1 | MODULE lmdz_thermcell_old |
---|
2 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
3 | |
---|
4 | CONTAINS |
---|
5 | |
---|
6 | SUBROUTINE thermcell_2002(ngrid, nlay, ptimestep, iflag_thermals, pplay, & |
---|
7 | pplev, pphi, pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0, & |
---|
8 | fraca, wa_moy, r_aspect, l_mix, w2di, tho) |
---|
9 | |
---|
10 | USE dimphy |
---|
11 | USE lmdz_writefield_phy |
---|
12 | USE lmdz_thermcell_dv2, ONLY: thermcell_dv2 |
---|
13 | USE lmdz_thermcell_dq, ONLY: thermcell_dq |
---|
14 | USE lmdz_yomcst |
---|
15 | |
---|
16 | IMPLICIT NONE |
---|
17 | |
---|
18 | ! ======================================================================= |
---|
19 | |
---|
20 | ! Calcul du transport verticale dans la couche limite en presence |
---|
21 | ! de "thermiques" explicitement representes |
---|
22 | |
---|
23 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
24 | |
---|
25 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
26 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
27 | ! mélange |
---|
28 | |
---|
29 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
30 | ! en compte: |
---|
31 | ! 1. un flux de masse montant |
---|
32 | ! 2. un flux de masse descendant |
---|
33 | ! 3. un entrainement |
---|
34 | ! 4. un detrainement |
---|
35 | |
---|
36 | ! arguments: |
---|
37 | ! ---------- |
---|
38 | |
---|
39 | INTEGER ngrid, nlay, w2di, iflag_thermals |
---|
40 | REAL tho |
---|
41 | REAL ptimestep, l_mix, r_aspect |
---|
42 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
43 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
44 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
45 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
46 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay + 1) |
---|
47 | REAL pphi(ngrid, nlay) |
---|
48 | REAL fraca(ngrid, nlay + 1), zw2(ngrid, nlay + 1) |
---|
49 | |
---|
50 | INTEGER, SAVE :: idetr = 3, lev_out = 1 |
---|
51 | !$OMP THREADPRIVATE(idetr,lev_out) |
---|
52 | |
---|
53 | ! local: |
---|
54 | ! ------ |
---|
55 | |
---|
56 | INTEGER, SAVE :: dvdq = 0, flagdq = 0, dqimpl = 1 |
---|
57 | LOGICAL, SAVE :: debut = .TRUE. |
---|
58 | !$OMP THREADPRIVATE(dvdq,flagdq,debut,dqimpl) |
---|
59 | |
---|
60 | INTEGER ig, k, l, lmax(klon, klev + 1), lmaxa(klon), lmix(klon) |
---|
61 | REAL zmax(klon), zw, zz, ztva(klon, klev), zzz |
---|
62 | |
---|
63 | REAL zlev(klon, klev + 1), zlay(klon, klev) |
---|
64 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
65 | REAL ztv(klon, klev) |
---|
66 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
67 | REAL wh(klon, klev + 1) |
---|
68 | REAL wu(klon, klev + 1), wv(klon, klev + 1), wo(klon, klev + 1) |
---|
69 | REAL zla(klon, klev + 1) |
---|
70 | REAL zwa(klon, klev + 1) |
---|
71 | REAL zld(klon, klev + 1) |
---|
72 | REAL zwd(klon, klev + 1) |
---|
73 | REAL zsortie(klon, klev) |
---|
74 | REAL zva(klon, klev) |
---|
75 | REAL zua(klon, klev) |
---|
76 | REAL zoa(klon, klev) |
---|
77 | |
---|
78 | REAL zha(klon, klev) |
---|
79 | REAL wa_moy(klon, klev + 1) |
---|
80 | REAL fracc(klon, klev + 1) |
---|
81 | REAL zf, zf2 |
---|
82 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
83 | ! common/comtherm/thetath2,wth2 |
---|
84 | |
---|
85 | REAL count_time |
---|
86 | |
---|
87 | LOGICAL sorties |
---|
88 | REAL rho(klon, klev), rhobarz(klon, klev + 1), masse(klon, klev) |
---|
89 | REAL zpspsk(klon, klev) |
---|
90 | |
---|
91 | REAL wmax(klon, klev), wmaxa(klon) |
---|
92 | |
---|
93 | REAL wa(klon, klev, klev + 1) |
---|
94 | REAL wd(klon, klev + 1) |
---|
95 | REAL larg_part(klon, klev, klev + 1) |
---|
96 | REAL fracd(klon, klev + 1) |
---|
97 | REAL xxx(klon, klev + 1) |
---|
98 | REAL larg_cons(klon, klev + 1) |
---|
99 | REAL larg_detr(klon, klev + 1) |
---|
100 | REAL fm0(klon, klev + 1), entr0(klon, klev), detr(klon, klev) |
---|
101 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
102 | REAL fm(klon, klev + 1), entr(klon, klev) |
---|
103 | REAL fmc(klon, klev + 1) |
---|
104 | |
---|
105 | CHARACTER (LEN = 2) :: str2 |
---|
106 | CHARACTER (LEN = 10) :: str10 |
---|
107 | |
---|
108 | CHARACTER (LEN = 20) :: modname = 'thermcell2002' |
---|
109 | CHARACTER (LEN = 80) :: abort_message |
---|
110 | |
---|
111 | LOGICAL vtest(klon), down |
---|
112 | |
---|
113 | INTEGER ncorrec, ll |
---|
114 | SAVE ncorrec |
---|
115 | DATA ncorrec/0/ |
---|
116 | !$OMP THREADPRIVATE(ncorrec) |
---|
117 | |
---|
118 | |
---|
119 | ! ----------------------------------------------------------------------- |
---|
120 | ! initialisation: |
---|
121 | ! --------------- |
---|
122 | |
---|
123 | sorties = .TRUE. |
---|
124 | IF (ngrid/=klon) THEN |
---|
125 | PRINT * |
---|
126 | PRINT *, 'STOP dans convadj' |
---|
127 | PRINT *, 'ngrid =', ngrid |
---|
128 | PRINT *, 'klon =', klon |
---|
129 | END IF |
---|
130 | |
---|
131 | ! ----------------------------------------------------------------------- |
---|
132 | ! incrementation eventuelle de tendances precedentes: |
---|
133 | ! --------------------------------------------------- |
---|
134 | |
---|
135 | ! PRINT*,'0 OK convect8' |
---|
136 | |
---|
137 | DO l = 1, nlay |
---|
138 | DO ig = 1, ngrid |
---|
139 | zpspsk(ig, l) = (pplay(ig, l) / pplev(ig, 1))**rkappa |
---|
140 | zh(ig, l) = pt(ig, l) / zpspsk(ig, l) |
---|
141 | zu(ig, l) = pu(ig, l) |
---|
142 | zv(ig, l) = pv(ig, l) |
---|
143 | zo(ig, l) = po(ig, l) |
---|
144 | ztv(ig, l) = zh(ig, l) * (1. + 0.61 * zo(ig, l)) |
---|
145 | END DO |
---|
146 | END DO |
---|
147 | |
---|
148 | ! PRINT*,'1 OK convect8' |
---|
149 | ! -------------------- |
---|
150 | |
---|
151 | |
---|
152 | ! + + + + + + + + + + + |
---|
153 | |
---|
154 | |
---|
155 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
156 | ! wh,wt,wo ... |
---|
157 | |
---|
158 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
159 | |
---|
160 | |
---|
161 | ! -------------------- zlev(1) |
---|
162 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
163 | |
---|
164 | |
---|
165 | |
---|
166 | ! ----------------------------------------------------------------------- |
---|
167 | ! Calcul des altitudes des couches |
---|
168 | ! ----------------------------------------------------------------------- |
---|
169 | |
---|
170 | IF (debut) THEN |
---|
171 | flagdq = (iflag_thermals - 1000) / 100 |
---|
172 | dvdq = (iflag_thermals - (1000 + flagdq * 100)) / 10 |
---|
173 | IF (flagdq==2) dqimpl = -1 |
---|
174 | IF (flagdq==3) dqimpl = 1 |
---|
175 | debut = .FALSE. |
---|
176 | END IF |
---|
177 | PRINT *, 'TH flag th ', iflag_thermals, flagdq, dvdq, dqimpl |
---|
178 | |
---|
179 | DO l = 2, nlay |
---|
180 | DO ig = 1, ngrid |
---|
181 | zlev(ig, l) = 0.5 * (pphi(ig, l) + pphi(ig, l - 1)) / rg |
---|
182 | END DO |
---|
183 | END DO |
---|
184 | DO ig = 1, ngrid |
---|
185 | zlev(ig, 1) = 0. |
---|
186 | zlev(ig, nlay + 1) = (2. * pphi(ig, klev) - pphi(ig, klev - 1)) / rg |
---|
187 | END DO |
---|
188 | DO l = 1, nlay |
---|
189 | DO ig = 1, ngrid |
---|
190 | zlay(ig, l) = pphi(ig, l) / rg |
---|
191 | END DO |
---|
192 | END DO |
---|
193 | |
---|
194 | ! PRINT*,'2 OK convect8' |
---|
195 | ! ----------------------------------------------------------------------- |
---|
196 | ! Calcul des densites |
---|
197 | ! ----------------------------------------------------------------------- |
---|
198 | |
---|
199 | DO l = 1, nlay |
---|
200 | DO ig = 1, ngrid |
---|
201 | rho(ig, l) = pplay(ig, l) / (zpspsk(ig, l) * rd * zh(ig, l)) |
---|
202 | END DO |
---|
203 | END DO |
---|
204 | |
---|
205 | DO l = 2, nlay |
---|
206 | DO ig = 1, ngrid |
---|
207 | rhobarz(ig, l) = 0.5 * (rho(ig, l) + rho(ig, l - 1)) |
---|
208 | END DO |
---|
209 | END DO |
---|
210 | |
---|
211 | DO k = 1, nlay |
---|
212 | DO l = 1, nlay + 1 |
---|
213 | DO ig = 1, ngrid |
---|
214 | wa(ig, k, l) = 0. |
---|
215 | END DO |
---|
216 | END DO |
---|
217 | END DO |
---|
218 | |
---|
219 | ! PRINT*,'3 OK convect8' |
---|
220 | ! ------------------------------------------------------------------ |
---|
221 | ! Calcul de w2, quarre de w a partir de la cape |
---|
222 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
223 | |
---|
224 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
225 | ! w2 est stoke dans wa |
---|
226 | |
---|
227 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
228 | ! independants par couches que pour calculer l'entrainement |
---|
229 | ! a la base et la hauteur max de l'ascendance. |
---|
230 | |
---|
231 | ! Indicages: |
---|
232 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
233 | ! une vitesse wa(k,l). |
---|
234 | |
---|
235 | ! -------------------- |
---|
236 | |
---|
237 | ! + + + + + + + + + + |
---|
238 | |
---|
239 | ! wa(k,l) ---- -------------------- l |
---|
240 | ! /\ |
---|
241 | ! /||\ + + + + + + + + + + |
---|
242 | ! || |
---|
243 | ! || -------------------- |
---|
244 | ! || |
---|
245 | ! || + + + + + + + + + + |
---|
246 | ! || |
---|
247 | ! || -------------------- |
---|
248 | ! ||__ |
---|
249 | ! |___ + + + + + + + + + + k |
---|
250 | |
---|
251 | ! -------------------- |
---|
252 | |
---|
253 | |
---|
254 | |
---|
255 | ! ------------------------------------------------------------------ |
---|
256 | |
---|
257 | DO k = 1, nlay - 1 |
---|
258 | DO ig = 1, ngrid |
---|
259 | wa(ig, k, k) = 0. |
---|
260 | wa(ig, k, k + 1) = 2. * rg * (ztv(ig, k) - ztv(ig, k + 1)) / ztv(ig, k + 1) * & |
---|
261 | (zlev(ig, k + 1) - zlev(ig, k)) |
---|
262 | END DO |
---|
263 | DO l = k + 1, nlay - 1 |
---|
264 | DO ig = 1, ngrid |
---|
265 | wa(ig, k, l + 1) = wa(ig, k, l) + 2. * rg * (ztv(ig, k) - ztv(ig, l)) / ztv(ig, l & |
---|
266 | ) * (zlev(ig, l + 1) - zlev(ig, l)) |
---|
267 | END DO |
---|
268 | END DO |
---|
269 | DO ig = 1, ngrid |
---|
270 | wa(ig, k, nlay + 1) = 0. |
---|
271 | END DO |
---|
272 | END DO |
---|
273 | |
---|
274 | ! PRINT*,'4 OK convect8' |
---|
275 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
276 | DO k = 1, nlay - 1 |
---|
277 | DO ig = 1, ngrid |
---|
278 | lmax(ig, k) = k |
---|
279 | END DO |
---|
280 | DO l = nlay, k + 1, -1 |
---|
281 | DO ig = 1, ngrid |
---|
282 | IF (wa(ig, k, l)<=1.E-10) lmax(ig, k) = l - 1 |
---|
283 | END DO |
---|
284 | END DO |
---|
285 | END DO |
---|
286 | |
---|
287 | ! PRINT*,'5 OK convect8' |
---|
288 | ! Calcule du w max du thermique |
---|
289 | DO k = 1, nlay |
---|
290 | DO ig = 1, ngrid |
---|
291 | wmax(ig, k) = 0. |
---|
292 | END DO |
---|
293 | END DO |
---|
294 | |
---|
295 | DO k = 1, nlay - 1 |
---|
296 | DO l = k, nlay |
---|
297 | DO ig = 1, ngrid |
---|
298 | IF (l<=lmax(ig, k)) THEN |
---|
299 | wa(ig, k, l) = sqrt(wa(ig, k, l)) |
---|
300 | wmax(ig, k) = max(wmax(ig, k), wa(ig, k, l)) |
---|
301 | ELSE |
---|
302 | wa(ig, k, l) = 0. |
---|
303 | END IF |
---|
304 | END DO |
---|
305 | END DO |
---|
306 | END DO |
---|
307 | |
---|
308 | DO k = 1, nlay - 1 |
---|
309 | DO ig = 1, ngrid |
---|
310 | pu_therm(ig, k) = sqrt(wmax(ig, k)) |
---|
311 | pv_therm(ig, k) = sqrt(wmax(ig, k)) |
---|
312 | END DO |
---|
313 | END DO |
---|
314 | |
---|
315 | ! PRINT*,'6 OK convect8' |
---|
316 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
317 | DO ig = 1, ngrid |
---|
318 | zmax(ig) = 500. |
---|
319 | END DO |
---|
320 | ! PRINT*,'LMAX LMAX LMAX ' |
---|
321 | DO k = 1, nlay - 1 |
---|
322 | DO ig = 1, ngrid |
---|
323 | zmax(ig) = max(zmax(ig), zlev(ig, lmax(ig, k)) - zlev(ig, k)) |
---|
324 | END DO |
---|
325 | ! PRINT*,k,lmax(1,k) |
---|
326 | END DO |
---|
327 | ! PRINT*,'ZMAX ZMAX ZMAX ',zmax |
---|
328 | ! CALL dump2d(iim,jjm-1,zmax(2:ngrid-1),'ZMAX ') |
---|
329 | |
---|
330 | ! PRINT*,'OKl336' |
---|
331 | ! Calcul de l'entrainement. |
---|
332 | ! Le rapport d'aspect relie la largeur de l'ascendance a l'epaisseur |
---|
333 | ! de la couche d'alimentation en partant du principe que la vitesse |
---|
334 | ! maximum dans l'ascendance est la vitesse d'entrainement horizontale. |
---|
335 | DO k = 1, nlay |
---|
336 | DO ig = 1, ngrid |
---|
337 | zzz = rho(ig, k) * wmax(ig, k) * (zlev(ig, k + 1) - zlev(ig, k)) / & |
---|
338 | (zmax(ig) * r_aspect) |
---|
339 | IF (w2di==2) THEN |
---|
340 | entr(ig, k) = entr(ig, k) + ptimestep * (zzz - entr(ig, k)) / tho |
---|
341 | ELSE |
---|
342 | entr(ig, k) = zzz |
---|
343 | END IF |
---|
344 | ztva(ig, k) = ztv(ig, k) |
---|
345 | END DO |
---|
346 | END DO |
---|
347 | |
---|
348 | |
---|
349 | ! PRINT*,'7 OK convect8' |
---|
350 | DO k = 1, klev + 1 |
---|
351 | DO ig = 1, ngrid |
---|
352 | zw2(ig, k) = 0. |
---|
353 | fmc(ig, k) = 0. |
---|
354 | larg_cons(ig, k) = 0. |
---|
355 | larg_detr(ig, k) = 0. |
---|
356 | wa_moy(ig, k) = 0. |
---|
357 | END DO |
---|
358 | END DO |
---|
359 | |
---|
360 | ! PRINT*,'8 OK convect8' |
---|
361 | DO ig = 1, ngrid |
---|
362 | lmaxa(ig) = 1 |
---|
363 | lmix(ig) = 1 |
---|
364 | wmaxa(ig) = 0. |
---|
365 | END DO |
---|
366 | |
---|
367 | |
---|
368 | ! PRINT*,'OKl372' |
---|
369 | DO l = 1, nlay - 2 |
---|
370 | DO ig = 1, ngrid |
---|
371 | ! if (zw2(ig,l).lt.1.e-10.AND.ztv(ig,l).gt.ztv(ig,l+1)) THEN |
---|
372 | ! PRINT*,'COUCOU ',l,zw2(ig,l),ztv(ig,l),ztv(ig,l+1) |
---|
373 | IF (zw2(ig, l)<1.E-10 .AND. ztv(ig, l)>ztv(ig, l + 1) .AND. & |
---|
374 | entr(ig, l)>1.E-10) THEN |
---|
375 | ! PRINT*,'COUCOU cas 1' |
---|
376 | ! Initialisation de l'ascendance |
---|
377 | ! lmix(ig)=1 |
---|
378 | ztva(ig, l) = ztv(ig, l) |
---|
379 | fmc(ig, l) = 0. |
---|
380 | fmc(ig, l + 1) = entr(ig, l) |
---|
381 | zw2(ig, l) = 0. |
---|
382 | ! if (.NOT.ztv(ig,l+1).gt.150.) THEN |
---|
383 | ! PRINT*,'ig,l+1,ztv(ig,l+1)' |
---|
384 | ! PRINT*, ig,l+1,ztv(ig,l+1) |
---|
385 | ! END IF |
---|
386 | zw2(ig, l + 1) = 2. * rg * (ztv(ig, l) - ztv(ig, l + 1)) / ztv(ig, l + 1) * & |
---|
387 | (zlev(ig, l + 1) - zlev(ig, l)) |
---|
388 | larg_detr(ig, l) = 0. |
---|
389 | ELSE IF (zw2(ig, l)>=1.E-10 .AND. fmc(ig, l) + entr(ig, l)>1.E-10) THEN |
---|
390 | ! Incrementation... |
---|
391 | fmc(ig, l + 1) = fmc(ig, l) + entr(ig, l) |
---|
392 | ! if (.NOT.fmc(ig,l+1).gt.1.e-15) THEN |
---|
393 | ! PRINT*,'ig,l+1,fmc(ig,l+1)' |
---|
394 | ! PRINT*, ig,l+1,fmc(ig,l+1) |
---|
395 | ! PRINT*,'Fmc ',(fmc(ig,ll),ll=1,klev+1) |
---|
396 | ! PRINT*,'W2 ',(zw2(ig,ll),ll=1,klev+1) |
---|
397 | ! PRINT*,'Tv ',(ztv(ig,ll),ll=1,klev) |
---|
398 | ! PRINT*,'Entr ',(entr(ig,ll),ll=1,klev) |
---|
399 | ! END IF |
---|
400 | ztva(ig, l) = (fmc(ig, l) * ztva(ig, l - 1) + entr(ig, l) * ztv(ig, l)) / & |
---|
401 | fmc(ig, l + 1) |
---|
402 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
403 | ! consideree commence avec une vitesse nulle). |
---|
404 | zw2(ig, l + 1) = zw2(ig, l) * (fmc(ig, l) / fmc(ig, l + 1))**2 + & |
---|
405 | 2. * rg * (ztva(ig, l) - ztv(ig, l)) / ztv(ig, l) * (zlev(ig, l + 1) - zlev(ig, l)) |
---|
406 | END IF |
---|
407 | IF (zw2(ig, l + 1)<0.) THEN |
---|
408 | zw2(ig, l + 1) = 0. |
---|
409 | lmaxa(ig) = l |
---|
410 | ELSE |
---|
411 | wa_moy(ig, l + 1) = sqrt(zw2(ig, l + 1)) |
---|
412 | END IF |
---|
413 | IF (wa_moy(ig, l + 1)>wmaxa(ig)) THEN |
---|
414 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
415 | lmix(ig) = l + 1 |
---|
416 | wmaxa(ig) = wa_moy(ig, l + 1) |
---|
417 | END IF |
---|
418 | ! PRINT*,'COUCOU cas 2 LMIX=',lmix(ig),wa_moy(ig,l+1),wmaxa(ig) |
---|
419 | END DO |
---|
420 | END DO |
---|
421 | |
---|
422 | ! PRINT*,'9 OK convect8' |
---|
423 | ! PRINT*,'WA1 ',wa_moy |
---|
424 | |
---|
425 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
426 | |
---|
427 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
428 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
429 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
430 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
431 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
432 | |
---|
433 | ! PRINT*,'OKl439' |
---|
434 | DO l = 2, nlay |
---|
435 | DO ig = 1, ngrid |
---|
436 | IF (l<=lmaxa(ig)) THEN |
---|
437 | zw = max(wa_moy(ig, l), 1.E-10) |
---|
438 | larg_cons(ig, l) = zmax(ig) * r_aspect * fmc(ig, l) / (rhobarz(ig, l) * zw) |
---|
439 | END IF |
---|
440 | END DO |
---|
441 | END DO |
---|
442 | |
---|
443 | DO l = 2, nlay |
---|
444 | DO ig = 1, ngrid |
---|
445 | IF (l<=lmaxa(ig)) THEN |
---|
446 | ! if (idetr.EQ.0) THEN |
---|
447 | ! cette option est finalement en dur. |
---|
448 | larg_detr(ig, l) = sqrt(l_mix * zlev(ig, l)) |
---|
449 | ! ELSE IF (idetr.EQ.1) THEN |
---|
450 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
451 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
452 | ! ELSE IF (idetr.EQ.2) THEN |
---|
453 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
454 | ! s *sqrt(wa_moy(ig,l)) |
---|
455 | ! ELSE IF (idetr.EQ.4) THEN |
---|
456 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
457 | ! s *wa_moy(ig,l) |
---|
458 | ! END IF |
---|
459 | END IF |
---|
460 | END DO |
---|
461 | END DO |
---|
462 | |
---|
463 | ! PRINT*,'10 OK convect8' |
---|
464 | ! PRINT*,'WA2 ',wa_moy |
---|
465 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
466 | ! compte de l'epluchage du thermique. |
---|
467 | |
---|
468 | DO l = 2, nlay |
---|
469 | DO ig = 1, ngrid |
---|
470 | IF (larg_cons(ig, l)>1.) THEN |
---|
471 | ! PRINT*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
472 | fraca(ig, l) = (larg_cons(ig, l) - larg_detr(ig, l)) / (r_aspect * zmax(ig)) |
---|
473 | IF (l>lmix(ig)) THEN |
---|
474 | xxx(ig, l) = (lmaxa(ig) + 1. - l) / (lmaxa(ig) + 1. - lmix(ig)) |
---|
475 | IF (idetr==0) THEN |
---|
476 | fraca(ig, l) = fraca(ig, lmix(ig)) |
---|
477 | ELSE IF (idetr==1) THEN |
---|
478 | fraca(ig, l) = fraca(ig, lmix(ig)) * xxx(ig, l) |
---|
479 | ELSE IF (idetr==2) THEN |
---|
480 | fraca(ig, l) = fraca(ig, lmix(ig)) * (1. - (1. - xxx(ig, l))**2) |
---|
481 | ELSE |
---|
482 | fraca(ig, l) = fraca(ig, lmix(ig)) * xxx(ig, l)**2 |
---|
483 | END IF |
---|
484 | END IF |
---|
485 | ! PRINT*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
486 | fraca(ig, l) = max(fraca(ig, l), 0.) |
---|
487 | fraca(ig, l) = min(fraca(ig, l), 0.5) |
---|
488 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
489 | fracc(ig, l) = larg_cons(ig, l) / (r_aspect * zmax(ig)) |
---|
490 | ELSE |
---|
491 | ! wa_moy(ig,l)=0. |
---|
492 | fraca(ig, l) = 0. |
---|
493 | fracc(ig, l) = 0. |
---|
494 | fracd(ig, l) = 1. |
---|
495 | END IF |
---|
496 | END DO |
---|
497 | END DO |
---|
498 | |
---|
499 | ! PRINT*,'11 OK convect8' |
---|
500 | ! PRINT*,'Ea3 ',wa_moy |
---|
501 | ! ------------------------------------------------------------------ |
---|
502 | ! Calcul de fracd, wd |
---|
503 | ! somme wa - wd = 0 |
---|
504 | ! ------------------------------------------------------------------ |
---|
505 | |
---|
506 | DO ig = 1, ngrid |
---|
507 | fm(ig, 1) = 0. |
---|
508 | fm(ig, nlay + 1) = 0. |
---|
509 | END DO |
---|
510 | |
---|
511 | DO l = 2, nlay |
---|
512 | DO ig = 1, ngrid |
---|
513 | fm(ig, l) = fraca(ig, l) * wa_moy(ig, l) * rhobarz(ig, l) |
---|
514 | END DO |
---|
515 | DO ig = 1, ngrid |
---|
516 | IF (fracd(ig, l)<0.1) THEN |
---|
517 | abort_message = 'fracd trop petit' |
---|
518 | CALL abort_physic(modname, abort_message, 1) |
---|
519 | ELSE |
---|
520 | ! vitesse descendante "diagnostique" |
---|
521 | wd(ig, l) = fm(ig, l) / (fracd(ig, l) * rhobarz(ig, l)) |
---|
522 | END IF |
---|
523 | END DO |
---|
524 | END DO |
---|
525 | |
---|
526 | DO l = 1, nlay |
---|
527 | DO ig = 1, ngrid |
---|
528 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
529 | masse(ig, l) = (pplev(ig, l) - pplev(ig, l + 1)) / rg |
---|
530 | END DO |
---|
531 | END DO |
---|
532 | |
---|
533 | ! PRINT*,'12 OK convect8' |
---|
534 | ! PRINT*,'WA4 ',wa_moy |
---|
535 | ! c------------------------------------------------------------------ |
---|
536 | ! calcul du transport vertical |
---|
537 | ! ------------------------------------------------------------------ |
---|
538 | |
---|
539 | GO TO 4444 |
---|
540 | ! PRINT*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
541 | DO l = 2, nlay - 1 |
---|
542 | DO ig = 1, ngrid |
---|
543 | IF (fm(ig, l + 1) * ptimestep>masse(ig, l) .AND. fm(ig, l + 1) * ptimestep>masse(& |
---|
544 | ig, l + 1)) THEN |
---|
545 | ! PRINT*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
546 | ! s ,fm(ig,l+1)*ptimestep |
---|
547 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
548 | END IF |
---|
549 | END DO |
---|
550 | END DO |
---|
551 | |
---|
552 | DO l = 1, nlay |
---|
553 | DO ig = 1, ngrid |
---|
554 | IF (entr(ig, l) * ptimestep>masse(ig, l)) THEN |
---|
555 | ! PRINT*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
556 | ! s ,entr(ig,l)*ptimestep |
---|
557 | ! s ,' M=',masse(ig,l) |
---|
558 | END IF |
---|
559 | END DO |
---|
560 | END DO |
---|
561 | |
---|
562 | DO l = 1, nlay |
---|
563 | DO ig = 1, ngrid |
---|
564 | IF (.NOT. fm(ig, l)>=0. .OR. .NOT. fm(ig, l)<=10.) THEN |
---|
565 | ! PRINT*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
566 | ! s ,' FM=',fm(ig,l) |
---|
567 | END IF |
---|
568 | IF (.NOT. masse(ig, l)>=1.E-10 .OR. .NOT. masse(ig, l)<=1.E4) THEN |
---|
569 | ! PRINT*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
570 | ! s ,' M=',masse(ig,l) |
---|
571 | ! PRINT*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
572 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
573 | ! PRINT*,'zlev(ig,l+1),zlev(ig,l)' |
---|
574 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
575 | ! PRINT*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
576 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
577 | END IF |
---|
578 | IF (.NOT. entr(ig, l)>=0. .OR. .NOT. entr(ig, l)<=10.) THEN |
---|
579 | ! PRINT*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
580 | ! s ,' E=',entr(ig,l) |
---|
581 | END IF |
---|
582 | END DO |
---|
583 | END DO |
---|
584 | |
---|
585 | 4444 CONTINUE |
---|
586 | ! PRINT*,'OK 444 ' |
---|
587 | |
---|
588 | IF (w2di==1) THEN |
---|
589 | fm0 = fm0 + ptimestep * (fm - fm0) / tho |
---|
590 | entr0 = entr0 + ptimestep * (entr - entr0) / tho |
---|
591 | ELSE |
---|
592 | fm0 = fm |
---|
593 | entr0 = entr |
---|
594 | END IF |
---|
595 | |
---|
596 | IF (flagdq==0) THEN |
---|
597 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
598 | zha) |
---|
599 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
600 | zoa) |
---|
601 | PRINT *, 'THERMALS OPT 1' |
---|
602 | ELSE IF (flagdq==1) THEN |
---|
603 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
604 | zdhadj, zha) |
---|
605 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
606 | pdoadj, zoa) |
---|
607 | PRINT *, 'THERMALS OPT 2' |
---|
608 | ELSE |
---|
609 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zh, & |
---|
610 | zdhadj, zha, lev_out) |
---|
611 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zo, & |
---|
612 | pdoadj, zoa, lev_out) |
---|
613 | PRINT *, 'THERMALS OPT 3', dqimpl |
---|
614 | END IF |
---|
615 | |
---|
616 | PRINT *, 'TH VENT ', dvdq |
---|
617 | IF (dvdq==0) THEN |
---|
618 | ! PRINT*,'TH VENT OK ',dvdq |
---|
619 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
620 | zua) |
---|
621 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
622 | zva) |
---|
623 | ELSE IF (dvdq==1) THEN |
---|
624 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
625 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
626 | ELSE IF (dvdq==2) THEN |
---|
627 | CALL thermcell_dv2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, & |
---|
628 | zmax, zu, zv, pduadj, pdvadj, zua, zva, lev_out) |
---|
629 | ELSE IF (dvdq==3) THEN |
---|
630 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zu, & |
---|
631 | pduadj, zua, lev_out) |
---|
632 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zv, & |
---|
633 | pdvadj, zva, lev_out) |
---|
634 | END IF |
---|
635 | |
---|
636 | ! CALL writefield_phy('duadj',pduadj,klev) |
---|
637 | |
---|
638 | DO l = 1, nlay |
---|
639 | DO ig = 1, ngrid |
---|
640 | zf = 0.5 * (fracc(ig, l) + fracc(ig, l + 1)) |
---|
641 | zf2 = zf / (1. - zf) |
---|
642 | thetath2(ig, l) = zf2 * (zha(ig, l) - zh(ig, l))**2 |
---|
643 | wth2(ig, l) = zf2 * (0.5 * (wa_moy(ig, l) + wa_moy(ig, l + 1)))**2 |
---|
644 | END DO |
---|
645 | END DO |
---|
646 | |
---|
647 | |
---|
648 | |
---|
649 | ! PRINT*,'13 OK convect8' |
---|
650 | ! PRINT*,'WA5 ',wa_moy |
---|
651 | DO l = 1, nlay |
---|
652 | DO ig = 1, ngrid |
---|
653 | pdtadj(ig, l) = zdhadj(ig, l) * zpspsk(ig, l) |
---|
654 | END DO |
---|
655 | END DO |
---|
656 | |
---|
657 | |
---|
658 | ! do l=1,nlay |
---|
659 | ! do ig=1,ngrid |
---|
660 | ! IF(abs(pdtadj(ig,l))*86400..gt.500.) THEN |
---|
661 | ! PRINT*,'WARN!!! ig=',ig,' l=',l |
---|
662 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
663 | ! END IF |
---|
664 | ! IF(abs(pdoadj(ig,l))*86400..gt.1.) THEN |
---|
665 | ! PRINT*,'WARN!!! ig=',ig,' l=',l |
---|
666 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
667 | ! END IF |
---|
668 | ! enddo |
---|
669 | ! enddo |
---|
670 | |
---|
671 | ! PRINT*,'14 OK convect8' |
---|
672 | ! ------------------------------------------------------------------ |
---|
673 | ! Calculs pour les sorties |
---|
674 | ! ------------------------------------------------------------------ |
---|
675 | |
---|
676 | IF (sorties) THEN |
---|
677 | DO l = 1, nlay |
---|
678 | DO ig = 1, ngrid |
---|
679 | zla(ig, l) = (1. - fracd(ig, l)) * zmax(ig) |
---|
680 | zld(ig, l) = fracd(ig, l) * zmax(ig) |
---|
681 | IF (1. - fracd(ig, l)>1.E-10) zwa(ig, l) = wd(ig, l) * fracd(ig, l) / & |
---|
682 | (1. - fracd(ig, l)) |
---|
683 | END DO |
---|
684 | END DO |
---|
685 | |
---|
686 | DO l = 1, nlay |
---|
687 | DO ig = 1, ngrid |
---|
688 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l + 1) |
---|
689 | IF (detr(ig, l)<0.) THEN |
---|
690 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
691 | detr(ig, l) = 0. |
---|
692 | ! PRINT*,'WARNING !!! detrainement negatif ',ig,l |
---|
693 | END IF |
---|
694 | END DO |
---|
695 | END DO |
---|
696 | END IF |
---|
697 | |
---|
698 | ! PRINT*,'15 OK convect8' |
---|
699 | |
---|
700 | |
---|
701 | ! IF(wa_moy(1,4).gt.1.e-10) stop |
---|
702 | |
---|
703 | ! PRINT*,'19 OK convect8' |
---|
704 | |
---|
705 | END SUBROUTINE thermcell_2002 |
---|
706 | |
---|
707 | SUBROUTINE thermcell_cld(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, & |
---|
708 | debut, pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0, zqla, & |
---|
709 | lmax, zmax_sec, wmax_sec, zw_sec, lmix_sec, ratqscth, ratqsdiff & ! s |
---|
710 | ! ,pu_therm,pv_therm |
---|
711 | , r_aspect, l_mix, w2di, tho) |
---|
712 | |
---|
713 | USE dimphy |
---|
714 | USE lmdz_yoethf |
---|
715 | |
---|
716 | USE lmdz_yomcst |
---|
717 | |
---|
718 | IMPLICIT NONE |
---|
719 | INCLUDE "FCTTRE.h" |
---|
720 | |
---|
721 | ! ======================================================================= |
---|
722 | |
---|
723 | ! Calcul du transport verticale dans la couche limite en presence |
---|
724 | ! de "thermiques" explicitement representes |
---|
725 | |
---|
726 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
727 | |
---|
728 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
729 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
730 | ! mélange |
---|
731 | |
---|
732 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
733 | ! en compte: |
---|
734 | ! 1. un flux de masse montant |
---|
735 | ! 2. un flux de masse descendant |
---|
736 | ! 3. un entrainement |
---|
737 | ! 4. un detrainement |
---|
738 | |
---|
739 | ! ======================================================================= |
---|
740 | |
---|
741 | ! arguments: |
---|
742 | ! ---------- |
---|
743 | |
---|
744 | INTEGER ngrid, nlay, w2di |
---|
745 | REAL tho |
---|
746 | REAL ptimestep, l_mix, r_aspect |
---|
747 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
748 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
749 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
750 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
751 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay + 1) |
---|
752 | REAL pphi(ngrid, nlay) |
---|
753 | |
---|
754 | INTEGER idetr |
---|
755 | SAVE idetr |
---|
756 | DATA idetr/3/ |
---|
757 | !$OMP THREADPRIVATE(idetr) |
---|
758 | |
---|
759 | ! local: |
---|
760 | ! ------ |
---|
761 | |
---|
762 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
763 | REAL zsortie1d(klon) |
---|
764 | ! CR: on remplace lmax(klon,klev+1) |
---|
765 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
766 | REAL linter(klon) |
---|
767 | REAL zmix(klon), fracazmix(klon) |
---|
768 | REAL alpha |
---|
769 | SAVE alpha |
---|
770 | DATA alpha/1./ |
---|
771 | !$OMP THREADPRIVATE(alpha) |
---|
772 | |
---|
773 | ! RC |
---|
774 | REAL zmax(klon), zw, zz, zw2(klon, klev + 1), ztva(klon, klev), zzz |
---|
775 | REAL zmax_sec(klon) |
---|
776 | REAL zmax_sec2(klon) |
---|
777 | REAL zw_sec(klon, klev + 1) |
---|
778 | INTEGER lmix_sec(klon) |
---|
779 | REAL w_est(klon, klev + 1) |
---|
780 | ! on garde le zmax du pas de temps precedent |
---|
781 | ! real zmax0(klon) |
---|
782 | ! save zmax0 |
---|
783 | ! real zmix0(klon) |
---|
784 | ! save zmix0 |
---|
785 | REAL, SAVE, ALLOCATABLE :: zmax0(:), zmix0(:) |
---|
786 | !$OMP THREADPRIVATE(zmax0, zmix0) |
---|
787 | |
---|
788 | REAL zlev(klon, klev + 1), zlay(klon, klev) |
---|
789 | REAL deltaz(klon, klev) |
---|
790 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
791 | REAL zthl(klon, klev), zdthladj(klon, klev) |
---|
792 | REAL ztv(klon, klev) |
---|
793 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
794 | REAL zl(klon, klev) |
---|
795 | REAL wh(klon, klev + 1) |
---|
796 | REAL wu(klon, klev + 1), wv(klon, klev + 1), wo(klon, klev + 1) |
---|
797 | REAL zla(klon, klev + 1) |
---|
798 | REAL zwa(klon, klev + 1) |
---|
799 | REAL zld(klon, klev + 1) |
---|
800 | REAL zwd(klon, klev + 1) |
---|
801 | REAL zsortie(klon, klev) |
---|
802 | REAL zva(klon, klev) |
---|
803 | REAL zua(klon, klev) |
---|
804 | REAL zoa(klon, klev) |
---|
805 | |
---|
806 | REAL zta(klon, klev) |
---|
807 | REAL zha(klon, klev) |
---|
808 | REAL wa_moy(klon, klev + 1) |
---|
809 | REAL fraca(klon, klev + 1) |
---|
810 | REAL fracc(klon, klev + 1) |
---|
811 | REAL zf, zf2 |
---|
812 | REAL thetath2(klon, klev), wth2(klon, klev), wth3(klon, klev) |
---|
813 | REAL q2(klon, klev) |
---|
814 | REAL dtheta(klon, klev) |
---|
815 | ! common/comtherm/thetath2,wth2 |
---|
816 | |
---|
817 | REAL ratqscth(klon, klev) |
---|
818 | REAL sum |
---|
819 | REAL sumdiff |
---|
820 | REAL ratqsdiff(klon, klev) |
---|
821 | REAL count_time |
---|
822 | INTEGER ialt |
---|
823 | |
---|
824 | LOGICAL sorties |
---|
825 | REAL rho(klon, klev), rhobarz(klon, klev + 1), masse(klon, klev) |
---|
826 | REAL zpspsk(klon, klev) |
---|
827 | |
---|
828 | ! real wmax(klon,klev),wmaxa(klon) |
---|
829 | REAL wmax(klon), wmaxa(klon) |
---|
830 | REAL wmax_sec(klon) |
---|
831 | REAL wmax_sec2(klon) |
