| 1 | MODULE lmdz_thermcell_dq |
|---|
| 2 | CONTAINS |
|---|
| 3 | |
|---|
| 4 | SUBROUTINE thermcell_dq(ngrid, nlay, impl, ptimestep, fm, entr, & |
|---|
| 5 | masse, q, dq, qa, lev_out) |
|---|
| 6 | USE lmdz_print_control, ONLY: prt_level |
|---|
| 7 | USE lmdz_abort_physic, ONLY: abort_physic |
|---|
| 8 | |
|---|
| 9 | IMPLICIT NONE |
|---|
| 10 | |
|---|
| 11 | !======================================================================= |
|---|
| 12 | |
|---|
| 13 | ! Calcul du transport verticale dans la couche limite en presence |
|---|
| 14 | ! de "thermiques" explicitement representes |
|---|
| 15 | ! calcul du dq/dt une fois qu'on connait les ascendances |
|---|
| 16 | |
|---|
| 17 | ! Modif 2013/01/04 (FH hourdin@lmd.jussieu.fr) |
|---|
| 18 | ! Introduction of an implicit computation of vertical advection in |
|---|
| 19 | ! the environment of thermal plumes in thermcell_dq |
|---|
| 20 | ! impl = 0 : explicit, 1 : implicit, -1 : old version |
|---|
| 21 | |
|---|
| 22 | !======================================================================= |
|---|
| 23 | |
|---|
| 24 | ! arguments |
|---|
| 25 | INTEGER, INTENT(IN) :: ngrid, nlay, impl |
|---|
| 26 | REAL, INTENT(IN) :: ptimestep |
|---|
| 27 | REAL, INTENT(IN), DIMENSION(ngrid, nlay) :: masse |
|---|
| 28 | REAL, INTENT(INOUT), DIMENSION(ngrid, nlay) :: entr, q |
|---|
| 29 | REAL, INTENT(IN), DIMENSION(ngrid, nlay + 1) :: fm |
|---|
| 30 | REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: dq, qa |
|---|
| 31 | INTEGER, INTENT(IN) :: lev_out ! niveau pour les print |
|---|
| 32 | |
|---|
| 33 | ! Local |
|---|
| 34 | REAL, DIMENSION(ngrid, nlay) :: detr, qold |
|---|
| 35 | REAL, DIMENSION(ngrid, nlay + 1) :: wqd, fqa |
|---|
| 36 | REAL zzm |
|---|
| 37 | INTEGER ig, k |
|---|
| 38 | REAL cfl |
|---|
| 39 | |
|---|
| 40 | INTEGER niter, iter |
|---|
| 41 | CHARACTER (LEN = 20) :: modname = 'thermcell_dq' |
|---|
| 42 | CHARACTER (LEN = 80) :: abort_message |
|---|
| 43 | |
|---|
| 44 | |
|---|
| 45 | ! Old explicite scheme |
|---|
| 46 | IF (impl<=-1) THEN |
|---|
| 47 | CALL thermcell_dq_o(ngrid, nlay, impl, ptimestep, fm, entr, & |
|---|
| 48 | masse, q, dq, qa, lev_out) |
|---|
| 49 | |
|---|
| 50 | else |
|---|
| 51 | |
|---|
| 52 | |
|---|
| 53 | ! Calcul du critere CFL pour l'advection dans la subsidence |
|---|
| 54 | cfl = 0. |
|---|
| 55 | do k = 1, nlay |
|---|
| 56 | do ig = 1, ngrid |
|---|
| 57 | zzm = masse(ig, k) / ptimestep |
|---|
| 58 | cfl = max(cfl, fm(ig, k) / zzm) |
|---|
