picefra(i, k)
129          ENDIF
[4715]130        ENDDO
[5144]131      ENDIF
[3999]132
[5144]133    ENDIF
[3999]134
[1992]135    DO i = 1, klon
136      rad_chaud = rad_chau1
137      IF (k<=3) rad_chaud = rad_chau2
138
[5144]139      pclc(i, k) = max(pclc(i, k), seuil_neb)
140      zflwp = 1000. * pqlwp(i, k) / rg / pclc(i, k) * (paprs(i, k) - paprs(i, k + 1))
[1992]141
142      IF (ok_aie) THEN
[5144]143        ! Formula "D" of Boucher and Lohmann, Tellus, 1995
[5099]144
[5144]145        cdnc(i, k) = 10.**(bl95_b0 + bl95_b1 * log(max(mass_solu_aero(i, k), &
146                1.E-4)) / log(10.)) * 1.E6 !-m-3
147        ! Cloud droplet number concentration (CDNC) is restricted
148        ! to be within [20, 1000 cm^3]
[5099]149
[5144]150        cdnc(i, k) = min(1000.E6, max(20.E6, cdnc(i, k)))
151        cdnc_pi(i, k) = 10.**(bl95_b0 + bl95_b1 * log(max(mass_solu_aero_pi(i, k), &
152                1.E-4)) / log(10.)) * 1.E6 !-m-3
153        cdnc_pi(i, k) = min(1000.E6, max(20.E6, cdnc_pi(i, k)))
[5099]154
155
[5144]156        ! air density: pplay(i,k) / (RD * zT(i,k))
157        ! factor 1.1: derive effective radius from volume-mean radius
158        ! factor 1000 is the water density
159        ! _chaud means that this is the CDR for liquid water clouds
[5099]160
[5144]161        rad_chaud = 1.1 * ((pqlwp(i, k) * pplay(i, k) / (rd * t(i, k))) / (4. / 3. * rpi * 1000. &
162                * cdnc(i, k)))**(1. / 3.)
[5099]163
[5144]164        ! Convert to um. CDR shall be at least 3 um.
[5099]165
[5144]166        rad_chaud = max(rad_chaud * 1.E6, 3.)
[1992]167
[5144]168        ! For output diagnostics
[5099]169
[5144]170        ! Cloud droplet effective radius [um]
[5099]171
[5144]172        ! we multiply here with f * xl (fraction of liquid water
173        ! clouds in the grid cell) to avoid problems in the
174        ! averaging of the output.
175        ! In the output of IOIPSL, derive the real cloud droplet
176        ! effective radius as re/fl
[5099]177
[5144]178        fl(i, k) = pclc(i, k) * (1. - zfice(i))
179        re(i, k) = rad_chaud * fl(i, k)
[1992]180
[5144]181        ! Pre-industrial cloud opt thickness
[5099]182
[5144]183        ! "radius" is calculated as rad_chaud above (plus the
184        ! ice cloud contribution) but using cdnc_pi instead of
185        ! cdnc.
186        radius = max(1.1E6 * ((pqlwp(i, k) * pplay(i, k) / (rd * t(i, k))) / (4. / 3. * rpi * &
187                1000. * cdnc_pi(i, k)))**(1. / 3.), 3.) * (1. - zfice(i)) + rad_froid * zfice(i)
188        cldtaupi(i, k) = 3.0 / 2.0 * zflwp / radius
[1992]189      END IF ! ok_aie
190
[5144]191      radius = rad_chaud * (1. - zfice(i)) + rad_froid * zfice(i)
192      coef = coef_chau * (1. - zfice(i)) + coef_froi * zfice(i)
193      pcltau(i, k) = 3.0 / 2.0 * zflwp / radius
194      pclemi(i, k) = 1.0 - exp(-coef * zflwp)
195      lo = (pclc(i, k)<=seuil_neb)
[1992]196      IF (lo) pclc(i, k) = 0.0
197      IF (lo) pcltau(i, k) = 0.0
198      IF (lo) pclemi(i, k) = 0.0
199
200      IF (.NOT. ok_aie) cldtaupi(i, k) = pcltau(i, k)
201    END DO
202  END DO
203  ! cc      DO k = 1, klev
204  ! cc      DO i = 1, klon
205  ! cc         t(i,k) = t(i,k)
206  ! cc         pclc(i,k) = MAX( 1.e-5 , pclc(i,k) )
207  ! cc         lo = pclc(i,k) .GT. (2.*1.e-5)
208  ! cc         zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1))
209  ! cc     .          /(rg*pclc(i,k))
210  ! cc         zradef = 10.0 + (1.-sigs(k))*45.0
211  ! cc         pcltau(i,k) = 1.5 * zflwp / zradef
212  ! cc         zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0)