---|
832 | REAL wa(klon, klev, klev + 1) |
---|
833 | REAL wd(klon, klev + 1) |
---|
834 | REAL larg_part(klon, klev, klev + 1) |
---|
835 | REAL fracd(klon, klev + 1) |
---|
836 | REAL xxx(klon, klev + 1) |
---|
837 | REAL larg_cons(klon, klev + 1) |
---|
838 | REAL larg_detr(klon, klev + 1) |
---|
839 | REAL fm0(klon, klev + 1), entr0(klon, klev), detr(klon, klev) |
---|
840 | REAL massetot(klon, klev) |
---|
841 | REAL detr0(klon, klev) |
---|
842 | REAL alim0(klon, klev) |
---|
843 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
844 | REAL fm(klon, klev + 1), entr(klon, klev) |
---|
845 | REAL fmc(klon, klev + 1) |
---|
846 | |
---|
847 | REAL zcor, zdelta, zcvm5, qlbef |
---|
848 | REAL tbef(klon), qsatbef(klon) |
---|
849 | REAL dqsat_dt, dt, num, denom |
---|
850 | REAL reps, rlvcp, ddt0 |
---|
851 | REAL ztla(klon, klev), zqla(klon, klev), zqta(klon, klev) |
---|
852 | ! CR niveau de condensation |
---|
853 | REAL nivcon(klon) |
---|
854 | REAL zcon(klon) |
---|
855 | REAL zqsat(klon, klev) |
---|
856 | REAL zqsatth(klon, klev) |
---|
857 | PARAMETER (ddt0 = .01) |
---|
858 | |
---|
859 | |
---|
860 | ! CR:nouvelles variables |
---|
861 | REAL f_star(klon, klev + 1), entr_star(klon, klev) |
---|
862 | REAL detr_star(klon, klev) |
---|
863 | REAL alim_star_tot(klon), alim_star2(klon) |
---|
864 | REAL entr_star_tot(klon) |
---|
865 | REAL detr_star_tot(klon) |
---|
866 | REAL alim_star(klon, klev) |
---|
867 | REAL alim(klon, klev) |
---|
868 | REAL nu(klon, klev) |
---|
869 | REAL nu_e(klon, klev) |
---|
870 | REAL nu_min |
---|
871 | REAL nu_max |
---|
872 | REAL nu_r |
---|
873 | REAL f(klon) |
---|
874 | ! real f(klon), f0(klon) |
---|
875 | ! save f0 |
---|
876 | REAL, SAVE, ALLOCATABLE :: f0(:) |
---|
877 | !$OMP THREADPRIVATE(f0) |
---|
878 | |
---|
879 | REAL f_old |
---|
880 | REAL zlevinter(klon) |
---|
881 | LOGICAL, SAVE :: first = .TRUE. |
---|
882 | !$OMP THREADPRIVATE(first) |
---|
883 | ! data first /.FALSE./ |
---|
884 | ! save first |
---|
885 | LOGICAL nuage |
---|
886 | ! save nuage |
---|
887 | LOGICAL boucle |
---|
888 | LOGICAL therm |
---|
889 | LOGICAL debut |
---|
890 | LOGICAL rale |
---|
891 | INTEGER test(klon) |
---|
892 | INTEGER signe_zw2 |
---|
893 | ! RC |
---|
894 | |
---|
895 | CHARACTER *2 str2 |
---|
896 | CHARACTER *10 str10 |
---|
897 | |
---|
898 | CHARACTER (LEN = 20) :: modname = 'thermcell_cld' |
---|
899 | CHARACTER (LEN = 80) :: abort_message |
---|
900 | |
---|
901 | LOGICAL vtest(klon), down |
---|
902 | LOGICAL zsat(klon) |
---|
903 | |
---|
904 | INTEGER ncorrec, ll |
---|
905 | SAVE ncorrec |
---|
906 | DATA ncorrec/0/ |
---|
907 | !$OMP THREADPRIVATE(ncorrec) |
---|
908 | |
---|
909 | |
---|
910 | |
---|
911 | ! ----------------------------------------------------------------------- |
---|
912 | ! initialisation: |
---|
913 | ! --------------- |
---|
914 | |
---|
915 | IF (first) THEN |
---|
916 | ALLOCATE (zmix0(klon)) |
---|
917 | ALLOCATE (zmax0(klon)) |
---|
918 | ALLOCATE (f0(klon)) |
---|
919 | first = .FALSE. |
---|
920 | END IF |
---|
921 | |
---|
922 | sorties = .FALSE. |
---|
923 | ! PRINT*,'NOUVEAU DETR PLUIE ' |
---|
924 | IF (ngrid/=klon) THEN |
---|
925 | PRINT * |
---|
926 | PRINT *, 'STOP dans convadj' |
---|
927 | PRINT *, 'ngrid =', ngrid |
---|
928 | PRINT *, 'klon =', klon |
---|
929 | END IF |
---|
930 | |
---|
931 | ! Initialisation |
---|
932 | rlvcp = rlvtt / rcpd |
---|
933 | reps = rd / rv |
---|
934 | ! initialisations de zqsat |
---|
935 | DO ll = 1, nlay |
---|
936 | DO ig = 1, ngrid |
---|
937 | zqsat(ig, ll) = 0. |
---|
938 | zqsatth(ig, ll) = 0. |
---|
939 | END DO |
---|
940 | END DO |
---|
941 | |
---|
942 | ! on met le first a true pour le premier passage de la journée |
---|
943 | DO ig = 1, klon |
---|
944 | test(ig) = 0 |
---|
945 | END DO |
---|
946 | IF (debut) THEN |
---|
947 | DO ig = 1, klon |
---|
948 | test(ig) = 1 |
---|
949 | f0(ig) = 0. |
---|
950 | zmax0(ig) = 0. |
---|
951 | END DO |
---|
952 | END IF |
---|
953 | DO ig = 1, klon |
---|
954 | IF ((.NOT. debut) .AND. (f0(ig)<1.E-10)) THEN |
---|
955 | test(ig) = 1 |
---|
956 | END IF |
---|
957 | END DO |
---|
958 | ! do ig=1,klon |
---|
959 | ! PRINT*,'test(ig)',test(ig),zmax0(ig) |
---|
960 | ! enddo |
---|
961 | nuage = .FALSE. |
---|
962 | ! ----------------------------------------------------------------------- |
---|
963 | ! AM Calcul de T,q,ql a partir de Tl et qT |
---|
964 | ! --------------------------------------------------- |
---|
965 | |
---|
966 | ! Pr Tprec=Tl calcul de qsat |
---|
967 | ! Si qsat>qT T=Tl, q=qT |
---|
968 | ! Sinon DDT=(-Tprec+Tl+RLVCP (qT-qsat(T')) / (1+RLVCP dqsat/dt) |
---|
969 | ! On cherche DDT < DDT0 |
---|
970 | |
---|
971 | ! defaut |
---|
972 | DO ll = 1, nlay |
---|
973 | DO ig = 1, ngrid |
---|
974 | zo(ig, ll) = po(ig, ll) |
---|
975 | zl(ig, ll) = 0. |
---|
976 | zh(ig, ll) = pt(ig, ll) |
---|
977 | END DO |
---|
978 | END DO |
---|
979 | DO ig = 1, ngrid |
---|
980 | zsat(ig) = .FALSE. |
---|
981 | END DO |
---|
982 | |
---|
983 | DO ll = 1, nlay |
---|
984 | ! les points insatures sont definitifs |
---|
985 | DO ig = 1, ngrid |
---|
986 | tbef(ig) = pt(ig, ll) |
---|
987 | zdelta = max(0., sign(1., rtt - tbef(ig))) |
---|
988 | qsatbef(ig) = r2es * foeew(tbef(ig), zdelta) / pplev(ig, ll) |
---|
989 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
990 | zcor = 1. / (1. - retv * qsatbef(ig)) |
---|
991 | qsatbef(ig) = qsatbef(ig) * zcor |
---|
992 | zsat(ig) = (max(0., po(ig, ll) - qsatbef(ig))>1.E-10) |
---|
993 | END DO |
---|
994 | |
---|
995 | DO ig = 1, ngrid |
---|
996 | IF (zsat(ig) .AND. (1==1)) THEN |
---|
997 | qlbef = max(0., po(ig, ll) - qsatbef(ig)) |
---|
998 | ! si sature: ql est surestime, d'ou la sous-relax |
---|
999 | dt = 0.5 * rlvcp * qlbef |
---|
1000 | ! WRITE(18,*) 'DT0=',DT |
---|
1001 | ! on pourra enchainer 2 ou 3 calculs sans Do while |
---|
1002 | DO WHILE (abs(dt)>ddt0) |
---|
1003 | ! il faut verifier si c,a conserve quand on repasse en insature ... |
---|
1004 | tbef(ig) = tbef(ig) + dt |
---|
1005 | zdelta = max(0., sign(1., rtt - tbef(ig))) |
---|
1006 | qsatbef(ig) = r2es * foeew(tbef(ig), zdelta) / pplev(ig, ll) |
---|
1007 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
1008 | zcor = 1. / (1. - retv * qsatbef(ig)) |
---|
1009 | qsatbef(ig) = qsatbef(ig) * zcor |
---|
1010 | ! on veut le signe de qlbef |
---|
1011 | qlbef = po(ig, ll) - qsatbef(ig) |
---|
1012 | zdelta = max(0., sign(1., rtt - tbef(ig))) |
---|
1013 | zcvm5 = r5les * (1. - zdelta) + r5ies * zdelta |
---|
1014 | zcor = 1. / (1. - retv * qsatbef(ig)) |
---|
1015 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
1016 | num = -tbef(ig) + pt(ig, ll) + rlvcp * qlbef |
---|
1017 | denom = 1. + rlvcp * dqsat_dt |
---|
1018 | IF (denom<1.E-10) THEN |
---|
1019 | PRINT *, 'pb denom' |
---|
1020 | END IF |
---|
1021 | dt = num / denom |
---|
1022 | END DO |
---|
1023 | ! on ecrit de maniere conservative (sat ou non) |
---|
1024 | zl(ig, ll) = max(0., qlbef) |
---|
1025 | ! T = Tl +Lv/Cp ql |
---|
1026 | zh(ig, ll) = pt(ig, ll) + rlvcp * zl(ig, ll) |
---|
1027 | zo(ig, ll) = po(ig, ll) - zl(ig, ll) |
---|
1028 | END IF |
---|
1029 | ! on ecrit zqsat |
---|
1030 | zqsat(ig, ll) = qsatbef(ig) |
---|
1031 | END DO |
---|
1032 | END DO |
---|
1033 | ! AM fin |
---|
1034 | |
---|
1035 | ! ----------------------------------------------------------------------- |
---|
1036 | ! incrementation eventuelle de tendances precedentes: |
---|
1037 | ! --------------------------------------------------- |
---|
1038 | |
---|
1039 | ! PRINT*,'0 OK convect8' |
---|
1040 | |
---|
1041 | DO l = 1, nlay |
---|
1042 | DO ig = 1, ngrid |
---|
1043 | zpspsk(ig, l) = (pplay(ig, l) / 100000.)**rkappa |
---|
1044 | ! zpspsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**RKAPPA |
---|
1045 | ! zh(ig,l)=pt(ig,l)/zpspsk(ig,l) |
---|
1046 | zu(ig, l) = pu(ig, l) |
---|
1047 | zv(ig, l) = pv(ig, l) |
---|
1048 | ! zo(ig,l)=po(ig,l) |
---|
1049 | ! ztv(ig,l)=zh(ig,l)*(1.+0.61*zo(ig,l)) |
---|
1050 | ! AM attention zh est maintenant le profil de T et plus le profil de |
---|
1051 | ! theta ! |
---|
1052 | |
---|
1053 | ! T-> Theta |
---|
1054 | ztv(ig, l) = zh(ig, l) / zpspsk(ig, l) |
---|
1055 | ! AM Theta_v |
---|
1056 | ztv(ig, l) = ztv(ig, l) * (1. + retv * (zo(ig, l)) - zl(ig, l)) |
---|
1057 | ! AM Thetal |
---|
1058 | zthl(ig, l) = pt(ig, l) / zpspsk(ig, l) |
---|
1059 | |
---|
1060 | END DO |
---|
1061 | END DO |
---|
1062 | |
---|
1063 | ! PRINT*,'1 OK convect8' |
---|
1064 | ! -------------------- |
---|
1065 | |
---|
1066 | |
---|
1067 | ! + + + + + + + + + + + |
---|
1068 | |
---|
1069 | |
---|
1070 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
1071 | ! wh,wt,wo ... |
---|
1072 | |
---|
1073 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
1074 | |
---|
1075 | |
---|
1076 | ! -------------------- zlev(1) |
---|
1077 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
1078 | |
---|
1079 | |
---|
1080 | |
---|
1081 | ! ----------------------------------------------------------------------- |
---|
1082 | ! Calcul des altitudes des couches |
---|
1083 | ! ----------------------------------------------------------------------- |
---|
1084 | |
---|
1085 | DO l = 2, nlay |
---|
1086 | DO ig = 1, ngrid |
---|
1087 | zlev(ig, l) = 0.5 * (pphi(ig, l) + pphi(ig, l - 1)) / rg |
---|
1088 | END DO |
---|
1089 | END DO |
---|
1090 | DO ig = 1, ngrid |
---|
1091 | zlev(ig, 1) = 0. |
---|
1092 | zlev(ig, nlay + 1) = (2. * pphi(ig, klev) - pphi(ig, klev - 1)) / rg |
---|
1093 | END DO |
---|
1094 | DO l = 1, nlay |
---|
1095 | DO ig = 1, ngrid |
---|
1096 | zlay(ig, l) = pphi(ig, l) / rg |
---|
1097 | END DO |
---|
1098 | END DO |
---|
1099 | ! calcul de deltaz |
---|
1100 | DO l = 1, nlay |
---|
1101 | DO ig = 1, ngrid |
---|
1102 | deltaz(ig, l) = zlev(ig, l + 1) - zlev(ig, l) |
---|
1103 | END DO |
---|
1104 | END DO |
---|
1105 | |
---|
1106 | ! PRINT*,'2 OK convect8' |
---|
1107 | ! ----------------------------------------------------------------------- |
---|
1108 | ! Calcul des densites |
---|
1109 | ! ----------------------------------------------------------------------- |
---|
1110 | |
---|
1111 | DO l = 1, nlay |
---|
1112 | DO ig = 1, ngrid |
---|
1113 | ! rho(ig,l)=pplay(ig,l)/(zpspsk(ig,l)*RD*zh(ig,l)) |
---|
1114 | rho(ig, l) = pplay(ig, l) / (zpspsk(ig, l) * rd * ztv(ig, l)) |
---|
1115 | END DO |
---|
1116 | END DO |
---|
1117 | |
---|
1118 | DO l = 2, nlay |
---|
1119 | DO ig = 1, ngrid |
---|
1120 | rhobarz(ig, l) = 0.5 * (rho(ig, l) + rho(ig, l - 1)) |
---|
1121 | END DO |
---|
1122 | END DO |
---|
1123 | |
---|
1124 | DO k = 1, nlay |
---|
1125 | DO l = 1, nlay + 1 |
---|
1126 | DO ig = 1, ngrid |
---|
1127 | wa(ig, k, l) = 0. |
---|
1128 | END DO |
---|
1129 | END DO |
---|
1130 | END DO |
---|
1131 | ! Cr:ajout:calcul de la masse |
---|
1132 | DO l = 1, nlay |
---|
1133 | DO ig = 1, ngrid |
---|
1134 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
1135 | masse(ig, l) = (pplev(ig, l) - pplev(ig, l + 1)) / rg |
---|
1136 | END DO |
---|
1137 | END DO |
---|
1138 | ! PRINT*,'3 OK convect8' |
---|
1139 | ! ------------------------------------------------------------------ |
---|
1140 | ! Calcul de w2, quarre de w a partir de la cape |
---|
1141 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
1142 | |
---|
1143 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
1144 | ! w2 est stoke dans wa |
---|
1145 | |
---|
1146 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
1147 | ! independants par couches que pour calculer l'entrainement |
---|
1148 | ! a la base et la hauteur max de l'ascendance. |
---|
1149 | |
---|
1150 | ! Indicages: |
---|
1151 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
1152 | ! une vitesse wa(k,l). |
---|
1153 | |
---|
1154 | ! -------------------- |
---|
1155 | |
---|
1156 | ! + + + + + + + + + + |
---|
1157 | |
---|
1158 | ! wa(k,l) ---- -------------------- l |
---|
1159 | ! /\ |
---|
1160 | ! /||\ + + + + + + + + + + |
---|
1161 | ! || |
---|
1162 | ! || -------------------- |
---|
1163 | ! || |
---|
1164 | ! || + + + + + + + + + + |
---|
1165 | ! || |
---|
1166 | ! || -------------------- |
---|
1167 | ! ||__ |
---|
1168 | ! |___ + + + + + + + + + + k |
---|
1169 | |
---|
1170 | ! -------------------- |
---|
1171 | |
---|
1172 | |
---|
1173 | |
---|
1174 | ! ------------------------------------------------------------------ |
---|
1175 | |
---|
1176 | ! CR: ponderation entrainement des couches instables |
---|
1177 | ! def des alim_star tels que alim=f*alim_star |
---|
1178 | DO l = 1, klev |
---|
1179 | DO ig = 1, ngrid |
---|
1180 | alim_star(ig, l) = 0. |
---|
1181 | alim(ig, l) = 0. |
---|
1182 | END DO |
---|
1183 | END DO |
---|
1184 | ! determination de la longueur de la couche d entrainement |
---|
1185 | DO ig = 1, ngrid |
---|
1186 | lentr(ig) = 1 |
---|
1187 | END DO |
---|
1188 | |
---|
1189 | ! on ne considere que les premieres couches instables |
---|
1190 | therm = .FALSE. |
---|
1191 | DO k = nlay - 2, 1, -1 |
---|
1192 | DO ig = 1, ngrid |
---|
1193 | IF (ztv(ig, k)>ztv(ig, k + 1) .AND. ztv(ig, k + 1)<=ztv(ig, k + 2)) THEN |
---|
1194 | lentr(ig) = k + 1 |
---|
1195 | therm = .TRUE. |
---|
1196 | END IF |
---|
1197 | END DO |
---|
1198 | END DO |
---|
1199 | |
---|
1200 | ! determination du lmin: couche d ou provient le thermique |
---|
1201 | DO ig = 1, ngrid |
---|
1202 | lmin(ig) = 1 |
---|
1203 | END DO |
---|
1204 | DO ig = 1, ngrid |
---|
1205 | DO l = nlay, 2, -1 |
---|
1206 | IF (ztv(ig, l - 1)>ztv(ig, l)) THEN |
---|
1207 | lmin(ig) = l - 1 |
---|
1208 | END IF |
---|
1209 | END DO |
---|
1210 | END DO |
---|
1211 | |
---|
1212 | ! definition de l'entrainement des couches |
---|
1213 | DO l = 1, klev - 1 |
---|
1214 | DO ig = 1, ngrid |
---|
1215 | IF (ztv(ig, l)>ztv(ig, l + 1) .AND. l>=lmin(ig) .AND. l<lentr(ig)) THEN |
---|
1216 | ! def possibles pour alim_star: zdthetadz, dthetadz, zdtheta |
---|
1217 | alim_star(ig, l) = max((ztv(ig, l) - ztv(ig, l + 1)), 0.) & ! s |
---|
1218 | ! *(zlev(ig,l+1)-zlev(ig,l)) |
---|
1219 | * sqrt(zlev(ig, l + 1)) |
---|
1220 | ! alim_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
---|
1221 | ! s /zlev(ig,lentr(ig)+2)))**(3./2.) |
---|
1222 | END IF |
---|
1223 | END DO |
---|
1224 | END DO |
---|
1225 | |
---|
1226 | ! pas de thermique si couche 1 stable |
---|
1227 | DO ig = 1, ngrid |
---|
1228 | ! if (lmin(ig).gt.1) THEN |
---|
1229 | ! CRnouveau test |
---|
1230 | IF (alim_star(ig, 1)<1.E-10) THEN |
---|
1231 | DO l = 1, klev |
---|
1232 | alim_star(ig, l) = 0. |
---|
1233 | END DO |
---|
1234 | END IF |
---|
1235 | END DO |
---|
1236 | ! calcul de l entrainement total |
---|
1237 | DO ig = 1, ngrid |
---|
1238 | alim_star_tot(ig) = 0. |
---|
1239 | entr_star_tot(ig) = 0. |
---|
1240 | detr_star_tot(ig) = 0. |
---|
1241 | END DO |
---|
1242 | DO ig = 1, ngrid |
---|
1243 | DO k = 1, klev |
---|
1244 | alim_star_tot(ig) = alim_star_tot(ig) + alim_star(ig, k) |
---|
1245 | END DO |
---|
1246 | END DO |
---|
1247 | |
---|
1248 | ! Calcul entrainement normalise |
---|
1249 | DO ig = 1, ngrid |
---|
1250 | IF (alim_star_tot(ig)>1.E-10) THEN |
---|
1251 | ! do l=1,lentr(ig) |
---|
1252 | DO l = 1, klev |
---|
1253 | ! def possibles pour entr_star: zdthetadz, dthetadz, zdtheta |
---|
1254 | alim_star(ig, l) = alim_star(ig, l) / alim_star_tot(ig) |
---|
1255 | END DO |
---|
1256 | END IF |
---|
1257 | END DO |
---|
1258 | |
---|
1259 | ! PRINT*,'fin calcul alim_star' |
---|
1260 | |
---|
1261 | ! AM:initialisations |
---|
1262 | DO k = 1, nlay |
---|
1263 | DO ig = 1, ngrid |
---|
1264 | ztva(ig, k) = ztv(ig, k) |
---|
1265 | ztla(ig, k) = zthl(ig, k) |
---|
1266 | zqla(ig, k) = 0. |
---|
1267 | zqta(ig, k) = po(ig, k) |
---|
1268 | zsat(ig) = .FALSE. |
---|
1269 | END DO |
---|
1270 | END DO |
---|
1271 | DO k = 1, klev |
---|
1272 | DO ig = 1, ngrid |
---|
1273 | detr_star(ig, k) = 0. |
---|
1274 | entr_star(ig, k) = 0. |
---|
1275 | detr(ig, k) = 0. |
---|
1276 | entr(ig, k) = 0. |
---|
1277 | END DO |
---|
1278 | END DO |
---|
1279 | ! PRINT*,'7 OK convect8' |
---|
1280 | DO k = 1, klev + 1 |
---|
1281 | DO ig = 1, ngrid |
---|
1282 | zw2(ig, k) = 0. |
---|
1283 | fmc(ig, k) = 0. |
---|
1284 | ! CR |
---|
1285 | f_star(ig, k) = 0. |
---|
1286 | ! RC |
---|
1287 | larg_cons(ig, k) = 0. |
---|
1288 | larg_detr(ig, k) = 0. |
---|
1289 | wa_moy(ig, k) = 0. |
---|
1290 | END DO |
---|
1291 | END DO |
---|
1292 | |
---|
1293 | ! n PRINT*,'8 OK convect8' |
---|
1294 | DO ig = 1, ngrid |
---|
1295 | linter(ig) = 1. |
---|
1296 | lmaxa(ig) = 1 |
---|
1297 | lmix(ig) = 1 |
---|
1298 | wmaxa(ig) = 0. |
---|
1299 | END DO |
---|
1300 | |
---|
1301 | nu_min = l_mix |
---|
1302 | nu_max = 1000. |
---|
1303 | ! do ig=1,ngrid |
---|
1304 | ! nu_max=wmax_sec(ig) |
---|
1305 | ! enddo |
---|
1306 | DO ig = 1, ngrid |
---|
1307 | DO k = 1, klev |
---|
1308 | nu(ig, k) = 0. |
---|
1309 | nu_e(ig, k) = 0. |
---|
1310 | END DO |
---|
1311 | END DO |
---|
1312 | ! Calcul de l'excès de température du à la diffusion turbulente |
---|
1313 | DO ig = 1, ngrid |
---|
1314 | DO l = 1, klev |
---|
1315 | dtheta(ig, l) = 0. |
---|
1316 | END DO |
---|
1317 | END DO |
---|
1318 | DO ig = 1, ngrid |
---|
1319 | DO l = 1, lentr(ig) - 1 |
---|
1320 | dtheta(ig, l) = sqrt(10. * 0.4 * zlev(ig, l + 1)**2 * 1. * ((ztv(ig, l + 1) - & |
---|
1321 | ztv(ig, l)) / (zlev(ig, l + 1) - zlev(ig, l)))**2) |
---|
1322 | END DO |
---|
1323 | END DO |
---|
1324 | ! do l=1,nlay-2 |
---|
1325 | DO l = 1, klev - 1 |
---|
1326 | DO ig = 1, ngrid |
---|
1327 | IF (ztv(ig, l)>ztv(ig, l + 1) .AND. alim_star(ig, l)>1.E-10 .AND. & |
---|
1328 | zw2(ig, l)<1E-10) THEN |
---|
1329 | ! AM |
---|
1330 | ! test:on rajoute un excès de T dans couche alim |
---|
1331 | ! ztla(ig,l)=zthl(ig,l)+dtheta(ig,l) |
---|
1332 | ztla(ig, l) = zthl(ig, l) |
---|
1333 | ! test: on rajoute un excès de q dans la couche alim |
---|
1334 | ! zqta(ig,l)=po(ig,l)+0.001 |
---|
1335 | zqta(ig, l) = po(ig, l) |
---|
1336 | zqla(ig, l) = zl(ig, l) |
---|
1337 | ! AM |
---|
1338 | f_star(ig, l + 1) = alim_star(ig, l) |
---|
1339 | ! test:calcul de dteta |
---|
1340 | zw2(ig, l + 1) = 2. * rg * (ztv(ig, l) - ztv(ig, l + 1)) / ztv(ig, l + 1) * & |
---|
1341 | (zlev(ig, l + 1) - zlev(ig, l)) * 0.4 * pphi(ig, l) / (pphi(ig, l + 1) - pphi(ig, l)) |
---|
1342 | w_est(ig, l + 1) = zw2(ig, l + 1) |
---|
1343 | larg_detr(ig, l) = 0. |
---|
1344 | ! PRINT*,'coucou boucle 1' |
---|
1345 | ELSE IF ((zw2(ig, l)>=1E-10) .AND. (f_star(ig, l) + alim_star(ig, & |
---|
1346 | l))>1.E-10) THEN |
---|
1347 | ! PRINT*,'coucou boucle 2' |
---|
1348 | ! estimation du detrainement a partir de la geometrie du pas |
---|
1349 | ! precedent |
---|
1350 | IF ((test(ig)==1) .OR. ((.NOT. debut) .AND. (f0(ig)<1.E-10))) THEN |
---|
1351 | detr_star(ig, l) = 0. |
---|
1352 | entr_star(ig, l) = 0. |
---|
1353 | ! PRINT*,'coucou test(ig)',test(ig),f0(ig),zmax0(ig) |
---|
1354 | ELSE |
---|
1355 | ! PRINT*,'coucou debut detr' |
---|
1356 | ! tests sur la definition du detr |
---|
1357 | IF (zqla(ig, l - 1)>1.E-10) THEN |
---|
1358 | nuage = .TRUE. |
---|
1359 | END IF |
---|
1360 | |
---|
1361 | w_est(ig, l + 1) = zw2(ig, l) * ((f_star(ig, l))**2) / (f_star(ig, l) + & |
---|
1362 | alim_star(ig, l))**2 + 2. * rg * (ztva(ig, l - 1) - ztv(ig, l)) / ztv(ig, l) * (& |
---|
1363 | zlev(ig, l + 1) - zlev(ig, l)) |
---|
1364 | IF (w_est(ig, l + 1)<0.) THEN |
---|
1365 | w_est(ig, l + 1) = zw2(ig, l) |
---|
1366 | END IF |
---|
1367 | IF (l>2) THEN |
---|
1368 | IF ((w_est(ig, l + 1)>w_est(ig, l)) .AND. (zlev(ig, & |
---|
1369 | l + 1)<zmax_sec(ig)) .AND. (zqla(ig, l - 1)<1.E-10)) THEN |
---|
1370 | detr_star(ig, l) = max(0., (rhobarz(ig, & |
---|
1371 | l + 1) * sqrt(w_est(ig, l + 1)) * sqrt(nu(ig, l) * & |
---|
1372 | zlev(ig, l + 1)) - rhobarz(ig, l) * sqrt(w_est(ig, l)) * sqrt(nu(ig, l) * & |
---|
1373 | zlev(ig, l))) / (r_aspect * zmax_sec(ig))) |
---|
1374 | ELSE IF ((zlev(ig, l + 1)<zmax_sec(ig)) .AND. (zqla(ig, & |
---|
1375 | l - 1)<1.E-10)) THEN |
---|
1376 | detr_star(ig, l) = -f0(ig) * f_star(ig, lmix(ig)) / (rhobarz(ig, & |
---|
1377 | lmix(ig)) * wmaxa(ig)) * (rhobarz(ig, l + 1) * sqrt(w_est(ig, & |
---|
1378 | l + 1)) * ((zmax_sec(ig) - zlev(ig, l + 1)) / ((zmax_sec(ig) - zlev(ig, & |
---|
1379 | lmix(ig)))))**2. - rhobarz(ig, l) * sqrt(w_est(ig, & |
---|
1380 | l)) * ((zmax_sec(ig) - zlev(ig, l)) / ((zmax_sec(ig) - zlev(ig, lmix(ig & |
---|
1381 | )))))**2.) |
---|
1382 | ELSE |
---|
1383 | detr_star(ig, l) = 0.002 * f0(ig) * f_star(ig, l) * & |
---|
1384 | (zlev(ig, l + 1) - zlev(ig, l)) |
---|
1385 | |
---|
1386 | END IF |
---|
1387 | ELSE |
---|
1388 | detr_star(ig, l) = 0. |
---|
1389 | END IF |
---|
1390 | |
---|
1391 | detr_star(ig, l) = detr_star(ig, l) / f0(ig) |
---|
1392 | IF (nuage) THEN |
---|
1393 | entr_star(ig, l) = 0.4 * detr_star(ig, l) |
---|
1394 | ELSE |
---|
1395 | entr_star(ig, l) = 0.4 * detr_star(ig, l) |
---|
1396 | END IF |
---|
1397 | |
---|
1398 | IF ((detr_star(ig, l))>f_star(ig, l)) THEN |
---|
1399 | detr_star(ig, l) = f_star(ig, l) |
---|
1400 | ! entr_star(ig,l)=0. |
---|
1401 | END IF |
---|
1402 | |
---|
1403 | IF ((l<lentr(ig))) THEN |
---|
1404 | entr_star(ig, l) = 0. |
---|
1405 | ! detr_star(ig,l)=0. |
---|
1406 | END IF |
---|
1407 | |
---|
1408 | ! PRINT*,'ok detr_star' |
---|
1409 | END IF |
---|
1410 | ! prise en compte du detrainement dans le calcul du flux |
---|
1411 | f_star(ig, l + 1) = f_star(ig, l) + alim_star(ig, l) + & |
---|
1412 | entr_star(ig, l) - detr_star(ig, l) |
---|
1413 | ! test |
---|
1414 | ! if (f_star(ig,l+1).lt.0.) THEN |
---|
1415 | ! f_star(ig,l+1)=0. |
---|
1416 | ! entr_star(ig,l)=0. |
---|
1417 | ! detr_star(ig,l)=f_star(ig,l)+alim_star(ig,l) |
---|
1418 | ! END IF |
---|
1419 | ! test sur le signe de f_star |
---|
1420 | IF (f_star(ig, l + 1)>1.E-10) THEN |
---|
1421 | ! THEN |
---|
1422 | ! test |
---|
1423 | ! if (((f_star(ig,l+1)+detr_star(ig,l)).gt.1.e-10)) THEN |
---|
1424 | ! AM on melange Tl et qt du thermique |
---|
1425 | ! on rajoute un excès de T dans la couche alim |
---|
1426 | ! if (l.lt.lentr(ig)) THEN |
---|
1427 | ! ztla(ig,l)=(f_star(ig,l)*ztla(ig,l-1)+ |
---|
1428 | ! s |
---|
1429 | ! (alim_star(ig,l)+entr_star(ig,l))*(zthl(ig,l)+dtheta(ig,l))) |
---|
1430 | ! s /(f_star(ig,l+1)+detr_star(ig,l)) |
---|
1431 | ! else |
---|
1432 | ztla(ig, l) = (f_star(ig, l) * ztla(ig, l - 1) + (alim_star(ig, & |
---|
1433 | l) + entr_star(ig, l)) * zthl(ig, l)) / (f_star(ig, l + 1) + detr_star(ig, l)) |
---|
1434 | ! s /(f_star(ig,l+1)) |
---|
1435 | ! END IF |
---|
1436 | ! on rajoute un excès de q dans la couche alim |
---|
1437 | ! if (l.lt.lentr(ig)) THEN |
---|
1438 | ! zqta(ig,l)=(f_star(ig,l)*zqta(ig,l-1)+ |
---|
1439 | ! s (alim_star(ig,l)+entr_star(ig,l))*(po(ig,l)+0.001)) |
---|
1440 | ! s /(f_star(ig,l+1)+detr_star(ig,l)) |
---|
1441 | ! else |
---|
1442 | zqta(ig, l) = (f_star(ig, l) * zqta(ig, l - 1) + (alim_star(ig, & |
---|
1443 | l) + entr_star(ig, l)) * po(ig, l)) / (f_star(ig, l + 1) + detr_star(ig, l)) |
---|
1444 | ! s /(f_star(ig,l+1)) |
---|
1445 | ! END IF |
---|
1446 | ! AM on en deduit thetav et ql du thermique |
---|
1447 | ! CR test |
---|
1448 | ! Tbef(ig)=ztla(ig,l)*zpspsk(ig,l) |
---|
1449 | tbef(ig) = ztla(ig, l) * zpspsk(ig, l) |
---|
1450 | zdelta = max(0., sign(1., rtt - tbef(ig))) |
---|
1451 | qsatbef(ig) = r2es * foeew(tbef(ig), zdelta) / pplev(ig, l) |
---|
1452 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
1453 | zcor = 1. / (1. - retv * qsatbef(ig)) |
---|
1454 | qsatbef(ig) = qsatbef(ig) * zcor |
---|
1455 | zsat(ig) = (max(0., zqta(ig, l) - qsatbef(ig))>1.E-10) |
---|
1456 | |
---|
1457 | IF (zsat(ig) .AND. (1==1)) THEN |
---|
1458 | qlbef = max(0., zqta(ig, l) - qsatbef(ig)) |
---|
1459 | dt = 0.5 * rlvcp * qlbef |
---|
1460 | ! WRITE(17,*)'DT0=',DT |
---|
1461 | DO WHILE (abs(dt)>ddt0) |
---|
1462 | ! PRINT*,'aie' |
---|
1463 | tbef(ig) = tbef(ig) + dt |
---|
1464 | zdelta = max(0., sign(1., rtt - tbef(ig))) |
---|
1465 | qsatbef(ig) = r2es * foeew(tbef(ig), zdelta) / pplev(ig, l) |
---|
1466 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
1467 | zcor = 1. / (1. - retv * qsatbef(ig)) |
---|
1468 | qsatbef(ig) = qsatbef(ig) * zcor |
---|
1469 | qlbef = zqta(ig, l) - qsatbef(ig) |
---|
1470 | |
---|
1471 | zdelta = max(0., sign(1., rtt - tbef(ig))) |
---|
1472 | zcvm5 = r5les * (1. - zdelta) + r5ies * zdelta |
---|
1473 | zcor = 1. / (1. - retv * qsatbef(ig)) |
---|
1474 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
1475 | num = -tbef(ig) + ztla(ig, l) * zpspsk(ig, l) + rlvcp * qlbef |
---|
1476 | denom = 1. + rlvcp * dqsat_dt |
---|
1477 | IF (denom<1.E-10) THEN |
---|
1478 | PRINT *, 'pb denom' |
---|
1479 | END IF |
---|
1480 | dt = num / denom |
---|
1481 | ! WRITE(17,*)'DT=',DT |
---|
1482 | END DO |
---|
1483 | zqla(ig, l) = max(0., zqta(ig, l) - qsatbef(ig)) |
---|
1484 | zqla(ig, l) = max(0., qlbef) |
---|
1485 | ! zqla(ig,l)=0. |
---|
1486 | END IF |
---|
1487 | ! zqla(ig,l) = max(0.,zqta(ig,l)-qsatbef(ig)) |
---|
1488 | |
---|
1489 | ! on ecrit de maniere conservative (sat ou non) |
---|
1490 | ! T = Tl +Lv/Cp ql |
---|
1491 | ! CR rq utilisation de humidite specifique ou rapport de melange? |
---|
1492 | ztva(ig, l) = ztla(ig, l) * zpspsk(ig, l) + rlvcp * zqla(ig, l) |
---|
1493 | ztva(ig, l) = ztva(ig, l) / zpspsk(ig, l) |
---|
1494 | ! on rajoute le calcul de zha pour diagnostiques (temp potentielle) |
---|
1495 | zha(ig, l) = ztva(ig, l) |
---|
1496 | ! if (l.lt.lentr(ig)) THEN |
---|
1497 | ! ztva(ig,l) = ztva(ig,l)*(1.+RETV*(zqta(ig,l) |
---|
1498 | ! s -zqla(ig,l))-zqla(ig,l)) + 0.1 |
---|
1499 | ! else |
---|
1500 | ztva(ig, l) = ztva(ig, l) * (1. + retv * (zqta(ig, l) - zqla(ig, & |
---|
1501 | l)) - zqla(ig, l)) |
---|
1502 | ! END IF |
---|
1503 | ! ztva(ig,l) = ztla(ig,l)*zpspsk(ig,l)+RLvCp*zqla(ig,l) |
---|
1504 | ! s /(1.-retv*zqla(ig,l)) |
---|
1505 | ! ztva(ig,l) = ztva(ig,l)/zpspsk(ig,l) |
---|
1506 | ! ztva(ig,l) = ztva(ig,l)*(1.+RETV*(zqta(ig,l) |
---|
1507 | ! s /(1.-retv*zqta(ig,l)) |
---|
1508 | ! s -zqla(ig,l)/(1.-retv*zqla(ig,l))) |
---|
1509 | ! s -zqla(ig,l)/(1.-retv*zqla(ig,l))) |
---|
1510 | ! WRITE(13,*)zqla(ig,l),zqla(ig,l)/(1.-retv*zqla(ig,l)) |
---|
1511 | ! on ecrit zqsat |
---|
1512 | zqsatth(ig, l) = qsatbef(ig) |
---|
1513 | ! enddo |
---|
1514 | ! DO ig=1,ngrid |
---|
1515 | ! if (zw2(ig,l).ge.1.e-10.AND. |
---|
1516 | ! s f_star(ig,l)+entr_star(ig,l).gt.1.e-10) THEN |
---|
1517 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
1518 | ! consideree commence avec une vitesse nulle). |
---|
1519 | |
---|
1520 | ! if (f_star(ig,l+1).gt.1.e-10) THEN |
---|
1521 | zw2(ig, l + 1) = zw2(ig, l) * & ! s |
---|
1522 | ! ((f_star(ig,l)-detr_star(ig,l))**2) |
---|
1523 | ! s /f_star(ig,l+1)**2+ |
---|
1524 | ((f_star(ig, l))**2) / (f_star(ig, l + 1) + detr_star(ig, l))**2 + & ! s |
---|
1525 | ! /(f_star(ig,l+1))**2+ |
---|
1526 | 2. * rg * (ztva(ig, l) - ztv(ig, l)) / ztv(ig, l) * (zlev(ig, l + 1) - zlev(ig, l)) |
---|
1527 | ! s *(f_star(ig,l)/f_star(ig,l+1))**2 |
---|
1528 | |
---|
1529 | END IF |
---|
1530 | END IF |
---|
1531 | |
---|
1532 | IF (zw2(ig, l + 1)<0.) THEN |
---|
1533 | linter(ig) = (l * (zw2(ig, l + 1) - zw2(ig, l)) - zw2(ig, l)) / (zw2(ig, l + 1) - zw2(& |
---|
1534 | ig, l)) |
---|
1535 | zw2(ig, l + 1) = 0. |
---|
1536 | ! PRINT*,'linter=',linter(ig) |
---|
1537 | ! ELSE IF ((zw2(ig,l+1).lt.1.e-10).AND.(zw2(ig,l+1).ge.0.)) THEN |
---|
1538 | ! linter(ig)=l+1 |
---|
1539 | ! PRINT*,'linter=l',zw2(ig,l),zw2(ig,l+1) |
---|
1540 | ELSE |
---|
1541 | wa_moy(ig, l + 1) = sqrt(zw2(ig, l + 1)) |
---|
1542 | ! wa_moy(ig,l+1)=zw2(ig,l+1) |
---|
1543 | END IF |
---|
1544 | IF (wa_moy(ig, l + 1)>wmaxa(ig)) THEN |
---|
1545 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
1546 | lmix(ig) = l + 1 |
---|
1547 | wmaxa(ig) = wa_moy(ig, l + 1) |
---|
1548 | END IF |
---|
1549 | END DO |
---|
1550 | END DO |
---|
1551 | PRINT *, 'fin calcul zw2' |
---|
1552 | |
---|
1553 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
1554 | DO ig = 1, ngrid |
---|
1555 | lmax(ig) = lentr(ig) |
---|
1556 | END DO |
---|
1557 | DO ig = 1, ngrid |
---|
1558 | DO l = nlay, lentr(ig) + 1, -1 |
---|
1559 | IF (zw2(ig, l)<=1.E-10) THEN |
---|
1560 | lmax(ig) = l - 1 |
---|
1561 | END IF |
---|
1562 | END DO |
---|
1563 | END DO |
---|
1564 | ! pas de thermique si couche 1 stable |
---|
1565 | DO ig = 1, ngrid |
---|
1566 | IF (lmin(ig)>1) THEN |
---|
1567 | lmax(ig) = 1 |
---|
1568 | lmin(ig) = 1 |
---|
1569 | lentr(ig) = 1 |
---|
1570 | END IF |
---|
1571 | END DO |
---|
1572 | |
---|
1573 | ! Determination de zw2 max |
---|
1574 | DO ig = 1, ngrid |
---|
1575 | wmax(ig) = 0. |
---|
1576 | END DO |
---|
1577 | |
---|
1578 | DO l = 1, nlay |
---|
1579 | DO ig = 1, ngrid |
---|
1580 | IF (l<=lmax(ig)) THEN |
---|
1581 | IF (zw2(ig, l)<0.) THEN |
---|
1582 | PRINT *, 'pb2 zw2<0' |
---|
1583 | END IF |
---|
1584 | zw2(ig, l) = sqrt(zw2(ig, l)) |
---|
1585 | wmax(ig) = max(wmax(ig), zw2(ig, l)) |
---|
1586 | ELSE |
---|
1587 | zw2(ig, l) = 0. |
---|
1588 | END IF |
---|
1589 | END DO |
---|
1590 | END DO |
---|
1591 | |
---|
1592 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
1593 | DO ig = 1, ngrid |
---|
1594 | zmax(ig) = 0. |
---|
1595 | zlevinter(ig) = zlev(ig, 1) |
---|
1596 | END DO |
---|
1597 | DO ig = 1, ngrid |
---|
1598 | ! calcul de zlevinter |
---|
1599 | zlevinter(ig) = (zlev(ig, lmax(ig) + 1) - zlev(ig, lmax(ig))) * linter(ig) + & |
---|
1600 | zlev(ig, lmax(ig)) - lmax(ig) * (zlev(ig, lmax(ig) + 1) - zlev(ig, lmax(ig))) |
---|
1601 | ! pour le cas ou on prend tjs lmin=1 |
---|
1602 | ! zmax(ig)=max(zmax(ig),zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
1603 | zmax(ig) = max(zmax(ig), zlevinter(ig) - zlev(ig, 1)) |
---|
1604 | zmax0(ig) = zmax(ig) |
---|
1605 | WRITE (11, *) 'ig,lmax,linter', ig, lmax(ig), linter(ig) |
---|
1606 | WRITE (12, *) 'ig,zlevinter,zmax', ig, zmax(ig), zlevinter(ig) |
---|
1607 | END DO |
---|
1608 | |
---|
1609 | ! Calcul de zmax_sec et wmax_sec |
---|
1610 | CALL fermeture_seche(ngrid, nlay, pplay, pplev, pphi, zlev, rhobarz, f0, & |
---|
1611 | zpspsk, alim, zh, zo, lentr, lmin, nu_min, nu_max, r_aspect, zmax_sec2, & |
---|
1612 | wmax_sec2) |
---|
1613 | |
---|
1614 | PRINT *, 'avant fermeture' |
---|
1615 | ! Fermeture,determination de f |
---|
1616 | ! en lmax f=d-e |
---|
1617 | DO ig = 1, ngrid |
---|
1618 | ! entr_star(ig,lmax(ig))=0. |
---|
1619 | ! f_star(ig,lmax(ig)+1)=0. |
---|
1620 | ! detr_star(ig,lmax(ig))=f_star(ig,lmax(ig))+entr_star(ig,lmax(ig)) |
---|
1621 | ! s +alim_star(ig,lmax(ig)) |
---|
1622 | END DO |
---|
1623 | |
---|
1624 | DO ig = 1, ngrid |
---|
1625 | alim_star2(ig) = 0. |
---|
1626 | END DO |
---|
1627 | ! calcul de entr_star_tot |
---|
1628 | DO ig = 1, ngrid |
---|
1629 | DO k = 1, lmix(ig) |
---|
1630 | entr_star_tot(ig) = entr_star_tot(ig) & ! s |
---|
1631 | ! +entr_star(ig,k) |
---|
