| 1 | MODULE lmdz_thermcell_main |
|---|
| 2 | ! $Id: lmdz_thermcell_main.F90 5158 2024-08-02 12:12:03Z aborella $ |
|---|
| 3 | |
|---|
| 4 | ! A REGARDER !!!!!!!!!!!!!!!!! |
|---|
| 5 | ! ATTENTION : zpspsk est inout et out mais c'est pas forcement pour de bonnes raisons (FH, 2023) |
|---|
| 6 | ! ATTENTION : dans thermcell_env, on condense potentiellement de l'eau. Mais comme on ne mélange pas l'eau liquide supposant qu'il n'y en n'a pas, c'est potentiellement un souci |
|---|
| 7 | CONTAINS |
|---|
| 8 | |
|---|
| 9 | SUBROUTINE thermcell_main(itap, ngrid, nlay, ptimestep & |
|---|
| 10 | , pplay,pplev, pphi, debut & |
|---|
| 11 | , puwind, pvwind,ptemp, p_o, ptemp_env, po_env & |
|---|
| 12 | , pduadj,pdvadj, pdtadj, pdoadj & |
|---|
| 13 | , fm0, entr0,detr0, zqta, zqla, lmax & |
|---|
| 14 | , ratqscth,ratqsdiff, zqsatth & |
|---|
| 15 | , zmax0, f0, zw2,fraca, ztv & |
|---|
| 16 | , zpspsk, ztla, zthl,ztva & |
|---|
| 17 | , pcon, rhobarz, wth3, wmax_sec,lalim, fm, alim_star, zmax, zcong & |
|---|
| 18 | #ifdef ISO |
|---|
| 19 | ,xtpo,xtpdoadj & |
|---|
| 20 | #endif |
|---|
| 21 | ) |
|---|
| 22 | |
|---|
| 23 | |
|---|
| 24 | |
|---|
| 25 | ! USE necessaires pour les lignes importees de thermcell_env |
|---|
| 26 | USE lmdz_thermcell_ini, ONLY: thermcell_ini, dqimpl, dvdq, prt_level, lunout, prt_level |
|---|
| 27 | USE lmdz_thermcell_ini, ONLY: iflag_thermals_closure, iflag_thermals_ed, tau_thermals, r_aspect_thermals |
|---|
| 28 | USE lmdz_thermcell_ini, ONLY: iflag_thermals_down, fact_thermals_down |
|---|
| 29 | USE lmdz_thermcell_ini, ONLY: iflag_thermals_tenv |
|---|
| 30 | USE lmdz_thermcell_ini, ONLY: RD, RG |
|---|
| 31 | |
|---|
| 32 | USE lmdz_thermcell_down, ONLY: thermcell_updown_dq |
|---|
| 33 | USE lmdz_thermcell_closure, ONLY: thermcell_closure |
|---|
| 34 | USE lmdz_thermcell_dq, ONLY: thermcell_dq |
|---|
| 35 | USE lmdz_thermcell_dry, ONLY: thermcell_dry |
|---|
| 36 | USE lmdz_thermcell_dv2, ONLY: thermcell_dv2 |
|---|
| 37 | USE lmdz_thermcell_env, ONLY: thermcell_env |
|---|
| 38 | USE lmdz_thermcell_flux2, ONLY: thermcell_flux2 |
|---|
| 39 | USE lmdz_thermcell_height, ONLY: thermcell_height |
|---|
| 40 | USE lmdz_thermcell_plume, ONLY: thermcell_plume |
|---|
| 41 | USE lmdz_thermcell_plume_6A, ONLY: thermcell_plume_6A, thermcell_plume_5B |
|---|
| 42 | |
|---|
| 43 | ! USE necessaires pour les lignes importees de thermcell_env |
|---|
| 44 | USE lmdz_thermcell_ini, ONLY: RLvCp, RKAPPA, RETV |
|---|
| 45 | USE lmdz_thermcell_qsat, ONLY: thermcell_qsat |
|---|
| 46 | USE lmdz_abort_physic, ONLY: abort_physic |
|---|
| 47 | |
|---|
| 48 | |
|---|
| 49 | #ifdef ISO |
|---|
| 50 | USE infotrac_phy, ONLY: ntiso |
|---|
| 51 | #ifdef ISOVERIF |
|---|
| 52 | USE isotopes_mod, ONLY: iso_eau,iso_HDO |
|---|
| 53 | USE isotopes_verif_mod, ONLY: iso_verif_egalite, & |
|---|
| 54 | iso_verif_aberrant_encadre |
|---|
| 55 | #endif |
|---|
| 56 | #endif |
|---|
| 57 | |
|---|
| 58 | |
|---|
| 59 | IMPLICIT NONE |
|---|
| 60 | |
|---|
| 61 | !======================================================================= |
|---|
| 62 | ! Auteurs: Frederic Hourdin, Catherine Rio, Anne Mathieu |
|---|
| 63 | ! Version du 09.02.07 |
|---|
| 64 | ! Calcul du transport vertical dans la couche limite en presence |
|---|
| 65 | ! de "thermiques" explicitement representes avec processus nuageux |
|---|
| 66 | |
|---|
| 67 | ! Reecriture a partir d'un listing papier a Habas, le 14/02/00 |
|---|
| 68 | |
|---|
| 69 | ! le thermique est suppose homogene et dissipe par melange avec |
|---|
| 70 | ! son environnement. la longueur l_mix controle l'efficacite du |
|---|
| 71 | ! melange |
|---|
| 72 | |
|---|
| 73 | ! Le calcul du transport des differentes especes se fait en prenant |
|---|
| 74 | ! en compte: |
|---|
| 75 | ! 1. un flux de masse montant |
|---|
| 76 | ! 2. un flux de masse descendant |
|---|
| 77 | ! 3. un entrainement |
|---|
| 78 | ! 4. un detrainement |
|---|
| 79 | |
|---|
| 80 | ! Modif 2013/01/04 (FH hourdin@lmd.jussieu.fr) |
|---|
| 81 | ! Introduction of an implicit computation of vertical advection in |
|---|
| 82 | ! the environment of thermal plumes in thermcell_dq |
|---|
| 83 | ! impl = 0 : explicit, 1 : implicit, -1 : old version |
|---|
| 84 | ! controled by iflag_thermals = |
|---|
| 85 | ! 15, 16 run with impl=-1 : numerical convergence with NPv3 |
|---|
| 86 | ! 17, 18 run with impl=1 : more stable |
|---|
| 87 | ! 15 and 17 correspond to the activation of the stratocumulus "bidouille" |
|---|
| 88 | |
|---|
| 89 | ! Using |
|---|
| 90 | ! abort_physic |
|---|
| 91 | ! iso_verif_aberrant_encadre |
|---|
| 92 | ! iso_verif_egalite |
|---|
| 93 | ! test_ltherm |
|---|
| 94 | ! thermcell_closure |
|---|
| 95 | ! thermcell_dq |
|---|
| 96 | ! thermcell_dry |
|---|
| 97 | ! thermcell_dv2 |
|---|
| 98 | ! thermcell_env |
|---|
| 99 | ! thermcell_flux2 |
|---|
| 100 | ! thermcell_height |
|---|
| 101 | ! thermcell_plume |
|---|
| 102 | ! thermcell_plume_5B |
|---|
| 103 | ! thermcell_plume_6A |
|---|
| 104 | |
|---|
| 105 | !======================================================================= |
|---|
| 106 | |
|---|
| 107 | |
|---|
| 108 | !----------------------------------------------------------------------- |
|---|
| 109 | ! declarations: |
|---|
| 110 | ! ------------- |
|---|
| 111 | |
|---|
| 112 | |
|---|
| 113 | ! arguments: |
|---|
| 114 | ! ---------- |
|---|
| 115 | INTEGER, INTENT(IN) :: itap, ngrid, nlay |
|---|
| 116 | REAL, INTENT(IN) :: ptimestep |
|---|
| 117 | REAL, INTENT(IN), DIMENSION(ngrid, nlay) :: ptemp, puwind, pvwind, pplay, pphi, ptemp_env, po_env |
|---|
| 118 | ! ATTENTION : zpspsk est inout et out mais c'est pas forcement pour de bonnes raisons (FH, 2023) |
|---|
| 119 | REAL, INTENT(IN), DIMENSION(ngrid, nlay) :: p_o |