| 59 | IF (entr(ig, k)>zzm) THEN |
|---|
| 60 | PRINT*, 'entr*dt>m,1', k, entr(ig, k) * ptimestep, masse(ig, k) |
|---|
| 61 | abort_message = 'entr dt > m, 1st' |
|---|
| 62 | CALL abort_physic (modname, abort_message, 1) |
|---|
| 63 | endif |
|---|
| 64 | enddo |
|---|
| 65 | enddo |
|---|
| 66 | |
|---|
| 67 | qold = q |
|---|
| 68 | |
|---|
| 69 | IF (prt_level>=1) PRINT*, 'Q2 THERMCEL_DQ 0' |
|---|
| 70 | |
|---|
| 71 | ! calcul du detrainement |
|---|
| 72 | do k = 1, nlay |
|---|
| 73 | do ig = 1, ngrid |
|---|
| 74 | detr(ig, k) = fm(ig, k) - fm(ig, k + 1) + entr(ig, k) |
|---|
| 75 | ! PRINT*,'Q2 DQ ',detr(ig,k),fm(ig,k),entr(ig,k) |
|---|
| 76 | !test |
|---|
| 77 | IF (detr(ig, k)<0.) THEN |
|---|
| 78 | entr(ig, k) = entr(ig, k) - detr(ig, k) |
|---|
| 79 | detr(ig, k) = 0. |
|---|
| 80 | ! PRINT*,'detr2<0!!!','ig=',ig,'k=',k,'f=',fm(ig,k), |
|---|
| 81 | ! s 'f+1=',fm(ig,k+1),'e=',entr(ig,k),'d=',detr(ig,k) |
|---|
| 82 | endif |
|---|
| 83 | IF (fm(ig, k + 1)<0.) THEN |
|---|
| 84 | ! PRINT*,'fm2<0!!!' |
|---|
| 85 | endif |
|---|
| 86 | IF (entr(ig, k)<0.) THEN |
|---|
| 87 | ! PRINT*,'entr2<0!!!' |
|---|
| 88 | endif |
|---|
| 89 | enddo |
|---|
| 90 | enddo |
|---|
| 91 | |
|---|
| 92 | ! Computation of tracer concentrations in the ascending plume |
|---|
| 93 | do ig = 1, ngrid |
|---|
| 94 | qa(ig, 1) = q(ig, 1) |
|---|
| 95 | enddo |
|---|
| 96 | |
|---|
| 97 | do k = 2, nlay |
|---|
| 98 | do ig = 1, ngrid |
|---|
| 99 | IF ((fm(ig, k + 1) + detr(ig, k)) * ptimestep> & |
|---|
| 100 | 1.e-5 * masse(ig, k)) THEN |
|---|
| 101 | qa(ig, k) = (fm(ig, k) * qa(ig, k - 1) + entr(ig, k) * q(ig, k)) & |
|---|
| 102 | / (fm(ig, k + 1) + detr(ig, k)) |
|---|
| 103 | else |
|---|
| 104 | qa(ig, k) = q(ig, k) |
|---|
| 105 | endif |
|---|
| 106 | IF (qa(ig, k)<0.) THEN |
|---|
| 107 | ! PRINT*,'qa<0!!!' |
|---|
| 108 | endif |
|---|
| 109 | IF (q(ig, k)<0.) THEN |
|---|
| 110 | ! PRINT*,'q<0!!!' |
|---|
| 111 | endif |
|---|
| 112 | enddo |
|---|
| 113 | enddo |
|---|
| 114 | |
|---|
| 115 | ! Plume vertical flux |
|---|
| 116 | do k = 2, nlay - 1 |
|---|
| 117 | fqa(:, k) = fm(:, k) * qa(:, k - 1) |
|---|
| 118 | enddo |
|---|
| 119 | fqa(:, 1) = 0. ; fqa(:, nlay) = 0. |
|---|
| 120 | |
|---|
| 121 | |
|---|
| 122 | ! Trace species evolution |
|---|
| 123 | IF (impl==0) THEN |
|---|
| 124 | do k = 1, nlay - 1 |
|---|
| 125 | q(:, k) = q(:, k) + (fqa(:, k) - fqa(:, k + 1) - fm(:, k) * q(:, k) + fm(:, k + 1) * q(:, k + 1)) & |
|---|
| 126 | * ptimestep / masse(:, k) |