1632 | + alim_star(ig, k) |
---|
1633 | ! s -detr_star(ig,k) |
---|
1634 | detr_star_tot(ig) = detr_star_tot(ig) & ! s |
---|
1635 | ! +alim_star(ig,k) |
---|
1636 | - detr_star(ig, k) + entr_star(ig, k) |
---|
1637 | END DO |
---|
1638 | END DO |
---|
1639 | |
---|
1640 | DO ig = 1, ngrid |
---|
1641 | IF (alim_star_tot(ig)<1.E-10) THEN |
---|
1642 | f(ig) = 0. |
---|
1643 | ELSE |
---|
1644 | ! do k=lmin(ig),lentr(ig) |
---|
1645 | DO k = 1, lentr(ig) |
---|
1646 | alim_star2(ig) = alim_star2(ig) + alim_star(ig, k)**2 / (rho(ig, k) * (& |
---|
1647 | zlev(ig, k + 1) - zlev(ig, k))) |
---|
1648 | END DO |
---|
1649 | IF ((zmax_sec(ig)>1.E-10) .AND. (1==1)) THEN |
---|
1650 | f(ig) = wmax_sec(ig) / (max(500., zmax_sec(ig)) * r_aspect * alim_star2(ig)) |
---|
1651 | f(ig) = f(ig) + (f0(ig) - f(ig)) * exp((-ptimestep / zmax_sec(ig)) * wmax_sec & |
---|
1652 | (ig)) |
---|
1653 | ELSE |
---|
1654 | f(ig) = wmax(ig) / (max(500., zmax(ig)) * r_aspect * alim_star2(ig)) |
---|
1655 | f(ig) = f(ig) + (f0(ig) - f(ig)) * exp((-ptimestep / zmax(ig)) * wmax(ig)) |
---|
1656 | END IF |
---|
1657 | END IF |
---|
1658 | f0(ig) = f(ig) |
---|
1659 | END DO |
---|
1660 | PRINT *, 'apres fermeture' |
---|
1661 | ! Calcul de l'entrainement |
---|
1662 | DO ig = 1, ngrid |
---|
1663 | DO k = 1, klev |
---|
1664 | alim(ig, k) = f(ig) * alim_star(ig, k) |
---|
1665 | END DO |
---|
1666 | END DO |
---|
1667 | ! CR:test pour entrainer moins que la masse |
---|
1668 | ! do ig=1,ngrid |
---|
1669 | ! do l=1,lentr(ig) |
---|
1670 | ! if ((alim(ig,l)*ptimestep).gt.(0.9*masse(ig,l))) THEN |
---|
1671 | ! alim(ig,l+1)=alim(ig,l+1)+alim(ig,l) |
---|
1672 | ! s -0.9*masse(ig,l)/ptimestep |
---|
1673 | ! alim(ig,l)=0.9*masse(ig,l)/ptimestep |
---|
1674 | ! END IF |
---|
1675 | ! enddo |
---|
1676 | ! enddo |
---|
1677 | ! calcul du détrainement |
---|
1678 | DO ig = 1, klon |
---|
1679 | DO k = 1, klev |
---|
1680 | detr(ig, k) = f(ig) * detr_star(ig, k) |
---|
1681 | IF (detr(ig, k)<0.) THEN |
---|
1682 | ! PRINT*,'detr1<0!!!' |
---|
1683 | END IF |
---|
1684 | END DO |
---|
1685 | DO k = 1, klev |
---|
1686 | entr(ig, k) = f(ig) * entr_star(ig, k) |
---|
1687 | IF (entr(ig, k)<0.) THEN |
---|
1688 | ! PRINT*,'entr1<0!!!' |
---|
1689 | END IF |
---|
1690 | END DO |
---|
1691 | END DO |
---|
1692 | |
---|
1693 | ! do ig=1,ngrid |
---|
1694 | ! do l=1,klev |
---|
1695 | ! if (((detr(ig,l)+entr(ig,l)+alim(ig,l))*ptimestep).gt. |
---|
1696 | ! s (masse(ig,l))) THEN |
---|
1697 | ! PRINT*,'d2+e2+a2>m2','ig=',ig,'l=',l,'lmax(ig)=',lmax(ig),'d+e+a=' |
---|
1698 | ! s,(detr(ig,l)+entr(ig,l)+alim(ig,l))*ptimestep,'m=',masse(ig,l) |
---|
1699 | ! END IF |
---|
1700 | ! enddo |
---|
1701 | ! enddo |
---|
1702 | ! Calcul des flux |
---|
1703 | |
---|
1704 | DO ig = 1, ngrid |
---|
1705 | DO l = 1, lmax(ig) |
---|
1706 | ! do l=1,klev |
---|
1707 | ! fmc(ig,l+1)=f(ig)*f_star(ig,l+1) |
---|
1708 | fmc(ig, l + 1) = fmc(ig, l) + alim(ig, l) + entr(ig, l) - detr(ig, l) |
---|
1709 | ! PRINT*,'??!!','ig=',ig,'l=',l,'lmax=',lmax(ig),'lmix=',lmix(ig), |
---|
1710 | ! s 'e=',entr(ig,l),'d=',detr(ig,l),'a=',alim(ig,l),'f=',fmc(ig,l), |
---|
1711 | ! s 'f+1=',fmc(ig,l+1) |
---|
1712 | IF (fmc(ig, l + 1)<0.) THEN |
---|
1713 | PRINT *, 'fmc1<0', l + 1, lmax(ig), fmc(ig, l + 1) |
---|
1714 | fmc(ig, l + 1) = fmc(ig, l) |
---|
1715 | detr(ig, l) = alim(ig, l) + entr(ig, l) |
---|
1716 | ! fmc(ig,l+1)=0. |
---|
1717 | ! PRINT*,'fmc1<0',l+1,lmax(ig),fmc(ig,l+1) |
---|
1718 | END IF |
---|
1719 | ! if ((fmc(ig,l+1).gt.fmc(ig,l)).AND.(l.gt.lentr(ig))) THEN |
---|
1720 | ! f_old=fmc(ig,l+1) |
---|
1721 | ! fmc(ig,l+1)=fmc(ig,l) |
---|
1722 | ! detr(ig,l)=detr(ig,l)+f_old-fmc(ig,l+1) |
---|
1723 | ! END IF |
---|
1724 | |
---|
1725 | ! if ((fmc(ig,l+1).gt.fmc(ig,l)).AND.(l.gt.lentr(ig))) THEN |
---|
1726 | ! f_old=fmc(ig,l+1) |
---|
1727 | ! fmc(ig,l+1)=fmc(ig,l) |
---|
1728 | ! detr(ig,l)=detr(ig,l)+f_old-fmc(ig,l) |
---|
1729 | ! END IF |
---|
1730 | ! rajout du test sur alpha croissant |
---|
1731 | ! if test |
---|
1732 | ! if (1.EQ.0) THEN |
---|
1733 | IF (l==klev) THEN |
---|
1734 | PRINT *, 'THERMCELL PB ig=', ig, ' l=', l |
---|
1735 | abort_message = 'THERMCELL PB' |
---|
1736 | CALL abort_physic(modname, abort_message, 1) |
---|
1737 | END IF |
---|
1738 | ! if ((zw2(ig,l+1).gt.1.e-10).AND.(zw2(ig,l).gt.1.e-10).AND. |
---|
1739 | ! s (l.ge.lentr(ig)).AND. |
---|
1740 | IF ((zw2(ig, l + 1)>1.E-10) .AND. (zw2(ig, l)>1.E-10) .AND. (l>=lentr(ig))) & |
---|
1741 | THEN |
---|
1742 | IF (((fmc(ig, l + 1) / (rhobarz(ig, l + 1) * zw2(ig, l + 1)))>(fmc(ig, l) / & |
---|
1743 | (rhobarz(ig, l) * zw2(ig, l))))) THEN |
---|
1744 | f_old = fmc(ig, l + 1) |
---|
1745 | fmc(ig, l + 1) = fmc(ig, l) * rhobarz(ig, l + 1) * zw2(ig, l + 1) / & |
---|
1746 | (rhobarz(ig, l) * zw2(ig, l)) |
---|
1747 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l + 1) |
---|
1748 | ! detr(ig,l)=(fmc(ig,l+1)-fmc(ig,l))/(0.4-1.) |
---|
1749 | ! entr(ig,l)=0.4*detr(ig,l) |
---|
1750 | ! entr(ig,l)=fmc(ig,l+1)-fmc(ig,l)+detr(ig,l) |
---|
1751 | END IF |
---|
1752 | END IF |
---|
1753 | IF ((fmc(ig, l + 1)>fmc(ig, l)) .AND. (l>lentr(ig))) THEN |
---|
1754 | f_old = fmc(ig, l + 1) |
---|
1755 | fmc(ig, l + 1) = fmc(ig, l) |
---|
1756 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l + 1) |
---|
1757 | END IF |
---|
1758 | IF (detr(ig, l)>fmc(ig, l)) THEN |
---|
1759 | detr(ig, l) = fmc(ig, l) |
---|
1760 | entr(ig, l) = fmc(ig, l + 1) - alim(ig, l) |
---|
1761 | END IF |
---|
1762 | IF (fmc(ig, l + 1)<0.) THEN |
---|
1763 | detr(ig, l) = detr(ig, l) + fmc(ig, l + 1) |
---|
1764 | fmc(ig, l + 1) = 0. |
---|
1765 | PRINT *, 'fmc2<0', l + 1, lmax(ig) |
---|
1766 | END IF |
---|
1767 | |
---|
1768 | ! test pour ne pas avoir f=0 et d=e/=0 |
---|
1769 | ! if (fmc(ig,l+1).lt.1.e-10) THEN |
---|
1770 | ! detr(ig,l+1)=0. |
---|
1771 | ! entr(ig,l+1)=0. |
---|
1772 | ! zqla(ig,l+1)=0. |
---|
1773 | ! zw2(ig,l+1)=0. |
---|
1774 | ! lmax(ig)=l+1 |
---|
1775 | ! zmax(ig)=zlev(ig,lmax(ig)) |
---|
1776 | ! END IF |
---|
1777 | IF (zw2(ig, l + 1)>1.E-10) THEN |
---|
1778 | IF ((((fmc(ig, l + 1)) / (rhobarz(ig, l + 1) * zw2(ig, l + 1)))>1.)) THEN |
---|
1779 | f_old = fmc(ig, l + 1) |
---|
1780 | fmc(ig, l + 1) = rhobarz(ig, l + 1) * zw2(ig, l + 1) |
---|
1781 | zw2(ig, l + 1) = 0. |
---|
1782 | zqla(ig, l + 1) = 0. |
---|
1783 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l + 1) |
---|
1784 | lmax(ig) = l + 1 |
---|
1785 | zmax(ig) = zlev(ig, lmax(ig)) |
---|
1786 | PRINT *, 'alpha>1', l + 1, lmax(ig) |
---|
1787 | END IF |
---|
1788 | END IF |
---|
1789 | ! WRITE(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
1790 | ! END IF test |
---|
1791 | ! END IF |
---|
1792 | END DO |
---|
1793 | END DO |
---|
1794 | DO ig = 1, ngrid |
---|
1795 | ! if (fmc(ig,lmax(ig)+1).NE.0.) THEN |
---|
1796 | fmc(ig, lmax(ig) + 1) = 0. |
---|
1797 | entr(ig, lmax(ig)) = 0. |
---|
1798 | detr(ig, lmax(ig)) = fmc(ig, lmax(ig)) + entr(ig, lmax(ig)) + & |
---|
1799 | alim(ig, lmax(ig)) |
---|
1800 | ! END IF |
---|
1801 | END DO |
---|
1802 | ! test sur le signe de fmc |
---|
1803 | DO ig = 1, ngrid |
---|
1804 | DO l = 1, klev + 1 |
---|
1805 | IF (fmc(ig, l)<0.) THEN |
---|
1806 | PRINT *, 'fm1<0!!!', 'ig=', ig, 'l=', l, 'a=', alim(ig, l - 1), 'e=', & |
---|
1807 | entr(ig, l - 1), 'f=', fmc(ig, l - 1), 'd=', detr(ig, l - 1), 'f+1=', & |
---|
1808 | fmc(ig, l) |
---|
1809 | END IF |
---|
1810 | END DO |
---|
1811 | END DO |
---|
1812 | ! test de verification |
---|
1813 | DO ig = 1, ngrid |
---|
1814 | DO l = 1, lmax(ig) |
---|
1815 | IF ((abs(fmc(ig, l + 1) - fmc(ig, l) - alim(ig, l) - entr(ig, l) + & |
---|
1816 | detr(ig, l)))>1.E-4) THEN |
---|
1817 | ! PRINT*,'pbcm!!','ig=',ig,'l=',l,'lmax=',lmax(ig),'lmix=',lmix(ig), |
---|
1818 | ! s 'e=',entr(ig,l),'d=',detr(ig,l),'a=',alim(ig,l),'f=',fmc(ig,l), |
---|
1819 | ! s 'f+1=',fmc(ig,l+1) |
---|
1820 | END IF |
---|
1821 | IF (detr(ig, l)<0.) THEN |
---|
1822 | PRINT *, 'detrdemi<0!!!' |
---|
1823 | END IF |
---|
1824 | END DO |
---|
1825 | END DO |
---|
1826 | |
---|
1827 | ! RC |
---|
1828 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
1829 | DO ig = 1, ngrid |
---|
1830 | IF (lmix(ig)>1.) THEN |
---|
1831 | ! test |
---|
1832 | IF (((zw2(ig, lmix(ig) - 1) - zw2(ig, lmix(ig))) * ((zlev(ig, lmix(ig))) - & |
---|
1833 | (zlev(ig, lmix(ig) + 1))) - (zw2(ig, lmix(ig)) - & |
---|
1834 | zw2(ig, lmix(ig) + 1)) * ((zlev(ig, lmix(ig) - 1)) - & |
---|
1835 | (zlev(ig, lmix(ig)))))>1E-10) THEN |
---|
1836 | |
---|
1837 | zmix(ig) = ((zw2(ig, lmix(ig) - 1) - zw2(ig, lmix(ig))) * ((zlev(ig, lmix(ig)) & |
---|
1838 | )**2 - (zlev(ig, lmix(ig) + 1))**2) - (zw2(ig, lmix(ig)) - zw2(ig, & |
---|
1839 | lmix(ig) + 1)) * ((zlev(ig, lmix(ig) - 1))**2 - (zlev(ig, lmix(ig)))**2)) / & |
---|
1840 | (2. * ((zw2(ig, lmix(ig) - 1) - zw2(ig, lmix(ig))) * ((zlev(ig, lmix(ig))) - & |
---|
1841 | (zlev(ig, lmix(ig) + 1))) - (zw2(ig, lmix(ig)) - & |
---|
1842 | zw2(ig, lmix(ig) + 1)) * ((zlev(ig, lmix(ig) - 1)) - (zlev(ig, lmix(ig)))))) |
---|
1843 | ELSE |
---|
1844 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
1845 | PRINT *, 'pb zmix' |
---|
1846 | END IF |
---|
1847 | ELSE |
---|
1848 | zmix(ig) = 0. |
---|
1849 | END IF |
---|
1850 | ! test |
---|
1851 | IF ((zmax(ig) - zmix(ig))<=0.) THEN |
---|
1852 | zmix(ig) = 0.9 * zmax(ig) |
---|
1853 | ! PRINT*,'pb zmix>zmax' |
---|
1854 | END IF |
---|
1855 | END DO |
---|
1856 | DO ig = 1, klon |
---|
1857 | zmix0(ig) = zmix(ig) |
---|
1858 | END DO |
---|
1859 | |
---|
1860 | ! calcul du nouveau lmix correspondant |
---|
1861 | DO ig = 1, ngrid |
---|
1862 | DO l = 1, klev |
---|
1863 | IF (zmix(ig)>=zlev(ig, l) .AND. zmix(ig)<zlev(ig, l + 1)) THEN |
---|
1864 | lmix(ig) = l |
---|
1865 | END IF |
---|
1866 | END DO |
---|
1867 | END DO |
---|
1868 | |
---|
1869 | ! ne devrait pas arriver!!!!! |
---|
1870 | DO ig = 1, ngrid |
---|
1871 | DO l = 1, klev |
---|
1872 | IF (detr(ig, l)>(fmc(ig, l) + alim(ig, l)) + entr(ig, l)) THEN |
---|
1873 | PRINT *, 'detr2>fmc2!!!', 'ig=', ig, 'l=', l, 'd=', detr(ig, l), & |
---|
1874 | 'f=', fmc(ig, l), 'lmax=', lmax(ig) |
---|
1875 | ! detr(ig,l)=fmc(ig,l)+alim(ig,l)+entr(ig,l) |
---|
1876 | ! entr(ig,l)=0. |
---|
1877 | ! fmc(ig,l+1)=0. |
---|
1878 | ! zw2(ig,l+1)=0. |
---|
1879 | ! zqla(ig,l+1)=0. |
---|
1880 | PRINT *, 'pb!fm=0 et f_star>0', l, lmax(ig) |
---|
1881 | ! lmax(ig)=l |
---|
1882 | END IF |
---|
1883 | END DO |
---|
1884 | END DO |
---|
1885 | DO ig = 1, ngrid |
---|
1886 | DO l = lmax(ig) + 1, klev + 1 |
---|
1887 | ! fmc(ig,l)=0. |
---|
1888 | ! detr(ig,l)=0. |
---|
1889 | ! entr(ig,l)=0. |
---|
1890 | ! zw2(ig,l)=0. |
---|
1891 | ! zqla(ig,l)=0. |
---|
1892 | END DO |
---|
1893 | END DO |
---|
1894 | |
---|
1895 | ! Calcul du detrainement lors du premier passage |
---|
1896 | ! PRINT*,'9 OK convect8' |
---|
1897 | ! PRINT*,'WA1 ',wa_moy |
---|
1898 | |
---|
1899 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
1900 | |
---|
1901 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
1902 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
1903 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
1904 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
1905 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
1906 | |
---|
1907 | DO l = 2, nlay |
---|
1908 | DO ig = 1, ngrid |
---|
1909 | IF (l<=lmax(ig) .AND. (test(ig)==1)) THEN |
---|
1910 | zw = max(wa_moy(ig, l), 1.E-10) |
---|
1911 | larg_cons(ig, l) = zmax(ig) * r_aspect * fmc(ig, l) / (rhobarz(ig, l) * zw) |
---|
1912 | END IF |
---|
1913 | END DO |
---|
1914 | END DO |
---|
1915 | |
---|
1916 | DO l = 2, nlay |
---|
1917 | DO ig = 1, ngrid |
---|
1918 | IF (l<=lmax(ig) .AND. (test(ig)==1)) THEN |
---|
1919 | ! if (idetr.EQ.0) THEN |
---|
1920 | ! cette option est finalement en dur. |
---|
1921 | IF ((l_mix * zlev(ig, l))<0.) THEN |
---|
1922 | PRINT *, 'pb l_mix*zlev<0' |
---|
1923 | END IF |
---|
1924 | ! CR: test: nouvelle def de lambda |
---|
1925 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
1926 | IF (zw2(ig, l)>1.E-10) THEN |
---|
1927 | larg_detr(ig, l) = sqrt((l_mix / zw2(ig, l)) * zlev(ig, l)) |
---|
1928 | ELSE |
---|
1929 | larg_detr(ig, l) = sqrt(l_mix * zlev(ig, l)) |
---|
1930 | END IF |
---|
1931 | ! ELSE IF (idetr.EQ.1) THEN |
---|
1932 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
1933 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
1934 | ! ELSE IF (idetr.EQ.2) THEN |
---|
1935 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
1936 | ! s *sqrt(wa_moy(ig,l)) |
---|
1937 | ! ELSE IF (idetr.EQ.4) THEN |
---|
1938 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
1939 | ! s *wa_moy(ig,l) |
---|
1940 | ! END IF |
---|
1941 | END IF |
---|
1942 | END DO |
---|
1943 | END DO |
---|
1944 | |
---|
1945 | ! PRINT*,'10 OK convect8' |
---|
1946 | ! PRINT*,'WA2 ',wa_moy |
---|
1947 | ! cal1cul de la fraction de la maille concernée par l'ascendance en tenant |
---|
1948 | ! compte de l'epluchage du thermique. |
---|
1949 | |
---|
1950 | DO l = 2, nlay |
---|
1951 | DO ig = 1, ngrid |
---|
1952 | IF (larg_cons(ig, l)>1. .AND. (test(ig)==1)) THEN |
---|
1953 | ! PRINT*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
1954 | fraca(ig, l) = (larg_cons(ig, l) - larg_detr(ig, l)) / (r_aspect * zmax(ig)) |
---|
1955 | ! test |
---|
1956 | fraca(ig, l) = max(fraca(ig, l), 0.) |
---|
1957 | fraca(ig, l) = min(fraca(ig, l), 0.5) |
---|
1958 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
1959 | fracc(ig, l) = larg_cons(ig, l) / (r_aspect * zmax(ig)) |
---|
1960 | ELSE |
---|
1961 | ! wa_moy(ig,l)=0. |
---|
1962 | fraca(ig, l) = 0. |
---|
1963 | fracc(ig, l) = 0. |
---|
1964 | fracd(ig, l) = 1. |
---|
1965 | END IF |
---|
1966 | END DO |
---|
1967 | END DO |
---|
1968 | ! CR: calcul de fracazmix |
---|
1969 | DO ig = 1, ngrid |
---|
1970 | IF (test(ig)==1) THEN |
---|
1971 | fracazmix(ig) = (fraca(ig, lmix(ig) + 1) - fraca(ig, lmix(ig))) / & |
---|
1972 | (zlev(ig, lmix(ig) + 1) - zlev(ig, lmix(ig))) * zmix(ig) + & |
---|
1973 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig)) * (fraca(ig, lmix(ig) + 1) - fraca(& |
---|
1974 | ig, lmix(ig))) / (zlev(ig, lmix(ig) + 1) - zlev(ig, lmix(ig))) |
---|
1975 | END IF |
---|
1976 | END DO |
---|
1977 | |
---|
1978 | DO l = 2, nlay |
---|
1979 | DO ig = 1, ngrid |
---|
1980 | IF (larg_cons(ig, l)>1. .AND. (test(ig)==1)) THEN |
---|
1981 | IF (l>lmix(ig)) THEN |
---|
1982 | ! test |
---|
1983 | IF (zmax(ig) - zmix(ig)<1.E-10) THEN |
---|
1984 | ! PRINT*,'pb xxx' |
---|
1985 | xxx(ig, l) = (lmax(ig) + 1. - l) / (lmax(ig) + 1. - lmix(ig)) |
---|
1986 | ELSE |
---|
1987 | xxx(ig, l) = (zmax(ig) - zlev(ig, l)) / (zmax(ig) - zmix(ig)) |
---|
1988 | END IF |
---|
1989 | IF (idetr==0) THEN |
---|
1990 | fraca(ig, l) = fracazmix(ig) |
---|
1991 | ELSE IF (idetr==1) THEN |
---|
1992 | fraca(ig, l) = fracazmix(ig) * xxx(ig, l) |
---|
1993 | ELSE IF (idetr==2) THEN |
---|
1994 | fraca(ig, l) = fracazmix(ig) * (1. - (1. - xxx(ig, l))**2) |
---|
1995 | ELSE |
---|
1996 | fraca(ig, l) = fracazmix(ig) * xxx(ig, l)**2 |
---|
1997 | END IF |
---|
1998 | ! PRINT*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
1999 | fraca(ig, l) = max(fraca(ig, l), 0.) |
---|
2000 | fraca(ig, l) = min(fraca(ig, l), 0.5) |
---|
2001 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
2002 | fracc(ig, l) = larg_cons(ig, l) / (r_aspect * zmax(ig)) |
---|
2003 | END IF |
---|
2004 | END IF |
---|
2005 | END DO |
---|
2006 | END DO |
---|
2007 | |
---|
2008 | PRINT *, 'fin calcul fraca' |
---|
2009 | ! PRINT*,'11 OK convect8' |
---|
2010 | ! PRINT*,'Ea3 ',wa_moy |
---|
2011 | ! ------------------------------------------------------------------ |
---|
2012 | ! Calcul de fracd, wd |
---|
2013 | ! somme wa - wd = 0 |
---|
2014 | ! ------------------------------------------------------------------ |
---|
2015 | |
---|
2016 | DO ig = 1, ngrid |
---|
2017 | fm(ig, 1) = 0. |
---|
2018 | fm(ig, nlay + 1) = 0. |
---|
2019 | END DO |
---|
2020 | |
---|
2021 | DO l = 2, nlay |
---|
2022 | DO ig = 1, ngrid |
---|
2023 | IF (test(ig)==1) THEN |
---|
2024 | fm(ig, l) = fraca(ig, l) * wa_moy(ig, l) * rhobarz(ig, l) |
---|
2025 | ! CR:test |
---|
2026 | IF (alim(ig, l - 1)<1E-10 .AND. fm(ig, l)>fm(ig, l - 1) .AND. l>lmix(ig)) & |
---|
2027 | THEN |
---|
2028 | fm(ig, l) = fm(ig, l - 1) |
---|
2029 | ! WRITE(1,*)'ajustement fm, l',l |
---|
2030 | END IF |
---|
2031 | ! WRITE(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
2032 | ! RC |
---|
2033 | END IF |
---|
2034 | END DO |
---|
2035 | DO ig = 1, ngrid |
---|
2036 | IF (fracd(ig, l)<0.1 .AND. (test(ig)==1)) THEN |
---|
2037 | abort_message = 'fracd trop petit' |
---|
2038 | CALL abort_physic(modname, abort_message, 1) |
---|
2039 | ELSE |
---|
2040 | ! vitesse descendante "diagnostique" |
---|
2041 | wd(ig, l) = fm(ig, l) / (fracd(ig, l) * rhobarz(ig, l)) |
---|
2042 | END IF |
---|
2043 | END DO |
---|
2044 | END DO |
---|
2045 | |
---|
2046 | DO l = 1, nlay + 1 |
---|
2047 | DO ig = 1, ngrid |
---|
2048 | IF (test(ig)==0) THEN |
---|
2049 | fm(ig, l) = fmc(ig, l) |
---|
2050 | END IF |
---|
2051 | END DO |
---|
2052 | END DO |
---|
2053 | |
---|
2054 | ! fin du first |
---|
2055 | DO l = 1, nlay |
---|
2056 | DO ig = 1, ngrid |
---|
2057 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
2058 | masse(ig, l) = (pplev(ig, l) - pplev(ig, l + 1)) / rg |
---|
2059 | END DO |
---|
2060 | END DO |
---|
2061 | |
---|
2062 | ! PRINT*,'12 OK convect8' |
---|
2063 | ! PRINT*,'WA4 ',wa_moy |
---|
2064 | ! c------------------------------------------------------------------ |
---|
2065 | ! calcul du transport vertical |
---|
2066 | ! ------------------------------------------------------------------ |
---|
2067 | |
---|
2068 | GO TO 4444 |
---|
2069 | ! PRINT*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
2070 | DO l = 2, nlay - 1 |
---|
2071 | DO ig = 1, ngrid |
---|
2072 | IF (fm(ig, l + 1) * ptimestep>masse(ig, l) .AND. fm(ig, l + 1) * ptimestep>masse(& |
---|
2073 | ig, l + 1)) THEN |
---|
2074 | PRINT *, 'WARN!!! FM>M ig=', ig, ' l=', l, ' FM=', & |
---|
2075 | fm(ig, l + 1) * ptimestep, ' M=', masse(ig, l), masse(ig, l + 1) |
---|
2076 | END IF |
---|
2077 | END DO |
---|
2078 | END DO |
---|
2079 | |
---|
2080 | DO l = 1, nlay |
---|
2081 | DO ig = 1, ngrid |
---|
2082 | IF ((alim(ig, l) + entr(ig, l)) * ptimestep>masse(ig, l)) THEN |
---|
2083 | PRINT *, 'WARN!!! E>M ig=', ig, ' l=', l, ' E==', & |
---|
2084 | (entr(ig, l) + alim(ig, l)) * ptimestep, ' M=', masse(ig, l) |
---|
2085 | END IF |
---|
2086 | END DO |
---|
2087 | END DO |
---|
2088 | |
---|
2089 | DO l = 1, nlay |
---|
2090 | DO ig = 1, ngrid |
---|
2091 | IF (.NOT. fm(ig, l)>=0. .OR. .NOT. fm(ig, l)<=10.) THEN |
---|
2092 | ! PRINT*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
2093 | ! s ,' FM=',fm(ig,l) |
---|
2094 | END IF |
---|
2095 | IF (.NOT. masse(ig, l)>=1.E-10 .OR. .NOT. masse(ig, l)<=1.E4) THEN |
---|
2096 | ! PRINT*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
2097 | ! s ,' M=',masse(ig,l) |
---|
2098 | ! PRINT*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
2099 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
2100 | ! PRINT*,'zlev(ig,l+1),zlev(ig,l)' |
---|
2101 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
2102 | ! PRINT*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
2103 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
2104 | END IF |
---|
2105 | IF (.NOT. alim(ig, l)>=0. .OR. .NOT. alim(ig, l)<=10.) THEN |
---|
2106 | ! PRINT*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
2107 | ! s ,' E=',entr(ig,l) |
---|
2108 | END IF |
---|
2109 | END DO |
---|
2110 | END DO |
---|
2111 | |
---|
2112 | 4444 CONTINUE |
---|
2113 | |
---|
2114 | ! CR:redefinition du entr |
---|
2115 | ! CR:test:on ne change pas la def du entr mais la def du fm |
---|
2116 | DO l = 1, nlay |
---|
2117 | DO ig = 1, ngrid |
---|
2118 | IF (test(ig)==1) THEN |
---|
2119 | detr(ig, l) = fm(ig, l) + alim(ig, l) - fm(ig, l + 1) |
---|
2120 | IF (detr(ig, l)<0.) THEN |
---|
2121 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
2122 | fm(ig, l + 1) = fm(ig, l) + alim(ig, l) |
---|
2123 | detr(ig, l) = 0. |
---|
2124 | ! WRITE(11,*)'l,ig,entr',l,ig,entr(ig,l) |
---|
2125 | ! PRINT*,'WARNING !!! detrainement negatif ',ig,l |
---|
2126 | END IF |
---|
2127 | END IF |
---|
2128 | END DO |
---|
2129 | END DO |
---|
2130 | ! RC |
---|
2131 | |
---|
2132 | IF (w2di==1) THEN |
---|
2133 | fm0 = fm0 + ptimestep * (fm - fm0) / tho |
---|
2134 | entr0 = entr0 + ptimestep * (alim + entr - entr0) / tho |
---|
2135 | ELSE |
---|
2136 | fm0 = fm |
---|
2137 | entr0 = alim + entr |
---|
2138 | detr0 = detr |
---|
2139 | alim0 = alim |
---|
2140 | ! zoa=zqta |
---|
2141 | ! entr0=alim |
---|
2142 | END IF |
---|
2143 | |
---|
2144 | IF (1==1) THEN |
---|
2145 | ! CALL dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
2146 | ! . ,zh,zdhadj,zha) |
---|
2147 | ! CALL dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
2148 | ! . ,zo,pdoadj,zoa) |
---|
2149 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zthl, & |
---|
2150 | zdthladj, zta) |
---|
2151 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, po, pdoadj, & |
---|
2152 | zoa) |
---|
2153 | ELSE |
---|
2154 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
2155 | zdhadj, zha) |
---|
2156 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
2157 | pdoadj, zoa) |
---|
2158 | END IF |
---|
2159 | |
---|
2160 | IF (1==0) THEN |
---|
2161 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
2162 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
2163 | ELSE |
---|
2164 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
2165 | zua) |
---|
2166 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
2167 | zva) |
---|
2168 | END IF |
---|
2169 | |
---|
2170 | ! Calcul des moments |
---|
2171 | ! do l=1,nlay |
---|
2172 | ! do ig=1,ngrid |
---|
2173 | ! zf=0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
2174 | ! zf2=zf/(1.-zf) |
---|
2175 | ! thetath2(ig,l)=zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
2176 | ! wth2(ig,l)=zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
2177 | ! enddo |
---|
2178 | ! enddo |
---|
2179 | |
---|
2180 | |
---|
2181 | |
---|
2182 | |
---|
2183 | |
---|
2184 | |
---|
2185 | ! PRINT*,'13 OK convect8' |
---|
2186 | ! PRINT*,'WA5 ',wa_moy |
---|
2187 | DO l = 1, nlay |
---|
2188 | DO ig = 1, ngrid |
---|
2189 | ! pdtadj(ig,l)=zdhadj(ig,l)*zpspsk(ig,l) |
---|
2190 | pdtadj(ig, l) = zdthladj(ig, l) * zpspsk(ig, l) |
---|
2191 | END DO |
---|
2192 | END DO |
---|
2193 | |
---|
2194 | |
---|
2195 | ! do l=1,nlay |
---|
2196 | ! do ig=1,ngrid |
---|
2197 | ! IF(abs(pdtadj(ig,l))*86400..gt.500.) THEN |
---|
2198 | ! PRINT*,'WARN!!! ig=',ig,' l=',l |
---|
2199 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
2200 | ! END IF |
---|
2201 | ! IF(abs(pdoadj(ig,l))*86400..gt.1.) THEN |
---|
2202 | ! PRINT*,'WARN!!! ig=',ig,' l=',l |
---|
2203 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
2204 | ! END IF |
---|
2205 | ! enddo |
---|
2206 | ! enddo |
---|
2207 | |
---|
2208 | ! PRINT*,'14 OK convect8' |
---|
2209 | ! ------------------------------------------------------------------ |
---|
2210 | ! Calculs pour les sorties |
---|
2211 | ! ------------------------------------------------------------------ |
---|
2212 | ! calcul de fraca pour les sorties |
---|
2213 | DO l = 2, klev |
---|
2214 | DO ig = 1, klon |
---|
2215 | IF (zw2(ig, l)>1.E-10) THEN |
---|
2216 | fraca(ig, l) = fm(ig, l) / (rhobarz(ig, l) * zw2(ig, l)) |
---|
2217 | ELSE |
---|
2218 | fraca(ig, l) = 0. |
---|
2219 | END IF |
---|
2220 | END DO |
---|
2221 | END DO |
---|
2222 | IF (sorties) THEN |
---|
2223 | DO l = 1, nlay |
---|
2224 | DO ig = 1, ngrid |
---|
2225 | zla(ig, l) = (1. - fracd(ig, l)) * zmax(ig) |
---|
2226 | zld(ig, l) = fracd(ig, l) * zmax(ig) |
---|
2227 | IF (1. - fracd(ig, l)>1.E-10) zwa(ig, l) = wd(ig, l) * fracd(ig, l) / & |
---|
2228 | (1. - fracd(ig, l)) |
---|
2229 | END DO |
---|
2230 | END DO |
---|
2231 | ! CR calcul du niveau de condensation |
---|
2232 | ! initialisation |
---|
2233 | DO ig = 1, ngrid |
---|
2234 | nivcon(ig) = 0. |
---|
2235 | zcon(ig) = 0. |
---|
2236 | END DO |
---|
2237 | DO k = nlay, 1, -1 |
---|
2238 | DO ig = 1, ngrid |
---|
2239 | IF (zqla(ig, k)>1E-10) THEN |
---|
2240 | nivcon(ig) = k |
---|
2241 | zcon(ig) = zlev(ig, k) |
---|
2242 | END IF |
---|
2243 | ! if (zcon(ig).gt.1.e-10) THEN |
---|
2244 | ! nuage=.TRUE. |
---|
2245 | ! else |
---|
2246 | ! nuage=.FALSE. |
---|
2247 | ! END IF |
---|
2248 | END DO |
---|
2249 | END DO |
---|
2250 | |
---|
2251 | DO l = 1, nlay |
---|
2252 | DO ig = 1, ngrid |
---|
2253 | zf = fraca(ig, l) |
---|
2254 | zf2 = zf / (1. - zf) |
---|
2255 | thetath2(ig, l) = zf2 * (zha(ig, l) - zh(ig, l) / zpspsk(ig, l))**2 |
---|
2256 | wth2(ig, l) = zf2 * (zw2(ig, l))**2 |
---|
2257 | ! PRINT*,'wth2=',wth2(ig,l) |
---|
2258 | wth3(ig, l) = zf2 * (1 - 2. * fraca(ig, l)) / (1 - fraca(ig, l)) * zw2(ig, l) * & |
---|
2259 | zw2(ig, l) * zw2(ig, l) |
---|
2260 | q2(ig, l) = zf2 * (zqta(ig, l) * 1000. - po(ig, l) * 1000.)**2 |
---|
2261 | ! test: on calcul q2/po=ratqsc |
---|
2262 | ! if (nuage) THEN |
---|
2263 | ratqscth(ig, l) = sqrt(q2(ig, l)) / (po(ig, l) * 1000.) |
---|
2264 | ! else |
---|
2265 | ! ratqscth(ig,l)=0. |
---|
2266 | ! END IF |
---|
2267 | END DO |
---|
2268 | END DO |
---|
2269 | ! calcul du ratqscdiff |
---|
2270 | sum = 0. |
---|
2271 | sumdiff = 0. |
---|
2272 | ratqsdiff(:, :) = 0. |
---|
2273 | DO ig = 1, ngrid |
---|
2274 | DO l = 1, lentr(ig) |
---|
2275 | sum = sum + alim_star(ig, l) * zqta(ig, l) * 1000. |
---|
2276 | END DO |
---|
2277 | END DO |
---|
2278 | DO ig = 1, ngrid |
---|
2279 | DO l = 1, lentr(ig) |
---|
2280 | zf = fraca(ig, l) |
---|
2281 | zf2 = zf / (1. - zf) |
---|
2282 | sumdiff = sumdiff + alim_star(ig, l) * (zqta(ig, l) * 1000. - sum)**2 |
---|
2283 | ! ratqsdiff=ratqsdiff+alim_star(ig,l)* |
---|
2284 | ! s (zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
2285 | END DO |
---|
2286 | END DO |
---|
2287 | DO l = 1, klev |
---|
2288 | DO ig = 1, ngrid |
---|
2289 | ratqsdiff(ig, l) = sqrt(sumdiff) / (po(ig, l) * 1000.) |
---|
2290 | ! WRITE(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
---|
2291 | END DO |
---|
2292 | END DO |
---|
2293 | |
---|
2294 | END IF |
---|
2295 | |
---|
2296 | ! PRINT*,'19 OK convect8' |
---|
2297 | |
---|
2298 | END SUBROUTINE thermcell_cld |
---|
2299 | |
---|
2300 | SUBROUTINE thermcell_eau(ngrid, nlay, ptimestep, pplay, pplev, pphi, pu, pv, & |
---|
2301 | pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
2302 | ! ,pu_therm,pv_therm |
---|
2303 | , r_aspect, l_mix, w2di, tho) |
---|
2304 | |
---|
2305 | USE dimphy |
---|
2306 | USE lmdz_yoethf |
---|
2307 | |
---|
2308 | USE lmdz_yomcst |
---|
2309 | |
---|
2310 | IMPLICIT NONE |
---|
2311 | INCLUDE "FCTTRE.h" |
---|
2312 | |
---|
2313 | ! ======================================================================= |
---|
2314 | |
---|
2315 | ! Calcul du transport verticale dans la couche limite en presence |
---|
2316 | ! de "thermiques" explicitement representes |
---|
2317 | |
---|
2318 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
2319 | |
---|
2320 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
2321 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
2322 | ! mélange |
---|
2323 | |
---|
2324 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
2325 | ! en compte: |
---|
2326 | ! 1. un flux de masse montant |
---|
2327 | ! 2. un flux de masse descendant |
---|
2328 | ! 3. un entrainement |
---|
2329 | ! 4. un detrainement |
---|
2330 | |
---|
2331 | ! ======================================================================= |
---|
2332 | |
---|
2333 | ! arguments: |
---|
2334 | ! ---------- |
---|
2335 | |
---|
2336 | INTEGER ngrid, nlay, w2di |
---|
2337 | REAL tho |
---|
2338 | REAL ptimestep, l_mix, r_aspect |
---|
2339 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
2340 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
2341 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
2342 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
2343 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay + 1) |
---|
2344 | REAL pphi(ngrid, nlay) |
---|
2345 | |
---|
2346 | INTEGER idetr |
---|
2347 | SAVE idetr |
---|
2348 | DATA idetr/3/ |
---|
2349 | !$OMP THREADPRIVATE(idetr) |
---|
2350 | |
---|
2351 | ! local: |
---|
2352 | ! ------ |
---|
2353 | |
---|
2354 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
2355 | REAL zsortie1d(klon) |
---|
2356 | ! CR: on remplace lmax(klon,klev+1) |
---|
2357 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
2358 | REAL linter(klon) |
---|
2359 | REAL zmix(klon), fracazmix(klon) |
---|
2360 | ! RC |
---|
2361 | REAL zmax(klon), zw, zz, zw2(klon, klev + 1), ztva(klon, klev), zzz |
---|
2362 | |
---|
2363 | REAL zlev(klon, klev + 1), zlay(klon, klev) |
---|
2364 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
2365 | REAL zthl(klon, klev), zdthladj(klon, klev) |
---|
2366 | REAL ztv(klon, klev) |
---|
2367 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
2368 | REAL zl(klon, klev) |
---|
2369 | REAL wh(klon, klev + 1) |
---|
2370 | REAL wu(klon, klev + 1), wv(klon, klev + 1), wo(klon, klev + 1) |
---|
2371 | REAL zla(klon, klev + 1) |
---|
2372 | REAL zwa(klon, klev + 1) |
---|
2373 | REAL zld(klon, klev + 1) |
---|
2374 | REAL zwd(klon, klev + 1) |
---|
2375 | REAL zsortie(klon, klev) |
---|
2376 | REAL zva(klon, klev) |
---|
2377 | REAL zua(klon, klev) |
---|
2378 | REAL zoa(klon, klev) |
---|
2379 | |
---|
2380 | REAL zta(klon, klev) |
---|
2381 | REAL zha(klon, klev) |
---|
2382 | REAL wa_moy(klon, klev + 1) |
---|
2383 | REAL fraca(klon, klev + 1) |
---|
2384 | REAL fracc(klon, klev + 1) |
---|
2385 | REAL zf, zf2 |
---|
2386 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
2387 | ! common/comtherm/thetath2,wth2 |
---|
2388 | |
---|
2389 | REAL count_time |
---|
2390 | INTEGER ialt |
---|
2391 | |
---|
2392 | LOGICAL sorties |
---|
2393 | REAL rho(klon, klev), rhobarz(klon, klev + 1), masse(klon, klev) |
---|
2394 | REAL zpspsk(klon, klev) |
---|
2395 | |
---|
2396 | ! real wmax(klon,klev),wmaxa(klon) |
---|
2397 | REAL wmax(klon), wmaxa(klon) |
---|
2398 | REAL wa(klon, klev, klev + 1) |
---|
2399 | REAL wd(klon, klev + 1) |
---|
2400 | REAL larg_part(klon, klev, klev + 1) |
---|
2401 | REAL fracd(klon, klev + 1) |
---|
2402 | REAL xxx(klon, klev + 1) |
---|
2403 | REAL larg_cons(klon, klev + 1) |
---|
2404 | REAL larg_detr(klon, klev + 1) |
---|
2405 | REAL fm0(klon, klev + 1), entr0(klon, klev), detr(klon, klev) |
---|
2406 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
2407 | REAL fm(klon, klev + 1), entr(klon, klev) |
---|
2408 | REAL fmc(klon, klev + 1) |
---|
2409 | |
---|
2410 | REAL zcor, zdelta, zcvm5, qlbef |
---|
2411 | REAL tbef(klon), qsatbef(klon) |
---|