|---|
| 120 | REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: zpspsk |
|---|
| 121 | REAL, INTENT(IN), DIMENSION(ngrid, nlay + 1) :: pplev |
|---|
| 122 | INTEGER, INTENT(OUT), DIMENSION(ngrid) :: lmax |
|---|
| 123 | REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: pdtadj, pduadj, pdvadj, pdoadj, entr0, detr0 |
|---|
| 124 | REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: ztla, zqla, zqta, zqsatth, zthl |
|---|
| 125 | REAL, INTENT(OUT), DIMENSION(ngrid, nlay + 1) :: fm0, zw2, fraca |
|---|
| 126 | REAL, INTENT(INOUT), DIMENSION(ngrid) :: zmax0, f0 |
|---|
| 127 | REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: ztva, ztv |
|---|
| 128 | logical, INTENT(IN) :: debut |
|---|
| 129 | REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: ratqscth, ratqsdiff |
|---|
| 130 | |
|---|
| 131 | REAL, INTENT(OUT), DIMENSION(ngrid) :: pcon |
|---|
| 132 | REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: rhobarz, wth3 |
|---|
| 133 | REAL, INTENT(OUT), DIMENSION(ngrid) :: wmax_sec |
|---|
| 134 | INTEGER, INTENT(OUT), DIMENSION(ngrid) :: lalim |
|---|
| 135 | REAL, INTENT(OUT), DIMENSION(ngrid, nlay + 1) :: fm |
|---|
| 136 | REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: alim_star |
|---|
| 137 | REAL, INTENT(OUT), DIMENSION(ngrid) :: zmax, zcong |
|---|
| 138 | |
|---|
| 139 | ! local: |
|---|
| 140 | ! ------ |
|---|
| 141 | |
|---|
| 142 | INTEGER, save :: igout = 1 |
|---|
| 143 | !$OMP THREADPRIVATE(igout) |
|---|
| 144 | INTEGER, save :: lunout1 = 6 |
|---|
| 145 | !$OMP THREADPRIVATE(lunout1) |
|---|
| 146 | INTEGER, save :: lev_out = 10 |
|---|
| 147 | !$OMP THREADPRIVATE(lev_out) |
|---|
| 148 | |
|---|
| 149 | REAL lambda, zf, zf2, var, vardiff, CHI |
|---|
| 150 | INTEGER ig, k, l, ierr, ll |
|---|
| 151 | LOGICAL sorties |
|---|
| 152 | REAL, DIMENSION(ngrid) :: linter, zmix, zmax_sec, lintercong |
|---|
| 153 | INTEGER, DIMENSION(ngrid) :: lmin, lmix, lmix_bis, nivcon, lcong |
|---|
| 154 | REAL, DIMENSION(ngrid, nlay) :: ztva_est |
|---|
| 155 | REAL, DIMENSION(ngrid, nlay) :: deltaz, zlay, zdthladj, zu, zv, z_o, zl, zva, zua, z_oa |
|---|
| 156 | REAL, DIMENSION(ngrid, nlay) :: ztemp_env ! temperarure liquide de l'environnement |
|---|
| 157 | REAL, DIMENSION(ngrid, nlay) :: zta, zha, q2, wq, wthl, wthv, thetath2, wth2 |
|---|
| 158 | REAL, DIMENSION(ngrid, nlay) :: rho, masse |
|---|
| 159 | REAL, DIMENSION(ngrid, nlay + 1) :: zw_est, zlev |
|---|
| 160 | REAL, DIMENSION(ngrid) :: wmax, wmax_tmp |
|---|
| 161 | REAL, DIMENSION(ngrid, nlay + 1) :: f_star |
|---|
| 162 | REAL, DIMENSION(ngrid, nlay) :: entr, detr, entr_star, detr_star, alim_star_clos |
|---|
| 163 | REAL, DIMENSION(ngrid, nlay) :: zqsat, csc |
|---|
| 164 | REAL, DIMENSION(ngrid) :: zcon, zcon2, alim_star_tot, f |
|---|
| 165 | REAL, DIMENSION(ngrid, nlay) :: entrdn, detrdn |
|---|
| 166 | logical, DIMENSION(ngrid, nlay) :: mask |
|---|
| 167 | |
|---|
| 168 | CHARACTER (LEN = 20) :: modname = 'thermcell_main' |
|---|
| 169 | CHARACTER (LEN = 80) :: abort_message |
|---|
| 170 | |
|---|
| 171 | |
|---|
| 172 | #ifdef ISO |
|---|
| 173 | REAL xtpo(ntiso,ngrid,nlay),xtpdoadj(ntiso,ngrid,nlay) |
|---|
| 174 | REAL xtzo(ntiso,ngrid,nlay) |
|---|
| 175 | REAL xtpdoadj_tmp(ngrid,nlay) |
|---|
| 176 | REAL xtpo_tmp(ngrid,nlay) |
|---|
| 177 | REAL xtzo_tmp(ngrid,nlay) |
|---|
| 178 | INTEGER ixt |
|---|
| 179 | #endif |
|---|
| 180 | |
|---|
| 181 | !----------------------------------------------------------------------- |
|---|
| 182 | ! initialisation: |
|---|
| 183 | ! --------------- |
|---|
| 184 | |
|---|
| 185 | fm = 0. ; entr = 0. ; detr = 0. |
|---|
| 186 | |
|---|
| 187 | IF (prt_level>=1) PRINT*, 'thermcell_main V4' |
|---|
| 188 | |
|---|
| 189 | sorties = .TRUE. |
|---|
| 190 | IF(ngrid/=ngrid) THEN |
|---|
| 191 | PRINT* |
|---|
| 192 | PRINT*, 'STOP dans convadj' |
|---|
| 193 | PRINT*, 'ngrid =', ngrid |
|---|
| 194 | PRINT*, 'ngrid =', ngrid |
|---|
| 195 | ENDIF |
|---|
| 196 | |
|---|
| 197 | !PRINT*,'thermcell_main debut' |
|---|
| 198 | ! WRITE(lunout,*)'WARNING thermcell_main f0=max(f0,1.e-2)' |
|---|
| 199 | DO ig = 1, ngrid |
|---|
| 200 | f0(ig) = max(f0(ig), 1.e-2) |
|---|
| 201 | zmax0(ig) = max(zmax0(ig), 40.) |
|---|
| 202 | !IMmarche pas ?! if (f0(ig)<1.e-2) f0(ig)=1.e-2 |
|---|
| 203 | enddo |
|---|
| 204 | |
|---|
| 205 | IF (prt_level>=20) THEN |
|---|
| 206 | DO ig = 1, ngrid |
|---|
| 207 | PRINT*, 'th_main ig f0', ig, f0(ig) |
|---|
| 208 | enddo |
|---|
| 209 | endif |
|---|
| 210 | |
|---|
| 211 | !----------------------------------------------------------------------- |
|---|
| 212 | ! Calcul de T,q,ql a partir de Tl et qT dans l environnement |
|---|
| 213 | ! -------------------------------------------------------------------- |
|---|
| 214 | |
|---|
| 215 | ! On condense l'eau liquide si besoin. |
|---|
| 216 | ! En fait on arrive ici d'habitude (jusque 6A) après réévaporation |
|---|
| 217 | ! Dans une nouvelle mouture, on passe les profiles |
|---|
| 218 | ! avant la couche limite : iflag_thermals_tenv=1 |
|---|
| 219 | ! dés le début de la physique : iflag_thermals_tenv=2 |
|---|
| 220 | ! Mais même pour 2) on ne veut sans doute pas réévaporer. |
|---|
| 221 | ! On veut comparer thetav dans le thermique, après condensation, |
|---|
| 222 | ! avec le theta_v effectif de l'environnement. |
|---|
| 223 | |
|---|
| 224 | IF (iflag_thermals_tenv - 10 * (iflag_thermals_tenv / 10) == 0) THEN |
|---|
| 225 | CALL thermcell_env(ngrid, nlay, p_o, ptemp_env, puwind, pvwind, pplay, & |
|---|
| 226 | pplev, z_o, ztemp_env, zl, ztv, zthl, zu, zv, zpspsk, zqsat, lcong, lintercong, lev_out) |
|---|
| 227 | |
|---|
| 228 | else |
|---|
| 229 | |
|---|
| 230 | ! Chantier en cours : ne pas effacer (Fredho). 15 septembre 2023 |
|---|