213  ! cc         zmsac = 0.13*(1.0-zfice) + 0.08*zfice
214  ! cc         pclemi(i,k) = 1.-EXP(-zmsac*zflwp)
215  ! cc         if (.NOT.lo) pclc(i,k) = 0.0
216  ! cc         if (.NOT.lo) pcltau(i,k) = 0.0
217  ! cc         if (.NOT.lo) pclemi(i,k) = 0.0
218  ! cc      ENDDO
219  ! cc      ENDDO
[5103]220  ! ccccc      PRINT*, 'pas de nuage dans le rayonnement'
[1992]221  ! ccccc      DO k = 1, klev
222  ! ccccc      DO i = 1, klon
223  ! ccccc         pclc(i,k) = 0.0
224  ! ccccc         pcltau(i,k) = 0.0
225  ! ccccc         pclemi(i,k) = 0.0
226  ! ccccc      ENDDO
227  ! ccccc      ENDDO
228
229  ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS
230
231  DO i = 1, klon
232    pct(i) = 1.0
233    pch(i) = 1.0
234    pcm(i) = 1.0
235    pcl(i) = 1.0
236    pctlwp(i) = 0.0
237  END DO
238
239  DO k = klev, 1, -1
240    DO i = 1, klon
[5144]241      pctlwp(i) = pctlwp(i) + pqlwp(i, k) * (paprs(i, k) - paprs(i, k + 1)) / rg
242      pct(i) = pct(i) * (1.0 - pclc(i, k))
243      IF (pplay(i, k)<=cetahb * paprs(i, 1)) pch(i) = pch(i) * (1.0 - pclc(i, k))
244      IF (pplay(i, k)>cetahb * paprs(i, 1) .AND. pplay(i, k)<=cetamb * paprs(i, 1)) &
245              pcm(i) = pcm(i) * (1.0 - pclc(i, k))
246      IF (pplay(i, k)>cetamb * paprs(i, 1)) pcl(i) = pcl(i) * (1.0 - pclc(i, k))
[1992]247    END DO
248  END DO
249
250  DO i = 1, klon
251    pct(i) = 1. - pct(i)
252    pch(i) = 1. - pch(i)
253    pcm(i) = 1. - pcm(i)
254    pcl(i) = 1. - pcl(i)
255  END DO
256
257END SUBROUTINE nuage
258SUBROUTINE diagcld1(paprs, pplay, rain, snow, kbot, ktop, diafra, dialiq)
259  USE dimphy
[5144]260  USE lmdz_yomcst
261
[1992]262  IMPLICIT NONE
263
264  ! Laurent Li (LMD/CNRS), le 12 octobre 1998
265  ! (adaptation du code ECMWF)
266
267  ! Dans certains cas, le schema pronostique des nuages n'est
268  ! pas suffisament performant. On a donc besoin de diagnostiquer
269  ! ces nuages. Je dois avouer que c'est une frustration.
270
271  ! Arguments d'entree:
[5144]272  REAL paprs(klon, klev + 1) ! pression (Pa) a inter-couche
[1992]273  REAL pplay(klon, klev) ! pression (Pa) au milieu de couche
274  REAL t(klon, klev) ! temperature (K)
275  REAL q(klon, klev) ! humidite specifique (Kg/Kg)
276  REAL rain(klon) ! pluie convective (kg/m2/s)
277  REAL snow(klon) ! neige convective (kg/m2/s)
278  INTEGER ktop(klon) ! sommet de la convection
279  INTEGER kbot(klon) ! bas de la convection
280
281  ! Arguments de sortie:
282  REAL diafra(klon, klev) ! fraction nuageuse diagnostiquee
283  REAL dialiq(klon, klev) ! eau liquide nuageuse
284
285  ! Constantes ajustables:
286  REAL canva, canvb, canvh
[5144]287  PARAMETER (canva = 2.0, canvb = 0.3, canvh = 0.4)
[1992]288  REAL cca, ccb, ccc
[5144]289  PARAMETER (cca = 0.125, ccb = 1.5, ccc = 0.8)
[1992]290  REAL ccfct, ccscal
[5144]291  PARAMETER (ccfct = 0.400)
292  PARAMETER (ccscal = 1.0E+11)
[1992]293  REAL cetahb, cetamb
[5144]294  PARAMETER (cetahb = 0.45, cetamb = 0.80)
[1992]295  REAL cclwmr
[5144]296  PARAMETER (cclwmr = 1.E-04)
[1992]297  REAL zepscr
[5144]298  PARAMETER (zepscr = 1.0E-10)
[1992]299
300  ! Variables locales:
301  INTEGER i, k
302  REAL zcc(klon)
303
304  ! Initialisation:
305
306  DO k = 1, klev
307    DO i = 1, klon
308      diafra(i, k) = 0.0
309      dialiq(i, k) = 0.0
310    END DO
311  END DO
312
313  DO i = 1, klon ! Calculer la fraction nuageuse
314    zcc(i) = 0.0
[5144]315    IF ((rain(i) + snow(i))>0.) THEN
316      zcc(i) = cca * log(max(zepscr, (rain(i) + snow(i)) * ccscal)) - ccb
317      zcc(i) = min(ccc, max(0.0, zcc(i)))
[1992]318    END IF
319  END DO
320