|---|
| 127 | enddo |
|---|
| 128 | else |
|---|
| 129 | do k = nlay - 1, 1, -1 |
|---|
| 130 | ! FH debut de modif : le calcul ci dessous modifiait numériquement |
|---|
| 131 | ! la concentration quand le flux de masse etait nul car on divisait |
|---|
| 132 | ! puis multipliait par masse/ptimestep. |
|---|
| 133 | ! q(:,k)=(masse(:,k)*q(:,k)/ptimestep+fqa(:,k)-fqa(:,k+1)+fm(:,k+1)*q(:,k+1)) & |
|---|
| 134 | ! & /(fm(:,k)+masse(:,k)/ptimestep) |
|---|
| 135 | q(:, k) = (q(:, k) + ptimestep / masse(:, k) * (fqa(:, k) - fqa(:, k + 1) + fm(:, k + 1) * q(:, k + 1))) & |
|---|
| 136 | / (1. + fm(:, k) * ptimestep / masse(:, k)) |
|---|
| 137 | ! FH fin de modif. |
|---|
| 138 | enddo |
|---|
| 139 | endif |
|---|
| 140 | |
|---|
| 141 | ! Tendencies |
|---|
| 142 | do k = 1, nlay |
|---|
| 143 | do ig = 1, ngrid |
|---|
| 144 | dq(ig, k) = (q(ig, k) - qold(ig, k)) / ptimestep |
|---|
| 145 | q(ig, k) = qold(ig, k) |
|---|
| 146 | enddo |
|---|
| 147 | enddo |
|---|
| 148 | |
|---|
| 149 | END IF ! impl=-1 |
|---|
| 150 | RETURN |
|---|
| 151 | end |
|---|
| 152 | |
|---|
| 153 | |
|---|
| 154 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 155 | ! Obsolete version kept for convergence with Cmip5 NPv3.1 simulations |
|---|
| 156 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 157 | |
|---|
| 158 | SUBROUTINE thermcell_dq_o(ngrid, nlay, impl, ptimestep, fm, entr, & |
|---|
| 159 | masse, q, dq, qa, lev_out) |
|---|
| 160 | USE lmdz_print_control, ONLY: prt_level |
|---|
| 161 | USE lmdz_abort_physic, ONLY: abort_physic |
|---|
| 162 | IMPLICIT NONE |
|---|
| 163 | |
|---|
| 164 | !======================================================================= |
|---|
| 165 | |
|---|
| 166 | ! Calcul du transport verticale dans la couche limite en presence |
|---|
| 167 | ! de "thermiques" explicitement representes |
|---|
| 168 | ! calcul du dq/dt une fois qu'on connait les ascendances |
|---|
| 169 | |
|---|
| 170 | !======================================================================= |
|---|
| 171 | |
|---|
| 172 | INTEGER ngrid, nlay, impl |
|---|
| 173 | |
|---|
| 174 | REAL ptimestep |
|---|
| 175 | REAL masse(ngrid, nlay), fm(ngrid, nlay + 1) |
|---|
| 176 | REAL entr(ngrid, nlay) |
|---|
| 177 | REAL q(ngrid, nlay) |
|---|
| 178 | REAL dq(ngrid, nlay) |
|---|
| 179 | INTEGER lev_out ! niveau pour les print |
|---|
| 180 | |
|---|
| 181 | REAL qa(ngrid, nlay), detr(ngrid, nlay), wqd(ngrid, nlay + 1) |
|---|
| 182 | |
|---|
| 183 | REAL zzm |
|---|
| 184 | |