| 231 | ! Dans la version originale de thermcell_env, on condense l'eau de l'environnement |
|---|
| 232 | ! pour calculer une temperature potentielle liquide. |
|---|
| 233 | ! On en déduit un Theta v. |
|---|
| 234 | |
|---|
| 235 | ! ... |
|---|
| 236 | ! contenu de thermcell_env |
|---|
| 237 | ! SUBROUTINE thermcell_env(ngrid,nlay,po,pt,pu,pv,pplay, & |
|---|
| 238 | ! & pplev,zo,zh,zl,ztv,zthl,zu,zv,zpspsk,pqsat,lev_out) |
|---|
| 239 | ! contenu thermcell_env : CALL thermcell_qsat(ngrid*nlay,mask,pplev,pt,po,pqsat) |
|---|
| 240 | ! contenu thermcell_env : do ll=1,nlay |
|---|
| 241 | ! contenu thermcell_env : do ig=1,ngrid |
|---|
| 242 | ! contenu thermcell_env : zl(ig,ll) = max(0.,po(ig,ll)-pqsat(ig,ll)) |
|---|
| 243 | ! contenu thermcell_env : zh(ig,ll) = pt(ig,ll)+RLvCp*zl(ig,ll) ! T = Tl + Lv/Cp ql |
|---|
| 244 | ! contenu thermcell_env : zo(ig,ll) = po(ig,ll)-zl(ig,ll) |
|---|
| 245 | ! contenu thermcell_env : enddo |
|---|
| 246 | ! contenu thermcell_env : enddo |
|---|
| 247 | ! contenu thermcell_env : do ll=1,nlay |
|---|
| 248 | ! contenu thermcell_env : do ig=1,ngrid |
|---|
| 249 | ! contenu thermcell_env : zpspsk(ig,ll)=(pplay(ig,ll)/100000.)**RKAPPA |
|---|
| 250 | ! contenu thermcell_env : zu(ig,ll)=pu(ig,ll) |
|---|
| 251 | ! contenu thermcell_env : zv(ig,ll)=pv(ig,ll) |
|---|
| 252 | ! contenu thermcell_env : ztv(ig,ll)=zh(ig,ll)/zpspsk(ig,ll) |
|---|
| 253 | ! contenu thermcell_env : ztv(ig,ll)=ztv(ig,ll)*(1.+RETV*(zo(ig,ll))-zl(ig,ll)) |
|---|
| 254 | ! contenu thermcell_env : zthl(ig,ll)=pt(ig,ll)/zpspsk(ig,ll) |
|---|
| 255 | ! contenu thermcell_env : enddo |
|---|
| 256 | ! contenu thermcell_env : enddo |
|---|
| 257 | |
|---|
| 258 | DO l = 1, nlay |
|---|
| 259 | DO ig = 1, ngrid |
|---|
| 260 | zl(ig, l) = 0. |
|---|
| 261 | zu(ig, l) = puwind(ig, l) |
|---|
| 262 | zv(ig, l) = pvwind(ig, l) |
|---|
| 263 | ztemp_env(ig, l) = ptemp_env(ig, l) |
|---|
| 264 | zpspsk(ig, l) = (pplay(ig, l) / 100000.)**RKAPPA |
|---|
| 265 | ztv(ig, l) = ztemp_env(ig, l) / zpspsk(ig, l) |
|---|
| 266 | ztv(ig, l) = ztv(ig, l) * (1. + RETV * po_env(ig, l)) |
|---|
| 267 | zthl(ig, l) = ptemp(ig, l) / zpspsk(ig, l) |
|---|
| 268 | mask(ig, l) = .TRUE. |
|---|
| 269 | enddo |
|---|
| 270 | enddo |
|---|
| 271 | CALL thermcell_qsat(ngrid * nlay, mask, pplev, ptemp_env, p_o, zqsat) |
|---|
| 272 | |
|---|
| 273 | endif |
|---|
| 274 | |
|---|
| 275 | IF (prt_level>=1) PRINT*, 'thermcell_main apres thermcell_env' |
|---|
| 276 | |
|---|
| 277 | !------------------------------------------------------------------------ |
|---|
| 278 | ! -------------------- |
|---|
| 279 | |
|---|
| 280 | |
|---|
| 281 | ! + + + + + + + + + + + |
|---|
| 282 | |
|---|
| 283 | |
|---|
| 284 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
|---|
| 285 | ! wh,wt,wo ... |
|---|
| 286 | |
|---|
| 287 | ! + + + + + + + + + + + zh,zu,zv,z_o,rho |
|---|
| 288 | |
|---|
| 289 | |
|---|
| 290 | ! -------------------- zlev(1) |
|---|
| 291 | ! \\\\\\\\\\\\\\\\\\\\ |
|---|
| 292 | |
|---|
| 293 | |
|---|
| 294 | !----------------------------------------------------------------------- |
|---|
| 295 | ! Calcul des altitudes des couches |
|---|
| 296 | !----------------------------------------------------------------------- |
|---|
| 297 | |
|---|
| 298 | DO l = 2, nlay |
|---|
| 299 | zlev(:, l) = 0.5 * (pphi(:, l) + pphi(:, l - 1)) / RG |
|---|
| 300 | enddo |
|---|
| 301 | zlev(:, 1) = 0. |
|---|
| 302 | zlev(:, nlay + 1) = (2. * pphi(:, nlay) - pphi(:, nlay - 1)) / RG |
|---|
| 303 | DO l = 1, nlay |
|---|
| 304 | zlay(:, l) = pphi(:, l) / RG |
|---|
| 305 | enddo |
|---|
| 306 | DO l = 1, nlay |
|---|
| 307 | deltaz(:, l) = zlev(:, l + 1) - zlev(:, l) |
|---|
| 308 | enddo |
|---|
| 309 | |
|---|
| 310 | !----------------------------------------------------------------------- |
|---|
| 311 | ! Calcul des densites et masses |
|---|
| 312 | !----------------------------------------------------------------------- |
|---|
| 313 | |
|---|
| 314 | rho(:, :) = pplay(:, :) / (zpspsk(:, :) * RD * ztv(:, :)) |
|---|
| 315 | IF (prt_level>=10) WRITE(lunout, *) 'WARNING thermcell_main rhobarz(:,1)=rho(:,1)' |
|---|
| 316 | rhobarz(:, 1) = rho(:, 1) |
|---|
| 317 | DO l = 2, nlay |
|---|
| 318 | rhobarz(:, l) = 0.5 * (rho(:, l) + rho(:, l - 1)) |
|---|
| 319 | enddo |
|---|
| 320 | DO l = 1, nlay |
|---|
| 321 | masse(:, l) = (pplev(:, l) - pplev(:, l + 1)) / RG |
|---|
| 322 | enddo |
|---|
| 323 | IF (prt_level>=1) PRINT*, 'thermcell_main apres initialisation' |
|---|
| 324 | |
|---|
| 325 | !------------------------------------------------------------------ |
|---|
| 326 | |
|---|
| 327 | ! /|\ |
|---|
| 328 | ! -------- | F_k+1 ------- |
|---|
| 329 | ! ----> D_k |
|---|
| 330 | ! /|\ <---- E_k , A_k |
|---|
| 331 | ! -------- | F_k --------- |
|---|
| 332 | ! ----> D_k-1 |
|---|
| 333 | ! <---- E_k-1 , A_k-1 |
|---|
| 334 | |
|---|
| 335 | |
|---|
| 336 | |
|---|
| 337 | |
|---|
| 338 | |
|---|
| 339 | ! --------------------------- |
|---|
| 340 | |
|---|
| 341 | ! ----- F_lmax+1=0 ---------- \ |
|---|
| 342 | ! lmax (zmax) | |
|---|
| 343 | ! --------------------------- | |
|---|
| 344 | ! | |
|---|
| 345 | ! --------------------------- | |
|---|
| 346 | ! | |
|---|
| 347 | ! --------------------------- | |
|---|
| 348 | ! | |
|---|
| 349 | ! --------------------------- | |
|---|
| 350 | ! | |
|---|
| 351 | ! --------------------------- | |
|---|
| 352 | ! | E |
|---|
| 353 | ! --------------------------- | D |
|---|
| 354 | ! | |
|---|
| 355 | ! --------------------------- | |
|---|
| 356 | ! | |
|---|
| 357 | ! --------------------------- \ | |
|---|
| 358 | ! lalim | | |
|---|
| 359 | ! --------------------------- | | |
|---|
| 360 | ! | | |
|---|
| 361 | ! --------------------------- | | |
|---|
| 362 | ! | A | |