2412 | REAL dqsat_dt, dt, num, denom |
---|
2413 | REAL reps, rlvcp, ddt0 |
---|
2414 | REAL ztla(klon, klev), zqla(klon, klev), zqta(klon, klev) |
---|
2415 | |
---|
2416 | PARAMETER (ddt0 = .01) |
---|
2417 | |
---|
2418 | ! CR:nouvelles variables |
---|
2419 | REAL f_star(klon, klev + 1), entr_star(klon, klev) |
---|
2420 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
2421 | REAL f(klon), f0(klon) |
---|
2422 | REAL zlevinter(klon) |
---|
2423 | LOGICAL first |
---|
2424 | DATA first/.FALSE./ |
---|
2425 | SAVE first |
---|
2426 | !$OMP THREADPRIVATE(first) |
---|
2427 | |
---|
2428 | ! RC |
---|
2429 | |
---|
2430 | CHARACTER *2 str2 |
---|
2431 | CHARACTER *10 str10 |
---|
2432 | |
---|
2433 | CHARACTER (LEN = 20) :: modname = 'thermcell_eau' |
---|
2434 | CHARACTER (LEN = 80) :: abort_message |
---|
2435 | |
---|
2436 | LOGICAL vtest(klon), down |
---|
2437 | LOGICAL zsat(klon) |
---|
2438 | |
---|
2439 | INTEGER ncorrec, ll |
---|
2440 | SAVE ncorrec |
---|
2441 | DATA ncorrec/0/ |
---|
2442 | !$OMP THREADPRIVATE(ncorrec) |
---|
2443 | |
---|
2444 | |
---|
2445 | |
---|
2446 | ! ----------------------------------------------------------------------- |
---|
2447 | ! initialisation: |
---|
2448 | ! --------------- |
---|
2449 | |
---|
2450 | sorties = .TRUE. |
---|
2451 | IF (ngrid/=klon) THEN |
---|
2452 | PRINT * |
---|
2453 | PRINT *, 'STOP dans convadj' |
---|
2454 | PRINT *, 'ngrid =', ngrid |
---|
2455 | PRINT *, 'klon =', klon |
---|
2456 | END IF |
---|
2457 | |
---|
2458 | ! Initialisation |
---|
2459 | rlvcp = rlvtt / rcpd |
---|
2460 | reps = rd / rv |
---|
2461 | |
---|
2462 | ! ----------------------------------------------------------------------- |
---|
2463 | ! AM Calcul de T,q,ql a partir de Tl et qT |
---|
2464 | ! --------------------------------------------------- |
---|
2465 | |
---|
2466 | ! Pr Tprec=Tl calcul de qsat |
---|
2467 | ! Si qsat>qT T=Tl, q=qT |
---|
2468 | ! Sinon DDT=(-Tprec+Tl+RLVCP (qT-qsat(T')) / (1+RLVCP dqsat/dt) |
---|
2469 | ! On cherche DDT < DDT0 |
---|
2470 | |
---|
2471 | ! defaut |
---|
2472 | DO ll = 1, nlay |
---|
2473 | DO ig = 1, ngrid |
---|
2474 | zo(ig, ll) = po(ig, ll) |
---|
2475 | zl(ig, ll) = 0. |
---|
2476 | zh(ig, ll) = pt(ig, ll) |
---|
2477 | END DO |
---|
2478 | END DO |
---|
2479 | DO ig = 1, ngrid |
---|
2480 | zsat(ig) = .FALSE. |
---|
2481 | END DO |
---|
2482 | |
---|
2483 | DO ll = 1, nlay |
---|
2484 | ! les points insatures sont definitifs |
---|
2485 | DO ig = 1, ngrid |
---|
2486 | tbef(ig) = pt(ig, ll) |
---|
2487 | zdelta = max(0., sign(1., rtt - tbef(ig))) |
---|
2488 | qsatbef(ig) = r2es * foeew(tbef(ig), zdelta) / pplev(ig, ll) |
---|
2489 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
2490 | zcor = 1. / (1. - retv * qsatbef(ig)) |
---|
2491 | qsatbef(ig) = qsatbef(ig) * zcor |
---|
2492 | zsat(ig) = (max(0., po(ig, ll) - qsatbef(ig))>0.00001) |
---|
2493 | END DO |
---|
2494 | |
---|
2495 | DO ig = 1, ngrid |
---|
2496 | IF (zsat(ig)) THEN |
---|
2497 | qlbef = max(0., po(ig, ll) - qsatbef(ig)) |
---|
2498 | ! si sature: ql est surestime, d'ou la sous-relax |
---|
2499 | dt = 0.5 * rlvcp * qlbef |
---|
2500 | ! on pourra enchainer 2 ou 3 calculs sans Do while |
---|
2501 | DO WHILE (dt>ddt0) |
---|
2502 | ! il faut verifier si c,a conserve quand on repasse en insature ... |
---|
2503 | tbef(ig) = tbef(ig) + dt |
---|
2504 | zdelta = max(0., sign(1., rtt - tbef(ig))) |
---|
2505 | qsatbef(ig) = r2es * foeew(tbef(ig), zdelta) / pplev(ig, ll) |
---|
2506 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
2507 | zcor = 1. / (1. - retv * qsatbef(ig)) |
---|
2508 | qsatbef(ig) = qsatbef(ig) * zcor |
---|
2509 | ! on veut le signe de qlbef |
---|
2510 | qlbef = po(ig, ll) - qsatbef(ig) |
---|
2511 | ! dqsat_dT |
---|
2512 | zdelta = max(0., sign(1., rtt - tbef(ig))) |
---|
2513 | zcvm5 = r5les * (1. - zdelta) + r5ies * zdelta |
---|
2514 | zcor = 1. / (1. - retv * qsatbef(ig)) |
---|
2515 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
2516 | num = -tbef(ig) + pt(ig, ll) + rlvcp * qlbef |
---|
2517 | denom = 1. + rlvcp * dqsat_dt |
---|
2518 | dt = num / denom |
---|
2519 | END DO |
---|
2520 | ! on ecrit de maniere conservative (sat ou non) |
---|
2521 | zl(ig, ll) = max(0., qlbef) |
---|
2522 | ! T = Tl +Lv/Cp ql |
---|
2523 | zh(ig, ll) = pt(ig, ll) + rlvcp * zl(ig, ll) |
---|
2524 | zo(ig, ll) = po(ig, ll) - zl(ig, ll) |
---|
2525 | END IF |
---|
2526 | END DO |
---|
2527 | END DO |
---|
2528 | ! AM fin |
---|
2529 | |
---|
2530 | ! ----------------------------------------------------------------------- |
---|
2531 | ! incrementation eventuelle de tendances precedentes: |
---|
2532 | ! --------------------------------------------------- |
---|
2533 | |
---|
2534 | ! PRINT*,'0 OK convect8' |
---|
2535 | |
---|
2536 | DO l = 1, nlay |
---|
2537 | DO ig = 1, ngrid |
---|
2538 | zpspsk(ig, l) = (pplay(ig, l) / pplev(ig, 1))**rkappa |
---|
2539 | ! zh(ig,l)=pt(ig,l)/zpspsk(ig,l) |
---|
2540 | zu(ig, l) = pu(ig, l) |
---|
2541 | zv(ig, l) = pv(ig, l) |
---|
2542 | ! zo(ig,l)=po(ig,l) |
---|
2543 | ! ztv(ig,l)=zh(ig,l)*(1.+0.61*zo(ig,l)) |
---|
2544 | ! AM attention zh est maintenant le profil de T et plus le profil de |
---|
2545 | ! theta ! |
---|
2546 | |
---|
2547 | ! T-> Theta |
---|
2548 | ztv(ig, l) = zh(ig, l) / zpspsk(ig, l) |
---|
2549 | ! AM Theta_v |
---|
2550 | ztv(ig, l) = ztv(ig, l) * (1. + retv * (zo(ig, l)) - zl(ig, l)) |
---|
2551 | ! AM Thetal |
---|
2552 | zthl(ig, l) = pt(ig, l) / zpspsk(ig, l) |
---|
2553 | |
---|
2554 | END DO |
---|
2555 | END DO |
---|
2556 | |
---|
2557 | ! PRINT*,'1 OK convect8' |
---|
2558 | ! -------------------- |
---|
2559 | |
---|
2560 | |
---|
2561 | ! + + + + + + + + + + + |
---|
2562 | |
---|
2563 | |
---|
2564 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
2565 | ! wh,wt,wo ... |
---|
2566 | |
---|
2567 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
2568 | |
---|
2569 | |
---|
2570 | ! -------------------- zlev(1) |
---|
2571 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
2572 | |
---|
2573 | |
---|
2574 | |
---|
2575 | ! ----------------------------------------------------------------------- |
---|
2576 | ! Calcul des altitudes des couches |
---|
2577 | ! ----------------------------------------------------------------------- |
---|
2578 | |
---|
2579 | DO l = 2, nlay |
---|
2580 | DO ig = 1, ngrid |
---|
2581 | zlev(ig, l) = 0.5 * (pphi(ig, l) + pphi(ig, l - 1)) / rg |
---|
2582 | END DO |
---|
2583 | END DO |
---|
2584 | DO ig = 1, ngrid |
---|
2585 | zlev(ig, 1) = 0. |
---|
2586 | zlev(ig, nlay + 1) = (2. * pphi(ig, klev) - pphi(ig, klev - 1)) / rg |
---|
2587 | END DO |
---|
2588 | DO l = 1, nlay |
---|
2589 | DO ig = 1, ngrid |
---|
2590 | zlay(ig, l) = pphi(ig, l) / rg |
---|
2591 | END DO |
---|
2592 | END DO |
---|
2593 | |
---|
2594 | ! PRINT*,'2 OK convect8' |
---|
2595 | ! ----------------------------------------------------------------------- |
---|
2596 | ! Calcul des densites |
---|
2597 | ! ----------------------------------------------------------------------- |
---|
2598 | |
---|
2599 | DO l = 1, nlay |
---|
2600 | DO ig = 1, ngrid |
---|
2601 | ! rho(ig,l)=pplay(ig,l)/(zpspsk(ig,l)*RD*zh(ig,l)) |
---|
2602 | rho(ig, l) = pplay(ig, l) / (zpspsk(ig, l) * rd * ztv(ig, l)) |
---|
2603 | END DO |
---|
2604 | END DO |
---|
2605 | |
---|
2606 | DO l = 2, nlay |
---|
2607 | DO ig = 1, ngrid |
---|
2608 | rhobarz(ig, l) = 0.5 * (rho(ig, l) + rho(ig, l - 1)) |
---|
2609 | END DO |
---|
2610 | END DO |
---|
2611 | |
---|
2612 | DO k = 1, nlay |
---|
2613 | DO l = 1, nlay + 1 |
---|
2614 | DO ig = 1, ngrid |
---|
2615 | wa(ig, k, l) = 0. |
---|
2616 | END DO |
---|
2617 | END DO |
---|
2618 | END DO |
---|
2619 | |
---|
2620 | ! PRINT*,'3 OK convect8' |
---|
2621 | ! ------------------------------------------------------------------ |
---|
2622 | ! Calcul de w2, quarre de w a partir de la cape |
---|
2623 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
2624 | |
---|
2625 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
2626 | ! w2 est stoke dans wa |
---|
2627 | |
---|
2628 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
2629 | ! independants par couches que pour calculer l'entrainement |
---|
2630 | ! a la base et la hauteur max de l'ascendance. |
---|
2631 | |
---|
2632 | ! Indicages: |
---|
2633 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
2634 | ! une vitesse wa(k,l). |
---|
2635 | |
---|
2636 | ! -------------------- |
---|
2637 | |
---|
2638 | ! + + + + + + + + + + |
---|
2639 | |
---|
2640 | ! wa(k,l) ---- -------------------- l |
---|
2641 | ! /\ |
---|
2642 | ! /||\ + + + + + + + + + + |
---|
2643 | ! || |
---|
2644 | ! || -------------------- |
---|
2645 | ! || |
---|
2646 | ! || + + + + + + + + + + |
---|
2647 | ! || |
---|
2648 | ! || -------------------- |
---|
2649 | ! ||__ |
---|
2650 | ! |___ + + + + + + + + + + k |
---|
2651 | |
---|
2652 | ! -------------------- |
---|
2653 | |
---|
2654 | |
---|
2655 | |
---|
2656 | ! ------------------------------------------------------------------ |
---|
2657 | |
---|
2658 | ! CR: ponderation entrainement des couches instables |
---|
2659 | ! def des entr_star tels que entr=f*entr_star |
---|
2660 | DO l = 1, klev |
---|
2661 | DO ig = 1, ngrid |
---|
2662 | entr_star(ig, l) = 0. |
---|
2663 | END DO |
---|
2664 | END DO |
---|
2665 | ! determination de la longueur de la couche d entrainement |
---|
2666 | DO ig = 1, ngrid |
---|
2667 | lentr(ig) = 1 |
---|
2668 | END DO |
---|
2669 | |
---|
2670 | ! on ne considere que les premieres couches instables |
---|
2671 | DO k = nlay - 1, 1, -1 |
---|
2672 | DO ig = 1, ngrid |
---|
2673 | IF (ztv(ig, k)>ztv(ig, k + 1) .AND. ztv(ig, k + 1)<ztv(ig, k + 2)) THEN |
---|
2674 | lentr(ig) = k |
---|
2675 | END IF |
---|
2676 | END DO |
---|
2677 | END DO |
---|
2678 | |
---|
2679 | ! determination du lmin: couche d ou provient le thermique |
---|
2680 | DO ig = 1, ngrid |
---|
2681 | lmin(ig) = 1 |
---|
2682 | END DO |
---|
2683 | DO ig = 1, ngrid |
---|
2684 | DO l = nlay, 2, -1 |
---|
2685 | IF (ztv(ig, l - 1)>ztv(ig, l)) THEN |
---|
2686 | lmin(ig) = l - 1 |
---|
2687 | END IF |
---|
2688 | END DO |
---|
2689 | END DO |
---|
2690 | |
---|
2691 | ! definition de l'entrainement des couches |
---|
2692 | DO l = 1, klev - 1 |
---|
2693 | DO ig = 1, ngrid |
---|
2694 | IF (ztv(ig, l)>ztv(ig, l + 1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
2695 | entr_star(ig, l) = (ztv(ig, l) - ztv(ig, l + 1)) * (zlev(ig, l + 1) - zlev(ig, l)) |
---|
2696 | END IF |
---|
2697 | END DO |
---|
2698 | END DO |
---|
2699 | ! pas de thermique si couche 1 stable |
---|
2700 | DO ig = 1, ngrid |
---|
2701 | IF (lmin(ig)>1) THEN |
---|
2702 | DO l = 1, klev |
---|
2703 | entr_star(ig, l) = 0. |
---|
2704 | END DO |
---|
2705 | END IF |
---|
2706 | END DO |
---|
2707 | ! calcul de l entrainement total |
---|
2708 | DO ig = 1, ngrid |
---|
2709 | entr_star_tot(ig) = 0. |
---|
2710 | END DO |
---|
2711 | DO ig = 1, ngrid |
---|
2712 | DO k = 1, klev |
---|
2713 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
2714 | END DO |
---|
2715 | END DO |
---|
2716 | |
---|
2717 | DO k = 1, klev |
---|
2718 | DO ig = 1, ngrid |
---|
2719 | ztva(ig, k) = ztv(ig, k) |
---|
2720 | END DO |
---|
2721 | END DO |
---|
2722 | ! RC |
---|
2723 | ! AM:initialisations |
---|
2724 | DO k = 1, nlay |
---|
2725 | DO ig = 1, ngrid |
---|
2726 | ztva(ig, k) = ztv(ig, k) |
---|
2727 | ztla(ig, k) = zthl(ig, k) |
---|
2728 | zqla(ig, k) = 0. |
---|
2729 | zqta(ig, k) = po(ig, k) |
---|
2730 | zsat(ig) = .FALSE. |
---|
2731 | END DO |
---|
2732 | END DO |
---|
2733 | |
---|
2734 | ! PRINT*,'7 OK convect8' |
---|
2735 | DO k = 1, klev + 1 |
---|
2736 | DO ig = 1, ngrid |
---|
2737 | zw2(ig, k) = 0. |
---|
2738 | fmc(ig, k) = 0. |
---|
2739 | ! CR |
---|
2740 | f_star(ig, k) = 0. |
---|
2741 | ! RC |
---|
2742 | larg_cons(ig, k) = 0. |
---|
2743 | larg_detr(ig, k) = 0. |
---|
2744 | wa_moy(ig, k) = 0. |
---|
2745 | END DO |
---|
2746 | END DO |
---|
2747 | |
---|
2748 | ! PRINT*,'8 OK convect8' |
---|
2749 | DO ig = 1, ngrid |
---|
2750 | linter(ig) = 1. |
---|
2751 | lmaxa(ig) = 1 |
---|
2752 | lmix(ig) = 1 |
---|
2753 | wmaxa(ig) = 0. |
---|
2754 | END DO |
---|
2755 | |
---|
2756 | ! CR: |
---|
2757 | DO l = 1, nlay - 2 |
---|
2758 | DO ig = 1, ngrid |
---|
2759 | IF (ztv(ig, l)>ztv(ig, l + 1) .AND. entr_star(ig, l)>1.E-10 .AND. & |
---|
2760 | zw2(ig, l)<1E-10) THEN |
---|
2761 | ! AM |
---|
2762 | ztla(ig, l) = zthl(ig, l) |
---|
2763 | zqta(ig, l) = po(ig, l) |
---|
2764 | zqla(ig, l) = zl(ig, l) |
---|
2765 | ! AM |
---|
2766 | f_star(ig, l + 1) = entr_star(ig, l) |
---|
2767 | ! test:calcul de dteta |
---|
2768 | zw2(ig, l + 1) = 2. * rg * (ztv(ig, l) - ztv(ig, l + 1)) / ztv(ig, l + 1) * & |
---|
2769 | (zlev(ig, l + 1) - zlev(ig, l)) * 0.4 * pphi(ig, l) / (pphi(ig, l + 1) - pphi(ig, l)) |
---|
2770 | larg_detr(ig, l) = 0. |
---|
2771 | ELSE IF ((zw2(ig, l)>=1E-10) .AND. (f_star(ig, l) + entr_star(ig, & |
---|
2772 | l)>1.E-10)) THEN |
---|
2773 | f_star(ig, l + 1) = f_star(ig, l) + entr_star(ig, l) |
---|
2774 | |
---|
2775 | ! AM on melange Tl et qt du thermique |
---|
2776 | ztla(ig, l) = (f_star(ig, l) * ztla(ig, l - 1) + entr_star(ig, l) * zthl(ig, l)) / & |
---|
2777 | f_star(ig, l + 1) |
---|
2778 | zqta(ig, l) = (f_star(ig, l) * zqta(ig, l - 1) + entr_star(ig, l) * po(ig, l)) / & |
---|
2779 | f_star(ig, l + 1) |
---|
2780 | |
---|
2781 | ! ztva(ig,l)=(f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l) |
---|
2782 | ! s *ztv(ig,l))/f_star(ig,l+1) |
---|
2783 | |
---|
2784 | ! AM on en deduit thetav et ql du thermique |
---|
2785 | tbef(ig) = ztla(ig, l) * zpspsk(ig, l) |
---|
2786 | zdelta = max(0., sign(1., rtt - tbef(ig))) |
---|
2787 | qsatbef(ig) = r2es * foeew(tbef(ig), zdelta) / pplev(ig, l) |
---|
2788 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
2789 | zcor = 1. / (1. - retv * qsatbef(ig)) |
---|
2790 | qsatbef(ig) = qsatbef(ig) * zcor |
---|
2791 | zsat(ig) = (max(0., zqta(ig, l) - qsatbef(ig))>0.00001) |
---|
2792 | END IF |
---|
2793 | END DO |
---|
2794 | DO ig = 1, ngrid |
---|
2795 | IF (zsat(ig)) THEN |
---|
2796 | qlbef = max(0., zqta(ig, l) - qsatbef(ig)) |
---|
2797 | dt = 0.5 * rlvcp * qlbef |
---|
2798 | DO WHILE (dt>ddt0) |
---|
2799 | tbef(ig) = tbef(ig) + dt |
---|
2800 | zdelta = max(0., sign(1., rtt - tbef(ig))) |
---|
2801 | qsatbef(ig) = r2es * foeew(tbef(ig), zdelta) / pplev(ig, l) |
---|
2802 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
2803 | zcor = 1. / (1. - retv * qsatbef(ig)) |
---|
2804 | qsatbef(ig) = qsatbef(ig) * zcor |
---|
2805 | qlbef = zqta(ig, l) - qsatbef(ig) |
---|
2806 | |
---|
2807 | zdelta = max(0., sign(1., rtt - tbef(ig))) |
---|
2808 | zcvm5 = r5les * (1. - zdelta) + r5ies * zdelta |
---|
2809 | zcor = 1. / (1. - retv * qsatbef(ig)) |
---|
2810 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
2811 | num = -tbef(ig) + ztla(ig, l) * zpspsk(ig, l) + rlvcp * qlbef |
---|
2812 | denom = 1. + rlvcp * dqsat_dt |
---|
2813 | dt = num / denom |
---|
2814 | END DO |
---|
2815 | zqla(ig, l) = max(0., zqta(ig, l) - qsatbef(ig)) |
---|
2816 | END IF |
---|
2817 | ! on ecrit de maniere conservative (sat ou non) |
---|
2818 | ! T = Tl +Lv/Cp ql |
---|
2819 | ztva(ig, l) = ztla(ig, l) * zpspsk(ig, l) + rlvcp * zqla(ig, l) |
---|
2820 | ztva(ig, l) = ztva(ig, l) / zpspsk(ig, l) |
---|
2821 | ztva(ig, l) = ztva(ig, l) * (1. + retv * (zqta(ig, l) - zqla(ig, l)) - zqla(ig, l)) |
---|
2822 | |
---|
2823 | END DO |
---|
2824 | DO ig = 1, ngrid |
---|
2825 | IF (zw2(ig, l)>=1.E-10 .AND. f_star(ig, l) + entr_star(ig, l)>1.E-10) THEN |
---|
2826 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
2827 | ! consideree commence avec une vitesse nulle). |
---|
2828 | |
---|
2829 | zw2(ig, l + 1) = zw2(ig, l) * (f_star(ig, l) / f_star(ig, l + 1))**2 + & |
---|
2830 | 2. * rg * (ztva(ig, l) - ztv(ig, l)) / ztv(ig, l) * (zlev(ig, l + 1) - zlev(ig, l)) |
---|
2831 | END IF |
---|
2832 | ! determination de zmax continu par interpolation lineaire |
---|
2833 | IF (zw2(ig, l + 1)<0.) THEN |
---|
2834 | linter(ig) = (l * (zw2(ig, l + 1) - zw2(ig, l)) - zw2(ig, l)) / (zw2(ig, l + 1) - zw2(& |
---|
2835 | ig, l)) |
---|
2836 | zw2(ig, l + 1) = 0. |
---|
2837 | lmaxa(ig) = l |
---|
2838 | ELSE |
---|
2839 | wa_moy(ig, l + 1) = sqrt(zw2(ig, l + 1)) |
---|
2840 | END IF |
---|
2841 | IF (wa_moy(ig, l + 1)>wmaxa(ig)) THEN |
---|
2842 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
2843 | lmix(ig) = l + 1 |
---|
2844 | wmaxa(ig) = wa_moy(ig, l + 1) |
---|
2845 | END IF |
---|
2846 | END DO |
---|
2847 | END DO |
---|
2848 | |
---|
2849 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
2850 | DO ig = 1, ngrid |
---|
2851 | lmax(ig) = lentr(ig) |
---|
2852 | END DO |
---|
2853 | DO ig = 1, ngrid |
---|
2854 | DO l = nlay, lentr(ig) + 1, -1 |
---|
2855 | IF (zw2(ig, l)<=1.E-10) THEN |
---|
2856 | lmax(ig) = l - 1 |
---|
2857 | END IF |
---|
2858 | END DO |
---|
2859 | END DO |
---|
2860 | ! pas de thermique si couche 1 stable |
---|
2861 | DO ig = 1, ngrid |
---|
2862 | IF (lmin(ig)>1) THEN |
---|
2863 | lmax(ig) = 1 |
---|
2864 | lmin(ig) = 1 |
---|
2865 | END IF |
---|
2866 | END DO |
---|
2867 | |
---|
2868 | ! Determination de zw2 max |
---|
2869 | DO ig = 1, ngrid |
---|
2870 | wmax(ig) = 0. |
---|
2871 | END DO |
---|
2872 | |
---|
2873 | DO l = 1, nlay |
---|
2874 | DO ig = 1, ngrid |
---|
2875 | IF (l<=lmax(ig)) THEN |
---|
2876 | zw2(ig, l) = sqrt(zw2(ig, l)) |
---|
2877 | wmax(ig) = max(wmax(ig), zw2(ig, l)) |
---|
2878 | ELSE |
---|
2879 | zw2(ig, l) = 0. |
---|
2880 | END IF |
---|
2881 | END DO |
---|
2882 | END DO |
---|
2883 | |
---|
2884 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
2885 | DO ig = 1, ngrid |
---|
2886 | zmax(ig) = 500. |
---|
2887 | zlevinter(ig) = zlev(ig, 1) |
---|
2888 | END DO |
---|
2889 | DO ig = 1, ngrid |
---|
2890 | ! calcul de zlevinter |
---|
2891 | zlevinter(ig) = (zlev(ig, lmax(ig) + 1) - zlev(ig, lmax(ig))) * linter(ig) + & |
---|
2892 | zlev(ig, lmax(ig)) - lmax(ig) * (zlev(ig, lmax(ig) + 1) - zlev(ig, lmax(ig))) |
---|
2893 | zmax(ig) = max(zmax(ig), zlevinter(ig) - zlev(ig, lmin(ig))) |
---|
2894 | END DO |
---|
2895 | |
---|
2896 | ! Fermeture,determination de f |
---|
2897 | DO ig = 1, ngrid |
---|
2898 | entr_star2(ig) = 0. |
---|
2899 | END DO |
---|
2900 | DO ig = 1, ngrid |
---|
2901 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
2902 | f(ig) = 0. |
---|
2903 | ELSE |
---|
2904 | DO k = lmin(ig), lentr(ig) |
---|
2905 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2 / (rho(ig, k) * (& |
---|
2906 | zlev(ig, k + 1) - zlev(ig, k))) |
---|
2907 | END DO |
---|
2908 | ! Nouvelle fermeture |
---|
2909 | f(ig) = wmax(ig) / (zmax(ig) * r_aspect * entr_star2(ig)) * entr_star_tot(ig) |
---|
2910 | ! test |
---|
2911 | IF (first) THEN |
---|
2912 | f(ig) = f(ig) + (f0(ig) - f(ig)) * exp(-ptimestep / zmax(ig) * wmax(ig)) |
---|
2913 | END IF |
---|
2914 | END IF |
---|
2915 | f0(ig) = f(ig) |
---|
2916 | first = .TRUE. |
---|
2917 | END DO |
---|
2918 | |
---|
2919 | ! Calcul de l'entrainement |
---|
2920 | DO k = 1, klev |
---|
2921 | DO ig = 1, ngrid |
---|
2922 | entr(ig, k) = f(ig) * entr_star(ig, k) |
---|
2923 | END DO |
---|
2924 | END DO |
---|
2925 | ! Calcul des flux |
---|
2926 | DO ig = 1, ngrid |
---|
2927 | DO l = 1, lmax(ig) - 1 |
---|
2928 | fmc(ig, l + 1) = fmc(ig, l) + entr(ig, l) |
---|
2929 | END DO |
---|
2930 | END DO |
---|
2931 | |
---|
2932 | ! RC |
---|
2933 | |
---|
2934 | |
---|
2935 | ! PRINT*,'9 OK convect8' |
---|
2936 | ! PRINT*,'WA1 ',wa_moy |
---|
2937 | |
---|
2938 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
2939 | |
---|
2940 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
2941 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
2942 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
2943 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
2944 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
2945 | |
---|
2946 | DO l = 2, nlay |
---|
2947 | DO ig = 1, ngrid |
---|
2948 | IF (l<=lmaxa(ig)) THEN |
---|
2949 | zw = max(wa_moy(ig, l), 1.E-10) |
---|
2950 | larg_cons(ig, l) = zmax(ig) * r_aspect * fmc(ig, l) / (rhobarz(ig, l) * zw) |
---|
2951 | END IF |
---|
2952 | END DO |
---|
2953 | END DO |
---|
2954 | |
---|
2955 | DO l = 2, nlay |
---|
2956 | DO ig = 1, ngrid |
---|
2957 | IF (l<=lmaxa(ig)) THEN |
---|
2958 | ! if (idetr.EQ.0) THEN |
---|
2959 | ! cette option est finalement en dur. |
---|
2960 | larg_detr(ig, l) = sqrt(l_mix * zlev(ig, l)) |
---|
2961 | ! ELSE IF (idetr.EQ.1) THEN |
---|
2962 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
2963 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
2964 | ! ELSE IF (idetr.EQ.2) THEN |
---|
2965 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
2966 | ! s *sqrt(wa_moy(ig,l)) |
---|
2967 | ! ELSE IF (idetr.EQ.4) THEN |
---|
2968 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
2969 | ! s *wa_moy(ig,l) |
---|
2970 | ! END IF |
---|
2971 | END IF |
---|
2972 | END DO |
---|
2973 | END DO |
---|
2974 | |
---|
2975 | ! PRINT*,'10 OK convect8' |
---|
2976 | ! PRINT*,'WA2 ',wa_moy |
---|
2977 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
2978 | ! compte de l'epluchage du thermique. |
---|
2979 | |
---|
2980 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
2981 | DO ig = 1, ngrid |
---|
2982 | IF (lmix(ig)>1.) THEN |
---|
2983 | zmix(ig) = ((zw2(ig, lmix(ig) - 1) - zw2(ig, lmix(ig))) * ((zlev(ig, lmix(ig))) & |
---|
2984 | **2 - (zlev(ig, lmix(ig) + 1))**2) - (zw2(ig, lmix(ig)) - zw2(ig, & |
---|
2985 | lmix(ig) + 1)) * ((zlev(ig, lmix(ig) - 1))**2 - (zlev(ig, lmix(ig)))**2)) / & |
---|
2986 | (2. * ((zw2(ig, lmix(ig) - 1) - zw2(ig, lmix(ig))) * ((zlev(ig, lmix(ig))) - & |
---|
2987 | (zlev(ig, lmix(ig) + 1))) - (zw2(ig, lmix(ig)) - zw2(ig, lmix(ig) + 1)) * ((zlev(& |
---|
2988 | ig, lmix(ig) - 1)) - (zlev(ig, lmix(ig)))))) |
---|
2989 | ELSE |
---|
2990 | zmix(ig) = 0. |
---|
2991 | END IF |
---|
2992 | END DO |
---|
2993 | |
---|
2994 | ! calcul du nouveau lmix correspondant |
---|
2995 | DO ig = 1, ngrid |
---|
2996 | DO l = 1, klev |
---|
2997 | IF (zmix(ig)>=zlev(ig, l) .AND. zmix(ig)<zlev(ig, l + 1)) THEN |
---|
2998 | lmix(ig) = l |
---|
2999 | END IF |
---|
3000 | END DO |
---|
3001 | END DO |
---|
3002 | |
---|
3003 | DO l = 2, nlay |
---|
3004 | DO ig = 1, ngrid |
---|
3005 | IF (larg_cons(ig, l)>1.) THEN |
---|
3006 | ! PRINT*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
3007 | fraca(ig, l) = (larg_cons(ig, l) - larg_detr(ig, l)) / (r_aspect * zmax(ig)) |
---|
3008 | ! test |
---|
3009 | fraca(ig, l) = max(fraca(ig, l), 0.) |
---|
3010 | fraca(ig, l) = min(fraca(ig, l), 0.5) |
---|
3011 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
3012 | fracc(ig, l) = larg_cons(ig, l) / (r_aspect * zmax(ig)) |
---|
3013 | ELSE |
---|
3014 | ! wa_moy(ig,l)=0. |
---|
3015 | fraca(ig, l) = 0. |
---|
3016 | fracc(ig, l) = 0. |
---|
3017 | fracd(ig, l) = 1. |
---|
3018 | END IF |
---|
3019 | END DO |
---|
3020 | END DO |
---|
3021 | ! CR: calcul de fracazmix |
---|
3022 | DO ig = 1, ngrid |
---|
3023 | fracazmix(ig) = (fraca(ig, lmix(ig) + 1) - fraca(ig, lmix(ig))) / & |
---|
3024 | (zlev(ig, lmix(ig) + 1) - zlev(ig, lmix(ig))) * zmix(ig) + & |
---|
3025 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig)) * (fraca(ig, lmix(ig) + 1) - fraca(ig & |
---|
3026 | , lmix(ig))) / (zlev(ig, lmix(ig) + 1) - zlev(ig, lmix(ig))) |
---|
3027 | END DO |
---|
3028 | |
---|
3029 | DO l = 2, nlay |
---|
3030 | DO ig = 1, ngrid |
---|
3031 | IF (larg_cons(ig, l)>1.) THEN |
---|
3032 | IF (l>lmix(ig)) THEN |
---|
3033 | xxx(ig, l) = (zmax(ig) - zlev(ig, l)) / (zmax(ig) - zmix(ig)) |
---|
3034 | IF (idetr==0) THEN |
---|
3035 | fraca(ig, l) = fracazmix(ig) |
---|
3036 | ELSE IF (idetr==1) THEN |
---|
3037 | fraca(ig, l) = fracazmix(ig) * xxx(ig, l) |
---|
3038 | ELSE IF (idetr==2) THEN |
---|
3039 | fraca(ig, l) = fracazmix(ig) * (1. - (1. - xxx(ig, l))**2) |
---|
3040 | ELSE |
---|
3041 | fraca(ig, l) = fracazmix(ig) * xxx(ig, l)**2 |
---|
3042 | END IF |
---|
3043 | ! PRINT*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
3044 | fraca(ig, l) = max(fraca(ig, l), 0.) |
---|
3045 | fraca(ig, l) = min(fraca(ig, l), 0.5) |
---|
3046 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
3047 | fracc(ig, l) = larg_cons(ig, l) / (r_aspect * zmax(ig)) |
---|
3048 | END IF |
---|
3049 | END IF |
---|
3050 | END DO |
---|
3051 | END DO |
---|
3052 | |
---|
3053 | ! PRINT*,'11 OK convect8' |
---|
3054 | ! PRINT*,'Ea3 ',wa_moy |
---|
3055 | ! ------------------------------------------------------------------ |
---|
3056 | ! Calcul de fracd, wd |
---|
3057 | ! somme wa - wd = 0 |
---|
3058 | ! ------------------------------------------------------------------ |
---|
3059 | |
---|
3060 | DO ig = 1, ngrid |
---|
3061 | fm(ig, 1) = 0. |
---|
3062 | fm(ig, nlay + 1) = 0. |
---|
3063 | END DO |
---|
3064 | |
---|
3065 | DO l = 2, nlay |
---|
3066 | DO ig = 1, ngrid |
---|
3067 | fm(ig, l) = fraca(ig, l) * wa_moy(ig, l) * rhobarz(ig, l) |
---|
3068 | ! CR:test |
---|
3069 | IF (entr(ig, l - 1)<1E-10 .AND. fm(ig, l)>fm(ig, l - 1) .AND. l>lmix(ig)) THEN |
---|
3070 | fm(ig, l) = fm(ig, l - 1) |
---|
3071 | ! WRITE(1,*)'ajustement fm, l',l |
---|
3072 | END IF |
---|
3073 | ! WRITE(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
3074 | ! RC |
---|
3075 | END DO |
---|
3076 | DO ig = 1, ngrid |
---|
3077 | IF (fracd(ig, l)<0.1) THEN |
---|
3078 | abort_message = 'fracd trop petit' |
---|
3079 | CALL abort_physic(modname, abort_message, 1) |
---|
3080 | ELSE |
---|
3081 | ! vitesse descendante "diagnostique" |
---|
3082 | wd(ig, l) = fm(ig, l) / (fracd(ig, l) * rhobarz(ig, l)) |
---|
3083 | END IF |
---|
3084 | END DO |
---|
3085 | END DO |
---|
3086 | |
---|
3087 | DO l = 1, nlay |
---|
3088 | DO ig = 1, ngrid |
---|
3089 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
3090 | masse(ig, l) = (pplev(ig, l) - pplev(ig, l + 1)) / rg |
---|
3091 | END DO |
---|
3092 | END DO |
---|
3093 | |
---|
3094 | ! PRINT*,'12 OK convect8' |
---|
3095 | ! PRINT*,'WA4 ',wa_moy |
---|
3096 | ! c------------------------------------------------------------------ |
---|
3097 | ! calcul du transport vertical |
---|
3098 | ! ------------------------------------------------------------------ |
---|
3099 | |
---|
3100 | GO TO 4444 |
---|
3101 | ! PRINT*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
3102 | DO l = 2, nlay - 1 |
---|
3103 | DO ig = 1, ngrid |
---|
3104 | IF (fm(ig, l + 1) * ptimestep>masse(ig, l) .AND. fm(ig, l + 1) * ptimestep>masse(& |
---|
3105 | ig, l + 1)) THEN |
---|
3106 | ! PRINT*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
3107 | ! s ,fm(ig,l+1)*ptimestep |
---|
3108 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
3109 | END IF |
---|
3110 | END DO |
---|
3111 | END DO |
---|
3112 | |
---|
3113 | DO l = 1, nlay |
---|
3114 | DO ig = 1, ngrid |
---|
3115 | IF (entr(ig, l) * ptimestep>masse(ig, l)) THEN |
---|
3116 | ! PRINT*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
3117 | ! s ,entr(ig,l)*ptimestep |
---|
3118 | ! s ,' M=',masse(ig,l) |
---|
3119 | END IF |
---|
3120 | END DO |
---|
3121 | END DO |
---|
3122 | |
---|
3123 | DO l = 1, nlay |
---|
3124 | DO ig = 1, ngrid |
---|
3125 | IF (.NOT. fm(ig, l)>=0. .OR. .NOT. fm(ig, l)<=10.) THEN |
---|
3126 | ! PRINT*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
3127 | ! s ,' FM=',fm(ig,l) |
---|
3128 | END IF |
---|
3129 | IF (.NOT. masse(ig, l)>=1.E-10 .OR. .NOT. masse(ig, l)<=1.E4) THEN |
---|
3130 | ! PRINT*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
3131 | ! s ,' M=',masse(ig,l) |
---|
3132 | ! PRINT*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
3133 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
3134 | ! PRINT*,'zlev(ig,l+1),zlev(ig,l)' |
---|
3135 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
3136 | ! PRINT*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
3137 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
3138 | END IF |
---|
3139 | IF (.NOT. entr(ig, l)>=0. .OR. .NOT. entr(ig, l)<=10.) THEN |
---|
3140 | ! PRINT*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
3141 | ! s ,' E=',entr(ig,l) |
---|
3142 | END IF |
---|
3143 | END DO |
---|
3144 | END DO |
---|
3145 | |
---|
3146 | 4444 CONTINUE |
---|
3147 | |
---|
3148 | IF (w2di==1) THEN |
---|
3149 | fm0 = fm0 + ptimestep * (fm - fm0) / tho |
---|
3150 | entr0 = entr0 + ptimestep * (entr - entr0) / tho |
---|
3151 | ELSE |
---|
3152 | fm0 = fm |
---|
3153 | entr0 = entr |
---|
3154 | END IF |
---|
3155 | |
---|
3156 | IF (1==1) THEN |
---|
3157 | ! CALL dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
3158 | ! . ,zh,zdhadj,zha) |
---|
3159 | ! CALL dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
3160 | ! . ,zo,pdoadj,zoa) |
---|
3161 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zthl, & |
---|
3162 | zdthladj, zta) |
---|
3163 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, po, pdoadj, & |
---|
3164 | zoa) |
---|
3165 | ELSE |
---|
3166 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
3167 | zdhadj, zha) |
---|
3168 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
3169 | pdoadj, zoa) |
---|
3170 | END IF |
---|
3171 | |
---|
3172 | IF (1==0) THEN |
---|
3173 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
3174 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
3175 | ELSE |
---|
3176 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
3177 | zua) |
---|
3178 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
3179 | zva) |
---|
3180 | END IF |
---|
3181 | |
---|
3182 | DO l = 1, nlay |
---|
3183 | DO ig = 1, ngrid |
---|
3184 | zf = 0.5 * (fracc(ig, l) + fracc(ig, l + 1)) |
---|
3185 | zf2 = zf / (1. - zf) |
---|
3186 | thetath2(ig, l) = zf2 * (zha(ig, l) - zh(ig, l))**2 |
---|
3187 | wth2(ig, l) = zf2 * (0.5 * (wa_moy(ig, l) + wa_moy(ig, l + 1)))**2 |
---|
3188 | END DO |
---|
3189 | END DO |
---|
3190 | |
---|
3191 | |
---|
3192 | |
---|
3193 | ! PRINT*,'13 OK convect8' |
---|
3194 | ! PRINT*,'WA5 ',wa_moy |
---|
3195 | DO l = 1, nlay |
---|
3196 | DO ig = 1, ngrid |
---|
3197 | ! pdtadj(ig,l)=zdhadj(ig,l)*zpspsk(ig,l) |
---|
3198 | pdtadj(ig, l) = zdthladj(ig, l) * zpspsk(ig, l) |
---|
3199 | END DO |
---|
3200 | END DO |
---|
3201 | |
---|
3202 | |
---|
3203 | ! do l=1,nlay |
---|
3204 | ! do ig=1,ngrid |
---|
3205 | ! IF(abs(pdtadj(ig,l))*86400..gt.500.) THEN |
---|
3206 | ! PRINT*,'WARN!!! ig=',ig,' l=',l |
---|
3207 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
3208 | ! END IF |
---|
3209 | ! IF(abs(pdoadj(ig,l))*86400..gt.1.) THEN |
---|
3210 | ! PRINT*,'WARN!!! ig=',ig,' l=',l |
---|
3211 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
3212 | ! END IF |
---|
3213 | ! enddo |
---|
3214 | ! enddo |
---|
3215 | |
---|
3216 | ! PRINT*,'14 OK convect8' |
---|
3217 | ! ------------------------------------------------------------------ |