|---|
| 185 | INTEGER ig, k |
|---|
| 186 | REAL cfl |
|---|
| 187 | |
|---|
| 188 | REAL qold(ngrid, nlay) |
|---|
| 189 | REAL ztimestep |
|---|
| 190 | INTEGER niter, iter |
|---|
| 191 | CHARACTER (LEN = 20) :: modname = 'thermcell_dq' |
|---|
| 192 | CHARACTER (LEN = 80) :: abort_message |
|---|
| 193 | |
|---|
| 194 | |
|---|
| 195 | |
|---|
| 196 | ! Calcul du critere CFL pour l'advection dans la subsidence |
|---|
| 197 | cfl = 0. |
|---|
| 198 | do k = 1, nlay |
|---|
| 199 | do ig = 1, ngrid |
|---|
| 200 | zzm = masse(ig, k) / ptimestep |
|---|
| 201 | cfl = max(cfl, fm(ig, k) / zzm) |
|---|
| 202 | IF (entr(ig, k)>zzm) THEN |
|---|
| 203 | PRINT*, 'entr*dt>m,2', k, entr(ig, k) * ptimestep, masse(ig, k) |
|---|
| 204 | abort_message = 'entr dt > m, 2nd' |
|---|
| 205 | CALL abort_physic (modname, abort_message, 1) |
|---|
| 206 | endif |
|---|
| 207 | enddo |
|---|
| 208 | enddo |
|---|
| 209 | |
|---|
| 210 | !IM 090508 PRINT*,'CFL CFL CFL CFL ',cfl |
|---|
| 211 | |
|---|
| 212 | #undef CFL |
|---|
| 213 | #ifdef CFL |
|---|
| 214 | ! On subdivise le calcul en niter pas de temps. |
|---|
| 215 | niter=int(cfl)+1 |
|---|
| 216 | #else |
|---|
| 217 | niter = 1 |
|---|
| 218 | #endif |
|---|
| 219 | |
|---|
| 220 | ztimestep = ptimestep / niter |
|---|
| 221 | qold = q |
|---|
| 222 | |
|---|
| 223 | DO iter = 1, niter |
|---|
| 224 | IF (prt_level>=1) PRINT*, 'Q2 THERMCEL_DQ 0' |
|---|
| 225 | |
|---|
| 226 | ! calcul du detrainement |
|---|
| 227 | do k = 1, nlay |
|---|
| 228 | do ig = 1, ngrid |
|---|
| 229 | detr(ig, k) = fm(ig, k) - fm(ig, k + 1) + entr(ig, k) |
|---|
| 230 | ! PRINT*,'Q2 DQ ',detr(ig,k),fm(ig,k),entr(ig,k) |
|---|
| 231 | !test |
|---|
| 232 | IF (detr(ig, k)<0.) THEN |
|---|
| 233 | entr(ig, k) = entr(ig, k) - detr(ig, k) |
|---|
| 234 | detr(ig, k) = 0. |
|---|
| 235 | ! PRINT*,'detr2<0!!!','ig=',ig,'k=',k,'f=',fm(ig,k), |
|---|
| 236 | ! s 'f+1=',fm(ig,k+1),'e=',entr(ig,k),'d=',detr(ig,k) |
|---|
| 237 | endif |
|---|
| 238 | IF (fm(ig, k + 1)<0.) THEN |
|---|
| 239 | ! PRINT*,'fm2<0!!!' |
|---|
| 240 | endif |
|---|
| 241 | IF (entr(ig, k)<0.) THEN |
|---|
| 242 | ! PRINT*,'entr2<0!!!' |
|---|
| 243 | endif |
|---|
| 244 | enddo |
|---|
| 245 | enddo |
|---|
| 246 | |
|---|
| 247 | ! calcul de la valeur dans les ascendances |
|---|
| 248 | do ig = 1, ngrid |
|---|
| 249 | qa(ig, 1) = q(ig, 1) |
|---|
| 250 | enddo |
|---|
| 251 | |
|---|
| 252 | do k = 2, nlay |
|---|
| 253 | do ig = 1, ngrid |
|---|
| 254 | IF ((fm(ig, k + 1) + detr(ig, k)) * ztimestep> & |