|---|
| 363 | ! --------------------------- | | |
|---|
| 364 | ! | | |
|---|
| 365 | ! --------------------------- | | |
|---|
| 366 | ! lmin (=1 pour le moment) | | |
|---|
| 367 | ! ----- F_lmin=0 ------------ / / |
|---|
| 368 | |
|---|
| 369 | ! --------------------------- |
|---|
| 370 | ! ////////////////////////// |
|---|
| 371 | |
|---|
| 372 | |
|---|
| 373 | !============================================================================= |
|---|
| 374 | ! Calculs initiaux ne faisant pas intervenir les changements de phase |
|---|
| 375 | !============================================================================= |
|---|
| 376 | |
|---|
| 377 | !------------------------------------------------------------------ |
|---|
| 378 | ! 1. alim_star est le profil vertical de l'alimentation a la base du |
|---|
| 379 | ! panache thermique, calcule a partir de la flotabilite de l'air sec |
|---|
| 380 | ! 2. lmin et lalim sont les indices inferieurs et superieurs de alim_star |
|---|
| 381 | !------------------------------------------------------------------ |
|---|
| 382 | |
|---|
| 383 | entr_star = 0. ; detr_star = 0. ; alim_star = 0. ; alim_star_tot = 0. |
|---|
| 384 | lmin = 1 |
|---|
| 385 | |
|---|
| 386 | !----------------------------------------------------------------------------- |
|---|
| 387 | ! 3. wmax_sec et zmax_sec sont les vitesses et altitudes maximum d'un |
|---|
| 388 | ! panache sec conservatif (e=d=0) alimente selon alim_star |
|---|
| 389 | ! Il s'agit d'un calcul de type CAPE |
|---|
| 390 | ! zmax_sec est utilise pour determiner la geometrie du thermique. |
|---|
| 391 | !------------------------------------------------------------------------------ |
|---|
| 392 | !--------------------------------------------------------------------------------- |
|---|
| 393 | !calcul du melange et des variables dans le thermique |
|---|
| 394 | !-------------------------------------------------------------------------------- |
|---|
| 395 | |
|---|
| 396 | IF (prt_level>=1) PRINT*, 'avant thermcell_plume ', lev_out |
|---|
| 397 | |
|---|
| 398 | !===================================================================== |
|---|
| 399 | ! Old version of thermcell_plume in thermcell_plume_6A.F90 |
|---|
| 400 | ! It includes both thermcell_plume_6A and thermcell_plume_5B corresponding |
|---|
| 401 | ! to the 5B and 6A versions used for CMIP5 and CMIP6. |
|---|
| 402 | ! The latest was previously named thermcellV1_plume. |
|---|
| 403 | ! The new thermcell_plume is a clean version (removing obsolete |
|---|
| 404 | ! options) of thermcell_plume_6A. |
|---|
| 405 | ! The 3 versions are controled by |
|---|
| 406 | ! flag_thermals_ed <= 9 thermcell_plume_6A |
|---|
| 407 | ! <= 19 thermcell_plume_5B |
|---|
| 408 | ! else thermcell_plume (default 20 for convergence with 6A) |
|---|
| 409 | ! Fredho |
|---|
| 410 | !===================================================================== |
|---|
| 411 | |
|---|
| 412 | IF (iflag_thermals_ed<=9) THEN |
|---|
| 413 | ! PRINT*,'THERM NOUVELLE/NOUVELLE Arnaud' |
|---|
| 414 | CALL thermcell_plume_6A(itap, ngrid, nlay, ptimestep, ztv, zthl, p_o, zl, rhobarz, & |
|---|
| 415 | zlev, pplev, pphi, zpspsk, alim_star, alim_star_tot, & |
|---|
| 416 | lalim, f0, detr_star, entr_star, f_star, csc, ztva, & |
|---|
| 417 | ztla, zqla, zqta, zha, zw2, zw_est, ztva_est, zqsatth, lmix, lmix_bis, linter & |
|---|
| 418 | , lev_out, lunout1, igout) |
|---|
| 419 | |
|---|
| 420 | elseif (iflag_thermals_ed<=19) THEN |
|---|
| 421 | ! PRINT*,'THERM RIO et al 2010, version d Arnaud' |
|---|
| 422 | CALL thermcell_plume_5B(itap, ngrid, nlay, ptimestep, ztv, zthl, p_o, zl, rhobarz, & |
|---|
| 423 | zlev, pplev, pphi, zpspsk, alim_star, alim_star_tot, & |
|---|
| 424 | lalim, f0, detr_star, entr_star, f_star, csc, ztva, & |
|---|
| 425 | ztla, zqla, zqta, zha, zw2, zw_est, ztva_est, zqsatth, lmix, lmix_bis, linter & |
|---|
| 426 | , lev_out, lunout1, igout) |
|---|
| 427 | else |
|---|
| 428 | CALL thermcell_plume(itap, ngrid, nlay, ptimestep, ztv, zthl, p_o, zl, rhobarz, & |
|---|
| 429 | zlev, pplev, pphi, zpspsk, alim_star, alim_star_tot, & |
|---|
| 430 | lalim, f0, detr_star, entr_star, f_star, csc, ztva, & |
|---|
| 431 | ztla, zqla, zqta, zha, zw2, zw_est, ztva_est, zqsatth, lmix, lmix_bis, linter & |
|---|
| 432 | , lev_out, lunout1, igout) |
|---|
| 433 | endif |
|---|
| 434 | |
|---|
| 435 | IF (prt_level>=1) PRINT*, 'apres thermcell_plume ', lev_out |
|---|
| 436 | |
|---|
| 437 | CALL test_ltherm(ngrid, nlay, pplay, lalim, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_plum lalim ') |
|---|
| 438 | CALL test_ltherm(ngrid, nlay, pplay, lmix, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_plum lmix ') |
|---|
| 439 | |
|---|
| 440 | IF (prt_level>=1) PRINT*, 'thermcell_main apres thermcell_plume' |
|---|
| 441 | IF (prt_level>=10) THEN |
|---|
| 442 | WRITE(lunout1, *) 'Dans thermcell_main 2' |
|---|
| 443 | WRITE(lunout1, *) 'lmin ', lmin(igout) |
|---|
| 444 | WRITE(lunout1, *) 'lalim ', lalim(igout) |
|---|
| 445 | WRITE(lunout1, *) ' ig l alim_star entr_star detr_star f_star ' |
|---|
| 446 | WRITE(lunout1, '(i6,i4,4e15.5)') (igout, l, alim_star(igout, l), entr_star(igout, l), detr_star(igout, l) & |
|---|
| 447 | , f_star(igout, l + 1), l = 1, nint(linter(igout)) + 5) |
|---|
| 448 | endif |
|---|
| 449 | |
|---|
| 450 | !------------------------------------------------------------------------------- |
|---|
| 451 | ! Calcul des caracteristiques du thermique:zmax,zmix,wmax |
|---|
| 452 | !------------------------------------------------------------------------------- |
|---|
| 453 | |
|---|
| 454 | CALL thermcell_height(ngrid, nlay, lalim, lmin, linter, lcong, lintercong, lmix, zw2, & |
|---|