---|
3218 | ! Calculs pour les sorties |
---|
3219 | ! ------------------------------------------------------------------ |
---|
3220 | |
---|
3221 | END SUBROUTINE thermcell_eau |
---|
3222 | |
---|
3223 | SUBROUTINE thermcell(ngrid, nlay, ptimestep, pplay, pplev, pphi, pu, pv, pt, & |
---|
3224 | po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
3225 | ! ,pu_therm,pv_therm |
---|
3226 | , r_aspect, l_mix, w2di, tho) |
---|
3227 | |
---|
3228 | USE dimphy |
---|
3229 | USE lmdz_yomcst |
---|
3230 | |
---|
3231 | IMPLICIT NONE |
---|
3232 | |
---|
3233 | ! ======================================================================= |
---|
3234 | |
---|
3235 | ! Calcul du transport verticale dans la couche limite en presence |
---|
3236 | ! de "thermiques" explicitement representes |
---|
3237 | |
---|
3238 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
3239 | |
---|
3240 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
3241 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
3242 | ! mélange |
---|
3243 | |
---|
3244 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
3245 | ! en compte: |
---|
3246 | ! 1. un flux de masse montant |
---|
3247 | ! 2. un flux de masse descendant |
---|
3248 | ! 3. un entrainement |
---|
3249 | ! 4. un detrainement |
---|
3250 | |
---|
3251 | ! ======================================================================= |
---|
3252 | |
---|
3253 | ! arguments: |
---|
3254 | ! ---------- |
---|
3255 | |
---|
3256 | INTEGER ngrid, nlay, w2di |
---|
3257 | REAL tho |
---|
3258 | REAL ptimestep, l_mix, r_aspect |
---|
3259 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
3260 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
3261 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
3262 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
3263 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay + 1) |
---|
3264 | REAL pphi(ngrid, nlay) |
---|
3265 | |
---|
3266 | INTEGER idetr |
---|
3267 | SAVE idetr |
---|
3268 | DATA idetr/3/ |
---|
3269 | !$OMP THREADPRIVATE(idetr) |
---|
3270 | |
---|
3271 | ! local: |
---|
3272 | ! ------ |
---|
3273 | |
---|
3274 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
3275 | REAL zsortie1d(klon) |
---|
3276 | ! CR: on remplace lmax(klon,klev+1) |
---|
3277 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
3278 | REAL linter(klon) |
---|
3279 | REAL zmix(klon), fracazmix(klon) |
---|
3280 | ! RC |
---|
3281 | REAL zmax(klon), zw, zz, zw2(klon, klev + 1), ztva(klon, klev), zzz |
---|
3282 | |
---|
3283 | REAL zlev(klon, klev + 1), zlay(klon, klev) |
---|
3284 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
3285 | REAL ztv(klon, klev) |
---|
3286 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
3287 | REAL wh(klon, klev + 1) |
---|
3288 | REAL wu(klon, klev + 1), wv(klon, klev + 1), wo(klon, klev + 1) |
---|
3289 | REAL zla(klon, klev + 1) |
---|
3290 | REAL zwa(klon, klev + 1) |
---|
3291 | REAL zld(klon, klev + 1) |
---|
3292 | REAL zwd(klon, klev + 1) |
---|
3293 | REAL zsortie(klon, klev) |
---|
3294 | REAL zva(klon, klev) |
---|
3295 | REAL zua(klon, klev) |
---|
3296 | REAL zoa(klon, klev) |
---|
3297 | |
---|
3298 | REAL zha(klon, klev) |
---|
3299 | REAL wa_moy(klon, klev + 1) |
---|
3300 | REAL fraca(klon, klev + 1) |
---|
3301 | REAL fracc(klon, klev + 1) |
---|
3302 | REAL zf, zf2 |
---|
3303 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
3304 | ! common/comtherm/thetath2,wth2 |
---|
3305 | |
---|
3306 | REAL count_time |
---|
3307 | INTEGER ialt |
---|
3308 | |
---|
3309 | LOGICAL sorties |
---|
3310 | REAL rho(klon, klev), rhobarz(klon, klev + 1), masse(klon, klev) |
---|
3311 | REAL zpspsk(klon, klev) |
---|
3312 | |
---|
3313 | ! real wmax(klon,klev),wmaxa(klon) |
---|
3314 | REAL wmax(klon), wmaxa(klon) |
---|
3315 | REAL wa(klon, klev, klev + 1) |
---|
3316 | REAL wd(klon, klev + 1) |
---|
3317 | REAL larg_part(klon, klev, klev + 1) |
---|
3318 | REAL fracd(klon, klev + 1) |
---|
3319 | REAL xxx(klon, klev + 1) |
---|
3320 | REAL larg_cons(klon, klev + 1) |
---|
3321 | REAL larg_detr(klon, klev + 1) |
---|
3322 | REAL fm0(klon, klev + 1), entr0(klon, klev), detr(klon, klev) |
---|
3323 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
3324 | REAL fm(klon, klev + 1), entr(klon, klev) |
---|
3325 | REAL fmc(klon, klev + 1) |
---|
3326 | |
---|
3327 | ! CR:nouvelles variables |
---|
3328 | REAL f_star(klon, klev + 1), entr_star(klon, klev) |
---|
3329 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
3330 | REAL f(klon), f0(klon) |
---|
3331 | REAL zlevinter(klon) |
---|
3332 | LOGICAL first |
---|
3333 | DATA first/.FALSE./ |
---|
3334 | SAVE first |
---|
3335 | !$OMP THREADPRIVATE(first) |
---|
3336 | ! RC |
---|
3337 | |
---|
3338 | CHARACTER *2 str2 |
---|
3339 | CHARACTER *10 str10 |
---|
3340 | |
---|
3341 | CHARACTER (LEN = 20) :: modname = 'thermcell' |
---|
3342 | CHARACTER (LEN = 80) :: abort_message |
---|
3343 | |
---|
3344 | LOGICAL vtest(klon), down |
---|
3345 | |
---|
3346 | INTEGER ncorrec, ll |
---|
3347 | SAVE ncorrec |
---|
3348 | DATA ncorrec/0/ |
---|
3349 | !$OMP THREADPRIVATE(ncorrec) |
---|
3350 | |
---|
3351 | |
---|
3352 | ! ----------------------------------------------------------------------- |
---|
3353 | ! initialisation: |
---|
3354 | ! --------------- |
---|
3355 | |
---|
3356 | sorties = .TRUE. |
---|
3357 | IF (ngrid/=klon) THEN |
---|
3358 | PRINT * |
---|
3359 | PRINT *, 'STOP dans convadj' |
---|
3360 | PRINT *, 'ngrid =', ngrid |
---|
3361 | PRINT *, 'klon =', klon |
---|
3362 | END IF |
---|
3363 | |
---|
3364 | ! ----------------------------------------------------------------------- |
---|
3365 | ! incrementation eventuelle de tendances precedentes: |
---|
3366 | ! --------------------------------------------------- |
---|
3367 | |
---|
3368 | ! PRINT*,'0 OK convect8' |
---|
3369 | |
---|
3370 | DO l = 1, nlay |
---|
3371 | DO ig = 1, ngrid |
---|
3372 | zpspsk(ig, l) = (pplay(ig, l) / pplev(ig, 1))**rkappa |
---|
3373 | zh(ig, l) = pt(ig, l) / zpspsk(ig, l) |
---|
3374 | zu(ig, l) = pu(ig, l) |
---|
3375 | zv(ig, l) = pv(ig, l) |
---|
3376 | zo(ig, l) = po(ig, l) |
---|
3377 | ztv(ig, l) = zh(ig, l) * (1. + 0.61 * zo(ig, l)) |
---|
3378 | END DO |
---|
3379 | END DO |
---|
3380 | |
---|
3381 | ! PRINT*,'1 OK convect8' |
---|
3382 | ! -------------------- |
---|
3383 | |
---|
3384 | |
---|
3385 | ! + + + + + + + + + + + |
---|
3386 | |
---|
3387 | |
---|
3388 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
3389 | ! wh,wt,wo ... |
---|
3390 | |
---|
3391 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
3392 | |
---|
3393 | |
---|
3394 | ! -------------------- zlev(1) |
---|
3395 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
3396 | |
---|
3397 | |
---|
3398 | |
---|
3399 | ! ----------------------------------------------------------------------- |
---|
3400 | ! Calcul des altitudes des couches |
---|
3401 | ! ----------------------------------------------------------------------- |
---|
3402 | |
---|
3403 | DO l = 2, nlay |
---|
3404 | DO ig = 1, ngrid |
---|
3405 | zlev(ig, l) = 0.5 * (pphi(ig, l) + pphi(ig, l - 1)) / rg |
---|
3406 | END DO |
---|
3407 | END DO |
---|
3408 | DO ig = 1, ngrid |
---|
3409 | zlev(ig, 1) = 0. |
---|
3410 | zlev(ig, nlay + 1) = (2. * pphi(ig, klev) - pphi(ig, klev - 1)) / rg |
---|
3411 | END DO |
---|
3412 | DO l = 1, nlay |
---|
3413 | DO ig = 1, ngrid |
---|
3414 | zlay(ig, l) = pphi(ig, l) / rg |
---|
3415 | END DO |
---|
3416 | END DO |
---|
3417 | |
---|
3418 | ! PRINT*,'2 OK convect8' |
---|
3419 | ! ----------------------------------------------------------------------- |
---|
3420 | ! Calcul des densites |
---|
3421 | ! ----------------------------------------------------------------------- |
---|
3422 | |
---|
3423 | DO l = 1, nlay |
---|
3424 | DO ig = 1, ngrid |
---|
3425 | rho(ig, l) = pplay(ig, l) / (zpspsk(ig, l) * rd * zh(ig, l)) |
---|
3426 | END DO |
---|
3427 | END DO |
---|
3428 | |
---|
3429 | DO l = 2, nlay |
---|
3430 | DO ig = 1, ngrid |
---|
3431 | rhobarz(ig, l) = 0.5 * (rho(ig, l) + rho(ig, l - 1)) |
---|
3432 | END DO |
---|
3433 | END DO |
---|
3434 | |
---|
3435 | DO k = 1, nlay |
---|
3436 | DO l = 1, nlay + 1 |
---|
3437 | DO ig = 1, ngrid |
---|
3438 | wa(ig, k, l) = 0. |
---|
3439 | END DO |
---|
3440 | END DO |
---|
3441 | END DO |
---|
3442 | |
---|
3443 | ! PRINT*,'3 OK convect8' |
---|
3444 | ! ------------------------------------------------------------------ |
---|
3445 | ! Calcul de w2, quarre de w a partir de la cape |
---|
3446 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
3447 | |
---|
3448 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
3449 | ! w2 est stoke dans wa |
---|
3450 | |
---|
3451 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
3452 | ! independants par couches que pour calculer l'entrainement |
---|
3453 | ! a la base et la hauteur max de l'ascendance. |
---|
3454 | |
---|
3455 | ! Indicages: |
---|
3456 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
3457 | ! une vitesse wa(k,l). |
---|
3458 | |
---|
3459 | ! -------------------- |
---|
3460 | |
---|
3461 | ! + + + + + + + + + + |
---|
3462 | |
---|
3463 | ! wa(k,l) ---- -------------------- l |
---|
3464 | ! /\ |
---|
3465 | ! /||\ + + + + + + + + + + |
---|
3466 | ! || |
---|
3467 | ! || -------------------- |
---|
3468 | ! || |
---|
3469 | ! || + + + + + + + + + + |
---|
3470 | ! || |
---|
3471 | ! || -------------------- |
---|
3472 | ! ||__ |
---|
3473 | ! |___ + + + + + + + + + + k |
---|
3474 | |
---|
3475 | ! -------------------- |
---|
3476 | |
---|
3477 | |
---|
3478 | |
---|
3479 | ! ------------------------------------------------------------------ |
---|
3480 | |
---|
3481 | ! CR: ponderation entrainement des couches instables |
---|
3482 | ! def des entr_star tels que entr=f*entr_star |
---|
3483 | DO l = 1, klev |
---|
3484 | DO ig = 1, ngrid |
---|
3485 | entr_star(ig, l) = 0. |
---|
3486 | END DO |
---|
3487 | END DO |
---|
3488 | ! determination de la longueur de la couche d entrainement |
---|
3489 | DO ig = 1, ngrid |
---|
3490 | lentr(ig) = 1 |
---|
3491 | END DO |
---|
3492 | |
---|
3493 | ! on ne considere que les premieres couches instables |
---|
3494 | DO k = nlay - 2, 1, -1 |
---|
3495 | DO ig = 1, ngrid |
---|
3496 | IF (ztv(ig, k)>ztv(ig, k + 1) .AND. ztv(ig, k + 1)<=ztv(ig, k + 2)) THEN |
---|
3497 | lentr(ig) = k |
---|
3498 | END IF |
---|
3499 | END DO |
---|
3500 | END DO |
---|
3501 | |
---|
3502 | ! determination du lmin: couche d ou provient le thermique |
---|
3503 | DO ig = 1, ngrid |
---|
3504 | lmin(ig) = 1 |
---|
3505 | END DO |
---|
3506 | DO ig = 1, ngrid |
---|
3507 | DO l = nlay, 2, -1 |
---|
3508 | IF (ztv(ig, l - 1)>ztv(ig, l)) THEN |
---|
3509 | lmin(ig) = l - 1 |
---|
3510 | END IF |
---|
3511 | END DO |
---|
3512 | END DO |
---|
3513 | |
---|
3514 | ! definition de l'entrainement des couches |
---|
3515 | DO l = 1, klev - 1 |
---|
3516 | DO ig = 1, ngrid |
---|
3517 | IF (ztv(ig, l)>ztv(ig, l + 1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
3518 | entr_star(ig, l) = (ztv(ig, l) - ztv(ig, l + 1)) * (zlev(ig, l + 1) - zlev(ig, l)) |
---|
3519 | END IF |
---|
3520 | END DO |
---|
3521 | END DO |
---|
3522 | ! pas de thermique si couches 1->5 stables |
---|
3523 | DO ig = 1, ngrid |
---|
3524 | IF (lmin(ig)>5) THEN |
---|
3525 | DO l = 1, klev |
---|
3526 | entr_star(ig, l) = 0. |
---|
3527 | END DO |
---|
3528 | END IF |
---|
3529 | END DO |
---|
3530 | ! calcul de l entrainement total |
---|
3531 | DO ig = 1, ngrid |
---|
3532 | entr_star_tot(ig) = 0. |
---|
3533 | END DO |
---|
3534 | DO ig = 1, ngrid |
---|
3535 | DO k = 1, klev |
---|
3536 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
3537 | END DO |
---|
3538 | END DO |
---|
3539 | |
---|
3540 | PRINT *, 'fin calcul entr_star' |
---|
3541 | DO k = 1, klev |
---|
3542 | DO ig = 1, ngrid |
---|
3543 | ztva(ig, k) = ztv(ig, k) |
---|
3544 | END DO |
---|
3545 | END DO |
---|
3546 | ! RC |
---|
3547 | ! PRINT*,'7 OK convect8' |
---|
3548 | DO k = 1, klev + 1 |
---|
3549 | DO ig = 1, ngrid |
---|
3550 | zw2(ig, k) = 0. |
---|
3551 | fmc(ig, k) = 0. |
---|
3552 | ! CR |
---|
3553 | f_star(ig, k) = 0. |
---|
3554 | ! RC |
---|
3555 | larg_cons(ig, k) = 0. |
---|
3556 | larg_detr(ig, k) = 0. |
---|
3557 | wa_moy(ig, k) = 0. |
---|
3558 | END DO |
---|
3559 | END DO |
---|
3560 | |
---|
3561 | ! PRINT*,'8 OK convect8' |
---|
3562 | DO ig = 1, ngrid |
---|
3563 | linter(ig) = 1. |
---|
3564 | lmaxa(ig) = 1 |
---|
3565 | lmix(ig) = 1 |
---|
3566 | wmaxa(ig) = 0. |
---|
3567 | END DO |
---|
3568 | |
---|
3569 | ! CR: |
---|
3570 | DO l = 1, nlay - 2 |
---|
3571 | DO ig = 1, ngrid |
---|
3572 | IF (ztv(ig, l)>ztv(ig, l + 1) .AND. entr_star(ig, l)>1.E-10 .AND. & |
---|
3573 | zw2(ig, l)<1E-10) THEN |
---|
3574 | f_star(ig, l + 1) = entr_star(ig, l) |
---|
3575 | ! test:calcul de dteta |
---|
3576 | zw2(ig, l + 1) = 2. * rg * (ztv(ig, l) - ztv(ig, l + 1)) / ztv(ig, l + 1) * & |
---|
3577 | (zlev(ig, l + 1) - zlev(ig, l)) * 0.4 * pphi(ig, l) / (pphi(ig, l + 1) - pphi(ig, l)) |
---|
3578 | larg_detr(ig, l) = 0. |
---|
3579 | ELSE IF ((zw2(ig, l)>=1E-10) .AND. (f_star(ig, l) + entr_star(ig, & |
---|
3580 | l)>1.E-10)) THEN |
---|
3581 | f_star(ig, l + 1) = f_star(ig, l) + entr_star(ig, l) |
---|
3582 | ztva(ig, l) = (f_star(ig, l) * ztva(ig, l - 1) + entr_star(ig, l) * ztv(ig, l)) / & |
---|
3583 | f_star(ig, l + 1) |
---|
3584 | zw2(ig, l + 1) = zw2(ig, l) * (f_star(ig, l) / f_star(ig, l + 1))**2 + & |
---|
3585 | 2. * rg * (ztva(ig, l) - ztv(ig, l)) / ztv(ig, l) * (zlev(ig, l + 1) - zlev(ig, l)) |
---|
3586 | END IF |
---|
3587 | ! determination de zmax continu par interpolation lineaire |
---|
3588 | IF (zw2(ig, l + 1)<0.) THEN |
---|
3589 | ! test |
---|
3590 | IF (abs(zw2(ig, l + 1) - zw2(ig, l))<1E-10) THEN |
---|
3591 | PRINT *, 'pb linter' |
---|
3592 | END IF |
---|
3593 | linter(ig) = (l * (zw2(ig, l + 1) - zw2(ig, l)) - zw2(ig, l)) / (zw2(ig, l + 1) - zw2(& |
---|
3594 | ig, l)) |
---|
3595 | zw2(ig, l + 1) = 0. |
---|
3596 | lmaxa(ig) = l |
---|
3597 | ELSE |
---|
3598 | IF (zw2(ig, l + 1)<0.) THEN |
---|
3599 | PRINT *, 'pb1 zw2<0' |
---|
3600 | END IF |
---|
3601 | wa_moy(ig, l + 1) = sqrt(zw2(ig, l + 1)) |
---|
3602 | END IF |
---|
3603 | IF (wa_moy(ig, l + 1)>wmaxa(ig)) THEN |
---|
3604 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
3605 | lmix(ig) = l + 1 |
---|
3606 | wmaxa(ig) = wa_moy(ig, l + 1) |
---|
3607 | END IF |
---|
3608 | END DO |
---|
3609 | END DO |
---|
3610 | PRINT *, 'fin calcul zw2' |
---|
3611 | |
---|
3612 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
3613 | DO ig = 1, ngrid |
---|
3614 | lmax(ig) = lentr(ig) |
---|
3615 | END DO |
---|
3616 | DO ig = 1, ngrid |
---|
3617 | DO l = nlay, lentr(ig) + 1, -1 |
---|
3618 | IF (zw2(ig, l)<=1.E-10) THEN |
---|
3619 | lmax(ig) = l - 1 |
---|
3620 | END IF |
---|
3621 | END DO |
---|
3622 | END DO |
---|
3623 | ! pas de thermique si couches 1->5 stables |
---|
3624 | DO ig = 1, ngrid |
---|
3625 | IF (lmin(ig)>5) THEN |
---|
3626 | lmax(ig) = 1 |
---|
3627 | lmin(ig) = 1 |
---|
3628 | END IF |
---|
3629 | END DO |
---|
3630 | |
---|
3631 | ! Determination de zw2 max |
---|
3632 | DO ig = 1, ngrid |
---|
3633 | wmax(ig) = 0. |
---|
3634 | END DO |
---|
3635 | |
---|
3636 | DO l = 1, nlay |
---|
3637 | DO ig = 1, ngrid |
---|
3638 | IF (l<=lmax(ig)) THEN |
---|
3639 | IF (zw2(ig, l)<0.) THEN |
---|
3640 | PRINT *, 'pb2 zw2<0' |
---|
3641 | END IF |
---|
3642 | zw2(ig, l) = sqrt(zw2(ig, l)) |
---|
3643 | wmax(ig) = max(wmax(ig), zw2(ig, l)) |
---|
3644 | ELSE |
---|
3645 | zw2(ig, l) = 0. |
---|
3646 | END IF |
---|
3647 | END DO |
---|
3648 | END DO |
---|
3649 | |
---|
3650 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
3651 | DO ig = 1, ngrid |
---|
3652 | zmax(ig) = 0. |
---|
3653 | zlevinter(ig) = zlev(ig, 1) |
---|
3654 | END DO |
---|
3655 | DO ig = 1, ngrid |
---|
3656 | ! calcul de zlevinter |
---|
3657 | zlevinter(ig) = (zlev(ig, lmax(ig) + 1) - zlev(ig, lmax(ig))) * linter(ig) + & |
---|
3658 | zlev(ig, lmax(ig)) - lmax(ig) * (zlev(ig, lmax(ig) + 1) - zlev(ig, lmax(ig))) |
---|
3659 | zmax(ig) = max(zmax(ig), zlevinter(ig) - zlev(ig, lmin(ig))) |
---|
3660 | END DO |
---|
3661 | |
---|
3662 | PRINT *, 'avant fermeture' |
---|
3663 | ! Fermeture,determination de f |
---|
3664 | DO ig = 1, ngrid |
---|
3665 | entr_star2(ig) = 0. |
---|
3666 | END DO |
---|
3667 | DO ig = 1, ngrid |
---|
3668 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
3669 | f(ig) = 0. |
---|
3670 | ELSE |
---|
3671 | DO k = lmin(ig), lentr(ig) |
---|
3672 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2 / (rho(ig, k) * (& |
---|
3673 | zlev(ig, k + 1) - zlev(ig, k))) |
---|
3674 | END DO |
---|
3675 | ! Nouvelle fermeture |
---|
3676 | f(ig) = wmax(ig) / (max(500., zmax(ig)) * r_aspect * entr_star2(ig)) * & |
---|
3677 | entr_star_tot(ig) |
---|
3678 | ! test |
---|
3679 | ! if (first) THEN |
---|
3680 | ! f(ig)=f(ig)+(f0(ig)-f(ig))*exp(-ptimestep/zmax(ig) |
---|
3681 | ! s *wmax(ig)) |
---|
3682 | ! END IF |
---|
3683 | END IF |
---|
3684 | ! f0(ig)=f(ig) |
---|
3685 | ! first=.TRUE. |
---|
3686 | END DO |
---|
3687 | PRINT *, 'apres fermeture' |
---|
3688 | |
---|
3689 | ! Calcul de l'entrainement |
---|
3690 | DO k = 1, klev |
---|
3691 | DO ig = 1, ngrid |
---|
3692 | entr(ig, k) = f(ig) * entr_star(ig, k) |
---|
3693 | END DO |
---|
3694 | END DO |
---|
3695 | ! Calcul des flux |
---|
3696 | DO ig = 1, ngrid |
---|
3697 | DO l = 1, lmax(ig) - 1 |
---|
3698 | fmc(ig, l + 1) = fmc(ig, l) + entr(ig, l) |
---|
3699 | END DO |
---|
3700 | END DO |
---|
3701 | |
---|
3702 | ! RC |
---|
3703 | |
---|
3704 | |
---|
3705 | ! PRINT*,'9 OK convect8' |
---|
3706 | ! PRINT*,'WA1 ',wa_moy |
---|
3707 | |
---|
3708 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
3709 | |
---|
3710 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
3711 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
3712 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
3713 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
3714 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
3715 | |
---|
3716 | DO l = 2, nlay |
---|
3717 | DO ig = 1, ngrid |
---|
3718 | IF (l<=lmaxa(ig)) THEN |
---|
3719 | zw = max(wa_moy(ig, l), 1.E-10) |
---|
3720 | larg_cons(ig, l) = zmax(ig) * r_aspect * fmc(ig, l) / (rhobarz(ig, l) * zw) |
---|
3721 | END IF |
---|
3722 | END DO |
---|
3723 | END DO |
---|
3724 | |
---|
3725 | DO l = 2, nlay |
---|
3726 | DO ig = 1, ngrid |
---|
3727 | IF (l<=lmaxa(ig)) THEN |
---|
3728 | ! if (idetr.EQ.0) THEN |
---|
3729 | ! cette option est finalement en dur. |
---|
3730 | IF ((l_mix * zlev(ig, l))<0.) THEN |
---|
3731 | PRINT *, 'pb l_mix*zlev<0' |
---|
3732 | END IF |
---|
3733 | larg_detr(ig, l) = sqrt(l_mix * zlev(ig, l)) |
---|
3734 | ! ELSE IF (idetr.EQ.1) THEN |
---|
3735 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
3736 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
3737 | ! ELSE IF (idetr.EQ.2) THEN |
---|
3738 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
3739 | ! s *sqrt(wa_moy(ig,l)) |
---|
3740 | ! ELSE IF (idetr.EQ.4) THEN |
---|
3741 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
3742 | ! s *wa_moy(ig,l) |
---|
3743 | ! END IF |
---|
3744 | END IF |
---|
3745 | END DO |
---|
3746 | END DO |
---|
3747 | |
---|
3748 | ! PRINT*,'10 OK convect8' |
---|
3749 | ! PRINT*,'WA2 ',wa_moy |
---|
3750 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
3751 | ! compte de l'epluchage du thermique. |
---|
3752 | |
---|
3753 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
3754 | DO ig = 1, ngrid |
---|
3755 | IF (lmix(ig)>1.) THEN |
---|
3756 | ! test |
---|
3757 | IF (((zw2(ig, lmix(ig) - 1) - zw2(ig, lmix(ig))) * ((zlev(ig, lmix(ig))) - & |
---|
3758 | (zlev(ig, lmix(ig) + 1))) - (zw2(ig, lmix(ig)) - & |
---|
3759 | zw2(ig, lmix(ig) + 1)) * ((zlev(ig, lmix(ig) - 1)) - & |
---|
3760 | (zlev(ig, lmix(ig)))))>1E-10) THEN |
---|
3761 | |
---|
3762 | zmix(ig) = ((zw2(ig, lmix(ig) - 1) - zw2(ig, lmix(ig))) * ((zlev(ig, lmix(ig)) & |
---|
3763 | )**2 - (zlev(ig, lmix(ig) + 1))**2) - (zw2(ig, lmix(ig)) - zw2(ig, & |
---|
3764 | lmix(ig) + 1)) * ((zlev(ig, lmix(ig) - 1))**2 - (zlev(ig, lmix(ig)))**2)) / & |
---|
3765 | (2. * ((zw2(ig, lmix(ig) - 1) - zw2(ig, lmix(ig))) * ((zlev(ig, lmix(ig))) - & |
---|
3766 | (zlev(ig, lmix(ig) + 1))) - (zw2(ig, lmix(ig)) - & |
---|
3767 | zw2(ig, lmix(ig) + 1)) * ((zlev(ig, lmix(ig) - 1)) - (zlev(ig, lmix(ig)))))) |
---|
3768 | ELSE |
---|
3769 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
3770 | PRINT *, 'pb zmix' |
---|
3771 | END IF |
---|
3772 | ELSE |
---|
3773 | zmix(ig) = 0. |
---|
3774 | END IF |
---|
3775 | ! test |
---|
3776 | IF ((zmax(ig) - zmix(ig))<0.) THEN |
---|
3777 | zmix(ig) = 0.99 * zmax(ig) |
---|
3778 | ! PRINT*,'pb zmix>zmax' |
---|
3779 | END IF |
---|
3780 | END DO |
---|
3781 | |
---|
3782 | ! calcul du nouveau lmix correspondant |
---|
3783 | DO ig = 1, ngrid |
---|
3784 | DO l = 1, klev |
---|
3785 | IF (zmix(ig)>=zlev(ig, l) .AND. zmix(ig)<zlev(ig, l + 1)) THEN |
---|
3786 | lmix(ig) = l |
---|
3787 | END IF |
---|
3788 | END DO |
---|
3789 | END DO |
---|
3790 | |
---|
3791 | DO l = 2, nlay |
---|
3792 | DO ig = 1, ngrid |
---|
3793 | IF (larg_cons(ig, l)>1.) THEN |
---|
3794 | ! PRINT*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
3795 | fraca(ig, l) = (larg_cons(ig, l) - larg_detr(ig, l)) / (r_aspect * zmax(ig)) |
---|
3796 | ! test |
---|
3797 | fraca(ig, l) = max(fraca(ig, l), 0.) |
---|
3798 | fraca(ig, l) = min(fraca(ig, l), 0.5) |
---|
3799 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
3800 | fracc(ig, l) = larg_cons(ig, l) / (r_aspect * zmax(ig)) |
---|
3801 | ELSE |
---|
3802 | ! wa_moy(ig,l)=0. |
---|
3803 | fraca(ig, l) = 0. |
---|
3804 | fracc(ig, l) = 0. |
---|
3805 | fracd(ig, l) = 1. |
---|
3806 | END IF |
---|
3807 | END DO |
---|
3808 | END DO |
---|
3809 | ! CR: calcul de fracazmix |
---|
3810 | DO ig = 1, ngrid |
---|
3811 | fracazmix(ig) = (fraca(ig, lmix(ig) + 1) - fraca(ig, lmix(ig))) / & |
---|
3812 | (zlev(ig, lmix(ig) + 1) - zlev(ig, lmix(ig))) * zmix(ig) + & |
---|
3813 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig)) * (fraca(ig, lmix(ig) + 1) - fraca(ig & |
---|
3814 | , lmix(ig))) / (zlev(ig, lmix(ig) + 1) - zlev(ig, lmix(ig))) |
---|
3815 | END DO |
---|
3816 | |
---|
3817 | DO l = 2, nlay |
---|
3818 | DO ig = 1, ngrid |
---|
3819 | IF (larg_cons(ig, l)>1.) THEN |
---|
3820 | IF (l>lmix(ig)) THEN |
---|
3821 | ! test |
---|
3822 | IF (zmax(ig) - zmix(ig)<1.E-10) THEN |
---|
3823 | ! PRINT*,'pb xxx' |
---|
3824 | xxx(ig, l) = (lmaxa(ig) + 1. - l) / (lmaxa(ig) + 1. - lmix(ig)) |
---|
3825 | ELSE |
---|
3826 | xxx(ig, l) = (zmax(ig) - zlev(ig, l)) / (zmax(ig) - zmix(ig)) |
---|
3827 | END IF |
---|
3828 | IF (idetr==0) THEN |
---|
3829 | fraca(ig, l) = fracazmix(ig) |
---|
3830 | ELSE IF (idetr==1) THEN |
---|
3831 | fraca(ig, l) = fracazmix(ig) * xxx(ig, l) |
---|
3832 | ELSE IF (idetr==2) THEN |
---|
3833 | fraca(ig, l) = fracazmix(ig) * (1. - (1. - xxx(ig, l))**2) |
---|
3834 | ELSE |
---|
3835 | fraca(ig, l) = fracazmix(ig) * xxx(ig, l)**2 |
---|
3836 | END IF |
---|
3837 | ! PRINT*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
3838 | fraca(ig, l) = max(fraca(ig, l), 0.) |
---|
3839 | fraca(ig, l) = min(fraca(ig, l), 0.5) |
---|
3840 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
3841 | fracc(ig, l) = larg_cons(ig, l) / (r_aspect * zmax(ig)) |
---|
3842 | END IF |
---|
3843 | END IF |
---|
3844 | END DO |
---|
3845 | END DO |
---|
3846 | |
---|
3847 | PRINT *, 'fin calcul fraca' |
---|
3848 | ! PRINT*,'11 OK convect8' |
---|
3849 | ! PRINT*,'Ea3 ',wa_moy |
---|
3850 | ! ------------------------------------------------------------------ |
---|
3851 | ! Calcul de fracd, wd |
---|
3852 | ! somme wa - wd = 0 |
---|
3853 | ! ------------------------------------------------------------------ |
---|
3854 | |
---|
3855 | DO ig = 1, ngrid |
---|
3856 | fm(ig, 1) = 0. |
---|
3857 | fm(ig, nlay + 1) = 0. |
---|
3858 | END DO |
---|
3859 | |
---|
3860 | DO l = 2, nlay |
---|
3861 | DO ig = 1, ngrid |
---|
3862 | fm(ig, l) = fraca(ig, l) * wa_moy(ig, l) * rhobarz(ig, l) |
---|
3863 | ! CR:test |
---|
3864 | IF (entr(ig, l - 1)<1E-10 .AND. fm(ig, l)>fm(ig, l - 1) .AND. l>lmix(ig)) THEN |
---|
3865 | fm(ig, l) = fm(ig, l - 1) |
---|
3866 | ! WRITE(1,*)'ajustement fm, l',l |
---|
3867 | END IF |
---|
3868 | ! WRITE(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
3869 | ! RC |
---|
3870 | END DO |
---|
3871 | DO ig = 1, ngrid |
---|
3872 | IF (fracd(ig, l)<0.1) THEN |
---|
3873 | abort_message = 'fracd trop petit' |
---|
3874 | CALL abort_physic(modname, abort_message, 1) |
---|
3875 | ELSE |
---|
3876 | ! vitesse descendante "diagnostique" |
---|
3877 | wd(ig, l) = fm(ig, l) / (fracd(ig, l) * rhobarz(ig, l)) |
---|
3878 | END IF |
---|
3879 | END DO |
---|
3880 | END DO |
---|
3881 | |
---|
3882 | DO l = 1, nlay |
---|
3883 | DO ig = 1, ngrid |
---|
3884 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
3885 | masse(ig, l) = (pplev(ig, l) - pplev(ig, l + 1)) / rg |
---|
3886 | END DO |
---|
3887 | END DO |
---|
3888 | |
---|
3889 | ! PRINT*,'12 OK convect8' |
---|
3890 | ! PRINT*,'WA4 ',wa_moy |
---|
3891 | ! c------------------------------------------------------------------ |
---|
3892 | ! calcul du transport vertical |
---|
3893 | ! ------------------------------------------------------------------ |
---|
3894 | |
---|
3895 | GO TO 4444 |
---|
3896 | ! PRINT*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
3897 | DO l = 2, nlay - 1 |
---|
3898 | DO ig = 1, ngrid |
---|
3899 | IF (fm(ig, l + 1) * ptimestep>masse(ig, l) .AND. fm(ig, l + 1) * ptimestep>masse(& |
---|
3900 | ig, l + 1)) THEN |
---|
3901 | ! PRINT*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
3902 | ! s ,fm(ig,l+1)*ptimestep |
---|
3903 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
3904 | END IF |
---|
3905 | END DO |
---|
3906 | END DO |
---|
3907 | |
---|
3908 | DO l = 1, nlay |
---|
3909 | DO ig = 1, ngrid |
---|
3910 | IF (entr(ig, l) * ptimestep>masse(ig, l)) THEN |
---|
3911 | ! PRINT*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
3912 | ! s ,entr(ig,l)*ptimestep |
---|
3913 | ! s ,' M=',masse(ig,l) |
---|
3914 | END IF |
---|
3915 | END DO |
---|
3916 | END DO |
---|
3917 | |
---|
3918 | DO l = 1, nlay |
---|
3919 | DO ig = 1, ngrid |
---|
3920 | IF (.NOT. fm(ig, l)>=0. .OR. .NOT. fm(ig, l)<=10.) THEN |
---|
3921 | ! PRINT*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
3922 | ! s ,' FM=',fm(ig,l) |
---|
3923 | END IF |
---|
3924 | IF (.NOT. masse(ig, l)>=1.E-10 .OR. .NOT. masse(ig, l)<=1.E4) THEN |
---|
3925 | ! PRINT*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
3926 | ! s ,' M=',masse(ig,l) |
---|
3927 | ! PRINT*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
3928 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
3929 | ! PRINT*,'zlev(ig,l+1),zlev(ig,l)' |
---|
3930 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
3931 | ! PRINT*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
3932 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
3933 | END IF |
---|
3934 | IF (.NOT. entr(ig, l)>=0. .OR. .NOT. entr(ig, l)<=10.) THEN |
---|
3935 | ! PRINT*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
3936 | ! s ,' E=',entr(ig,l) |
---|
3937 | END IF |
---|
3938 | END DO |
---|
3939 | END DO |
---|
3940 | |
---|
3941 | 4444 CONTINUE |
---|
3942 | |
---|
3943 | ! CR:redefinition du entr |
---|
3944 | DO l = 1, nlay |
---|
3945 | DO ig = 1, ngrid |
---|
3946 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l + 1) |
---|
3947 | IF (detr(ig, l)<0.) THEN |
---|
3948 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
3949 | detr(ig, l) = 0. |
---|
3950 | ! PRINT*,'WARNING !!! detrainement negatif ',ig,l |
---|
3951 | END IF |
---|
3952 | END DO |
---|
3953 | END DO |
---|
3954 | ! RC |
---|
3955 | IF (w2di==1) THEN |
---|
3956 | fm0 = fm0 + ptimestep * (fm - fm0) / tho |
---|
3957 | entr0 = entr0 + ptimestep * (entr - entr0) / tho |
---|
3958 | ELSE |
---|
3959 | fm0 = fm |
---|
3960 | entr0 = entr |
---|
3961 | END IF |
---|
3962 | |
---|
3963 | IF (1==1) THEN |
---|
3964 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
3965 | zha) |
---|
3966 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
3967 | zoa) |
---|
3968 | ELSE |
---|
3969 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
3970 | zdhadj, zha) |
---|
3971 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
3972 | pdoadj, zoa) |
---|
3973 | END IF |
---|
3974 | |
---|
3975 | IF (1==0) THEN |
---|
3976 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
3977 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
3978 | ELSE |
---|
3979 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
3980 | zua) |
---|
3981 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
3982 | zva) |
---|
3983 | END IF |
---|
3984 | |
---|
3985 | DO l = 1, nlay |
---|
3986 | DO ig = 1, ngrid |
---|
3987 | zf = 0.5 * (fracc(ig, l) + fracc(ig, l + 1)) |
---|
3988 | zf2 = zf / (1. - zf) |
---|
3989 | thetath2(ig, l) = zf2 * (zha(ig, l) - zh(ig, l))**2 |
---|
3990 | wth2(ig, l) = zf2 * (0.5 * (wa_moy(ig, l) + wa_moy(ig, l + 1)))**2 |
---|
3991 | END DO |
---|
3992 | END DO |
---|
3993 | |
---|
3994 | |
---|
3995 | |
---|
3996 | ! PRINT*,'13 OK convect8' |
---|
3997 | ! PRINT*,'WA5 ',wa_moy |
---|
3998 | DO l = 1, nlay |
---|
3999 | DO ig = 1, ngrid |
---|
4000 | pdtadj(ig, l) = zdhadj(ig, l) * zpspsk(ig, l) |
---|
4001 | END DO |
---|
4002 | END DO |
---|
4003 | |
---|
4004 | |
---|
4005 | ! do l=1,nlay |
---|
4006 | ! do ig=1,ngrid |
---|
4007 | ! IF(abs(pdtadj(ig,l))*86400..gt.500.) THEN |
---|
4008 | ! PRINT*,'WARN!!! ig=',ig,' l=',l |
---|
4009 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
4010 | ! END IF |
---|
4011 | ! IF(abs(pdoadj(ig,l))*86400..gt.1.) THEN |
---|
4012 | ! PRINT*,'WARN!!! ig=',ig,' l=',l |
---|
4013 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
4014 | ! END IF |
---|
4015 | ! enddo |
---|
4016 | ! enddo |
---|
4017 | |
---|
4018 | ! PRINT*,'14 OK convect8' |
---|
4019 | ! ------------------------------------------------------------------ |
---|
4020 | ! Calculs pour les sorties |
---|
4021 | ! ------------------------------------------------------------------ |
---|
4022 | |
---|
4023 | IF (sorties) THEN |
---|
4024 | DO l = 1, nlay |
---|
4025 | DO ig = 1, ngrid |
---|
4026 | zla(ig, l) = (1. - fracd(ig, l)) * zmax(ig) |
---|
4027 | zld(ig, l) = fracd(ig, l) * zmax(ig) |
---|
4028 | IF (1. - fracd(ig, l)>1.E-10) zwa(ig, l) = wd(ig, l) * fracd(ig, l) / & |
---|
4029 | (1. - fracd(ig, l)) |
---|
4030 | END DO |
---|
4031 | END DO |
---|
4032 | |
---|
4033 | ! deja fait |
---|
4034 | ! do l=1,nlay |
---|
4035 | ! do ig=1,ngrid |
---|
4036 | ! detr(ig,l)=fm(ig,l)+entr(ig,l)-fm(ig,l+1) |
---|
4037 | ! if (detr(ig,l).lt.0.) THEN |
---|
