1 | MODULE lmdz_lscp_tools |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
8 | SUBROUTINE FALLICE_VELOCITY(klon, iwc, temp, rho, pres, ptconv, velo) |
---|
9 | |
---|
10 | ! Ref: |
---|
11 | ! Stubenrauch, C. J., Bonazzola, M., |
---|
12 | ! Protopapadaki, S. E., & Musat, I. (2019). |
---|
13 | ! New cloud system metrics to assess bulk |
---|
14 | ! ice cloud schemes in a GCM. Journal of |
---|
15 | ! Advances in Modeling Earth Systems, 11, |
---|
16 | ! 3212–3234. https://doi.org/10.1029/2019MS001642 |
---|
17 | |
---|
18 | USE lmdz_lscp_ini, ONLY: iflag_vice, ffallv_con, ffallv_lsc |
---|
19 | USE lmdz_lscp_ini, ONLY: cice_velo, dice_velo |
---|
20 | |
---|
21 | IMPLICIT NONE |
---|
22 | |
---|
23 | INTEGER, INTENT(IN) :: klon |
---|
24 | REAL, INTENT(IN), DIMENSION(klon) :: iwc ! specific ice water content [kg/m3] |
---|
25 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature [K] |
---|
26 | REAL, INTENT(IN), DIMENSION(klon) :: rho ! dry air density [kg/m3] |
---|
27 | REAL, INTENT(IN), DIMENSION(klon) :: pres ! air pressure [Pa] |
---|
28 | LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv ! convective point [-] |
---|
29 | |
---|
30 | REAL, INTENT(OUT), DIMENSION(klon) :: velo ! fallspeed velocity of crystals [m/s] |
---|
31 | |
---|
32 | INTEGER i |
---|
33 | REAL logvm, iwcg, tempc, phpa, fallv_tun |
---|
34 | REAL m2ice, m2snow, vmice, vmsnow |
---|
35 | REAL aice, bice, asnow, bsnow |
---|
36 | |
---|
37 | DO i = 1, klon |
---|
38 | |
---|
39 | IF (ptconv(i)) THEN |
---|
40 | fallv_tun = ffallv_con |
---|
41 | ELSE |
---|
42 | fallv_tun = ffallv_lsc |
---|
43 | ENDIF |
---|
44 | |
---|
45 | tempc = temp(i) - 273.15 ! celcius temp |
---|
46 | iwcg = MAX(iwc(i) * 1000., 1E-3) ! iwc in g/m3. We set a minimum value to prevent from division by 0 |
---|
47 | phpa = pres(i) / 100. ! pressure in hPa |
---|
48 | |
---|
49 | IF (iflag_vice == 1) THEN |
---|
50 | ! so-called 'empirical parameterization' in Stubenrauch et al. 2019 |
---|
51 | IF (tempc >= -60.0) THEN |
---|
52 | logvm = -0.0000414122 * tempc * tempc * log(iwcg) - 0.00538922 * tempc * log(iwcg) & |
---|
53 | - 0.0516344 * log(iwcg) + 0.00216078 * tempc + 1.9714 |
---|
54 | velo(i) = exp(logvm) |
---|
55 | else |
---|
56 | velo(i) = 65.0 * (iwcg**0.2) * (150. / phpa)**0.15 |
---|
57 | endif |
---|
58 | |
---|
59 | velo(i) = fallv_tun * velo(i) / 100.0 ! from cm/s to m/s |
---|
60 | |
---|
61 | ELSE IF (iflag_vice == 2) THEN |
---|
62 | ! so called PSDM empirical coherent bulk ice scheme in Stubenrauch et al. 2019 |
---|
63 | aice = 0.587 |
---|
64 | bice = 2.45 |
---|
65 | asnow = 0.0444 |
---|
66 | bsnow = 2.1 |
---|
67 | |
---|
68 | m2ice = ((iwcg * 0.001 / aice) / (exp(13.6 - bice * 7.76 + 0.479 * bice**2) * & |
---|
69 | exp((-0.0361 + bice * 0.0151 + 0.00149 * bice**2) * tempc))) & |
---|
70 | **(1. / (0.807 + bice * 0.00581 + 0.0457 * bice**2)) |
---|
71 | |
---|
72 | vmice = 100. * 1042.4 * exp(13.6 - (bice + 1) * 7.76 + 0.479 * (bice + 1.)**2) * exp((-0.0361 + & |
---|
73 | (bice + 1.) * 0.0151 + 0.00149 * (bice + 1.)**2) * tempc) & |
---|
74 | * (m2ice**(0.807 + (bice + 1.) * 0.00581 + 0.0457 * (bice + 1.)**2)) / (iwcg * 0.001 / aice) |
---|
75 | |
---|
76 | vmice = vmice * ((1000. / phpa)**0.2) |
---|
77 | |
---|
78 | m2snow = ((iwcg * 0.001 / asnow) / (exp(13.6 - bsnow * 7.76 + 0.479 * bsnow**2) * & |
---|
79 | exp((-0.0361 + bsnow * 0.0151 + 0.00149 * bsnow**2) * tempc))) & |
---|
80 | **(1. / (0.807 + bsnow * 0.00581 + 0.0457 * bsnow**2)) |