|---|
| 255 | 1.e-5 * masse(ig, k)) THEN |
|---|
| 256 | qa(ig, k) = (fm(ig, k) * qa(ig, k - 1) + entr(ig, k) * q(ig, k)) & |
|---|
| 257 | / (fm(ig, k + 1) + detr(ig, k)) |
|---|
| 258 | else |
|---|
| 259 | qa(ig, k) = q(ig, k) |
|---|
| 260 | endif |
|---|
| 261 | IF (qa(ig, k)<0.) THEN |
|---|
| 262 | ! PRINT*,'qa<0!!!' |
|---|
| 263 | endif |
|---|
| 264 | IF (q(ig, k)<0.) THEN |
|---|
| 265 | ! PRINT*,'q<0!!!' |
|---|
| 266 | endif |
|---|
| 267 | enddo |
|---|
| 268 | enddo |
|---|
| 269 | |
|---|
| 270 | ! Calcul du flux subsident |
|---|
| 271 | |
|---|
| 272 | do k = 2, nlay |
|---|
| 273 | do ig = 1, ngrid |
|---|
| 274 | #undef centre |
|---|
| 275 | #ifdef centre |
|---|
| 276 | wqd(ig,k)=fm(ig,k)*0.5*(q(ig,k-1)+q(ig,k)) |
|---|
| 277 | #else |
|---|
| 278 | |
|---|
| 279 | #define CFL_plus_grand_que_un |
|---|
| 280 | #ifdef CFL_plus_grand_que_un |
|---|
| 281 | ! Schema avec advection sur plus qu'une maille. |
|---|
| 282 | zzm = masse(ig, k) / ztimestep |
|---|
| 283 | IF (fm(ig, k)>zzm) THEN |
|---|
| 284 | wqd(ig, k) = zzm * q(ig, k) + (fm(ig, k) - zzm) * q(ig, k + 1) |
|---|
| 285 | else |
|---|
| 286 | wqd(ig, k) = fm(ig, k) * q(ig, k) |
|---|
| 287 | endif |
|---|
| 288 | #else |
|---|
| 289 | wqd(ig,k)=fm(ig,k)*q(ig,k) |
|---|
| 290 | #endif |
|---|
| 291 | #endif |
|---|
| 292 | |
|---|
| 293 | IF (wqd(ig, k)<0.) THEN |
|---|
| 294 | ! PRINT*,'wqd<0!!!' |
|---|
| 295 | endif |
|---|
| 296 | enddo |
|---|
| 297 | enddo |
|---|
| 298 | do ig = 1, ngrid |
|---|
| 299 | wqd(ig, 1) = 0. |
|---|
| 300 | wqd(ig, nlay + 1) = 0. |
|---|
| 301 | enddo |
|---|
| 302 | |
|---|
| 303 | |
|---|
| 304 | ! Calcul des tendances |
|---|
| 305 | do k = 1, nlay |
|---|
| 306 | do ig = 1, ngrid |
|---|
| 307 | q(ig, k) = q(ig, k) + (detr(ig, k) * qa(ig, k) - entr(ig, k) * q(ig, k) & |
|---|
| 308 | - wqd(ig, k) + wqd(ig, k + 1)) & |
|---|
| 309 | * ztimestep / masse(ig, k) |
|---|
| 310 | ! if (dq(ig,k).lt.0.) THEN |
|---|
| 311 | ! PRINT*,'dq<0!!!' |
|---|
| 312 | ! endif |
|---|
| 313 | enddo |
|---|
| 314 | enddo |
|---|
| 315 | |
|---|
| 316 | END DO |
|---|
| 317 | |
|---|
| 318 | |
|---|
| 319 | ! Calcul des tendances |
|---|
| 320 | do k = 1, nlay |
|---|
| 321 | do ig = 1, ngrid |
|---|
| 322 | dq(ig, k) = (q(ig, k) - qold(ig, k)) / ptimestep |
|---|
| 323 | q(ig, k) = qold(ig, k) |
|---|
| 324 | enddo |
|---|
| 325 | enddo |
|---|
| 326 | |
|---|
| 327 | RETURN |
|---|
| 328 | END |
|---|
| 329 | END MODULE lmdz_thermcell_dq |
|---|