4038 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
4039 | ! detr(ig,l)=0. |
---|
4040 | ! PRINT*,'WARNING !!! detrainement negatif ',ig,l |
---|
4041 | ! END IF |
---|
4042 | ! enddo |
---|
4043 | ! enddo |
---|
4044 | |
---|
4045 | ! PRINT*,'15 OK convect8' |
---|
4046 | |
---|
4047 | |
---|
4048 | ! #define und |
---|
4049 | GO TO 123 |
---|
4050 | #ifdef und |
---|
4051 | CALL writeg1d(1, nlay, wd, 'wd ', 'wd ') |
---|
4052 | CALL writeg1d(1, nlay, zwa, 'wa ', 'wa ') |
---|
4053 | CALL writeg1d(1, nlay, fracd, 'fracd ', 'fracd ') |
---|
4054 | CALL writeg1d(1, nlay, fraca, 'fraca ', 'fraca ') |
---|
4055 | CALL writeg1d(1, nlay, wa_moy, 'wam ', 'wam ') |
---|
4056 | CALL writeg1d(1, nlay, zla, 'la ', 'la ') |
---|
4057 | CALL writeg1d(1, nlay, zld, 'ld ', 'ld ') |
---|
4058 | CALL writeg1d(1, nlay, pt, 'pt ', 'pt ') |
---|
4059 | CALL writeg1d(1, nlay, zh, 'zh ', 'zh ') |
---|
4060 | CALL writeg1d(1, nlay, zha, 'zha ', 'zha ') |
---|
4061 | CALL writeg1d(1, nlay, zu, 'zu ', 'zu ') |
---|
4062 | CALL writeg1d(1, nlay, zv, 'zv ', 'zv ') |
---|
4063 | CALL writeg1d(1, nlay, zo, 'zo ', 'zo ') |
---|
4064 | CALL writeg1d(1, nlay, wh, 'wh ', 'wh ') |
---|
4065 | CALL writeg1d(1, nlay, wu, 'wu ', 'wu ') |
---|
4066 | CALL writeg1d(1, nlay, wv, 'wv ', 'wv ') |
---|
4067 | CALL writeg1d(1, nlay, wo, 'w15uo ', 'wXo ') |
---|
4068 | CALL writeg1d(1, nlay, zdhadj, 'zdhadj ', 'zdhadj ') |
---|
4069 | CALL writeg1d(1, nlay, pduadj, 'pduadj ', 'pduadj ') |
---|
4070 | CALL writeg1d(1, nlay, pdvadj, 'pdvadj ', 'pdvadj ') |
---|
4071 | CALL writeg1d(1, nlay, pdoadj, 'pdoadj ', 'pdoadj ') |
---|
4072 | CALL writeg1d(1, nlay, entr, 'entr ', 'entr ') |
---|
4073 | CALL writeg1d(1, nlay, detr, 'detr ', 'detr ') |
---|
4074 | CALL writeg1d(1, nlay, fm, 'fm ', 'fm ') |
---|
4075 | |
---|
4076 | CALL writeg1d(1, nlay, pdtadj, 'pdtadj ', 'pdtadj ') |
---|
4077 | CALL writeg1d(1, nlay, pplay, 'pplay ', 'pplay ') |
---|
4078 | CALL writeg1d(1, nlay, pplev, 'pplev ', 'pplev ') |
---|
4079 | |
---|
4080 | ! recalcul des flux en diagnostique... |
---|
4081 | ! PRINT*,'PAS DE TEMPS ',ptimestep |
---|
4082 | CALL dt2f(pplev, pplay, pt, pdtadj, wh) |
---|
4083 | CALL writeg1d(1, nlay, wh, 'wh2 ', 'wh2 ') |
---|
4084 | #endif |
---|
4085 | 123 CONTINUE |
---|
4086 | |
---|
4087 | END IF |
---|
4088 | |
---|
4089 | ! IF(wa_moy(1,4).gt.1.e-10) stop |
---|
4090 | |
---|
4091 | ! PRINT*,'19 OK convect8' |
---|
4092 | |
---|
4093 | END SUBROUTINE thermcell |
---|
4094 | |
---|
4095 | SUBROUTINE dqthermcell(ngrid, nlay, ptimestep, fm, entr, masse, q, dq, qa) |
---|
4096 | USE dimphy |
---|
4097 | IMPLICIT NONE |
---|
4098 | |
---|
4099 | ! ======================================================================= |
---|
4100 | |
---|
4101 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4102 | ! de "thermiques" explicitement representes |
---|
4103 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
4104 | |
---|
4105 | ! ======================================================================= |
---|
4106 | |
---|
4107 | INTEGER ngrid, nlay |
---|
4108 | |
---|
4109 | REAL ptimestep |
---|
4110 | REAL masse(ngrid, nlay), fm(ngrid, nlay + 1) |
---|
4111 | REAL entr(ngrid, nlay) |
---|
4112 | REAL q(ngrid, nlay) |
---|
4113 | REAL dq(ngrid, nlay) |
---|
4114 | |
---|
4115 | REAL qa(klon, klev), detr(klon, klev), wqd(klon, klev + 1) |
---|
4116 | |
---|
4117 | INTEGER ig, k |
---|
4118 | |
---|
4119 | ! calcul du detrainement |
---|
4120 | |
---|
4121 | DO k = 1, nlay |
---|
4122 | DO ig = 1, ngrid |
---|
4123 | detr(ig, k) = fm(ig, k) - fm(ig, k + 1) + entr(ig, k) |
---|
4124 | ! test |
---|
4125 | IF (detr(ig, k)<0.) THEN |
---|
4126 | entr(ig, k) = entr(ig, k) - detr(ig, k) |
---|
4127 | detr(ig, k) = 0. |
---|
4128 | ! PRINT*,'detr2<0!!!','ig=',ig,'k=',k,'f=',fm(ig,k), |
---|
4129 | ! s 'f+1=',fm(ig,k+1),'e=',entr(ig,k),'d=',detr(ig,k) |
---|
4130 | END IF |
---|
4131 | IF (fm(ig, k + 1)<0.) THEN |
---|
4132 | ! PRINT*,'fm2<0!!!' |
---|
4133 | END IF |
---|
4134 | IF (entr(ig, k)<0.) THEN |
---|
4135 | ! PRINT*,'entr2<0!!!' |
---|
4136 | END IF |
---|
4137 | END DO |
---|
4138 | END DO |
---|
4139 | |
---|
4140 | ! calcul de la valeur dans les ascendances |
---|
4141 | DO ig = 1, ngrid |
---|
4142 | qa(ig, 1) = q(ig, 1) |
---|
4143 | END DO |
---|
4144 | |
---|
4145 | DO k = 2, nlay |
---|
4146 | DO ig = 1, ngrid |
---|
4147 | IF ((fm(ig, k + 1) + detr(ig, k)) * ptimestep>1.E-5 * masse(ig, k)) THEN |
---|
4148 | qa(ig, k) = (fm(ig, k) * qa(ig, k - 1) + entr(ig, k) * q(ig, k)) / & |
---|
4149 | (fm(ig, k + 1) + detr(ig, k)) |
---|
4150 | ELSE |
---|
4151 | qa(ig, k) = q(ig, k) |
---|
4152 | END IF |
---|
4153 | IF (qa(ig, k)<0.) THEN |
---|
4154 | ! PRINT*,'qa<0!!!' |
---|
4155 | END IF |
---|
4156 | IF (q(ig, k)<0.) THEN |
---|
4157 | ! PRINT*,'q<0!!!' |
---|
4158 | END IF |
---|
4159 | END DO |
---|
4160 | END DO |
---|
4161 | |
---|
4162 | DO k = 2, nlay |
---|
4163 | DO ig = 1, ngrid |
---|
4164 | ! wqd(ig,k)=fm(ig,k)*0.5*(q(ig,k-1)+q(ig,k)) |
---|
4165 | wqd(ig, k) = fm(ig, k) * q(ig, k) |
---|
4166 | IF (wqd(ig, k)<0.) THEN |
---|
4167 | ! PRINT*,'wqd<0!!!' |
---|
4168 | END IF |
---|
4169 | END DO |
---|
4170 | END DO |
---|
4171 | DO ig = 1, ngrid |
---|
4172 | wqd(ig, 1) = 0. |
---|
4173 | wqd(ig, nlay + 1) = 0. |
---|
4174 | END DO |
---|
4175 | |
---|
4176 | DO k = 1, nlay |
---|
4177 | DO ig = 1, ngrid |
---|
4178 | dq(ig, k) = (detr(ig, k) * qa(ig, k) - entr(ig, k) * q(ig, k) - wqd(ig, k) + wqd(ig, k + & |
---|
4179 | 1)) / masse(ig, k) |
---|
4180 | ! if (dq(ig,k).lt.0.) THEN |
---|
4181 | ! PRINT*,'dq<0!!!' |
---|
4182 | ! END IF |
---|
4183 | END DO |
---|
4184 | END DO |
---|
4185 | |
---|
4186 | END SUBROUTINE dqthermcell |
---|
4187 | SUBROUTINE dvthermcell(ngrid, nlay, ptimestep, fm, entr, masse, fraca, larga, & |
---|
4188 | u, v, du, dv, ua, va) |
---|
4189 | USE dimphy |
---|
4190 | IMPLICIT NONE |
---|
4191 | |
---|
4192 | ! ======================================================================= |
---|
4193 | |
---|
4194 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4195 | ! de "thermiques" explicitement representes |
---|
4196 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
4197 | |
---|
4198 | ! ======================================================================= |
---|
4199 | |
---|
4200 | INTEGER ngrid, nlay |
---|
4201 | |
---|
4202 | REAL ptimestep |
---|
4203 | REAL masse(ngrid, nlay), fm(ngrid, nlay + 1) |
---|
4204 | REAL fraca(ngrid, nlay + 1) |
---|
4205 | REAL larga(ngrid) |
---|
4206 | REAL entr(ngrid, nlay) |
---|
4207 | REAL u(ngrid, nlay) |
---|
4208 | REAL ua(ngrid, nlay) |
---|
4209 | REAL du(ngrid, nlay) |
---|
4210 | REAL v(ngrid, nlay) |
---|
4211 | REAL va(ngrid, nlay) |
---|
4212 | REAL dv(ngrid, nlay) |
---|
4213 | |
---|
4214 | REAL qa(klon, klev), detr(klon, klev) |
---|
4215 | REAL wvd(klon, klev + 1), wud(klon, klev + 1) |
---|
4216 | REAL gamma0, gamma(klon, klev + 1) |
---|
4217 | REAL dua, dva |
---|
4218 | INTEGER iter |
---|
4219 | |
---|
4220 | INTEGER ig, k |
---|
4221 | |
---|
4222 | ! calcul du detrainement |
---|
4223 | |
---|
4224 | DO k = 1, nlay |
---|
4225 | DO ig = 1, ngrid |
---|
4226 | detr(ig, k) = fm(ig, k) - fm(ig, k + 1) + entr(ig, k) |
---|
4227 | END DO |
---|
4228 | END DO |
---|
4229 | |
---|
4230 | ! calcul de la valeur dans les ascendances |
---|
4231 | DO ig = 1, ngrid |
---|
4232 | ua(ig, 1) = u(ig, 1) |
---|
4233 | va(ig, 1) = v(ig, 1) |
---|
4234 | END DO |
---|
4235 | |
---|
4236 | DO k = 2, nlay |
---|
4237 | DO ig = 1, ngrid |
---|
4238 | IF ((fm(ig, k + 1) + detr(ig, k)) * ptimestep>1.E-5 * masse(ig, k)) THEN |
---|
4239 | ! On itère sur la valeur du coeff de freinage. |
---|
4240 | ! gamma0=rho(ig,k)*(zlev(ig,k+1)-zlev(ig,k)) |
---|
4241 | gamma0 = masse(ig, k) * sqrt(0.5 * (fraca(ig, k + 1) + fraca(ig, & |
---|
4242 | k))) * 0.5 / larga(ig) |
---|
4243 | ! gamma0=0. |
---|
4244 | ! la première fois on multiplie le coefficient de freinage |
---|
4245 | ! par le module du vent dans la couche en dessous. |
---|
4246 | dua = ua(ig, k - 1) - u(ig, k - 1) |
---|
4247 | dva = va(ig, k - 1) - v(ig, k - 1) |
---|
4248 | DO iter = 1, 5 |
---|
4249 | gamma(ig, k) = gamma0 * sqrt(dua**2 + dva**2) |
---|
4250 | ua(ig, k) = (fm(ig, k) * ua(ig, k - 1) + (entr(ig, k) + gamma(ig, & |
---|
4251 | k)) * u(ig, k)) / (fm(ig, k + 1) + detr(ig, k) + gamma(ig, k)) |
---|
4252 | va(ig, k) = (fm(ig, k) * va(ig, k - 1) + (entr(ig, k) + gamma(ig, & |
---|
4253 | k)) * v(ig, k)) / (fm(ig, k + 1) + detr(ig, k) + gamma(ig, k)) |
---|
4254 | ! PRINT*,k,ua(ig,k),va(ig,k),u(ig,k),v(ig,k),dua,dva |
---|
4255 | dua = ua(ig, k) - u(ig, k) |
---|
4256 | dva = va(ig, k) - v(ig, k) |
---|
4257 | END DO |
---|
4258 | ELSE |
---|
4259 | ua(ig, k) = u(ig, k) |
---|
4260 | va(ig, k) = v(ig, k) |
---|
4261 | gamma(ig, k) = 0. |
---|
4262 | END IF |
---|
4263 | END DO |
---|
4264 | END DO |
---|
4265 | |
---|
4266 | DO k = 2, nlay |
---|
4267 | DO ig = 1, ngrid |
---|
4268 | wud(ig, k) = fm(ig, k) * u(ig, k) |
---|
4269 | wvd(ig, k) = fm(ig, k) * v(ig, k) |
---|
4270 | END DO |
---|
4271 | END DO |
---|
4272 | DO ig = 1, ngrid |
---|
4273 | wud(ig, 1) = 0. |
---|
4274 | wud(ig, nlay + 1) = 0. |
---|
4275 | wvd(ig, 1) = 0. |
---|
4276 | wvd(ig, nlay + 1) = 0. |
---|
4277 | END DO |
---|
4278 | |
---|
4279 | DO k = 1, nlay |
---|
4280 | DO ig = 1, ngrid |
---|
4281 | du(ig, k) = ((detr(ig, k) + gamma(ig, k)) * ua(ig, k) - (entr(ig, k) + gamma(ig, & |
---|
4282 | k)) * u(ig, k) - wud(ig, k) + wud(ig, k + 1)) / masse(ig, k) |
---|
4283 | dv(ig, k) = ((detr(ig, k) + gamma(ig, k)) * va(ig, k) - (entr(ig, k) + gamma(ig, & |
---|
4284 | k)) * v(ig, k) - wvd(ig, k) + wvd(ig, k + 1)) / masse(ig, k) |
---|
4285 | END DO |
---|
4286 | END DO |
---|
4287 | |
---|
4288 | END SUBROUTINE dvthermcell |
---|
4289 | SUBROUTINE dqthermcell2(ngrid, nlay, ptimestep, fm, entr, masse, frac, q, dq, & |
---|
4290 | qa) |
---|
4291 | USE dimphy |
---|
4292 | IMPLICIT NONE |
---|
4293 | |
---|
4294 | ! ======================================================================= |
---|
4295 | |
---|
4296 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4297 | ! de "thermiques" explicitement representes |
---|
4298 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
4299 | |
---|
4300 | ! ======================================================================= |
---|
4301 | |
---|
4302 | INTEGER ngrid, nlay |
---|
4303 | |
---|
4304 | REAL ptimestep |
---|
4305 | REAL masse(ngrid, nlay), fm(ngrid, nlay + 1) |
---|
4306 | REAL entr(ngrid, nlay), frac(ngrid, nlay) |
---|
4307 | REAL q(ngrid, nlay) |
---|
4308 | REAL dq(ngrid, nlay) |
---|
4309 | |
---|
4310 | REAL qa(klon, klev), detr(klon, klev), wqd(klon, klev + 1) |
---|
4311 | REAL qe(klon, klev), zf, zf2 |
---|
4312 | |
---|
4313 | INTEGER ig, k |
---|
4314 | |
---|
4315 | ! calcul du detrainement |
---|
4316 | |
---|
4317 | DO k = 1, nlay |
---|
4318 | DO ig = 1, ngrid |
---|
4319 | detr(ig, k) = fm(ig, k) - fm(ig, k + 1) + entr(ig, k) |
---|
4320 | END DO |
---|
4321 | END DO |
---|
4322 | |
---|
4323 | ! calcul de la valeur dans les ascendances |
---|
4324 | DO ig = 1, ngrid |
---|
4325 | qa(ig, 1) = q(ig, 1) |
---|
4326 | qe(ig, 1) = q(ig, 1) |
---|
4327 | END DO |
---|
4328 | |
---|
4329 | DO k = 2, nlay |
---|
4330 | DO ig = 1, ngrid |
---|
4331 | IF ((fm(ig, k + 1) + detr(ig, k)) * ptimestep>1.E-5 * masse(ig, k)) THEN |
---|
4332 | zf = 0.5 * (frac(ig, k) + frac(ig, k + 1)) |
---|
4333 | zf2 = 1. / (1. - zf) |
---|
4334 | qa(ig, k) = (fm(ig, k) * qa(ig, k - 1) + zf2 * entr(ig, k) * q(ig, k)) / & |
---|
4335 | (fm(ig, k + 1) + detr(ig, k) + entr(ig, k) * zf * zf2) |
---|
4336 | qe(ig, k) = (q(ig, k) - zf * qa(ig, k)) * zf2 |
---|
4337 | ELSE |
---|
4338 | qa(ig, k) = q(ig, k) |
---|
4339 | qe(ig, k) = q(ig, k) |
---|
4340 | END IF |
---|
4341 | END DO |
---|
4342 | END DO |
---|
4343 | |
---|
4344 | DO k = 2, nlay |
---|
4345 | DO ig = 1, ngrid |
---|
4346 | ! wqd(ig,k)=fm(ig,k)*0.5*(q(ig,k-1)+q(ig,k)) |
---|
4347 | wqd(ig, k) = fm(ig, k) * qe(ig, k) |
---|
4348 | END DO |
---|
4349 | END DO |
---|
4350 | DO ig = 1, ngrid |
---|
4351 | wqd(ig, 1) = 0. |
---|
4352 | wqd(ig, nlay + 1) = 0. |
---|
4353 | END DO |
---|
4354 | |
---|
4355 | DO k = 1, nlay |
---|
4356 | DO ig = 1, ngrid |
---|
4357 | dq(ig, k) = (detr(ig, k) * qa(ig, k) - entr(ig, k) * qe(ig, k) - wqd(ig, k) + wqd(ig, k & |
---|
4358 | + 1)) / masse(ig, k) |
---|
4359 | END DO |
---|
4360 | END DO |
---|
4361 | |
---|
4362 | END SUBROUTINE dqthermcell2 |
---|
4363 | SUBROUTINE dvthermcell2(ngrid, nlay, ptimestep, fm, entr, masse, fraca, & |
---|
4364 | larga, u, v, du, dv, ua, va) |
---|
4365 | USE dimphy |
---|
4366 | IMPLICIT NONE |
---|
4367 | |
---|
4368 | ! ======================================================================= |
---|
4369 | |
---|
4370 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4371 | ! de "thermiques" explicitement representes |
---|
4372 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
4373 | |
---|
4374 | ! ======================================================================= |
---|
4375 | |
---|
4376 | INTEGER ngrid, nlay |
---|
4377 | |
---|
4378 | REAL ptimestep |
---|
4379 | REAL masse(ngrid, nlay), fm(ngrid, nlay + 1) |
---|
4380 | REAL fraca(ngrid, nlay + 1) |
---|
4381 | REAL larga(ngrid) |
---|
4382 | REAL entr(ngrid, nlay) |
---|
4383 | REAL u(ngrid, nlay) |
---|
4384 | REAL ua(ngrid, nlay) |
---|
4385 | REAL du(ngrid, nlay) |
---|
4386 | REAL v(ngrid, nlay) |
---|
4387 | REAL va(ngrid, nlay) |
---|
4388 | REAL dv(ngrid, nlay) |
---|
4389 | |
---|
4390 | REAL qa(klon, klev), detr(klon, klev), zf, zf2 |
---|
4391 | REAL wvd(klon, klev + 1), wud(klon, klev + 1) |
---|
4392 | REAL gamma0, gamma(klon, klev + 1) |
---|
4393 | REAL ue(klon, klev), ve(klon, klev) |
---|
4394 | REAL dua, dva |
---|
4395 | INTEGER iter |
---|
4396 | |
---|
4397 | INTEGER ig, k |
---|
4398 | |
---|
4399 | ! calcul du detrainement |
---|
4400 | |
---|
4401 | DO k = 1, nlay |
---|
4402 | DO ig = 1, ngrid |
---|
4403 | detr(ig, k) = fm(ig, k) - fm(ig, k + 1) + entr(ig, k) |
---|
4404 | END DO |
---|
4405 | END DO |
---|
4406 | |
---|
4407 | ! calcul de la valeur dans les ascendances |
---|
4408 | DO ig = 1, ngrid |
---|
4409 | ua(ig, 1) = u(ig, 1) |
---|
4410 | va(ig, 1) = v(ig, 1) |
---|
4411 | ue(ig, 1) = u(ig, 1) |
---|
4412 | ve(ig, 1) = v(ig, 1) |
---|
4413 | END DO |
---|
4414 | |
---|
4415 | DO k = 2, nlay |
---|
4416 | DO ig = 1, ngrid |
---|
4417 | IF ((fm(ig, k + 1) + detr(ig, k)) * ptimestep>1.E-5 * masse(ig, k)) THEN |
---|
4418 | ! On itère sur la valeur du coeff de freinage. |
---|
4419 | ! gamma0=rho(ig,k)*(zlev(ig,k+1)-zlev(ig,k)) |
---|
4420 | gamma0 = masse(ig, k) * sqrt(0.5 * (fraca(ig, k + 1) + fraca(ig, & |
---|
4421 | k))) * 0.5 / larga(ig) * 1. |
---|
4422 | ! s *0.5 |
---|
4423 | ! gamma0=0. |
---|
4424 | zf = 0.5 * (fraca(ig, k) + fraca(ig, k + 1)) |
---|
4425 | zf = 0. |
---|
4426 | zf2 = 1. / (1. - zf) |
---|
4427 | ! la première fois on multiplie le coefficient de freinage |
---|
4428 | ! par le module du vent dans la couche en dessous. |
---|
4429 | dua = ua(ig, k - 1) - u(ig, k - 1) |
---|
4430 | dva = va(ig, k - 1) - v(ig, k - 1) |
---|
4431 | DO iter = 1, 5 |
---|
4432 | ! On choisit une relaxation lineaire. |
---|
4433 | gamma(ig, k) = gamma0 |
---|
4434 | ! On choisit une relaxation quadratique. |
---|
4435 | gamma(ig, k) = gamma0 * sqrt(dua**2 + dva**2) |
---|
4436 | ua(ig, k) = (fm(ig, k) * ua(ig, k - 1) + (zf2 * entr(ig, k) + gamma(ig, & |
---|
4437 | k)) * u(ig, k)) / (fm(ig, k + 1) + detr(ig, k) + entr(ig, k) * zf * zf2 + gamma(ig, k) & |
---|
4438 | ) |
---|
4439 | va(ig, k) = (fm(ig, k) * va(ig, k - 1) + (zf2 * entr(ig, k) + gamma(ig, & |
---|
4440 | k)) * v(ig, k)) / (fm(ig, k + 1) + detr(ig, k) + entr(ig, k) * zf * zf2 + gamma(ig, k) & |
---|
4441 | ) |
---|
4442 | ! PRINT*,k,ua(ig,k),va(ig,k),u(ig,k),v(ig,k),dua,dva |
---|
4443 | dua = ua(ig, k) - u(ig, k) |
---|
4444 | dva = va(ig, k) - v(ig, k) |
---|
4445 | ue(ig, k) = (u(ig, k) - zf * ua(ig, k)) * zf2 |
---|
4446 | ve(ig, k) = (v(ig, k) - zf * va(ig, k)) * zf2 |
---|
4447 | END DO |
---|
4448 | ELSE |
---|
4449 | ua(ig, k) = u(ig, k) |
---|
4450 | va(ig, k) = v(ig, k) |
---|
4451 | ue(ig, k) = u(ig, k) |
---|
4452 | ve(ig, k) = v(ig, k) |
---|
4453 | gamma(ig, k) = 0. |
---|
4454 | END IF |
---|
4455 | END DO |
---|
4456 | END DO |
---|
4457 | |
---|
4458 | DO k = 2, nlay |
---|
4459 | DO ig = 1, ngrid |
---|
4460 | wud(ig, k) = fm(ig, k) * ue(ig, k) |
---|
4461 | wvd(ig, k) = fm(ig, k) * ve(ig, k) |
---|
4462 | END DO |
---|
4463 | END DO |
---|
4464 | DO ig = 1, ngrid |
---|
4465 | wud(ig, 1) = 0. |
---|
4466 | wud(ig, nlay + 1) = 0. |
---|
4467 | wvd(ig, 1) = 0. |
---|
4468 | wvd(ig, nlay + 1) = 0. |
---|
4469 | END DO |
---|
4470 | |
---|
4471 | DO k = 1, nlay |
---|
4472 | DO ig = 1, ngrid |
---|
4473 | du(ig, k) = ((detr(ig, k) + gamma(ig, k)) * ua(ig, k) - (entr(ig, k) + gamma(ig, & |
---|
4474 | k)) * ue(ig, k) - wud(ig, k) + wud(ig, k + 1)) / masse(ig, k) |
---|
4475 | dv(ig, k) = ((detr(ig, k) + gamma(ig, k)) * va(ig, k) - (entr(ig, k) + gamma(ig, & |
---|
4476 | k)) * ve(ig, k) - wvd(ig, k) + wvd(ig, k + 1)) / masse(ig, k) |
---|
4477 | END DO |
---|
4478 | END DO |
---|
4479 | |
---|
4480 | END SUBROUTINE dvthermcell2 |
---|
4481 | SUBROUTINE thermcell_sec(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, & |
---|
4482 | pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
4483 | ! ,pu_therm,pv_therm |
---|
4484 | , r_aspect, l_mix, w2di, tho) |
---|
4485 | |
---|
4486 | USE dimphy |
---|
4487 | USE lmdz_yomcst |
---|
4488 | |
---|
4489 | IMPLICIT NONE |
---|
4490 | |
---|
4491 | ! ======================================================================= |
---|
4492 | |
---|
4493 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4494 | ! de "thermiques" explicitement representes |
---|
4495 | |
---|
4496 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
4497 | |
---|
4498 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
4499 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
4500 | ! mélange |
---|
4501 | |
---|
4502 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
4503 | ! en compte: |
---|
4504 | ! 1. un flux de masse montant |
---|
4505 | ! 2. un flux de masse descendant |
---|
4506 | ! 3. un entrainement |
---|
4507 | ! 4. un detrainement |
---|
4508 | |
---|
4509 | ! ======================================================================= |
---|
4510 | |
---|
4511 | ! arguments: |
---|
4512 | ! ---------- |
---|
4513 | |
---|
4514 | INTEGER ngrid, nlay, w2di |
---|
4515 | REAL tho |
---|
4516 | REAL ptimestep, l_mix, r_aspect |
---|
4517 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
4518 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
4519 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
4520 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
4521 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay + 1) |
---|
4522 | REAL pphi(ngrid, nlay) |
---|
4523 | |
---|
4524 | INTEGER idetr |
---|
4525 | SAVE idetr |
---|
4526 | DATA idetr/3/ |
---|
4527 | !$OMP THREADPRIVATE(idetr) |
---|
4528 | |
---|
4529 | ! local: |
---|
4530 | ! ------ |
---|
4531 | |
---|
4532 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
4533 | REAL zsortie1d(klon) |
---|
4534 | ! CR: on remplace lmax(klon,klev+1) |
---|
4535 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
4536 | REAL linter(klon) |
---|
4537 | REAL zmix(klon), fracazmix(klon) |
---|
4538 | ! RC |
---|
4539 | REAL zmax(klon), zw, zz, zw2(klon, klev + 1), ztva(klon, klev), zzz |
---|
4540 | |
---|
4541 | REAL zlev(klon, klev + 1), zlay(klon, klev) |
---|
4542 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
4543 | REAL ztv(klon, klev) |
---|
4544 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
4545 | REAL wh(klon, klev + 1) |
---|
4546 | REAL wu(klon, klev + 1), wv(klon, klev + 1), wo(klon, klev + 1) |
---|
4547 | REAL zla(klon, klev + 1) |
---|
4548 | REAL zwa(klon, klev + 1) |
---|
4549 | REAL zld(klon, klev + 1) |
---|
4550 | REAL zwd(klon, klev + 1) |
---|
4551 | REAL zsortie(klon, klev) |
---|
4552 | REAL zva(klon, klev) |
---|
4553 | REAL zua(klon, klev) |
---|
4554 | REAL zoa(klon, klev) |
---|
4555 | |
---|
4556 | REAL zha(klon, klev) |
---|
4557 | REAL wa_moy(klon, klev + 1) |
---|
4558 | REAL fraca(klon, klev + 1) |
---|
4559 | REAL fracc(klon, klev + 1) |
---|
4560 | REAL zf, zf2 |
---|
4561 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
4562 | ! common/comtherm/thetath2,wth2 |
---|
4563 | |
---|
4564 | REAL count_time |
---|
4565 | INTEGER ialt |
---|
4566 | |
---|
4567 | LOGICAL sorties |
---|
4568 | REAL rho(klon, klev), rhobarz(klon, klev + 1), masse(klon, klev) |
---|
4569 | REAL zpspsk(klon, klev) |
---|
4570 | |
---|
4571 | ! real wmax(klon,klev),wmaxa(klon) |
---|
4572 | REAL wmax(klon), wmaxa(klon) |
---|
4573 | REAL wa(klon, klev, klev + 1) |
---|
4574 | REAL wd(klon, klev + 1) |
---|
4575 | REAL larg_part(klon, klev, klev + 1) |
---|
4576 | REAL fracd(klon, klev + 1) |
---|
4577 | REAL xxx(klon, klev + 1) |
---|
4578 | REAL larg_cons(klon, klev + 1) |
---|
4579 | REAL larg_detr(klon, klev + 1) |
---|
4580 | REAL fm0(klon, klev + 1), entr0(klon, klev), detr(klon, klev) |
---|
4581 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
4582 | REAL fm(klon, klev + 1), entr(klon, klev) |
---|
4583 | REAL fmc(klon, klev + 1) |
---|
4584 | |
---|
4585 | ! CR:nouvelles variables |
---|
4586 | REAL f_star(klon, klev + 1), entr_star(klon, klev) |
---|
4587 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
4588 | REAL f(klon), f0(klon) |
---|
4589 | REAL zlevinter(klon) |
---|
4590 | LOGICAL first |
---|
4591 | DATA first/.FALSE./ |
---|
4592 | SAVE first |
---|
4593 | !$OMP THREADPRIVATE(first) |
---|
4594 | ! RC |
---|
4595 | |
---|
4596 | CHARACTER *2 str2 |
---|
4597 | CHARACTER *10 str10 |
---|
4598 | |
---|
4599 | CHARACTER (LEN = 20) :: modname = 'thermcell_sec' |
---|
4600 | CHARACTER (LEN = 80) :: abort_message |
---|
4601 | |
---|
4602 | LOGICAL vtest(klon), down |
---|
4603 | |
---|
4604 | INTEGER ncorrec, ll |
---|
4605 | SAVE ncorrec |
---|
4606 | DATA ncorrec/0/ |
---|
4607 | !$OMP THREADPRIVATE(ncorrec) |
---|
4608 | |
---|
4609 | |
---|
4610 | ! ----------------------------------------------------------------------- |
---|
4611 | ! initialisation: |
---|
4612 | ! --------------- |
---|
4613 | |
---|
4614 | sorties = .TRUE. |
---|
4615 | IF (ngrid/=klon) THEN |
---|
4616 | PRINT * |
---|
4617 | PRINT *, 'STOP dans convadj' |
---|
4618 | PRINT *, 'ngrid =', ngrid |
---|
4619 | PRINT *, 'klon =', klon |
---|
4620 | END IF |
---|
4621 | |
---|
4622 | ! ----------------------------------------------------------------------- |
---|
4623 | ! incrementation eventuelle de tendances precedentes: |
---|
4624 | ! --------------------------------------------------- |
---|
4625 | |
---|
4626 | ! PRINT*,'0 OK convect8' |
---|
4627 | |
---|
4628 | DO l = 1, nlay |
---|
4629 | DO ig = 1, ngrid |
---|
4630 | zpspsk(ig, l) = (pplay(ig, l) / pplev(ig, 1))**rkappa |
---|
4631 | zh(ig, l) = pt(ig, l) / zpspsk(ig, l) |
---|
4632 | zu(ig, l) = pu(ig, l) |
---|
4633 | zv(ig, l) = pv(ig, l) |
---|
4634 | zo(ig, l) = po(ig, l) |
---|
4635 | ztv(ig, l) = zh(ig, l) * (1. + 0.61 * zo(ig, l)) |
---|
4636 | END DO |
---|
4637 | END DO |
---|
4638 | |
---|
4639 | ! PRINT*,'1 OK convect8' |
---|
4640 | ! -------------------- |
---|
4641 | |
---|
4642 | |
---|
4643 | ! + + + + + + + + + + + |
---|
4644 | |
---|
4645 | |
---|
4646 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
4647 | ! wh,wt,wo ... |
---|
4648 | |
---|
4649 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
4650 | |
---|
4651 | |
---|
4652 | ! -------------------- zlev(1) |
---|
4653 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
4654 | |
---|
4655 | |
---|
4656 | |
---|
4657 | ! ----------------------------------------------------------------------- |
---|
4658 | ! Calcul des altitudes des couches |
---|
4659 | ! ----------------------------------------------------------------------- |
---|
4660 | |
---|
4661 | DO l = 2, nlay |
---|
4662 | DO ig = 1, ngrid |
---|
4663 | zlev(ig, l) = 0.5 * (pphi(ig, l) + pphi(ig, l - 1)) / rg |
---|
4664 | END DO |
---|
4665 | END DO |
---|
4666 | DO ig = 1, ngrid |
---|
4667 | zlev(ig, 1) = 0. |
---|
4668 | zlev(ig, nlay + 1) = (2. * pphi(ig, klev) - pphi(ig, klev - 1)) / rg |
---|
4669 | END DO |
---|
4670 | DO l = 1, nlay |
---|
4671 | DO ig = 1, ngrid |
---|
4672 | zlay(ig, l) = pphi(ig, l) / rg |
---|
4673 | END DO |
---|
4674 | END DO |
---|
4675 | |
---|
4676 | ! PRINT*,'2 OK convect8' |
---|
4677 | ! ----------------------------------------------------------------------- |
---|
4678 | ! Calcul des densites |
---|
4679 | ! ----------------------------------------------------------------------- |
---|
4680 | |
---|
4681 | DO l = 1, nlay |
---|
4682 | DO ig = 1, ngrid |
---|
4683 | rho(ig, l) = pplay(ig, l) / (zpspsk(ig, l) * rd * zh(ig, l)) |
---|
4684 | END DO |
---|
4685 | END DO |
---|
4686 | |
---|
4687 | DO l = 2, nlay |
---|
4688 | DO ig = 1, ngrid |
---|
4689 | rhobarz(ig, l) = 0.5 * (rho(ig, l) + rho(ig, l - 1)) |
---|
4690 | END DO |
---|
4691 | END DO |
---|
4692 | |
---|
4693 | DO k = 1, nlay |
---|
4694 | DO l = 1, nlay + 1 |
---|
4695 | DO ig = 1, ngrid |
---|
4696 | wa(ig, k, l) = 0. |
---|
4697 | END DO |
---|
4698 | END DO |
---|
4699 | END DO |
---|
4700 | |
---|
4701 | ! PRINT*,'3 OK convect8' |
---|
4702 | ! ------------------------------------------------------------------ |
---|
4703 | ! Calcul de w2, quarre de w a partir de la cape |
---|
4704 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
4705 | |
---|
4706 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
4707 | ! w2 est stoke dans wa |
---|
4708 | |
---|
4709 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
4710 | ! independants par couches que pour calculer l'entrainement |
---|
4711 | ! a la base et la hauteur max de l'ascendance. |
---|
4712 | |
---|
4713 | ! Indicages: |
---|
4714 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
4715 | ! une vitesse wa(k,l). |
---|
4716 | |
---|
4717 | ! -------------------- |
---|
4718 | |
---|
4719 | ! + + + + + + + + + + |
---|
4720 | |
---|
4721 | ! wa(k,l) ---- -------------------- l |
---|
4722 | ! /\ |
---|
4723 | ! /||\ + + + + + + + + + + |
---|
4724 | ! || |
---|
4725 | ! || -------------------- |
---|
4726 | ! || |
---|
4727 | ! || + + + + + + + + + + |
---|
4728 | ! || |
---|
4729 | ! || -------------------- |
---|
4730 | ! ||__ |
---|
4731 | ! |___ + + + + + + + + + + k |
---|
4732 | |
---|
4733 | ! -------------------- |
---|
4734 | |
---|
4735 | |
---|
4736 | |
---|
4737 | ! ------------------------------------------------------------------ |
---|
4738 | |
---|
4739 | ! CR: ponderation entrainement des couches instables |
---|
4740 | ! def des entr_star tels que entr=f*entr_star |
---|
4741 | DO l = 1, klev |
---|
4742 | DO ig = 1, ngrid |
---|
4743 | entr_star(ig, l) = 0. |
---|
4744 | END DO |
---|
4745 | END DO |
---|
4746 | ! determination de la longueur de la couche d entrainement |
---|
4747 | DO ig = 1, ngrid |
---|
4748 | lentr(ig) = 1 |
---|
4749 | END DO |
---|
4750 | |
---|
4751 | ! on ne considere que les premieres couches instables |
---|
4752 | DO k = nlay - 2, 1, -1 |
---|
4753 | DO ig = 1, ngrid |
---|
4754 | IF (ztv(ig, k)>ztv(ig, k + 1) .AND. ztv(ig, k + 1)<=ztv(ig, k + 2)) THEN |
---|
4755 | lentr(ig) = k |
---|
4756 | END IF |
---|
4757 | END DO |
---|
4758 | END DO |
---|
4759 | |
---|
4760 | ! determination du lmin: couche d ou provient le thermique |
---|
4761 | DO ig = 1, ngrid |
---|
4762 | lmin(ig) = 1 |
---|
4763 | END DO |
---|
4764 | DO ig = 1, ngrid |
---|
4765 | DO l = nlay, 2, -1 |
---|
4766 | IF (ztv(ig, l - 1)>ztv(ig, l)) THEN |
---|
4767 | lmin(ig) = l - 1 |
---|
4768 | END IF |
---|
4769 | END DO |
---|
4770 | END DO |
---|
4771 | |
---|
4772 | ! definition de l'entrainement des couches |
---|
4773 | DO l = 1, klev - 1 |
---|
4774 | DO ig = 1, ngrid |
---|
4775 | IF (ztv(ig, l)>ztv(ig, l + 1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
4776 | entr_star(ig, l) = (ztv(ig, l) - ztv(ig, l + 1))** & ! s |
---|
4777 | ! (zlev(ig,l+1)-zlev(ig,l)) |
---|
4778 | sqrt(zlev(ig, l + 1)) |
---|
4779 | END IF |
---|
4780 | END DO |
---|
4781 | END DO |
---|
4782 | ! pas de thermique si couche 1 stable |
---|
4783 | DO ig = 1, ngrid |
---|
4784 | IF (lmin(ig)>1) THEN |
---|
4785 | DO l = 1, klev |
---|
4786 | entr_star(ig, l) = 0. |
---|
4787 | END DO |
---|
4788 | END IF |
---|
4789 | END DO |
---|
4790 | ! calcul de l entrainement total |
---|
4791 | DO ig = 1, ngrid |
---|
4792 | entr_star_tot(ig) = 0. |
---|
4793 | END DO |
---|
4794 | DO ig = 1, ngrid |
---|
4795 | DO k = 1, klev |
---|
4796 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
4797 | END DO |
---|
4798 | END DO |
---|
4799 | |
---|
4800 | ! PRINT*,'fin calcul entr_star' |
---|
4801 | DO k = 1, klev |
---|
4802 | DO ig = 1, ngrid |
---|
4803 | ztva(ig, k) = ztv(ig, k) |
---|
4804 | END DO |
---|
4805 | END DO |
---|
4806 | ! RC |
---|
4807 | ! PRINT*,'7 OK convect8' |
---|
4808 | DO k = 1, klev + 1 |
---|
4809 | DO ig = 1, ngrid |
---|
4810 | zw2(ig, k) = 0. |
---|
4811 | fmc(ig, k) = 0. |
---|
4812 | ! CR |
---|
4813 | f_star(ig, k) = 0. |
---|
4814 | ! RC |
---|
4815 | larg_cons(ig, k) = 0. |
---|
4816 | larg_detr(ig, k) = 0. |
---|
4817 | wa_moy(ig, k) = 0. |
---|
4818 | END DO |
---|
4819 | END DO |
---|
4820 | |
---|
4821 | ! PRINT*,'8 OK convect8' |
---|
4822 | DO ig = 1, ngrid |
---|
4823 | linter(ig) = 1. |
---|
4824 | lmaxa(ig) = 1 |
---|
4825 | lmix(ig) = 1 |
---|
4826 | wmaxa(ig) = 0. |
---|
4827 | END DO |
---|
4828 | |
---|
4829 | ! CR: |
---|
4830 | DO l = 1, nlay - 2 |
---|
4831 | DO ig = 1, ngrid |
---|
4832 | IF (ztv(ig, l)>ztv(ig, l + 1) .AND. entr_star(ig, l)>1.E-10 .AND. & |
---|
4833 | zw2(ig, l)<1E-10) THEN |
---|
4834 | f_star(ig, l + 1) = entr_star(ig, l) |
---|
4835 | ! test:calcul de dteta |
---|
4836 | zw2(ig, l + 1) = 2. * rg * (ztv(ig, l) - ztv(ig, l + 1)) / ztv(ig, l + 1) * & |
---|
4837 | (zlev(ig, l + 1) - zlev(ig, l)) * 0.4 * pphi(ig, l) / (pphi(ig, l + 1) - pphi(ig, l)) |
---|
4838 | larg_detr(ig, l) = 0. |
---|
4839 | ELSE IF ((zw2(ig, l)>=1E-10) .AND. (f_star(ig, l) + entr_star(ig, & |
---|
4840 | l)>1.E-10)) THEN |
---|
4841 | f_star(ig, l + 1) = f_star(ig, l) + entr_star(ig, l) |
---|
4842 | ztva(ig, l) = (f_star(ig, l) * ztva(ig, l - 1) + entr_star(ig, l) * ztv(ig, l)) / & |
---|
4843 | f_star(ig, l + 1) |
---|
4844 | zw2(ig, l + 1) = zw2(ig, l) * (f_star(ig, l) / f_star(ig, l + 1))**2 + & |
---|
4845 | 2. * rg * (ztva(ig, l) - ztv(ig, l)) / ztv(ig, l) * (zlev(ig, l + 1) - zlev(ig, l)) |
---|
4846 | END IF |
---|
4847 | ! determination de zmax continu par interpolation lineaire |
---|
4848 | IF (zw2(ig, l + 1)<0.) THEN |
---|
4849 | ! test |
---|
4850 | IF (abs(zw2(ig, l + 1) - zw2(ig, l))<1E-10) THEN |