| 455 | zlev, lmax, zmax, zmax0, zmix, wmax, zcong) |
|---|
| 456 | ! Attention, w2 est transforme en sa racine carree dans cette routine |
|---|
| 457 | ! Le probleme vient du fait que linter et lmix sont souvent egaux a 1. |
|---|
| 458 | wmax_tmp = 0. |
|---|
| 459 | DO l = 1, nlay |
|---|
| 460 | wmax_tmp(:) = max(wmax_tmp(:), zw2(:, l)) |
|---|
| 461 | enddo |
|---|
| 462 | ! PRINT*,"ZMAX ",lalim,lmin,linter,lmix,lmax,zmax,zmax0,zmix,wmax |
|---|
| 463 | |
|---|
| 464 | CALL test_ltherm(ngrid, nlay, pplay, lalim, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_heig lalim ') |
|---|
| 465 | CALL test_ltherm(ngrid, nlay, pplay, lmin, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_heig lmin ') |
|---|
| 466 | CALL test_ltherm(ngrid, nlay, pplay, lmix, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_heig lmix ') |
|---|
| 467 | CALL test_ltherm(ngrid, nlay, pplay, lmax, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_heig lmax ') |
|---|
| 468 | |
|---|
| 469 | IF (prt_level>=1) PRINT*, 'thermcell_main apres thermcell_height' |
|---|
| 470 | |
|---|
| 471 | !------------------------------------------------------------------------------- |
|---|
| 472 | ! Fermeture,determination de f |
|---|
| 473 | !------------------------------------------------------------------------------- |
|---|
| 474 | |
|---|
| 475 | CALL thermcell_dry(ngrid, nlay, zlev, pphi, ztv, alim_star, & |
|---|
| 476 | lalim, lmin, zmax_sec, wmax_sec) |
|---|
| 477 | |
|---|
| 478 | CALL test_ltherm(ngrid, nlay, pplay, lmin, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_dry lmin ') |
|---|
| 479 | CALL test_ltherm(ngrid, nlay, pplay, lalim, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_dry lalim ') |
|---|
| 480 | |
|---|
| 481 | IF (prt_level>=1) PRINT*, 'thermcell_main apres thermcell_dry' |
|---|
| 482 | IF (prt_level>=10) THEN |
|---|
| 483 | WRITE(lunout1, *) 'Dans thermcell_main 1b' |
|---|
| 484 | WRITE(lunout1, *) 'lmin ', lmin(igout) |
|---|
| 485 | WRITE(lunout1, *) 'lalim ', lalim(igout) |
|---|
| 486 | WRITE(lunout1, *) ' ig l alim_star entr_star detr_star f_star ' |
|---|
| 487 | WRITE(lunout1, '(i6,i4,e15.5)') (igout, l, alim_star(igout, l) & |
|---|
| 488 | , l = 1, lalim(igout) + 4) |
|---|
| 489 | endif |
|---|
| 490 | |
|---|
| 491 | |
|---|
| 492 | |
|---|
| 493 | |
|---|
| 494 | ! Choix de la fonction d'alimentation utilisee pour la fermeture. |
|---|
| 495 | ! Apparemment sans importance |
|---|
| 496 | alim_star_clos(:, :) = alim_star(:, :) |
|---|
| 497 | alim_star_clos(:, :) = entr_star(:, :) + alim_star(:, :) |
|---|
| 498 | |
|---|
| 499 | !CR Appel de la fermeture seche |
|---|
| 500 | IF (iflag_thermals_closure==1) THEN |
|---|
| 501 | CALL thermcell_closure(ngrid, nlay, r_aspect_thermals, ptimestep, rho, & |
|---|
| 502 | zlev, lalim, alim_star_clos, zmax_sec, wmax_sec, f) |
|---|
| 503 | |
|---|
| 504 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 505 | ! Appel avec les zmax et wmax tenant compte de la condensation |
|---|
| 506 | ! Semble moins bien marcher |
|---|
| 507 | ELSE IF (iflag_thermals_closure==2) THEN |
|---|
| 508 | CALL thermcell_closure(ngrid, nlay, r_aspect_thermals, ptimestep, rho, & |
|---|
| 509 | zlev, lalim, alim_star, zmax, wmax, f) |
|---|
| 510 | |
|---|
| 511 | endif |
|---|
| 512 | |
|---|
| 513 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 514 | |
|---|
| 515 | IF(prt_level>=1)PRINT*, 'thermcell_closure apres thermcell_closure' |
|---|
| 516 | |
|---|
| 517 | IF (tau_thermals>1.) THEN |
|---|
| 518 | lambda = exp(-ptimestep / tau_thermals) |
|---|
| 519 | f0 = (1. - lambda) * f + lambda * f0 |
|---|
| 520 | else |
|---|
| 521 | f0 = f |
|---|
| 522 | endif |
|---|
| 523 | |
|---|
| 524 | ! Test valable seulement en 1D mais pas genant |
|---|
| 525 | IF (.NOT. (f0(1)>=0.)) THEN |
|---|
| 526 | abort_message = '.NOT. (f0(1).ge.0.)' |
|---|
| 527 | CALL abort_physic (modname, abort_message, 1) |
|---|
| 528 | endif |
|---|
| 529 | |
|---|
| 530 | !------------------------------------------------------------------------------- |
|---|
| 531 | !deduction des flux |
|---|
| 532 | |
|---|
| 533 | CALL thermcell_flux2(ngrid, nlay, ptimestep, masse, & |
|---|
| 534 | lalim, lmax, alim_star, & |
|---|
| 535 | entr_star, detr_star, f, rhobarz, zlev, zw2, fm, entr, & |
|---|
| 536 | detr, zqla, lev_out, lunout1, igout) |
|---|
| 537 | |
|---|
| 538 | !IM 060508 & detr,zqla,zmax,lev_out,lunout,igout) |
|---|
| 539 | |
|---|
| 540 | IF (prt_level>=1) PRINT*, 'thermcell_main apres thermcell_flux' |
|---|
| 541 | CALL test_ltherm(ngrid, nlay, pplay, lalim, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_flux lalim ') |
|---|
| 542 | CALL test_ltherm(ngrid, nlay, pplay, lmax, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_flux lmax ') |
|---|
| 543 | |
|---|
| 544 | !------------------------------------------------------------------ |
|---|
| 545 | ! On ne prend pas directement les profils issus des calculs precedents |
|---|
| 546 | ! mais on s'autorise genereusement une relaxation vers ceci avec |
|---|
| 547 | ! une constante de temps tau_thermals (typiquement 1800s). |
|---|
| 548 | !------------------------------------------------------------------ |
|---|
| 549 | |
|---|
| 550 | IF (tau_thermals>1.) THEN |
|---|
| 551 | lambda = exp(-ptimestep / tau_thermals) |
|---|
| 552 | fm0 = (1. - lambda) * fm + lambda * fm0 |
|---|
| 553 | entr0 = (1. - lambda) * entr + lambda * entr0 |
|---|
| 554 | detr0 = (1. - lambda) * detr + lambda * detr0 |
|---|
| 555 | else |
|---|
| 556 | fm0 = fm |
|---|
| 557 | entr0 = entr |
|---|
| 558 | detr0 = detr |
|---|
| 559 | endif |
|---|
| 560 | |
|---|
| 561 | !------------------------------------------------------------------ |
|---|
| 562 | ! Calcul de la fraction de l'ascendance |
|---|