321  DO i = 1, klon ! pour traiter les enclumes
[5144]322    diafra(i, ktop(i)) = max(diafra(i, ktop(i)), zcc(i) * ccfct)
323    IF ((zcc(i)>=canvh) .AND. (pplay(i, ktop(i))<=cetahb * paprs(i, &
324            1))) diafra(i, ktop(i)) = max(diafra(i, ktop(i)), max(zcc(&
325            i) * ccfct, canva * (zcc(i) - canvb)))
326    dialiq(i, ktop(i)) = cclwmr * diafra(i, ktop(i))
[1992]327  END DO
328
329  DO k = 1, klev ! nuages convectifs (sauf enclumes)
330    DO i = 1, klon
331      IF (k<ktop(i) .AND. k>=kbot(i)) THEN
[5144]332        diafra(i, k) = max(diafra(i, k), zcc(i) * ccfct)
333        dialiq(i, k) = cclwmr * diafra(i, k)
[1992]334      END IF
335    END DO
336  END DO
337
338END SUBROUTINE diagcld1
339SUBROUTINE diagcld2(paprs, pplay, t, q, diafra, dialiq)
340  USE dimphy
[5144]341  USE lmdz_yoethf
[5153]342
[5144]343  USE lmdz_yomcst
[5143]344
[1992]345  IMPLICIT NONE
[5153]346 INCLUDE "FCTTRE.h"
[1992]347
348  ! Arguments d'entree:
[5144]349  REAL paprs(klon, klev + 1) ! pression (Pa) a inter-couche
[1992]350  REAL pplay(klon, klev) ! pression (Pa) au milieu de couche
351  REAL t(klon, klev) ! temperature (K)
352  REAL q(klon, klev) ! humidite specifique (Kg/Kg)
353
354  ! Arguments de sortie:
355  REAL diafra(klon, klev) ! fraction nuageuse diagnostiquee
356  REAL dialiq(klon, klev) ! eau liquide nuageuse
357
358  REAL cetamb
[5144]359  PARAMETER (cetamb = 0.80)
[1992]360  REAL cloia, cloib, cloic, cloid
[5144]361  PARAMETER (cloia = 1.0E+02, cloib = -10.00, cloic = -0.6, cloid = 5.0)
[1992]362  ! cc      PARAMETER (CLOIA=1.0E+02, CLOIB=-10.00, CLOIC=-0.9, CLOID=5.0)
363  REAL rgammas
[5144]364  PARAMETER (rgammas = 0.05)
[1992]365  REAL crhl
[5144]366  PARAMETER (crhl = 0.15)
[1992]367  ! cc      PARAMETER (CRHL=0.70)
368  REAL t_coup
[5144]369  PARAMETER (t_coup = 234.0)
[1992]370
371  ! Variables locales:
372  INTEGER i, k, kb, invb(klon)
373  REAL zqs, zrhb, zcll, zdthmin(klon), zdthdp
374  REAL zdelta, zcor
375
376  ! Initialisation:
377
378  DO k = 1, klev
379    DO i = 1, klon
380      diafra(i, k) = 0.0
381      dialiq(i, k) = 0.0
382    END DO
383  END DO
384
385  DO i = 1, klon
386    invb(i) = klev
387    zdthmin(i) = 0.0
388  END DO
389
[5144]390  DO k = 2, klev / 2 - 1
[1992]391    DO i = 1, klon
[5144]392      zdthdp = (t(i, k) - t(i, k + 1)) / (pplay(i, k) - pplay(i, k + 1)) - &
393              rd * 0.5 * (t(i, k) + t(i, k + 1)) / rcpd / paprs(i, k + 1)
394      zdthdp = zdthdp * cloia
395      IF (pplay(i, k)>cetamb * paprs(i, 1) .AND. zdthdp<zdthmin(i)) THEN
[1992]396        zdthmin(i) = zdthdp
397        invb(i) = k
398      END IF
399    END DO
400  END DO
401
402  DO i = 1, klon
403    kb = invb(i)
404    IF (thermcep) THEN
[5144]405      zdelta = max(0., sign(1., rtt - t(i, kb)))
406      zqs = r2es * foeew(t(i, kb), zdelta) / pplay(i, kb)
[1992]407      zqs = min(0.5, zqs)
[5144]408      zcor = 1. / (1. - retv * zqs)
409      zqs = zqs * zcor
[1992]410    ELSE
[5144]411      IF (t(i, kb)<t_coup) THEN
412        zqs = qsats(t(i, kb)) / pplay(i, kb)
[1992]413      ELSE
[5144]414        zqs = qsatl(t(i, kb)) / pplay(i, kb)
[1992]415      END IF
416    END IF
[5144]417    zcll = cloib * zdthmin(i) + cloic
418    zcll = min(1.0, max(0.0, zcll))
419    zrhb = q(i, kb) / zqs
420    IF (zcll>0.0 .AND. zrhb<crhl) zcll = zcll * (1. - (crhl - zrhb) * cloid)
421    zcll = min(1.0, max(0.0, zcll))
422    diafra(i, kb) = max(diafra(i, kb), zcll)
423    dialiq(i, kb) = diafra(i, kb) * rgammas * zqs
[1992]424  END DO
425
426END SUBROUTINE diagcld2
Note: See TracBrowser for help on using the repository browser.