---|
4851 | ! PRINT*,'pb linter' |
---|
4852 | END IF |
---|
4853 | linter(ig) = (l * (zw2(ig, l + 1) - zw2(ig, l)) - zw2(ig, l)) / (zw2(ig, l + 1) - zw2(& |
---|
4854 | ig, l)) |
---|
4855 | zw2(ig, l + 1) = 0. |
---|
4856 | lmaxa(ig) = l |
---|
4857 | ELSE |
---|
4858 | IF (zw2(ig, l + 1)<0.) THEN |
---|
4859 | ! PRINT*,'pb1 zw2<0' |
---|
4860 | END IF |
---|
4861 | wa_moy(ig, l + 1) = sqrt(zw2(ig, l + 1)) |
---|
4862 | END IF |
---|
4863 | IF (wa_moy(ig, l + 1)>wmaxa(ig)) THEN |
---|
4864 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
4865 | lmix(ig) = l + 1 |
---|
4866 | wmaxa(ig) = wa_moy(ig, l + 1) |
---|
4867 | END IF |
---|
4868 | END DO |
---|
4869 | END DO |
---|
4870 | ! PRINT*,'fin calcul zw2' |
---|
4871 | |
---|
4872 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
4873 | DO ig = 1, ngrid |
---|
4874 | lmax(ig) = lentr(ig) |
---|
4875 | END DO |
---|
4876 | DO ig = 1, ngrid |
---|
4877 | DO l = nlay, lentr(ig) + 1, -1 |
---|
4878 | IF (zw2(ig, l)<=1.E-10) THEN |
---|
4879 | lmax(ig) = l - 1 |
---|
4880 | END IF |
---|
4881 | END DO |
---|
4882 | END DO |
---|
4883 | ! pas de thermique si couche 1 stable |
---|
4884 | DO ig = 1, ngrid |
---|
4885 | IF (lmin(ig)>1) THEN |
---|
4886 | lmax(ig) = 1 |
---|
4887 | lmin(ig) = 1 |
---|
4888 | END IF |
---|
4889 | END DO |
---|
4890 | |
---|
4891 | ! Determination de zw2 max |
---|
4892 | DO ig = 1, ngrid |
---|
4893 | wmax(ig) = 0. |
---|
4894 | END DO |
---|
4895 | |
---|
4896 | DO l = 1, nlay |
---|
4897 | DO ig = 1, ngrid |
---|
4898 | IF (l<=lmax(ig)) THEN |
---|
4899 | IF (zw2(ig, l)<0.) THEN |
---|
4900 | ! PRINT*,'pb2 zw2<0' |
---|
4901 | END IF |
---|
4902 | zw2(ig, l) = sqrt(zw2(ig, l)) |
---|
4903 | wmax(ig) = max(wmax(ig), zw2(ig, l)) |
---|
4904 | ELSE |
---|
4905 | zw2(ig, l) = 0. |
---|
4906 | END IF |
---|
4907 | END DO |
---|
4908 | END DO |
---|
4909 | |
---|
4910 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
4911 | DO ig = 1, ngrid |
---|
4912 | zmax(ig) = 0. |
---|
4913 | zlevinter(ig) = zlev(ig, 1) |
---|
4914 | END DO |
---|
4915 | DO ig = 1, ngrid |
---|
4916 | ! calcul de zlevinter |
---|
4917 | zlevinter(ig) = (zlev(ig, lmax(ig) + 1) - zlev(ig, lmax(ig))) * linter(ig) + & |
---|
4918 | zlev(ig, lmax(ig)) - lmax(ig) * (zlev(ig, lmax(ig) + 1) - zlev(ig, lmax(ig))) |
---|
4919 | zmax(ig) = max(zmax(ig), zlevinter(ig) - zlev(ig, lmin(ig))) |
---|
4920 | END DO |
---|
4921 | |
---|
4922 | ! PRINT*,'avant fermeture' |
---|
4923 | ! Fermeture,determination de f |
---|
4924 | DO ig = 1, ngrid |
---|
4925 | entr_star2(ig) = 0. |
---|
4926 | END DO |
---|
4927 | DO ig = 1, ngrid |
---|
4928 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
4929 | f(ig) = 0. |
---|
4930 | ELSE |
---|
4931 | DO k = lmin(ig), lentr(ig) |
---|
4932 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2 / (rho(ig, k) * (& |
---|
4933 | zlev(ig, k + 1) - zlev(ig, k))) |
---|
4934 | END DO |
---|
4935 | ! Nouvelle fermeture |
---|
4936 | f(ig) = wmax(ig) / (max(500., zmax(ig)) * r_aspect * entr_star2(ig)) * & |
---|
4937 | entr_star_tot(ig) |
---|
4938 | ! test |
---|
4939 | ! if (first) THEN |
---|
4940 | ! f(ig)=f(ig)+(f0(ig)-f(ig))*exp(-ptimestep/zmax(ig) |
---|
4941 | ! s *wmax(ig)) |
---|
4942 | ! END IF |
---|
4943 | END IF |
---|
4944 | ! f0(ig)=f(ig) |
---|
4945 | ! first=.TRUE. |
---|
4946 | END DO |
---|
4947 | ! PRINT*,'apres fermeture' |
---|
4948 | |
---|
4949 | ! Calcul de l'entrainement |
---|
4950 | DO k = 1, klev |
---|
4951 | DO ig = 1, ngrid |
---|
4952 | entr(ig, k) = f(ig) * entr_star(ig, k) |
---|
4953 | END DO |
---|
4954 | END DO |
---|
4955 | ! CR:test pour entrainer moins que la masse |
---|
4956 | DO ig = 1, ngrid |
---|
4957 | DO l = 1, lentr(ig) |
---|
4958 | IF ((entr(ig, l) * ptimestep)>(0.9 * masse(ig, l))) THEN |
---|
4959 | entr(ig, l + 1) = entr(ig, l + 1) + entr(ig, l) - & |
---|
4960 | 0.9 * masse(ig, l) / ptimestep |
---|
4961 | entr(ig, l) = 0.9 * masse(ig, l) / ptimestep |
---|
4962 | END IF |
---|
4963 | END DO |
---|
4964 | END DO |
---|
4965 | ! CR: fin test |
---|
4966 | ! Calcul des flux |
---|
4967 | DO ig = 1, ngrid |
---|
4968 | DO l = 1, lmax(ig) - 1 |
---|
4969 | fmc(ig, l + 1) = fmc(ig, l) + entr(ig, l) |
---|
4970 | END DO |
---|
4971 | END DO |
---|
4972 | |
---|
4973 | ! RC |
---|
4974 | |
---|
4975 | |
---|
4976 | ! PRINT*,'9 OK convect8' |
---|
4977 | ! PRINT*,'WA1 ',wa_moy |
---|
4978 | |
---|
4979 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
4980 | |
---|
4981 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
4982 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
4983 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
4984 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
4985 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
4986 | |
---|
4987 | DO l = 2, nlay |
---|
4988 | DO ig = 1, ngrid |
---|
4989 | IF (l<=lmaxa(ig)) THEN |
---|
4990 | zw = max(wa_moy(ig, l), 1.E-10) |
---|
4991 | larg_cons(ig, l) = zmax(ig) * r_aspect * fmc(ig, l) / (rhobarz(ig, l) * zw) |
---|
4992 | END IF |
---|
4993 | END DO |
---|
4994 | END DO |
---|
4995 | |
---|
4996 | DO l = 2, nlay |
---|
4997 | DO ig = 1, ngrid |
---|
4998 | IF (l<=lmaxa(ig)) THEN |
---|
4999 | ! if (idetr.EQ.0) THEN |
---|
5000 | ! cette option est finalement en dur. |
---|
5001 | IF ((l_mix * zlev(ig, l))<0.) THEN |
---|
5002 | ! PRINT*,'pb l_mix*zlev<0' |
---|
5003 | END IF |
---|
5004 | ! CR: test: nouvelle def de lambda |
---|
5005 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
5006 | IF (zw2(ig, l)>1.E-10) THEN |
---|
5007 | larg_detr(ig, l) = sqrt((l_mix / zw2(ig, l)) * zlev(ig, l)) |
---|
5008 | ELSE |
---|
5009 | larg_detr(ig, l) = sqrt(l_mix * zlev(ig, l)) |
---|
5010 | END IF |
---|
5011 | ! RC |
---|
5012 | ! ELSE IF (idetr.EQ.1) THEN |
---|
5013 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
5014 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
5015 | ! ELSE IF (idetr.EQ.2) THEN |
---|
5016 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
5017 | ! s *sqrt(wa_moy(ig,l)) |
---|
5018 | ! ELSE IF (idetr.EQ.4) THEN |
---|
5019 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
5020 | ! s *wa_moy(ig,l) |
---|
5021 | ! END IF |
---|
5022 | END IF |
---|
5023 | END DO |
---|
5024 | END DO |
---|
5025 | |
---|
5026 | ! PRINT*,'10 OK convect8' |
---|
5027 | ! PRINT*,'WA2 ',wa_moy |
---|
5028 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
5029 | ! compte de l'epluchage du thermique. |
---|
5030 | |
---|
5031 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
5032 | DO ig = 1, ngrid |
---|
5033 | IF (lmix(ig)>1.) THEN |
---|
5034 | ! test |
---|
5035 | IF (((zw2(ig, lmix(ig) - 1) - zw2(ig, lmix(ig))) * ((zlev(ig, lmix(ig))) - & |
---|
5036 | (zlev(ig, lmix(ig) + 1))) - (zw2(ig, lmix(ig)) - & |
---|
5037 | zw2(ig, lmix(ig) + 1)) * ((zlev(ig, lmix(ig) - 1)) - & |
---|
5038 | (zlev(ig, lmix(ig)))))>1E-10) THEN |
---|
5039 | |
---|
5040 | zmix(ig) = ((zw2(ig, lmix(ig) - 1) - zw2(ig, lmix(ig))) * ((zlev(ig, lmix(ig)) & |
---|
5041 | )**2 - (zlev(ig, lmix(ig) + 1))**2) - (zw2(ig, lmix(ig)) - zw2(ig, & |
---|
5042 | lmix(ig) + 1)) * ((zlev(ig, lmix(ig) - 1))**2 - (zlev(ig, lmix(ig)))**2)) / & |
---|
5043 | (2. * ((zw2(ig, lmix(ig) - 1) - zw2(ig, lmix(ig))) * ((zlev(ig, lmix(ig))) - & |
---|
5044 | (zlev(ig, lmix(ig) + 1))) - (zw2(ig, lmix(ig)) - & |
---|
5045 | zw2(ig, lmix(ig) + 1)) * ((zlev(ig, lmix(ig) - 1)) - (zlev(ig, lmix(ig)))))) |
---|
5046 | ELSE |
---|
5047 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
5048 | ! PRINT*,'pb zmix' |
---|
5049 | END IF |
---|
5050 | ELSE |
---|
5051 | zmix(ig) = 0. |
---|
5052 | END IF |
---|
5053 | ! test |
---|
5054 | IF ((zmax(ig) - zmix(ig))<0.) THEN |
---|
5055 | zmix(ig) = 0.99 * zmax(ig) |
---|
5056 | ! PRINT*,'pb zmix>zmax' |
---|
5057 | END IF |
---|
5058 | END DO |
---|
5059 | |
---|
5060 | ! calcul du nouveau lmix correspondant |
---|
5061 | DO ig = 1, ngrid |
---|
5062 | DO l = 1, klev |
---|
5063 | IF (zmix(ig)>=zlev(ig, l) .AND. zmix(ig)<zlev(ig, l + 1)) THEN |
---|
5064 | lmix(ig) = l |
---|
5065 | END IF |
---|
5066 | END DO |
---|
5067 | END DO |
---|
5068 | |
---|
5069 | DO l = 2, nlay |
---|
5070 | DO ig = 1, ngrid |
---|
5071 | IF (larg_cons(ig, l)>1.) THEN |
---|
5072 | ! PRINT*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
5073 | fraca(ig, l) = (larg_cons(ig, l) - larg_detr(ig, l)) / (r_aspect * zmax(ig)) |
---|
5074 | ! test |
---|
5075 | fraca(ig, l) = max(fraca(ig, l), 0.) |
---|
5076 | fraca(ig, l) = min(fraca(ig, l), 0.5) |
---|
5077 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
5078 | fracc(ig, l) = larg_cons(ig, l) / (r_aspect * zmax(ig)) |
---|
5079 | ELSE |
---|
5080 | ! wa_moy(ig,l)=0. |
---|
5081 | fraca(ig, l) = 0. |
---|
5082 | fracc(ig, l) = 0. |
---|
5083 | fracd(ig, l) = 1. |
---|
5084 | END IF |
---|
5085 | END DO |
---|
5086 | END DO |
---|
5087 | ! CR: calcul de fracazmix |
---|
5088 | DO ig = 1, ngrid |
---|
5089 | fracazmix(ig) = (fraca(ig, lmix(ig) + 1) - fraca(ig, lmix(ig))) / & |
---|
5090 | (zlev(ig, lmix(ig) + 1) - zlev(ig, lmix(ig))) * zmix(ig) + & |
---|
5091 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig)) * (fraca(ig, lmix(ig) + 1) - fraca(ig & |
---|
5092 | , lmix(ig))) / (zlev(ig, lmix(ig) + 1) - zlev(ig, lmix(ig))) |
---|
5093 | END DO |
---|
5094 | |
---|
5095 | DO l = 2, nlay |
---|
5096 | DO ig = 1, ngrid |
---|
5097 | IF (larg_cons(ig, l)>1.) THEN |
---|
5098 | IF (l>lmix(ig)) THEN |
---|
5099 | ! test |
---|
5100 | IF (zmax(ig) - zmix(ig)<1.E-10) THEN |
---|
5101 | ! PRINT*,'pb xxx' |
---|
5102 | xxx(ig, l) = (lmaxa(ig) + 1. - l) / (lmaxa(ig) + 1. - lmix(ig)) |
---|
5103 | ELSE |
---|
5104 | xxx(ig, l) = (zmax(ig) - zlev(ig, l)) / (zmax(ig) - zmix(ig)) |
---|
5105 | END IF |
---|
5106 | IF (idetr==0) THEN |
---|
5107 | fraca(ig, l) = fracazmix(ig) |
---|
5108 | ELSE IF (idetr==1) THEN |
---|
5109 | fraca(ig, l) = fracazmix(ig) * xxx(ig, l) |
---|
5110 | ELSE IF (idetr==2) THEN |
---|
5111 | fraca(ig, l) = fracazmix(ig) * (1. - (1. - xxx(ig, l))**2) |
---|
5112 | ELSE |
---|
5113 | fraca(ig, l) = fracazmix(ig) * xxx(ig, l)**2 |
---|
5114 | END IF |
---|
5115 | ! PRINT*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
5116 | fraca(ig, l) = max(fraca(ig, l), 0.) |
---|
5117 | fraca(ig, l) = min(fraca(ig, l), 0.5) |
---|
5118 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
5119 | fracc(ig, l) = larg_cons(ig, l) / (r_aspect * zmax(ig)) |
---|
5120 | END IF |
---|
5121 | END IF |
---|
5122 | END DO |
---|
5123 | END DO |
---|
5124 | |
---|
5125 | ! PRINT*,'fin calcul fraca' |
---|
5126 | ! PRINT*,'11 OK convect8' |
---|
5127 | ! PRINT*,'Ea3 ',wa_moy |
---|
5128 | ! ------------------------------------------------------------------ |
---|
5129 | ! Calcul de fracd, wd |
---|
5130 | ! somme wa - wd = 0 |
---|
5131 | ! ------------------------------------------------------------------ |
---|
5132 | |
---|
5133 | DO ig = 1, ngrid |
---|
5134 | fm(ig, 1) = 0. |
---|
5135 | fm(ig, nlay + 1) = 0. |
---|
5136 | END DO |
---|
5137 | |
---|
5138 | DO l = 2, nlay |
---|
5139 | DO ig = 1, ngrid |
---|
5140 | fm(ig, l) = fraca(ig, l) * wa_moy(ig, l) * rhobarz(ig, l) |
---|
5141 | ! CR:test |
---|
5142 | IF (entr(ig, l - 1)<1E-10 .AND. fm(ig, l)>fm(ig, l - 1) .AND. l>lmix(ig)) THEN |
---|
5143 | fm(ig, l) = fm(ig, l - 1) |
---|
5144 | ! WRITE(1,*)'ajustement fm, l',l |
---|
5145 | END IF |
---|
5146 | ! WRITE(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
5147 | ! RC |
---|
5148 | END DO |
---|
5149 | DO ig = 1, ngrid |
---|
5150 | IF (fracd(ig, l)<0.1) THEN |
---|
5151 | abort_message = 'fracd trop petit' |
---|
5152 | CALL abort_physic(modname, abort_message, 1) |
---|
5153 | ELSE |
---|
5154 | ! vitesse descendante "diagnostique" |
---|
5155 | wd(ig, l) = fm(ig, l) / (fracd(ig, l) * rhobarz(ig, l)) |
---|
5156 | END IF |
---|
5157 | END DO |
---|
5158 | END DO |
---|
5159 | |
---|
5160 | DO l = 1, nlay |
---|
5161 | DO ig = 1, ngrid |
---|
5162 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
5163 | masse(ig, l) = (pplev(ig, l) - pplev(ig, l + 1)) / rg |
---|
5164 | END DO |
---|
5165 | END DO |
---|
5166 | |
---|
5167 | ! PRINT*,'12 OK convect8' |
---|
5168 | ! PRINT*,'WA4 ',wa_moy |
---|
5169 | ! c------------------------------------------------------------------ |
---|
5170 | ! calcul du transport vertical |
---|
5171 | ! ------------------------------------------------------------------ |
---|
5172 | |
---|
5173 | GO TO 4444 |
---|
5174 | ! PRINT*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
5175 | DO l = 2, nlay - 1 |
---|
5176 | DO ig = 1, ngrid |
---|
5177 | IF (fm(ig, l + 1) * ptimestep>masse(ig, l) .AND. fm(ig, l + 1) * ptimestep>masse(& |
---|
5178 | ig, l + 1)) THEN |
---|
5179 | ! PRINT*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
5180 | ! s ,fm(ig,l+1)*ptimestep |
---|
5181 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
5182 | END IF |
---|
5183 | END DO |
---|
5184 | END DO |
---|
5185 | |
---|
5186 | DO l = 1, nlay |
---|
5187 | DO ig = 1, ngrid |
---|
5188 | IF (entr(ig, l) * ptimestep>masse(ig, l)) THEN |
---|
5189 | ! PRINT*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
5190 | ! s ,entr(ig,l)*ptimestep |
---|
5191 | ! s ,' M=',masse(ig,l) |
---|
5192 | END IF |
---|
5193 | END DO |
---|
5194 | END DO |
---|
5195 | |
---|
5196 | DO l = 1, nlay |
---|
5197 | DO ig = 1, ngrid |
---|
5198 | IF (.NOT. fm(ig, l)>=0. .OR. .NOT. fm(ig, l)<=10.) THEN |
---|
5199 | ! PRINT*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
5200 | ! s ,' FM=',fm(ig,l) |
---|
5201 | END IF |
---|
5202 | IF (.NOT. masse(ig, l)>=1.E-10 .OR. .NOT. masse(ig, l)<=1.E4) THEN |
---|
5203 | ! PRINT*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
5204 | ! s ,' M=',masse(ig,l) |
---|
5205 | ! PRINT*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
5206 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
5207 | ! PRINT*,'zlev(ig,l+1),zlev(ig,l)' |
---|
5208 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
5209 | ! PRINT*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
5210 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
5211 | END IF |
---|
5212 | IF (.NOT. entr(ig, l)>=0. .OR. .NOT. entr(ig, l)<=10.) THEN |
---|
5213 | ! PRINT*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
5214 | ! s ,' E=',entr(ig,l) |
---|
5215 | END IF |
---|
5216 | END DO |
---|
5217 | END DO |
---|
5218 | |
---|
5219 | 4444 CONTINUE |
---|
5220 | |
---|
5221 | ! CR:redefinition du entr |
---|
5222 | DO l = 1, nlay |
---|
5223 | DO ig = 1, ngrid |
---|
5224 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l + 1) |
---|
5225 | IF (detr(ig, l)<0.) THEN |
---|
5226 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
5227 | detr(ig, l) = 0. |
---|
5228 | ! PRINT*,'WARNING !!! detrainement negatif ',ig,l |
---|
5229 | END IF |
---|
5230 | END DO |
---|
5231 | END DO |
---|
5232 | ! RC |
---|
5233 | IF (w2di==1) THEN |
---|
5234 | fm0 = fm0 + ptimestep * (fm - fm0) / tho |
---|
5235 | entr0 = entr0 + ptimestep * (entr - entr0) / tho |
---|
5236 | ELSE |
---|
5237 | fm0 = fm |
---|
5238 | entr0 = entr |
---|
5239 | END IF |
---|
5240 | |
---|
5241 | IF (1==1) THEN |
---|
5242 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
5243 | zha) |
---|
5244 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
5245 | zoa) |
---|
5246 | ELSE |
---|
5247 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
5248 | zdhadj, zha) |
---|
5249 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
5250 | pdoadj, zoa) |
---|
5251 | END IF |
---|
5252 | |
---|
5253 | IF (1==0) THEN |
---|
5254 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
5255 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
5256 | ELSE |
---|
5257 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
5258 | zua) |
---|
5259 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
5260 | zva) |
---|
5261 | END IF |
---|
5262 | |
---|
5263 | DO l = 1, nlay |
---|
5264 | DO ig = 1, ngrid |
---|
5265 | zf = 0.5 * (fracc(ig, l) + fracc(ig, l + 1)) |
---|
5266 | zf2 = zf / (1. - zf) |
---|
5267 | thetath2(ig, l) = zf2 * (zha(ig, l) - zh(ig, l))**2 |
---|
5268 | wth2(ig, l) = zf2 * (0.5 * (wa_moy(ig, l) + wa_moy(ig, l + 1)))**2 |
---|
5269 | END DO |
---|
5270 | END DO |
---|
5271 | |
---|
5272 | |
---|
5273 | |
---|
5274 | ! PRINT*,'13 OK convect8' |
---|
5275 | ! PRINT*,'WA5 ',wa_moy |
---|
5276 | DO l = 1, nlay |
---|
5277 | DO ig = 1, ngrid |
---|
5278 | pdtadj(ig, l) = zdhadj(ig, l) * zpspsk(ig, l) |
---|
5279 | END DO |
---|
5280 | END DO |
---|
5281 | |
---|
5282 | |
---|
5283 | ! do l=1,nlay |
---|
5284 | ! do ig=1,ngrid |
---|
5285 | ! IF(abs(pdtadj(ig,l))*86400..gt.500.) THEN |
---|
5286 | ! PRINT*,'WARN!!! ig=',ig,' l=',l |
---|
5287 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
5288 | ! END IF |
---|
5289 | ! IF(abs(pdoadj(ig,l))*86400..gt.1.) THEN |
---|
5290 | ! PRINT*,'WARN!!! ig=',ig,' l=',l |
---|
5291 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
5292 | ! END IF |
---|
5293 | ! enddo |
---|
5294 | ! enddo |
---|
5295 | |
---|
5296 | ! PRINT*,'14 OK convect8' |
---|
5297 | ! ------------------------------------------------------------------ |
---|
5298 | ! Calculs pour les sorties |
---|
5299 | ! ------------------------------------------------------------------ |
---|
5300 | |
---|
5301 | END SUBROUTINE thermcell_sec |
---|
5302 | |
---|
5303 | SUBROUTINE calcul_sec(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, pu, & |
---|
5304 | pv, pt, po, zmax, wmax, zw2, lmix & ! s |
---|
5305 | ! ,pu_therm,pv_therm |
---|
5306 | , r_aspect, l_mix, w2di, tho) |
---|
5307 | |
---|
5308 | USE dimphy |
---|
5309 | USE lmdz_yomcst |
---|
5310 | |
---|
5311 | IMPLICIT NONE |
---|
5312 | |
---|
5313 | ! ======================================================================= |
---|
5314 | |
---|
5315 | ! Calcul du transport verticale dans la couche limite en presence |
---|
5316 | ! de "thermiques" explicitement representes |
---|
5317 | |
---|
5318 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
5319 | |
---|
5320 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
5321 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
5322 | ! mélange |
---|
5323 | |
---|
5324 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
5325 | ! en compte: |
---|
5326 | ! 1. un flux de masse montant |
---|
5327 | ! 2. un flux de masse descendant |
---|
5328 | ! 3. un entrainement |
---|
5329 | ! 4. un detrainement |
---|
5330 | |
---|
5331 | ! ======================================================================= |
---|
5332 | |
---|
5333 | ! arguments: |
---|
5334 | ! ---------- |
---|
5335 | |
---|
5336 | INTEGER ngrid, nlay, w2di |
---|
5337 | REAL tho |
---|
5338 | REAL ptimestep, l_mix, r_aspect |
---|
5339 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
5340 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
5341 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
5342 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
5343 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay + 1) |
---|
5344 | REAL pphi(ngrid, nlay) |
---|
5345 | |
---|
5346 | INTEGER idetr |
---|
5347 | SAVE idetr |
---|
5348 | DATA idetr/3/ |
---|
5349 | !$OMP THREADPRIVATE(idetr) |
---|
5350 | ! local: |
---|
5351 | ! ------ |
---|
5352 | |
---|
5353 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
5354 | REAL zsortie1d(klon) |
---|
5355 | ! CR: on remplace lmax(klon,klev+1) |
---|
5356 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
5357 | REAL linter(klon) |
---|
5358 | REAL zmix(klon), fracazmix(klon) |
---|
5359 | ! RC |
---|
5360 | REAL zmax(klon), zw, zw2(klon, klev + 1), ztva(klon, klev) |
---|
5361 | |
---|
5362 | REAL zlev(klon, klev + 1), zlay(klon, klev) |
---|
5363 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
5364 | REAL ztv(klon, klev) |
---|
5365 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
5366 | REAL wh(klon, klev + 1) |
---|
5367 | REAL wu(klon, klev + 1), wv(klon, klev + 1), wo(klon, klev + 1) |
---|
5368 | REAL zla(klon, klev + 1) |
---|
5369 | REAL zwa(klon, klev + 1) |
---|
5370 | REAL zld(klon, klev + 1) |
---|
5371 | ! real zwd(klon,klev+1) |
---|
5372 | REAL zsortie(klon, klev) |
---|
5373 | REAL zva(klon, klev) |
---|
5374 | REAL zua(klon, klev) |
---|
5375 | REAL zoa(klon, klev) |
---|
5376 | |
---|
5377 | REAL zha(klon, klev) |
---|
5378 | REAL wa_moy(klon, klev + 1) |
---|
5379 | REAL fraca(klon, klev + 1) |
---|
5380 | REAL fracc(klon, klev + 1) |
---|
5381 | REAL zf, zf2 |
---|
5382 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
5383 | ! common/comtherm/thetath2,wth2 |
---|
5384 | |
---|
5385 | REAL count_time |
---|
5386 | ! integer isplit,nsplit |
---|
5387 | INTEGER isplit, nsplit, ialt |
---|
5388 | PARAMETER (nsplit = 10) |
---|
5389 | DATA isplit/0/ |
---|
5390 | SAVE isplit |
---|
5391 | !$OMP THREADPRIVATE(isplit) |
---|
5392 | |
---|
5393 | LOGICAL sorties |
---|
5394 | REAL rho(klon, klev), rhobarz(klon, klev + 1), masse(klon, klev) |
---|
5395 | REAL zpspsk(klon, klev) |
---|
5396 | |
---|
5397 | ! real wmax(klon,klev),wmaxa(klon) |
---|
5398 | REAL wmax(klon), wmaxa(klon) |
---|
5399 | REAL wa(klon, klev, klev + 1) |
---|
5400 | REAL wd(klon, klev + 1) |
---|
5401 | REAL larg_part(klon, klev, klev + 1) |
---|
5402 | REAL fracd(klon, klev + 1) |
---|
5403 | REAL xxx(klon, klev + 1) |
---|
5404 | REAL larg_cons(klon, klev + 1) |
---|
5405 | REAL larg_detr(klon, klev + 1) |
---|
5406 | REAL fm0(klon, klev + 1), entr0(klon, klev), detr(klon, klev) |
---|
5407 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
5408 | REAL fm(klon, klev + 1), entr(klon, klev) |
---|
5409 | REAL fmc(klon, klev + 1) |
---|
5410 | |
---|
5411 | ! CR:nouvelles variables |
---|
5412 | REAL f_star(klon, klev + 1), entr_star(klon, klev) |
---|
5413 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
5414 | REAL zalim(klon) |
---|
5415 | INTEGER lalim(klon) |
---|
5416 | REAL norme(klon) |
---|
5417 | REAL f(klon), f0(klon) |
---|
5418 | REAL zlevinter(klon) |
---|
5419 | LOGICAL therm |
---|
5420 | LOGICAL first |
---|
5421 | DATA first/.FALSE./ |
---|
5422 | SAVE first |
---|
5423 | !$OMP THREADPRIVATE(first) |
---|
5424 | ! RC |
---|
5425 | |
---|
5426 | CHARACTER *2 str2 |
---|
5427 | CHARACTER *10 str10 |
---|
5428 | |
---|
5429 | CHARACTER (LEN = 20) :: modname = 'calcul_sec' |
---|
5430 | CHARACTER (LEN = 80) :: abort_message |
---|
5431 | |
---|
5432 | |
---|
5433 | ! LOGICAL vtest(klon),down |
---|
5434 | |
---|
5435 | INTEGER ncorrec |
---|
5436 | SAVE ncorrec |
---|
5437 | DATA ncorrec/0/ |
---|
5438 | !$OMP THREADPRIVATE(ncorrec) |
---|
5439 | |
---|
5440 | |
---|
5441 | ! ----------------------------------------------------------------------- |
---|
5442 | ! initialisation: |
---|
5443 | ! --------------- |
---|
5444 | |
---|
5445 | sorties = .TRUE. |
---|
5446 | IF (ngrid/=klon) THEN |
---|
5447 | PRINT * |
---|
5448 | PRINT *, 'STOP dans convadj' |
---|
5449 | PRINT *, 'ngrid =', ngrid |
---|
5450 | PRINT *, 'klon =', klon |
---|
5451 | END IF |
---|
5452 | |
---|
5453 | ! ----------------------------------------------------------------------- |
---|
5454 | ! incrementation eventuelle de tendances precedentes: |
---|
5455 | ! --------------------------------------------------- |
---|
5456 | |
---|
5457 | ! PRINT*,'0 OK convect8' |
---|
5458 | |
---|
5459 | DO l = 1, nlay |
---|
5460 | DO ig = 1, ngrid |
---|
5461 | zpspsk(ig, l) = (pplay(ig, l) / pplev(ig, 1))**rkappa |
---|
5462 | zh(ig, l) = pt(ig, l) / zpspsk(ig, l) |
---|
5463 | zu(ig, l) = pu(ig, l) |
---|
5464 | zv(ig, l) = pv(ig, l) |
---|
5465 | zo(ig, l) = po(ig, l) |
---|
5466 | ztv(ig, l) = zh(ig, l) * (1. + 0.61 * zo(ig, l)) |
---|
5467 | END DO |
---|
5468 | END DO |
---|
5469 | |
---|
5470 | ! PRINT*,'1 OK convect8' |
---|
5471 | ! -------------------- |
---|
5472 | |
---|
5473 | |
---|
5474 | ! + + + + + + + + + + + |
---|
5475 | |
---|
5476 | |
---|
5477 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
5478 | ! wh,wt,wo ... |
---|
5479 | |
---|
5480 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
5481 | |
---|
5482 | |
---|
5483 | ! -------------------- zlev(1) |
---|
5484 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
5485 | |
---|
5486 | |
---|
5487 | |
---|
5488 | ! ----------------------------------------------------------------------- |
---|
5489 | ! Calcul des altitudes des couches |
---|
5490 | ! ----------------------------------------------------------------------- |
---|
5491 | |
---|
5492 | DO l = 2, nlay |
---|
5493 | DO ig = 1, ngrid |
---|
5494 | zlev(ig, l) = 0.5 * (pphi(ig, l) + pphi(ig, l - 1)) / rg |
---|
5495 | END DO |
---|
5496 | END DO |
---|
5497 | DO ig = 1, ngrid |
---|
5498 | zlev(ig, 1) = 0. |
---|
5499 | zlev(ig, nlay + 1) = (2. * pphi(ig, klev) - pphi(ig, klev - 1)) / rg |
---|
5500 | END DO |
---|
5501 | DO l = 1, nlay |
---|
5502 | DO ig = 1, ngrid |
---|
5503 | zlay(ig, l) = pphi(ig, l) / rg |
---|
5504 | END DO |
---|
5505 | END DO |
---|
5506 | |
---|
5507 | ! PRINT*,'2 OK convect8' |
---|
5508 | ! ----------------------------------------------------------------------- |
---|
5509 | ! Calcul des densites |
---|
5510 | ! ----------------------------------------------------------------------- |
---|
5511 | |
---|
5512 | DO l = 1, nlay |
---|
5513 | DO ig = 1, ngrid |
---|
5514 | rho(ig, l) = pplay(ig, l) / (zpspsk(ig, l) * rd * zh(ig, l)) |
---|
5515 | END DO |
---|
5516 | END DO |
---|
5517 | |
---|
5518 | DO l = 2, nlay |
---|
5519 | DO ig = 1, ngrid |
---|
5520 | rhobarz(ig, l) = 0.5 * (rho(ig, l) + rho(ig, l - 1)) |
---|
5521 | END DO |
---|
5522 | END DO |
---|
5523 | |
---|
5524 | DO k = 1, nlay |
---|
5525 | DO l = 1, nlay + 1 |
---|
5526 | DO ig = 1, ngrid |
---|
5527 | wa(ig, k, l) = 0. |
---|
5528 | END DO |
---|
5529 | END DO |
---|
5530 | END DO |
---|
5531 | |
---|
5532 | ! PRINT*,'3 OK convect8' |
---|
5533 | ! ------------------------------------------------------------------ |
---|
5534 | ! Calcul de w2, quarre de w a partir de la cape |
---|
5535 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
5536 | |
---|
5537 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
5538 | ! w2 est stoke dans wa |
---|
5539 | |
---|
5540 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
5541 | ! independants par couches que pour calculer l'entrainement |
---|
5542 | ! a la base et la hauteur max de l'ascendance. |
---|
5543 | |
---|
5544 | ! Indicages: |
---|
5545 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
5546 | ! une vitesse wa(k,l). |
---|
5547 | |
---|
5548 | ! -------------------- |
---|
5549 | |
---|
5550 | ! + + + + + + + + + + |
---|
5551 | |
---|
5552 | ! wa(k,l) ---- -------------------- l |
---|
5553 | ! /\ |
---|
5554 | ! /||\ + + + + + + + + + + |
---|
5555 | ! || |
---|
5556 | ! || -------------------- |
---|
5557 | ! || |
---|
5558 | ! || + + + + + + + + + + |
---|
5559 | ! || |
---|
5560 | ! || -------------------- |
---|
5561 | ! ||__ |
---|
5562 | ! |___ + + + + + + + + + + k |
---|
5563 | |
---|
5564 | ! -------------------- |
---|
5565 | |
---|
5566 | |
---|
5567 | |
---|
5568 | ! ------------------------------------------------------------------ |
---|
5569 | |
---|
5570 | ! CR: ponderation entrainement des couches instables |
---|
5571 | ! def des entr_star tels que entr=f*entr_star |
---|
5572 | DO l = 1, klev |
---|
5573 | DO ig = 1, ngrid |
---|
5574 | entr_star(ig, l) = 0. |
---|
5575 | END DO |
---|
5576 | END DO |
---|
5577 | ! determination de la longueur de la couche d entrainement |
---|
5578 | DO ig = 1, ngrid |
---|
5579 | lentr(ig) = 1 |
---|
5580 | END DO |
---|
5581 | |
---|
5582 | ! on ne considere que les premieres couches instables |
---|
5583 | therm = .FALSE. |
---|
5584 | DO k = nlay - 2, 1, -1 |
---|
5585 | DO ig = 1, ngrid |
---|
5586 | IF (ztv(ig, k)>ztv(ig, k + 1) .AND. ztv(ig, k + 1)<=ztv(ig, k + 2)) THEN |
---|
5587 | lentr(ig) = k + 1 |
---|
5588 | therm = .TRUE. |
---|
5589 | END IF |
---|
5590 | END DO |
---|
5591 | END DO |
---|
5592 | ! limitation de la valeur du lentr |
---|
5593 | ! do ig=1,ngrid |
---|
5594 | ! lentr(ig)=min(5,lentr(ig)) |
---|
5595 | ! enddo |
---|
5596 | ! determination du lmin: couche d ou provient le thermique |
---|
5597 | DO ig = 1, ngrid |
---|
5598 | lmin(ig) = 1 |
---|
5599 | END DO |
---|
5600 | DO ig = 1, ngrid |
---|
5601 | DO l = nlay, 2, -1 |
---|
5602 | IF (ztv(ig, l - 1)>ztv(ig, l)) THEN |
---|
5603 | lmin(ig) = l - 1 |
---|
5604 | END IF |
---|
5605 | END DO |
---|
5606 | END DO |
---|
5607 | ! initialisations |
---|
5608 | DO ig = 1, ngrid |
---|
5609 | zalim(ig) = 0. |
---|
5610 | norme(ig) = 0. |
---|
5611 | lalim(ig) = 1 |
---|
5612 | END DO |
---|
5613 | DO k = 1, klev - 1 |
---|
5614 | DO ig = 1, ngrid |
---|
5615 | zalim(ig) = zalim(ig) + zlev(ig, k) * max(0., (ztv(ig, k) - ztv(ig, & |
---|
5616 | k + 1)) / (zlev(ig, k + 1) - zlev(ig, k))) |
---|
5617 | ! s *(zlev(ig,k+1)-zlev(ig,k)) |
---|
5618 | norme(ig) = norme(ig) + max(0., (ztv(ig, k) - ztv(ig, k + 1)) / (zlev(ig, & |
---|
5619 | k + 1) - zlev(ig, k))) |
---|
5620 | ! s *(zlev(ig,k+1)-zlev(ig,k)) |
---|
5621 | END DO |
---|
5622 | END DO |
---|
5623 | DO ig = 1, ngrid |
---|
5624 | IF (norme(ig)>1.E-10) THEN |
---|
5625 | zalim(ig) = max(10. * zalim(ig) / norme(ig), zlev(ig, 2)) |
---|
5626 | ! zalim(ig)=min(zalim(ig),zlev(ig,lentr(ig))) |
---|
5627 | END IF |
---|
5628 | END DO |
---|
5629 | ! détermination du lalim correspondant |
---|
5630 | DO k = 1, klev - 1 |
---|
5631 | DO ig = 1, ngrid |
---|
5632 | IF ((zalim(ig)>zlev(ig, k)) .AND. (zalim(ig)<=zlev(ig, k + 1))) THEN |
---|
5633 | lalim(ig) = k |
---|
5634 | END IF |
---|
5635 | END DO |
---|
5636 | END DO |
---|
5637 | |
---|
5638 | ! definition de l'entrainement des couches |
---|
5639 | DO l = 1, klev - 1 |
---|
5640 | DO ig = 1, ngrid |
---|
5641 | IF (ztv(ig, l)>ztv(ig, l + 1) .AND. l>=lmin(ig) .AND. l<lentr(ig)) THEN |
---|
5642 | entr_star(ig, l) = max((ztv(ig, l) - ztv(ig, l + 1)), 0.) & ! s |
---|
5643 | ! *(zlev(ig,l+1)-zlev(ig,l)) |
---|
5644 | * sqrt(zlev(ig, l + 1)) |
---|
5645 | ! autre def |
---|
5646 | ! entr_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
---|
5647 | ! s /zlev(ig,lentr(ig)+2)))**(3./2.) |
---|
5648 | END IF |
---|
5649 | END DO |
---|
5650 | END DO |
---|
5651 | ! nouveau test |
---|
5652 | ! if (therm) THEN |
---|
5653 | DO l = 1, klev - 1 |
---|
5654 | DO ig = 1, ngrid |
---|
5655 | IF (ztv(ig, l)>ztv(ig, l + 1) .AND. l>=lmin(ig) .AND. l<=lalim(ig) .AND. & |
---|
5656 | zalim(ig)>1.E-10) THEN |
---|
5657 | ! if (l.le.lentr(ig)) THEN |
---|
5658 | ! entr_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
---|
5659 | ! s /zalim(ig)))**(3./2.) |
---|
5660 | ! WRITE(10,*)zlev(ig,l),entr_star(ig,l) |
---|
5661 | END IF |
---|
5662 | END DO |
---|
5663 | END DO |
---|
5664 | ! END IF |
---|
5665 | ! pas de thermique si couche 1 stable |
---|
5666 | DO ig = 1, ngrid |
---|
5667 | IF (lmin(ig)>5) THEN |
---|
5668 | DO l = 1, klev |
---|