| 563 | !------------------------------------------------------------------ |
|---|
| 564 | DO ig = 1, ngrid |
|---|
| 565 | fraca(ig, 1) = 0. |
|---|
| 566 | fraca(ig, nlay + 1) = 0. |
|---|
| 567 | enddo |
|---|
| 568 | DO l = 2, nlay |
|---|
| 569 | DO ig = 1, ngrid |
|---|
| 570 | IF (zw2(ig, l)>1.e-10) THEN |
|---|
| 571 | fraca(ig, l) = fm(ig, l) / (rhobarz(ig, l) * zw2(ig, l)) |
|---|
| 572 | else |
|---|
| 573 | fraca(ig, l) = 0. |
|---|
| 574 | endif |
|---|
| 575 | enddo |
|---|
| 576 | enddo |
|---|
| 577 | |
|---|
| 578 | !c------------------------------------------------------------------ |
|---|
| 579 | ! calcul du transport vertical |
|---|
| 580 | !------------------------------------------------------------------ |
|---|
| 581 | IF (iflag_thermals_down > 0) THEN |
|---|
| 582 | IF (debut) PRINT*, 'WARNING !!! routine thermcell_down en cours de developpement' |
|---|
| 583 | entrdn = fact_thermals_down * detr0 |
|---|
| 584 | detrdn = fact_thermals_down * entr0 |
|---|
| 585 | ! we want to transport potential temperature, total water and momentum |
|---|
| 586 | CALL thermcell_updown_dq(ngrid, nlay, ptimestep, lmax, entr0, detr0, entrdn, detrdn, masse, zthl, zdthladj) |
|---|
| 587 | CALL thermcell_updown_dq(ngrid, nlay, ptimestep, lmax, entr0, detr0, entrdn, detrdn, masse, p_o, pdoadj) |
|---|
| 588 | CALL thermcell_updown_dq(ngrid, nlay, ptimestep, lmax, entr0, detr0, entrdn, detrdn, masse, zu, pduadj) |
|---|
| 589 | CALL thermcell_updown_dq(ngrid, nlay, ptimestep, lmax, entr0, detr0, entrdn, detrdn, masse, zv, pdvadj) |
|---|
| 590 | ELSE |
|---|
| 591 | !-------------------------------------------------------------- |
|---|
| 592 | |
|---|
| 593 | ! Temperature potentielle liquide effectivement mélangée par les thermiques |
|---|
| 594 | DO ll = 1, nlay |
|---|
| 595 | DO ig = 1, ngrid |
|---|
| 596 | zthl(ig, ll) = ptemp(ig, ll) / zpspsk(ig, ll) |
|---|
| 597 | enddo |
|---|
| 598 | enddo |
|---|
| 599 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, & |
|---|
| 600 | zthl, zdthladj, zta, lev_out) |
|---|
| 601 | |
|---|
| 602 | DO ll = 1, nlay |
|---|
| 603 | DO ig = 1, ngrid |
|---|
| 604 | z_o(ig, ll) = p_o(ig, ll) |
|---|
| 605 | enddo |
|---|
| 606 | enddo |
|---|
| 607 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, & |
|---|
| 608 | z_o, pdoadj, z_oa, lev_out) |
|---|
| 609 | |
|---|
| 610 | #ifdef ISO |
|---|
| 611 | ! C Risi: on utilise directement la meme routine |
|---|
| 612 | DO ixt=1,ntiso |
|---|
| 613 | DO ll=1,nlay |
|---|
| 614 | DO ig=1,ngrid |
|---|
| 615 | xtpo_tmp(ig,ll)=xtpo(ixt,ig,ll) |
|---|
| 616 | xtzo_tmp(ig,ll)=xtzo(ixt,ig,ll) |
|---|
| 617 | enddo |
|---|
| 618 | enddo |
|---|
| 619 | CALL thermcell_dq(ngrid,nlay,dqimpl,ptimestep,fm0,entr0,masse, & |
|---|
| 620 | xtpo_tmp,xtpdoadj_tmp,xtzo_tmp,lev_out) |
|---|
| 621 | DO ll=1,nlay |
|---|
| 622 | DO ig=1,ngrid |
|---|
| 623 | xtpdoadj(ixt,ig,ll)=xtpdoadj_tmp(ig,ll) |
|---|
| 624 | enddo |
|---|
| 625 | enddo |
|---|
| 626 | enddo |
|---|
| 627 | #endif |
|---|
| 628 | |
|---|
| 629 | #ifdef ISO |
|---|
| 630 | #ifdef ISOVERIF |
|---|
| 631 | DO ll=1,nlay |
|---|
| 632 | DO ig=1,ngrid |
|---|
| 633 | IF (iso_eau.gt.0) THEN |
|---|
| 634 | CALL iso_verif_egalite(xtpo(iso_eau,ig,ll), & |
|---|
| 635 | p_o(ig,ll),'thermcell_main 594') |
|---|
| 636 | CALL iso_verif_egalite(xtpdoadj(iso_eau,ig,ll), & |
|---|
| 637 | pdoadj(ig,ll),'thermcell_main 596') |
|---|
| 638 | endif |
|---|
| 639 | IF (iso_HDO.gt.0) THEN |
|---|
| 640 | CALL iso_verif_aberrant_encadre(xtpo(iso_hdo,ig,ll) & |
|---|
| 641 | /p_o(ig,ll),'thermcell_main 610') |
|---|
| 642 | endif |
|---|
| 643 | enddo |
|---|
| 644 | enddo !DO ll=1,nlay |
|---|
| 645 | WRITE(*,*) 'thermcell_main 600 tmp: apres thermcell_dq' |
|---|
| 646 | #endif |
|---|
| 647 | #endif |
|---|
| 648 | |
|---|
| 649 | |
|---|
| 650 | !------------------------------------------------------------------ |
|---|
| 651 | ! calcul du transport vertical du moment horizontal |
|---|
| 652 | !------------------------------------------------------------------ |
|---|
| 653 | |
|---|
| 654 | !IM 090508 |
|---|
| 655 | IF (dvdq == 0) THEN |
|---|
| 656 | ! Calcul du transport de V tenant compte d'echange par gradient |
|---|
| 657 | ! de pression horizontal avec l'environnement |
|---|
| 658 | |
|---|
| 659 | CALL thermcell_dv2(ngrid, nlay, ptimestep, fm0, entr0, masse & |
|---|
| 660 | ! & ,fraca*dvdq,zmax & |
|---|
| 661 | , fraca, zmax & |
|---|
| 662 | , zu, zv, pduadj, pdvadj, zua, zva, lev_out) |
|---|
| 663 | |
|---|
| 664 | else |
|---|
| 665 | |
|---|
| 666 | ! calcul purement conservatif pour le transport de V |
|---|
| 667 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse & |
|---|
| 668 | , zu, pduadj, zua, lev_out) |
|---|
| 669 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse & |
|---|
| 670 | , zv, pdvadj, zva, lev_out) |
|---|
| 671 | |
|---|
| 672 | endif |
|---|
| 673 | ENDIF |
|---|
| 674 | |
|---|
| 675 | ! PRINT*,'13 OK convect8' |
|---|
| 676 | DO l = 1, nlay |
|---|
| 677 | DO ig = 1, ngrid |
|---|
| 678 | pdtadj(ig, l) = zdthladj(ig, l) * zpspsk(ig, l) |
|---|
| 679 | enddo |
|---|
| 680 | enddo |
|---|
| 681 | |
|---|
| 682 | IF (prt_level>=1) PRINT*, '14 OK convect8' |
|---|
| 683 | !------------------------------------------------------------------ |
|---|
| 684 | ! Calculs de diagnostiques pour les sorties |
|---|
| 685 | !------------------------------------------------------------------ |
|---|
| 686 | !calcul de fraca pour les sorties |
|---|
| 687 | |
|---|
| 688 | IF (sorties) THEN |
|---|
| 689 | IF (prt_level>=1) PRINT*, '14a OK convect8' |
|---|
| 690 | ! calcul du niveau de condensation |
|---|
| 691 | ! initialisation |
|---|
| 692 | DO ig = 1, ngrid |
|---|
| 693 | nivcon(ig) = 0 |
|---|
| 694 | zcon(ig) = 0. |