5669 | entr_star(ig, l) = 0. |
---|
5670 | END DO |
---|
5671 | END IF |
---|
5672 | END DO |
---|
5673 | ! calcul de l entrainement total |
---|
5674 | DO ig = 1, ngrid |
---|
5675 | entr_star_tot(ig) = 0. |
---|
5676 | END DO |
---|
5677 | DO ig = 1, ngrid |
---|
5678 | DO k = 1, klev |
---|
5679 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
5680 | END DO |
---|
5681 | END DO |
---|
5682 | ! Calcul entrainement normalise |
---|
5683 | DO ig = 1, ngrid |
---|
5684 | IF (entr_star_tot(ig)>1.E-10) THEN |
---|
5685 | ! do l=1,lentr(ig) |
---|
5686 | DO l = 1, klev |
---|
5687 | ! def possibles pour entr_star: zdthetadz, dthetadz, zdtheta |
---|
5688 | entr_star(ig, l) = entr_star(ig, l) / entr_star_tot(ig) |
---|
5689 | END DO |
---|
5690 | END IF |
---|
5691 | END DO |
---|
5692 | |
---|
5693 | ! PRINT*,'fin calcul entr_star' |
---|
5694 | DO k = 1, klev |
---|
5695 | DO ig = 1, ngrid |
---|
5696 | ztva(ig, k) = ztv(ig, k) |
---|
5697 | END DO |
---|
5698 | END DO |
---|
5699 | ! RC |
---|
5700 | ! PRINT*,'7 OK convect8' |
---|
5701 | DO k = 1, klev + 1 |
---|
5702 | DO ig = 1, ngrid |
---|
5703 | zw2(ig, k) = 0. |
---|
5704 | fmc(ig, k) = 0. |
---|
5705 | ! CR |
---|
5706 | f_star(ig, k) = 0. |
---|
5707 | ! RC |
---|
5708 | larg_cons(ig, k) = 0. |
---|
5709 | larg_detr(ig, k) = 0. |
---|
5710 | wa_moy(ig, k) = 0. |
---|
5711 | END DO |
---|
5712 | END DO |
---|
5713 | |
---|
5714 | ! PRINT*,'8 OK convect8' |
---|
5715 | DO ig = 1, ngrid |
---|
5716 | linter(ig) = 1. |
---|
5717 | lmaxa(ig) = 1 |
---|
5718 | lmix(ig) = 1 |
---|
5719 | wmaxa(ig) = 0. |
---|
5720 | END DO |
---|
5721 | |
---|
5722 | ! CR: |
---|
5723 | DO l = 1, nlay - 2 |
---|
5724 | DO ig = 1, ngrid |
---|
5725 | IF (ztv(ig, l)>ztv(ig, l + 1) .AND. entr_star(ig, l)>1.E-10 .AND. & |
---|
5726 | zw2(ig, l)<1E-10) THEN |
---|
5727 | f_star(ig, l + 1) = entr_star(ig, l) |
---|
5728 | ! test:calcul de dteta |
---|
5729 | zw2(ig, l + 1) = 2. * rg * (ztv(ig, l) - ztv(ig, l + 1)) / ztv(ig, l + 1) * & |
---|
5730 | (zlev(ig, l + 1) - zlev(ig, l)) * 0.4 * pphi(ig, l) / (pphi(ig, l + 1) - pphi(ig, l)) |
---|
5731 | larg_detr(ig, l) = 0. |
---|
5732 | ELSE IF ((zw2(ig, l)>=1E-10) .AND. (f_star(ig, l) + entr_star(ig, & |
---|
5733 | l)>1.E-10)) THEN |
---|
5734 | f_star(ig, l + 1) = f_star(ig, l) + entr_star(ig, l) |
---|
5735 | ztva(ig, l) = (f_star(ig, l) * ztva(ig, l - 1) + entr_star(ig, l) * ztv(ig, l)) / & |
---|
5736 | f_star(ig, l + 1) |
---|
5737 | zw2(ig, l + 1) = zw2(ig, l) * (f_star(ig, l) / f_star(ig, l + 1))**2 + & |
---|
5738 | 2. * rg * (ztva(ig, l) - ztv(ig, l)) / ztv(ig, l) * (zlev(ig, l + 1) - zlev(ig, l)) |
---|
5739 | END IF |
---|
5740 | ! determination de zmax continu par interpolation lineaire |
---|
5741 | IF (zw2(ig, l + 1)<0.) THEN |
---|
5742 | ! test |
---|
5743 | IF (abs(zw2(ig, l + 1) - zw2(ig, l))<1E-10) THEN |
---|
5744 | ! PRINT*,'pb linter' |
---|
5745 | END IF |
---|
5746 | linter(ig) = (l * (zw2(ig, l + 1) - zw2(ig, l)) - zw2(ig, l)) / (zw2(ig, l + 1) - zw2(& |
---|
5747 | ig, l)) |
---|
5748 | zw2(ig, l + 1) = 0. |
---|
5749 | lmaxa(ig) = l |
---|
5750 | ELSE |
---|
5751 | IF (zw2(ig, l + 1)<0.) THEN |
---|
5752 | ! PRINT*,'pb1 zw2<0' |
---|
5753 | END IF |
---|
5754 | wa_moy(ig, l + 1) = sqrt(zw2(ig, l + 1)) |
---|
5755 | END IF |
---|
5756 | IF (wa_moy(ig, l + 1)>wmaxa(ig)) THEN |
---|
5757 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
5758 | lmix(ig) = l + 1 |
---|
5759 | wmaxa(ig) = wa_moy(ig, l + 1) |
---|
5760 | END IF |
---|
5761 | END DO |
---|
5762 | END DO |
---|
5763 | ! PRINT*,'fin calcul zw2' |
---|
5764 | |
---|
5765 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
5766 | DO ig = 1, ngrid |
---|
5767 | lmax(ig) = lentr(ig) |
---|
5768 | ! lmax(ig)=lalim(ig) |
---|
5769 | END DO |
---|
5770 | DO ig = 1, ngrid |
---|
5771 | DO l = nlay, lentr(ig) + 1, -1 |
---|
5772 | ! do l=nlay,lalim(ig)+1,-1 |
---|
5773 | IF (zw2(ig, l)<=1.E-10) THEN |
---|
5774 | lmax(ig) = l - 1 |
---|
5775 | END IF |
---|
5776 | END DO |
---|
5777 | END DO |
---|
5778 | ! pas de thermique si couche 1 stable |
---|
5779 | DO ig = 1, ngrid |
---|
5780 | IF (lmin(ig)>5) THEN |
---|
5781 | lmax(ig) = 1 |
---|
5782 | lmin(ig) = 1 |
---|
5783 | lentr(ig) = 1 |
---|
5784 | lalim(ig) = 1 |
---|
5785 | END IF |
---|
5786 | END DO |
---|
5787 | |
---|
5788 | ! Determination de zw2 max |
---|
5789 | DO ig = 1, ngrid |
---|
5790 | wmax(ig) = 0. |
---|
5791 | END DO |
---|
5792 | |
---|
5793 | DO l = 1, nlay |
---|
5794 | DO ig = 1, ngrid |
---|
5795 | IF (l<=lmax(ig)) THEN |
---|
5796 | IF (zw2(ig, l)<0.) THEN |
---|
5797 | ! PRINT*,'pb2 zw2<0' |
---|
5798 | END IF |
---|
5799 | zw2(ig, l) = sqrt(zw2(ig, l)) |
---|
5800 | wmax(ig) = max(wmax(ig), zw2(ig, l)) |
---|
5801 | ELSE |
---|
5802 | zw2(ig, l) = 0. |
---|
5803 | END IF |
---|
5804 | END DO |
---|
5805 | END DO |
---|
5806 | |
---|
5807 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
5808 | DO ig = 1, ngrid |
---|
5809 | zmax(ig) = 0. |
---|
5810 | zlevinter(ig) = zlev(ig, 1) |
---|
5811 | END DO |
---|
5812 | DO ig = 1, ngrid |
---|
5813 | ! calcul de zlevinter |
---|
5814 | zlevinter(ig) = (zlev(ig, lmax(ig) + 1) - zlev(ig, lmax(ig))) * linter(ig) + & |
---|
5815 | zlev(ig, lmax(ig)) - lmax(ig) * (zlev(ig, lmax(ig) + 1) - zlev(ig, lmax(ig))) |
---|
5816 | zmax(ig) = max(zmax(ig), zlevinter(ig) - zlev(ig, lmin(ig))) |
---|
5817 | END DO |
---|
5818 | DO ig = 1, ngrid |
---|
5819 | ! WRITE(8,*)zmax(ig),lmax(ig),lentr(ig),lmin(ig) |
---|
5820 | END DO |
---|
5821 | ! on stope après les calculs de zmax et wmax |
---|
5822 | RETURN |
---|
5823 | |
---|
5824 | ! PRINT*,'avant fermeture' |
---|
5825 | ! Fermeture,determination de f |
---|
5826 | ! Attention! entrainement normalisé ou pas? |
---|
5827 | DO ig = 1, ngrid |
---|
5828 | entr_star2(ig) = 0. |
---|
5829 | END DO |
---|
5830 | DO ig = 1, ngrid |
---|
5831 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
5832 | f(ig) = 0. |
---|
5833 | ELSE |
---|
5834 | DO k = lmin(ig), lentr(ig) |
---|
5835 | ! do k=lmin(ig),lalim(ig) |
---|
5836 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2 / (rho(ig, k) * (& |
---|
5837 | zlev(ig, k + 1) - zlev(ig, k))) |
---|
5838 | END DO |
---|
5839 | ! Nouvelle fermeture |
---|
5840 | f(ig) = wmax(ig) / (max(500., zmax(ig)) * r_aspect * entr_star2(ig)) |
---|
5841 | ! s *entr_star_tot(ig) |
---|
5842 | ! test |
---|
5843 | ! if (first) THEN |
---|
5844 | f(ig) = f(ig) + (f0(ig) - f(ig)) * exp(-ptimestep / zmax(ig) * wmax(ig)) |
---|
5845 | ! END IF |
---|
5846 | END IF |
---|
5847 | f0(ig) = f(ig) |
---|
5848 | ! first=.TRUE. |
---|
5849 | END DO |
---|
5850 | ! PRINT*,'apres fermeture' |
---|
5851 | ! on stoppe après la fermeture |
---|
5852 | RETURN |
---|
5853 | ! Calcul de l'entrainement |
---|
5854 | DO k = 1, klev |
---|
5855 | DO ig = 1, ngrid |
---|
5856 | entr(ig, k) = f(ig) * entr_star(ig, k) |
---|
5857 | END DO |
---|
5858 | END DO |
---|
5859 | ! on stoppe après le calcul de entr |
---|
5860 | ! RETURN |
---|
5861 | ! CR:test pour entrainer moins que la masse |
---|
5862 | ! do ig=1,ngrid |
---|
5863 | ! do l=1,lentr(ig) |
---|
5864 | ! if ((entr(ig,l)*ptimestep).gt.(0.9*masse(ig,l))) THEN |
---|
5865 | ! entr(ig,l+1)=entr(ig,l+1)+entr(ig,l) |
---|
5866 | ! s -0.9*masse(ig,l)/ptimestep |
---|
5867 | ! entr(ig,l)=0.9*masse(ig,l)/ptimestep |
---|
5868 | ! END IF |
---|
5869 | ! enddo |
---|
5870 | ! enddo |
---|
5871 | ! CR: fin test |
---|
5872 | ! Calcul des flux |
---|
5873 | DO ig = 1, ngrid |
---|
5874 | DO l = 1, lmax(ig) - 1 |
---|
5875 | fmc(ig, l + 1) = fmc(ig, l) + entr(ig, l) |
---|
5876 | END DO |
---|
5877 | END DO |
---|
5878 | |
---|
5879 | ! RC |
---|
5880 | |
---|
5881 | |
---|
5882 | ! PRINT*,'9 OK convect8' |
---|
5883 | ! PRINT*,'WA1 ',wa_moy |
---|
5884 | |
---|
5885 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
5886 | |
---|
5887 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
5888 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
5889 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
5890 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
5891 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
5892 | |
---|
5893 | DO l = 2, nlay |
---|
5894 | DO ig = 1, ngrid |
---|
5895 | IF (l<=lmaxa(ig)) THEN |
---|
5896 | zw = max(wa_moy(ig, l), 1.E-10) |
---|
5897 | larg_cons(ig, l) = zmax(ig) * r_aspect * fmc(ig, l) / (rhobarz(ig, l) * zw) |
---|
5898 | END IF |
---|
5899 | END DO |
---|
5900 | END DO |
---|
5901 | |
---|
5902 | DO l = 2, nlay |
---|
5903 | DO ig = 1, ngrid |
---|
5904 | IF (l<=lmaxa(ig)) THEN |
---|
5905 | ! if (idetr.EQ.0) THEN |
---|
5906 | ! cette option est finalement en dur. |
---|
5907 | IF ((l_mix * zlev(ig, l))<0.) THEN |
---|
5908 | ! PRINT*,'pb l_mix*zlev<0' |
---|
5909 | END IF |
---|
5910 | ! CR: test: nouvelle def de lambda |
---|
5911 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
5912 | IF (zw2(ig, l)>1.E-10) THEN |
---|
5913 | larg_detr(ig, l) = sqrt((l_mix / zw2(ig, l)) * zlev(ig, l)) |
---|
5914 | ELSE |
---|
5915 | larg_detr(ig, l) = sqrt(l_mix * zlev(ig, l)) |
---|
5916 | END IF |
---|
5917 | ! RC |
---|
5918 | ! ELSE IF (idetr.EQ.1) THEN |
---|
5919 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
5920 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
5921 | ! ELSE IF (idetr.EQ.2) THEN |
---|
5922 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
5923 | ! s *sqrt(wa_moy(ig,l)) |
---|
5924 | ! ELSE IF (idetr.EQ.4) THEN |
---|
5925 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
5926 | ! s *wa_moy(ig,l) |
---|
5927 | ! END IF |
---|
5928 | END IF |
---|
5929 | END DO |
---|
5930 | END DO |
---|
5931 | |
---|
5932 | ! PRINT*,'10 OK convect8' |
---|
5933 | ! PRINT*,'WA2 ',wa_moy |
---|
5934 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
5935 | ! compte de l'epluchage du thermique. |
---|
5936 | |
---|
5937 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
5938 | DO ig = 1, ngrid |
---|
5939 | IF (lmix(ig)>1.) THEN |
---|
5940 | ! test |
---|
5941 | IF (((zw2(ig, lmix(ig) - 1) - zw2(ig, lmix(ig))) * ((zlev(ig, lmix(ig))) - & |
---|
5942 | (zlev(ig, lmix(ig) + 1))) - (zw2(ig, lmix(ig)) - & |
---|
5943 | zw2(ig, lmix(ig) + 1)) * ((zlev(ig, lmix(ig) - 1)) - & |
---|
5944 | (zlev(ig, lmix(ig)))))>1E-10) THEN |
---|
5945 | |
---|
5946 | zmix(ig) = ((zw2(ig, lmix(ig) - 1) - zw2(ig, lmix(ig))) * ((zlev(ig, lmix(ig)) & |
---|
5947 | )**2 - (zlev(ig, lmix(ig) + 1))**2) - (zw2(ig, lmix(ig)) - zw2(ig, & |
---|
5948 | lmix(ig) + 1)) * ((zlev(ig, lmix(ig) - 1))**2 - (zlev(ig, lmix(ig)))**2)) / & |
---|
5949 | (2. * ((zw2(ig, lmix(ig) - 1) - zw2(ig, lmix(ig))) * ((zlev(ig, lmix(ig))) - & |
---|
5950 | (zlev(ig, lmix(ig) + 1))) - (zw2(ig, lmix(ig)) - & |
---|
5951 | zw2(ig, lmix(ig) + 1)) * ((zlev(ig, lmix(ig) - 1)) - (zlev(ig, lmix(ig)))))) |
---|
5952 | ELSE |
---|
5953 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
5954 | ! PRINT*,'pb zmix' |
---|
5955 | END IF |
---|
5956 | ELSE |
---|
5957 | zmix(ig) = 0. |
---|
5958 | END IF |
---|
5959 | ! test |
---|
5960 | IF ((zmax(ig) - zmix(ig))<0.) THEN |
---|
5961 | zmix(ig) = 0.99 * zmax(ig) |
---|
5962 | ! PRINT*,'pb zmix>zmax' |
---|
5963 | END IF |
---|
5964 | END DO |
---|
5965 | |
---|
5966 | ! calcul du nouveau lmix correspondant |
---|
5967 | DO ig = 1, ngrid |
---|
5968 | DO l = 1, klev |
---|
5969 | IF (zmix(ig)>=zlev(ig, l) .AND. zmix(ig)<zlev(ig, l + 1)) THEN |
---|
5970 | lmix(ig) = l |
---|
5971 | END IF |
---|
5972 | END DO |
---|
5973 | END DO |
---|
5974 | |
---|
5975 | DO l = 2, nlay |
---|
5976 | DO ig = 1, ngrid |
---|
5977 | IF (larg_cons(ig, l)>1.) THEN |
---|
5978 | ! PRINT*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
5979 | fraca(ig, l) = (larg_cons(ig, l) - larg_detr(ig, l)) / (r_aspect * zmax(ig)) |
---|
5980 | ! test |
---|
5981 | fraca(ig, l) = max(fraca(ig, l), 0.) |
---|
5982 | fraca(ig, l) = min(fraca(ig, l), 0.5) |
---|
5983 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
5984 | fracc(ig, l) = larg_cons(ig, l) / (r_aspect * zmax(ig)) |
---|
5985 | ELSE |
---|
5986 | ! wa_moy(ig,l)=0. |
---|
5987 | fraca(ig, l) = 0. |
---|
5988 | fracc(ig, l) = 0. |
---|
5989 | fracd(ig, l) = 1. |
---|
5990 | END IF |
---|
5991 | END DO |
---|
5992 | END DO |
---|
5993 | ! CR: calcul de fracazmix |
---|
5994 | DO ig = 1, ngrid |
---|
5995 | fracazmix(ig) = (fraca(ig, lmix(ig) + 1) - fraca(ig, lmix(ig))) / & |
---|
5996 | (zlev(ig, lmix(ig) + 1) - zlev(ig, lmix(ig))) * zmix(ig) + & |
---|
5997 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig)) * (fraca(ig, lmix(ig) + 1) - fraca(ig & |
---|
5998 | , lmix(ig))) / (zlev(ig, lmix(ig) + 1) - zlev(ig, lmix(ig))) |
---|
5999 | END DO |
---|
6000 | |
---|
6001 | DO l = 2, nlay |
---|
6002 | DO ig = 1, ngrid |
---|
6003 | IF (larg_cons(ig, l)>1.) THEN |
---|
6004 | IF (l>lmix(ig)) THEN |
---|
6005 | ! test |
---|
6006 | IF (zmax(ig) - zmix(ig)<1.E-10) THEN |
---|
6007 | ! PRINT*,'pb xxx' |
---|
6008 | xxx(ig, l) = (lmaxa(ig) + 1. - l) / (lmaxa(ig) + 1. - lmix(ig)) |
---|
6009 | ELSE |
---|
6010 | xxx(ig, l) = (zmax(ig) - zlev(ig, l)) / (zmax(ig) - zmix(ig)) |
---|
6011 | END IF |
---|
6012 | IF (idetr==0) THEN |
---|
6013 | fraca(ig, l) = fracazmix(ig) |
---|
6014 | ELSE IF (idetr==1) THEN |
---|
6015 | fraca(ig, l) = fracazmix(ig) * xxx(ig, l) |
---|
6016 | ELSE IF (idetr==2) THEN |
---|
6017 | fraca(ig, l) = fracazmix(ig) * (1. - (1. - xxx(ig, l))**2) |
---|
6018 | ELSE |
---|
6019 | fraca(ig, l) = fracazmix(ig) * xxx(ig, l)**2 |
---|
6020 | END IF |
---|
6021 | ! PRINT*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
6022 | fraca(ig, l) = max(fraca(ig, l), 0.) |
---|
6023 | fraca(ig, l) = min(fraca(ig, l), 0.5) |
---|
6024 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
6025 | fracc(ig, l) = larg_cons(ig, l) / (r_aspect * zmax(ig)) |
---|
6026 | END IF |
---|
6027 | END IF |
---|
6028 | END DO |
---|
6029 | END DO |
---|
6030 | |
---|
6031 | ! PRINT*,'fin calcul fraca' |
---|
6032 | ! PRINT*,'11 OK convect8' |
---|
6033 | ! PRINT*,'Ea3 ',wa_moy |
---|
6034 | ! ------------------------------------------------------------------ |
---|
6035 | ! Calcul de fracd, wd |
---|
6036 | ! somme wa - wd = 0 |
---|
6037 | ! ------------------------------------------------------------------ |
---|
6038 | |
---|
6039 | DO ig = 1, ngrid |
---|
6040 | fm(ig, 1) = 0. |
---|
6041 | fm(ig, nlay + 1) = 0. |
---|
6042 | END DO |
---|
6043 | |
---|
6044 | DO l = 2, nlay |
---|
6045 | DO ig = 1, ngrid |
---|
6046 | fm(ig, l) = fraca(ig, l) * wa_moy(ig, l) * rhobarz(ig, l) |
---|
6047 | ! CR:test |
---|
6048 | IF (entr(ig, l - 1)<1E-10 .AND. fm(ig, l)>fm(ig, l - 1) .AND. l>lmix(ig)) THEN |
---|
6049 | fm(ig, l) = fm(ig, l - 1) |
---|
6050 | ! WRITE(1,*)'ajustement fm, l',l |
---|
6051 | END IF |
---|
6052 | ! WRITE(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
6053 | ! RC |
---|
6054 | END DO |
---|
6055 | DO ig = 1, ngrid |
---|
6056 | IF (fracd(ig, l)<0.1) THEN |
---|
6057 | abort_message = 'fracd trop petit' |
---|
6058 | CALL abort_physic(modname, abort_message, 1) |
---|
6059 | |
---|
6060 | ELSE |
---|
6061 | ! vitesse descendante "diagnostique" |
---|
6062 | wd(ig, l) = fm(ig, l) / (fracd(ig, l) * rhobarz(ig, l)) |
---|
6063 | END IF |
---|
6064 | END DO |
---|
6065 | END DO |
---|
6066 | |
---|
6067 | DO l = 1, nlay |
---|
6068 | DO ig = 1, ngrid |
---|
6069 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
6070 | masse(ig, l) = (pplev(ig, l) - pplev(ig, l + 1)) / rg |
---|
6071 | END DO |
---|
6072 | END DO |
---|
6073 | |
---|
6074 | ! PRINT*,'12 OK convect8' |
---|
6075 | ! PRINT*,'WA4 ',wa_moy |
---|
6076 | ! c------------------------------------------------------------------ |
---|
6077 | ! calcul du transport vertical |
---|
6078 | ! ------------------------------------------------------------------ |
---|
6079 | |
---|
6080 | GO TO 4444 |
---|
6081 | ! PRINT*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
6082 | DO l = 2, nlay - 1 |
---|
6083 | DO ig = 1, ngrid |
---|
6084 | IF (fm(ig, l + 1) * ptimestep>masse(ig, l) .AND. fm(ig, l + 1) * ptimestep>masse(& |
---|
6085 | ig, l + 1)) THEN |
---|
6086 | ! PRINT*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
6087 | ! s ,fm(ig,l+1)*ptimestep |
---|
6088 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
6089 | END IF |
---|
6090 | END DO |
---|
6091 | END DO |
---|
6092 | |
---|
6093 | DO l = 1, nlay |
---|
6094 | DO ig = 1, ngrid |
---|
6095 | IF (entr(ig, l) * ptimestep>masse(ig, l)) THEN |
---|
6096 | ! PRINT*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
6097 | ! s ,entr(ig,l)*ptimestep |
---|
6098 | ! s ,' M=',masse(ig,l) |
---|
6099 | END IF |
---|
6100 | END DO |
---|
6101 | END DO |
---|
6102 | |
---|
6103 | DO l = 1, nlay |
---|
6104 | DO ig = 1, ngrid |
---|
6105 | IF (.NOT. fm(ig, l)>=0. .OR. .NOT. fm(ig, l)<=10.) THEN |
---|
6106 | ! PRINT*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
6107 | ! s ,' FM=',fm(ig,l) |
---|
6108 | END IF |
---|
6109 | IF (.NOT. masse(ig, l)>=1.E-10 .OR. .NOT. masse(ig, l)<=1.E4) THEN |
---|
6110 | ! PRINT*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
6111 | ! s ,' M=',masse(ig,l) |
---|
6112 | ! PRINT*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
6113 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
6114 | ! PRINT*,'zlev(ig,l+1),zlev(ig,l)' |
---|
6115 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
6116 | ! PRINT*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
6117 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
6118 | END IF |
---|
6119 | IF (.NOT. entr(ig, l)>=0. .OR. .NOT. entr(ig, l)<=10.) THEN |
---|
6120 | ! PRINT*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
6121 | ! s ,' E=',entr(ig,l) |
---|
6122 | END IF |
---|
6123 | END DO |
---|
6124 | END DO |
---|
6125 | |
---|
6126 | 4444 CONTINUE |
---|
6127 | |
---|
6128 | ! CR:redefinition du entr |
---|
6129 | DO l = 1, nlay |
---|
6130 | DO ig = 1, ngrid |
---|
6131 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l + 1) |
---|
6132 | IF (detr(ig, l)<0.) THEN |
---|
6133 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
6134 | fm(ig, l + 1) = fm(ig, l) + entr(ig, l) |
---|
6135 | detr(ig, l) = 0. |
---|
6136 | ! PRINT*,'WARNING !!! detrainement negatif ',ig,l |
---|
6137 | END IF |
---|
6138 | END DO |
---|
6139 | END DO |
---|
6140 | ! RC |
---|
6141 | IF (w2di==1) THEN |
---|
6142 | fm0 = fm0 + ptimestep * (fm - fm0) / tho |
---|
6143 | entr0 = entr0 + ptimestep * (entr - entr0) / tho |
---|
6144 | ELSE |
---|
6145 | fm0 = fm |
---|
6146 | entr0 = entr |
---|
6147 | END IF |
---|
6148 | |
---|
6149 | IF (1==1) THEN |
---|
6150 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
6151 | zha) |
---|
6152 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
6153 | zoa) |
---|
6154 | ELSE |
---|
6155 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
6156 | zdhadj, zha) |
---|
6157 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
6158 | pdoadj, zoa) |
---|
6159 | END IF |
---|
6160 | |
---|
6161 | IF (1==0) THEN |
---|
6162 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
6163 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
6164 | ELSE |
---|
6165 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
6166 | zua) |
---|
6167 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
6168 | zva) |
---|
6169 | END IF |
---|
6170 | |
---|
6171 | DO l = 1, nlay |
---|
6172 | DO ig = 1, ngrid |
---|
6173 | zf = 0.5 * (fracc(ig, l) + fracc(ig, l + 1)) |
---|
6174 | zf2 = zf / (1. - zf) |
---|
6175 | thetath2(ig, l) = zf2 * (zha(ig, l) - zh(ig, l))**2 |
---|
6176 | wth2(ig, l) = zf2 * (0.5 * (wa_moy(ig, l) + wa_moy(ig, l + 1)))**2 |
---|
6177 | END DO |
---|
6178 | END DO |
---|
6179 | |
---|
6180 | |
---|
6181 | |
---|
6182 | ! PRINT*,'13 OK convect8' |
---|
6183 | ! PRINT*,'WA5 ',wa_moy |
---|
6184 | DO l = 1, nlay |
---|
6185 | DO ig = 1, ngrid |
---|
6186 | pdtadj(ig, l) = zdhadj(ig, l) * zpspsk(ig, l) |
---|
6187 | END DO |
---|
6188 | END DO |
---|
6189 | |
---|
6190 | |
---|
6191 | ! do l=1,nlay |
---|
6192 | ! do ig=1,ngrid |
---|
6193 | ! IF(abs(pdtadj(ig,l))*86400..gt.500.) THEN |
---|
6194 | ! PRINT*,'WARN!!! ig=',ig,' l=',l |
---|
6195 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
6196 | ! END IF |
---|
6197 | ! IF(abs(pdoadj(ig,l))*86400..gt.1.) THEN |
---|
6198 | ! PRINT*,'WARN!!! ig=',ig,' l=',l |
---|
6199 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
6200 | ! END IF |
---|
6201 | ! enddo |
---|
6202 | ! enddo |
---|
6203 | |
---|
6204 | ! PRINT*,'14 OK convect8' |
---|
6205 | ! ------------------------------------------------------------------ |
---|
6206 | ! Calculs pour les sorties |
---|
6207 | ! ------------------------------------------------------------------ |
---|
6208 | |
---|
6209 | IF (sorties) THEN |
---|
6210 | DO l = 1, nlay |
---|
6211 | DO ig = 1, ngrid |
---|
6212 | zla(ig, l) = (1. - fracd(ig, l)) * zmax(ig) |
---|
6213 | zld(ig, l) = fracd(ig, l) * zmax(ig) |
---|
6214 | IF (1. - fracd(ig, l)>1.E-10) zwa(ig, l) = wd(ig, l) * fracd(ig, l) / & |
---|
6215 | (1. - fracd(ig, l)) |
---|
6216 | END DO |
---|
6217 | END DO |
---|
6218 | |
---|
6219 | ! deja fait |
---|
6220 | ! do l=1,nlay |
---|
6221 | ! do ig=1,ngrid |
---|
6222 | ! detr(ig,l)=fm(ig,l)+entr(ig,l)-fm(ig,l+1) |
---|
6223 | ! if (detr(ig,l).lt.0.) THEN |
---|
6224 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
6225 | ! detr(ig,l)=0. |
---|
6226 | ! PRINT*,'WARNING !!! detrainement negatif ',ig,l |
---|
6227 | ! END IF |
---|
6228 | ! enddo |
---|
6229 | ! enddo |
---|
6230 | |
---|
6231 | ! PRINT*,'15 OK convect8' |
---|
6232 | |
---|
6233 | isplit = isplit + 1 |
---|
6234 | |
---|
6235 | |
---|
6236 | ! #define und |
---|
6237 | GO TO 123 |
---|
6238 | #ifdef und |
---|
6239 | CALL writeg1d(1, nlay, wd, 'wd ', 'wd ') |
---|
6240 | CALL writeg1d(1, nlay, zwa, 'wa ', 'wa ') |
---|
6241 | CALL writeg1d(1, nlay, fracd, 'fracd ', 'fracd ') |
---|
6242 | CALL writeg1d(1, nlay, fraca, 'fraca ', 'fraca ') |
---|
6243 | CALL writeg1d(1, nlay, wa_moy, 'wam ', 'wam ') |
---|
6244 | CALL writeg1d(1, nlay, zla, 'la ', 'la ') |
---|
6245 | CALL writeg1d(1, nlay, zld, 'ld ', 'ld ') |
---|
6246 | CALL writeg1d(1, nlay, pt, 'pt ', 'pt ') |
---|
6247 | CALL writeg1d(1, nlay, zh, 'zh ', 'zh ') |
---|
6248 | CALL writeg1d(1, nlay, zha, 'zha ', 'zha ') |
---|
6249 | CALL writeg1d(1, nlay, zu, 'zu ', 'zu ') |
---|
6250 | CALL writeg1d(1, nlay, zv, 'zv ', 'zv ') |
---|
6251 | CALL writeg1d(1, nlay, zo, 'zo ', 'zo ') |
---|
6252 | CALL writeg1d(1, nlay, wh, 'wh ', 'wh ') |
---|
6253 | CALL writeg1d(1, nlay, wu, 'wu ', 'wu ') |
---|
6254 | CALL writeg1d(1, nlay, wv, 'wv ', 'wv ') |
---|
6255 | CALL writeg1d(1, nlay, wo, 'w15uo ', 'wXo ') |
---|
6256 | CALL writeg1d(1, nlay, zdhadj, 'zdhadj ', 'zdhadj ') |
---|
6257 | CALL writeg1d(1, nlay, pduadj, 'pduadj ', 'pduadj ') |
---|
6258 | CALL writeg1d(1, nlay, pdvadj, 'pdvadj ', 'pdvadj ') |
---|
6259 | CALL writeg1d(1, nlay, pdoadj, 'pdoadj ', 'pdoadj ') |
---|
6260 | CALL writeg1d(1, nlay, entr, 'entr ', 'entr ') |
---|
6261 | CALL writeg1d(1, nlay, detr, 'detr ', 'detr ') |
---|
6262 | CALL writeg1d(1, nlay, fm, 'fm ', 'fm ') |
---|
6263 | |
---|
6264 | CALL writeg1d(1, nlay, pdtadj, 'pdtadj ', 'pdtadj ') |
---|
6265 | CALL writeg1d(1, nlay, pplay, 'pplay ', 'pplay ') |
---|
6266 | CALL writeg1d(1, nlay, pplev, 'pplev ', 'pplev ') |
---|
6267 | |
---|
6268 | ! recalcul des flux en diagnostique... |
---|
6269 | ! PRINT*,'PAS DE TEMPS ',ptimestep |
---|
6270 | CALL dt2f(pplev, pplay, pt, pdtadj, wh) |
---|
6271 | CALL writeg1d(1, nlay, wh, 'wh2 ', 'wh2 ') |
---|
6272 | #endif |
---|
6273 | 123 CONTINUE |
---|
6274 | |
---|
6275 | END IF |
---|
6276 | |
---|
6277 | ! IF(wa_moy(1,4).gt.1.e-10) stop |
---|
6278 | |
---|
6279 | ! PRINT*,'19 OK convect8' |
---|
6280 | |
---|
6281 | END SUBROUTINE calcul_sec |
---|
6282 | |
---|
6283 | SUBROUTINE fermeture_seche(ngrid, nlay, pplay, pplev, pphi, zlev, rhobarz, & |
---|
6284 | f0, zpspsk, alim_star, zh, zo, lentr, lmin, nu_min, nu_max, r_aspect, & |
---|
6285 | zmax, wmax) |
---|
6286 | |
---|
6287 | USE dimphy |
---|
6288 | USE lmdz_yomcst |
---|
6289 | |
---|
6290 | IMPLICIT NONE |
---|
6291 | |
---|
6292 | INTEGER ngrid, nlay |
---|
6293 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay + 1) |
---|
6294 | REAL pphi(ngrid, nlay) |
---|
6295 | REAL zlev(klon, klev + 1) |
---|
6296 | REAL alim_star(klon, klev) |
---|
6297 | REAL f0(klon) |
---|
6298 | INTEGER lentr(klon) |
---|
6299 | INTEGER lmin(klon) |
---|
6300 | REAL zmax(klon) |
---|
6301 | REAL wmax(klon) |
---|
6302 | REAL nu_min |
---|
6303 | REAL nu_max |
---|
6304 | REAL r_aspect |
---|
6305 | REAL rhobarz(klon, klev + 1) |
---|
6306 | REAL zh(klon, klev) |
---|
6307 | REAL zo(klon, klev) |
---|
6308 | REAL zpspsk(klon, klev) |
---|
6309 | |
---|
6310 | INTEGER ig, l |
---|
6311 | |
---|
6312 | REAL f_star(klon, klev + 1) |
---|
6313 | REAL detr_star(klon, klev) |
---|
6314 | REAL entr_star(klon, klev) |
---|
6315 | REAL zw2(klon, klev + 1) |
---|
6316 | REAL linter(klon) |
---|
6317 | INTEGER lmix(klon) |
---|
6318 | INTEGER lmax(klon) |
---|
6319 | REAL zlevinter(klon) |
---|
6320 | REAL wa_moy(klon, klev + 1) |
---|
6321 | REAL wmaxa(klon) |
---|
6322 | REAL ztv(klon, klev) |
---|
6323 | REAL ztva(klon, klev) |
---|
6324 | REAL nu(klon, klev) |
---|
6325 | ! real zmax0_sec(klon) |
---|
6326 | ! save zmax0_sec |
---|
6327 | REAL, SAVE, ALLOCATABLE :: zmax0_sec(:) |
---|
6328 | !$OMP THREADPRIVATE(zmax0_sec) |
---|
6329 | LOGICAL, SAVE :: first = .TRUE. |
---|
6330 | !$OMP THREADPRIVATE(first) |
---|
6331 | |
---|
6332 | IF (first) THEN |
---|
6333 | ALLOCATE (zmax0_sec(klon)) |
---|
6334 | first = .FALSE. |
---|
6335 | END IF |
---|
6336 | |
---|
6337 | DO l = 1, nlay |
---|
6338 | DO ig = 1, ngrid |
---|
6339 | ztv(ig, l) = zh(ig, l) / zpspsk(ig, l) |
---|
6340 | ztv(ig, l) = ztv(ig, l) * (1. + retv * zo(ig, l)) |
---|
6341 | END DO |
---|
6342 | END DO |
---|
6343 | DO l = 1, nlay - 2 |
---|
6344 | DO ig = 1, ngrid |
---|
6345 | IF (ztv(ig, l)>ztv(ig, l + 1) .AND. alim_star(ig, l)>1.E-10 .AND. & |
---|
6346 | zw2(ig, l)<1E-10) THEN |
---|
6347 | f_star(ig, l + 1) = alim_star(ig, l) |
---|
6348 | ! test:calcul de dteta |
---|
6349 | zw2(ig, l + 1) = 2. * rg * (ztv(ig, l) - ztv(ig, l + 1)) / ztv(ig, l + 1) * & |
---|
6350 | (zlev(ig, l + 1) - zlev(ig, l)) * 0.4 * pphi(ig, l) / (pphi(ig, l + 1) - pphi(ig, l)) |
---|
6351 | ELSE IF ((zw2(ig, l)>=1E-10) .AND. (f_star(ig, l) + alim_star(ig, & |
---|
6352 | l))>1.E-10) THEN |
---|
6353 | ! estimation du detrainement a partir de la geometrie du pas |
---|
6354 | ! precedent |
---|
6355 | ! tests sur la definition du detr |
---|
6356 | nu(ig, l) = (nu_min + nu_max) / 2. * (1. - (nu_max - nu_min) / (nu_max + nu_min) * & |
---|
6357 | tanh((((ztva(ig, l - 1) - ztv(ig, l)) / ztv(ig, l)) / 0.0005))) |
---|
6358 | |
---|
6359 | detr_star(ig, l) = rhobarz(ig, l) * sqrt(zw2(ig, l)) / & |
---|
6360 | (r_aspect * zmax0_sec(ig)) * & ! s |
---|
6361 | ! /(r_aspect*zmax0(ig))* |
---|
6362 | (sqrt(nu(ig, l) * zlev(ig, l + 1) / sqrt(zw2(ig, l))) - sqrt(nu(ig, l) * zlev(ig, & |
---|
6363 | l) / sqrt(zw2(ig, l)))) |
---|
6364 | detr_star(ig, l) = detr_star(ig, l) / f0(ig) |
---|
6365 | IF ((detr_star(ig, l))>f_star(ig, l)) THEN |
---|
6366 | detr_star(ig, l) = f_star(ig, l) |
---|
6367 | END IF |
---|
6368 | entr_star(ig, l) = 0.9 * detr_star(ig, l) |
---|
6369 | IF ((l<lentr(ig))) THEN |
---|
6370 | entr_star(ig, l) = 0. |
---|
6371 | ! detr_star(ig,l)=0. |
---|
6372 | END IF |
---|
6373 | ! PRINT*,'ok detr_star' |
---|
6374 | ! prise en compte du detrainement dans le calcul du flux |
---|
6375 | f_star(ig, l + 1) = f_star(ig, l) + alim_star(ig, l) + & |
---|
6376 | entr_star(ig, l) - detr_star(ig, l) |
---|
6377 | ! test sur le signe de f_star |
---|
6378 | IF ((f_star(ig, l + 1) + detr_star(ig, l))>1.E-10) THEN |
---|
6379 | ! AM on melange Tl et qt du thermique |
---|
6380 | ztva(ig, l) = (f_star(ig, l) * ztva(ig, l - 1) + (entr_star(ig, & |
---|
6381 | l) + alim_star(ig, l)) * ztv(ig, l)) / (f_star(ig, l + 1) + detr_star(ig, l)) |
---|
6382 | zw2(ig, l + 1) = zw2(ig, l) * (f_star(ig, l) / (f_star(ig, & |
---|
6383 | l + 1) + detr_star(ig, l)))**2 + 2. * rg * (ztva(ig, l) - ztv(ig, l)) / ztv(ig, & |
---|
6384 | l) * (zlev(ig, l + 1) - zlev(ig, l)) |
---|
6385 | END IF |
---|
6386 | END IF |
---|
6387 | |
---|
6388 | IF (zw2(ig, l + 1)<0.) THEN |
---|
6389 | linter(ig) = (l * (zw2(ig, l + 1) - zw2(ig, l)) - zw2(ig, l)) / (zw2(ig, l + 1) - zw2(& |
---|
6390 | ig, l)) |
---|
6391 | zw2(ig, l + 1) = 0. |
---|
6392 | ! PRINT*,'linter=',linter(ig) |
---|
6393 | ELSE |
---|
6394 | wa_moy(ig, l + 1) = sqrt(zw2(ig, l + 1)) |
---|
6395 | END IF |
---|
6396 | IF (wa_moy(ig, l + 1)>wmaxa(ig)) THEN |
---|
6397 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
6398 | lmix(ig) = l + 1 |
---|
6399 | wmaxa(ig) = wa_moy(ig, l + 1) |
---|
6400 | END IF |
---|
6401 | END DO |
---|
6402 | END DO |
---|
6403 | ! PRINT*,'fin calcul zw2' |
---|
6404 | |
---|
6405 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
6406 | DO ig = 1, ngrid |
---|
6407 | lmax(ig) = lentr(ig) |
---|
6408 | END DO |
---|
6409 | DO ig = 1, ngrid |
---|
6410 | DO l = nlay, lentr(ig) + 1, -1 |
---|
6411 | IF (zw2(ig, l)<=1.E-10) THEN |
---|
6412 | lmax(ig) = l - 1 |
---|
6413 | END IF |
---|
6414 | END DO |
---|
6415 | END DO |
---|
6416 | ! pas de thermique si couche 1 stable |
---|
6417 | DO ig = 1, ngrid |
---|
6418 | IF (lmin(ig)>1) THEN |
---|
6419 | lmax(ig) = 1 |
---|
6420 | lmin(ig) = 1 |
---|
6421 | lentr(ig) = 1 |
---|
6422 | END IF |
---|
6423 | END DO |
---|
6424 | |
---|
6425 | ! Determination de zw2 max |
---|
6426 | DO ig = 1, ngrid |
---|
6427 | wmax(ig) = 0. |
---|
6428 | END DO |
---|
6429 | |
---|
6430 | DO l = 1, nlay |
---|
6431 | DO ig = 1, ngrid |
---|
6432 | IF (l<=lmax(ig)) THEN |
---|
6433 | IF (zw2(ig, l)<0.) THEN |
---|
6434 | ! PRINT*,'pb2 zw2<0' |
---|
6435 | END IF |
---|
6436 | zw2(ig, l) = sqrt(zw2(ig, l)) |
---|
6437 | wmax(ig) = max(wmax(ig), zw2(ig, l)) |
---|
6438 | ELSE |
---|
6439 | zw2(ig, l) = 0. |
---|
6440 | END IF |
---|
6441 | END DO |
---|
6442 | END DO |
---|
6443 | |
---|
6444 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
6445 | DO ig = 1, ngrid |
---|
6446 | zmax(ig) = 0. |
---|
6447 | zlevinter(ig) = zlev(ig, 1) |
---|
6448 | END DO |
---|
6449 | DO ig = 1, ngrid |
---|
6450 | ! calcul de zlevinter |
---|
6451 | zlevinter(ig) = (zlev(ig, lmax(ig) + 1) - zlev(ig, lmax(ig))) * linter(ig) + & |
---|
6452 | zlev(ig, lmax(ig)) - lmax(ig) * (zlev(ig, lmax(ig) + 1) - zlev(ig, lmax(ig))) |
---|
6453 | ! pour le cas ou on prend tjs lmin=1 |
---|
6454 | ! zmax(ig)=max(zmax(ig),zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
6455 | zmax(ig) = max(zmax(ig), zlevinter(ig) - zlev(ig, 1)) |
---|
6456 | zmax0_sec(ig) = zmax(ig) |
---|
6457 | END DO |
---|
6458 | |
---|
6459 | END SUBROUTINE fermeture_seche |
---|
6460 | |
---|
6461 | END MODULE lmdz_thermcell_old |
---|