|---|
| 695 | enddo |
|---|
| 696 | !nouveau calcul |
|---|
| 697 | DO ig = 1, ngrid |
|---|
| 698 | ! WARNING !!! verifier que c'est bien ztemp_env qu'on veut là |
|---|
| 699 | CHI = ztemp_env(ig, 1) / (1669.0 - 122.0 * z_o(ig, 1) / zqsat(ig, 1) - ztemp_env(ig, 1)) |
|---|
| 700 | pcon(ig) = pplay(ig, 1) * (z_o(ig, 1) / zqsat(ig, 1))**CHI |
|---|
| 701 | enddo |
|---|
| 702 | !IM do k=1,nlay |
|---|
| 703 | DO k = 1, nlay - 1 |
|---|
| 704 | DO ig = 1, ngrid |
|---|
| 705 | IF ((pcon(ig)<=pplay(ig, k)) & |
|---|
| 706 | .AND.(pcon(ig)>pplay(ig, k + 1))) THEN |
|---|
| 707 | zcon2(ig) = zlay(ig, k) - (pcon(ig) - pplay(ig, k)) / (RG * rho(ig, k)) / 100. |
|---|
| 708 | endif |
|---|
| 709 | enddo |
|---|
| 710 | enddo |
|---|
| 711 | !IM |
|---|
| 712 | ierr = 0 |
|---|
| 713 | DO ig = 1, ngrid |
|---|
| 714 | IF (pcon(ig)<=pplay(ig, nlay)) THEN |
|---|
| 715 | zcon2(ig) = zlay(ig, nlay) - (pcon(ig) - pplay(ig, nlay)) / (RG * rho(ig, nlay)) / 100. |
|---|
| 716 | ierr = 1 |
|---|
| 717 | endif |
|---|
| 718 | enddo |
|---|
| 719 | ! if (ierr==1) THEN |
|---|
| 720 | ! abort_message = 'thermcellV0_main: les thermiques vont trop haut ' |
|---|
| 721 | ! CALL abort_physic (modname,abort_message,1) |
|---|
| 722 | ! endif |
|---|
| 723 | |
|---|
| 724 | IF (prt_level>=1) PRINT*, '14b OK convect8' |
|---|
| 725 | DO k = nlay, 1, -1 |
|---|
| 726 | DO ig = 1, ngrid |
|---|
| 727 | IF (zqla(ig, k)>1e-10) THEN |
|---|
| 728 | nivcon(ig) = k |
|---|
| 729 | zcon(ig) = zlev(ig, k) |
|---|
| 730 | endif |
|---|
| 731 | enddo |
|---|
| 732 | enddo |
|---|
| 733 | IF (prt_level>=1) PRINT*, '14c OK convect8' |
|---|
| 734 | !calcul des moments |
|---|
| 735 | !initialisation |
|---|
| 736 | DO l = 1, nlay |
|---|
| 737 | DO ig = 1, ngrid |
|---|
| 738 | q2(ig, l) = 0. |
|---|
| 739 | wth2(ig, l) = 0. |
|---|
| 740 | wth3(ig, l) = 0. |
|---|
| 741 | ratqscth(ig, l) = 0. |
|---|
| 742 | ratqsdiff(ig, l) = 0. |
|---|
| 743 | enddo |
|---|
| 744 | enddo |
|---|
| 745 | IF (prt_level>=1) PRINT*, '14d OK convect8' |
|---|
| 746 | IF (prt_level>=10)WRITE(lunout, *) & |
|---|
| 747 | 'WARNING thermcell_main wth2=0. si zw2 > 1.e-10' |
|---|
| 748 | DO l = 1, nlay |
|---|
| 749 | DO ig = 1, ngrid |
|---|
| 750 | zf = fraca(ig, l) |
|---|
| 751 | zf2 = zf / (1. - zf) |
|---|
| 752 | |
|---|
| 753 | thetath2(ig, l) = zf2 * (ztla(ig, l) - zthl(ig, l))**2 |
|---|
| 754 | IF(zw2(ig, l)>1.e-10) THEN |
|---|
| 755 | wth2(ig, l) = zf2 * (zw2(ig, l))**2 |
|---|
| 756 | else |
|---|
| 757 | wth2(ig, l) = 0. |
|---|
| 758 | endif |
|---|
| 759 | wth3(ig, l) = zf2 * (1 - 2. * fraca(ig, l)) / (1 - fraca(ig, l)) & |
|---|
| 760 | * zw2(ig, l) * zw2(ig, l) * zw2(ig, l) |
|---|
| 761 | q2(ig, l) = zf2 * (zqta(ig, l) * 1000. - p_o(ig, l) * 1000.)**2 |
|---|
| 762 | !test: on calcul q2/p_o=ratqsc |
|---|
| 763 | ratqscth(ig, l) = sqrt(max(q2(ig, l), 1.e-6) / (p_o(ig, l) * 1000.)) |
|---|
| 764 | enddo |
|---|
| 765 | enddo |
|---|
| 766 | !calcul des flux: q, thetal et thetav |
|---|
| 767 | DO l = 1, nlay |
|---|
| 768 | DO ig = 1, ngrid |
|---|
| 769 | wq(ig, l) = fraca(ig, l) * zw2(ig, l) * (zqta(ig, l) * 1000. - p_o(ig, l) * 1000.) |
|---|
| 770 | wthl(ig, l) = fraca(ig, l) * zw2(ig, l) * (ztla(ig, l) - zthl(ig, l)) |
|---|
| 771 | wthv(ig, l) = fraca(ig, l) * zw2(ig, l) * (ztva(ig, l) - ztv(ig, l)) |
|---|
| 772 | enddo |
|---|
| 773 | enddo |
|---|
| 774 | |
|---|
| 775 | !calcul du ratqscdiff |
|---|
| 776 | IF (prt_level>=1) PRINT*, '14e OK convect8' |
|---|
| 777 | var = 0. |
|---|
| 778 | vardiff = 0. |
|---|
| 779 | ratqsdiff(:, :) = 0. |
|---|
| 780 | |
|---|
| 781 | DO l = 1, nlay |
|---|
| 782 | DO ig = 1, ngrid |
|---|
| 783 | IF (l<=lalim(ig)) THEN |
|---|
| 784 | var = var + alim_star(ig, l) * zqta(ig, l) * 1000. |
|---|
| 785 | endif |
|---|
| 786 | enddo |
|---|
| 787 | enddo |
|---|
| 788 | |
|---|
| 789 | IF (prt_level>=1) PRINT*, '14f OK convect8' |
|---|
| 790 | |
|---|
| 791 | DO l = 1, nlay |
|---|
| 792 | DO ig = 1, ngrid |
|---|
| 793 | IF (l<=lalim(ig)) THEN |
|---|
| 794 | zf = fraca(ig, l) |
|---|
| 795 | zf2 = zf / (1. - zf) |
|---|
| 796 | vardiff = vardiff + alim_star(ig, l) * (zqta(ig, l) * 1000. - var)**2 |
|---|
| 797 | endif |
|---|
| 798 | enddo |
|---|
| 799 | enddo |
|---|
| 800 | |
|---|
| 801 | IF (prt_level>=1) PRINT*, '14g OK convect8' |
|---|
| 802 | DO l = 1, nlay |
|---|
| 803 | DO ig = 1, ngrid |
|---|
| 804 | ratqsdiff(ig, l) = sqrt(vardiff) / (p_o(ig, l) * 1000.) |
|---|
| 805 | enddo |
|---|
| 806 | enddo |
|---|
| 807 | endif |
|---|
| 808 | |
|---|
| 809 | IF (prt_level>=1) PRINT*, 'thermcell_main FIN OK' |
|---|
| 810 | |
|---|
| 811 | !PRINT*,'thermcell_main fin' |
|---|
| 812 | |
|---|
| 813 | END SUBROUTINE thermcell_main |
|---|
| 814 | |
|---|
| 815 | !============================================================================= |
|---|
| 816 | !///////////////////////////////////////////////////////////////////////////// |
|---|
| 817 | !============================================================================= |
|---|
| 818 | SUBROUTINE test_ltherm(ngrid, nlay, pplay, long, ztv, p_o, ztva, & ! in |
|---|
| 819 | zqla, f_star, zw2, comment) ! in |
|---|
| 820 | !============================================================================= |
|---|
| 821 | USE lmdz_thermcell_ini, ONLY: prt_level |
|---|
| 822 | IMPLICIT NONE |
|---|
| 823 | |
|---|
| 824 | INTEGER i, k, ngrid, nlay |
|---|
| 825 | REAL, INTENT(IN), DIMENSION(ngrid, nlay) :: pplay, ztv, p_o, ztva, zqla |
|---|
| 826 | REAL, INTENT(IN), DIMENSION(ngrid, nlay) :: f_star, zw2 |
|---|
| 827 | INTEGER, INTENT(IN), DIMENSION(ngrid) :: long |
|---|
| 828 | REAL seuil |
|---|
| 829 | CHARACTER*21 comment |
|---|
| 830 | |
|---|
| 831 | seuil = 0.25 |
|---|
| 832 | |
|---|
| 833 | IF (prt_level>=1) THEN |
|---|
| 834 | PRINT*, 'WARNING !!! TEST ', comment |
|---|
| 835 | endif |
|---|
| 836 | return |
|---|
| 837 | |
|---|
| 838 | ! test sur la hauteur des thermiques ... |
|---|
| 839 | DO i = 1, ngrid |
|---|
| 840 | !IMtemp if (pplay(i,long(i)).lt.seuil*pplev(i,1)) THEN |
|---|
| 841 | IF (prt_level>=10) THEN |
|---|
| 842 | PRINT*, 'WARNING ', comment, ' au point ', i, ' K= ', long(i) |
|---|
| 843 | PRINT*, ' K P(MB) THV(K) Qenv(g/kg)THVA QLA(g/kg) F* W2' |
|---|
| 844 | DO k = 1, nlay |
|---|
| 845 | WRITE(6, '(i3,7f10.3)') k, pplay(i, k), ztv(i, k), 1000 * p_o(i, k), ztva(i, k), 1000 * zqla(i, k), f_star(i, k), zw2(i, k) |
|---|
| 846 | enddo |
|---|
| 847 | endif |
|---|
| 848 | enddo |
|---|
| 849 | |
|---|
| 850 | RETURN |
|---|
| 851 | end |
|---|
| 852 | |
|---|
| 853 | ! nrlmd le 10/04/2012 Transport de la TKE par le thermique moyen pour la fermeture en ALP |
|---|
| 854 | ! On transporte pbl_tke pour donner therm_tke |
|---|
| 855 | ! Copie conforme de la SUBROUTINE DTKE dans physiq.F ecrite par Frederic Hourdin |
|---|
| 856 | |
|---|
| 857 | !======================================================================= |
|---|
| 858 | !/////////////////////////////////////////////////////////////////////// |
|---|
| 859 | !======================================================================= |
|---|
| 860 | |
|---|
| 861 | SUBROUTINE thermcell_tke_transport(& |
|---|
| 862 | ngrid, nlay, ptimestep, fm0, entr0, rg, pplev, & ! in |
|---|
| 863 | therm_tke_max) ! out |
|---|
| 864 | USE lmdz_thermcell_ini, ONLY: prt_level |
|---|
| 865 | IMPLICIT NONE |
|---|
| 866 | |
|---|
| 867 | !======================================================================= |
|---|
| 868 | |
|---|
| 869 | ! Calcul du transport verticale dans la couche limite en presence |
|---|
| 870 | ! de "thermiques" explicitement representes |
|---|
| 871 | ! calcul du dq/dt une fois qu'on connait les ascendances |
|---|
| 872 | |
|---|
| 873 | !======================================================================= |
|---|
| 874 | |
|---|
| 875 | INTEGER ngrid, nlay |
|---|
| 876 | |
|---|
| 877 | REAL, INTENT(IN) :: ptimestep |
|---|
| 878 | REAL, INTENT(IN), DIMENSION(ngrid, nlay + 1) :: fm0, pplev |
|---|
| 879 | REAL, INTENT(IN), DIMENSION(ngrid, nlay) :: entr0 |
|---|
| 880 | REAL, INTENT(IN) :: rg |
|---|
| 881 | REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: therm_tke_max |
|---|
| 882 | |
|---|
| 883 | REAL detr0(ngrid, nlay) |
|---|
| 884 | REAL masse0(ngrid, nlay) |
|---|
| 885 | REAL masse(ngrid, nlay), fm(ngrid, nlay + 1) |
|---|
| 886 | REAL entr(ngrid, nlay) |
|---|
| 887 | REAL q(ngrid, nlay) |
|---|
| 888 | INTEGER lev_out ! niveau pour les print |
|---|
| 889 | |
|---|
| 890 | REAL qa(ngrid, nlay), detr(ngrid, nlay), wqd(ngrid, nlay + 1) |
|---|
| 891 | INTEGER ig, k |
|---|
| 892 | |
|---|
| 893 | lev_out = 0 |
|---|
| 894 | |
|---|
| 895 | IF (prt_level>=1) PRINT*, 'Q2 THERMCEL_DQ 0' |
|---|
| 896 | |
|---|
| 897 | ! calcul du detrainement |
|---|
| 898 | DO k = 1, nlay |
|---|
| 899 | detr0(:, k) = fm0(:, k) - fm0(:, k + 1) + entr0(:, k) |
|---|
| 900 | masse0(:, k) = (pplev(:, k) - pplev(:, k + 1)) / RG |
|---|
| 901 | enddo |
|---|
| 902 | |
|---|
| 903 | |
|---|
| 904 | ! Decalage vertical des entrainements et detrainements. |
|---|
| 905 | masse(:, 1) = 0.5 * masse0(:, 1) |
|---|
| 906 | entr(:, 1) = 0.5 * entr0(:, 1) |
|---|
| 907 | detr(:, 1) = 0.5 * detr0(:, 1) |
|---|
| 908 | fm(:, 1) = 0. |
|---|
| 909 | DO k = 1, nlay - 1 |
|---|
| 910 | masse(:, k + 1) = 0.5 * (masse0(:, k) + masse0(:, k + 1)) |
|---|
| 911 | entr(:, k + 1) = 0.5 * (entr0(:, k) + entr0(:, k + 1)) |
|---|
| 912 | detr(:, k + 1) = 0.5 * (detr0(:, k) + detr0(:, k + 1)) |
|---|
| 913 | fm(:, k + 1) = fm(:, k) + entr(:, k) - detr(:, k) |
|---|
| 914 | enddo |
|---|
| 915 | fm(:, nlay + 1) = 0. |
|---|
| 916 | |
|---|
| 917 | q(:, :) = therm_tke_max(:, :) |
|---|
| 918 | !!! nrlmd le 16/09/2010 |
|---|
| 919 | DO ig = 1, ngrid |
|---|
| 920 | qa(ig, 1) = q(ig, 1) |
|---|
| 921 | enddo |
|---|
| 922 | !!! |
|---|
| 923 | |
|---|
| 924 | IF (1==1) THEN |
|---|
| 925 | DO k = 2, nlay |
|---|
| 926 | DO ig = 1, ngrid |
|---|
| 927 | IF ((fm(ig, k + 1) + detr(ig, k)) * ptimestep> & |
|---|
| 928 | 1.e-5 * masse(ig, k)) THEN |
|---|
| 929 | qa(ig, k) = (fm(ig, k) * qa(ig, k - 1) + entr(ig, k) * q(ig, k)) & |
|---|
| 930 | / (fm(ig, k + 1) + detr(ig, k)) |
|---|
| 931 | else |
|---|
| 932 | qa(ig, k) = q(ig, k) |
|---|
| 933 | endif |
|---|
| 934 | IF (qa(ig, k)<0.) THEN |
|---|
| 935 | ! PRINT*,'qa<0!!!' |
|---|
| 936 | endif |
|---|
| 937 | IF (q(ig, k)<0.) THEN |
|---|
| 938 | ! PRINT*,'q<0!!!' |
|---|
| 939 | endif |
|---|
| 940 | enddo |
|---|
| 941 | enddo |
|---|
| 942 | |
|---|
| 943 | ! Calcul du flux subsident |
|---|
| 944 | |
|---|
| 945 | DO k = 2, nlay |
|---|
| 946 | DO ig = 1, ngrid |
|---|
| 947 | wqd(ig, k) = fm(ig, k) * q(ig, k) |
|---|
| 948 | IF (wqd(ig, k)<0.) THEN |
|---|
| 949 | ! PRINT*,'wqd<0!!!' |
|---|
| 950 | endif |
|---|
| 951 | enddo |
|---|
| 952 | enddo |
|---|
| 953 | DO ig = 1, ngrid |
|---|
| 954 | wqd(ig, 1) = 0. |
|---|
| 955 | wqd(ig, nlay + 1) = 0. |
|---|
| 956 | enddo |
|---|
| 957 | |
|---|
| 958 | ! Calcul des tendances |
|---|
| 959 | DO k = 1, nlay |
|---|
| 960 | DO ig = 1, ngrid |
|---|
| 961 | q(ig, k) = q(ig, k) + (detr(ig, k) * qa(ig, k) - entr(ig, k) * q(ig, k) & |
|---|
| 962 | - wqd(ig, k) + wqd(ig, k + 1)) & |
|---|
| 963 | * ptimestep / masse(ig, k) |
|---|
| 964 | enddo |
|---|
| 965 | enddo |
|---|
| 966 | |
|---|
| 967 | endif |
|---|
| 968 | |
|---|
| 969 | therm_tke_max(:, :) = q(:, :) |
|---|
| 970 | |
|---|
| 971 | RETURN |
|---|
| 972 | !!! fin nrlmd le 10/04/2012 |
|---|
| 973 | end |
|---|
| 974 | |
|---|
| 975 | END MODULE lmdz_thermcell_main |
|---|