---|
81 | |
---|
82 | vmsnow = 100. * 14.3 * exp(13.6 - (bsnow + .416) * 7.76 + 0.479 * (bsnow + .416)**2)& |
---|
83 | * exp((-0.0361 + (bsnow + .416) * 0.0151 + 0.00149 * (bsnow + .416)**2) * tempc)& |
---|
84 | * (m2snow**(0.807 + (bsnow + .416) * 0.00581 + 0.0457 * (bsnow + .416)**2)) / (iwcg * 0.001 / asnow) |
---|
85 | |
---|
86 | vmsnow = vmsnow * ((1000. / phpa)**0.35) |
---|
87 | velo(i) = fallv_tun * min(vmsnow, vmice) / 100. ! to m/s |
---|
88 | |
---|
89 | ELSE |
---|
90 | ! By default, fallspeed velocity of ice crystals according to Heymsfield & Donner 1990 |
---|
91 | velo(i) = fallv_tun * cice_velo * ((iwcg / 1000.)**dice_velo) |
---|
92 | ENDIF |
---|
93 | ENDDO |
---|
94 | |
---|
95 | END SUBROUTINE FALLICE_VELOCITY |
---|
96 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
97 | |
---|
98 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
99 | SUBROUTINE ICEFRAC_LSCP(klon, temp, iflag_ice_thermo, distcltop, temp_cltop, icefrac, dicefracdT) |
---|
100 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
101 | |
---|
102 | ! Compute the ice fraction 1-xliq (see e.g. |
---|
103 | ! Doutriaux-Boucher & Quaas 2004, section 2.2.) |
---|
104 | ! as a function of temperature |
---|
105 | ! see also Fig 3 of Madeleine et al. 2020, JAMES |
---|
106 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
107 | |
---|
108 | USE lmdz_print_control, ONLY: lunout, prt_level |
---|
109 | USE lmdz_lscp_ini, ONLY: t_glace_min, t_glace_max, exposant_glace, iflag_t_glace |
---|
110 | USE lmdz_lscp_ini, ONLY: RTT, dist_liq, temp_nowater |
---|
111 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
112 | |
---|
113 | IMPLICIT NONE |
---|
114 | |
---|
115 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
116 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature |
---|
117 | REAL, INTENT(IN), DIMENSION(klon) :: distcltop ! distance to cloud top |
---|
118 | REAL, INTENT(IN), DIMENSION(klon) :: temp_cltop ! temperature of cloud top |
---|
119 | INTEGER, INTENT(IN) :: iflag_ice_thermo |
---|
120 | REAL, INTENT(OUT), DIMENSION(klon) :: icefrac |
---|
121 | REAL, INTENT(OUT), DIMENSION(klon) :: dicefracdT |
---|
122 | |
---|
123 | INTEGER i |
---|
124 | REAL liqfrac_tmp, dicefrac_tmp |
---|
125 | REAL Dv, denomdep, beta, qsi, dqsidt |
---|
126 | LOGICAL ice_thermo |
---|
127 | |
---|
128 | CHARACTER (len = 20) :: modname = 'lscp_tools' |
---|
129 | CHARACTER (len = 80) :: abort_message |
---|
130 | |
---|
131 | IF ((iflag_t_glace<2)) THEN !.OR. (iflag_t_glace.GT.6)) THEN |
---|
132 | abort_message = 'lscp cannot be used if iflag_t_glace<2 or >6' |
---|
133 | CALL abort_physic(modname, abort_message, 1) |
---|
134 | ENDIF |
---|
135 | |
---|
136 | IF (.NOT.((iflag_ice_thermo == 1).OR.(iflag_ice_thermo >= 3))) THEN |
---|
137 | abort_message = 'lscp cannot be used without ice thermodynamics' |
---|
138 | CALL abort_physic(modname, abort_message, 1) |
---|
139 | ENDIF |
---|
140 | |
---|
141 | DO i = 1, klon |
---|
142 | |
---|
143 | ! old function with sole dependence upon temperature |
---|
144 | IF (iflag_t_glace == 2) THEN |
---|
145 | liqfrac_tmp = (temp(i) - t_glace_min) / (t_glace_max - t_glace_min) |
---|
146 | liqfrac_tmp = MIN(MAX(liqfrac_tmp, 0.0), 1.0) |
---|
147 | icefrac(i) = (1.0 - liqfrac_tmp)**exposant_glace |
---|
148 | IF (icefrac(i) >0.) THEN |
---|
149 | dicefracdT(i) = exposant_glace * (icefrac(i)**(exposant_glace - 1.)) & |
---|
150 | / (t_glace_min - t_glace_max) |
---|
151 | ENDIF |
---|
152 | |
---|
153 | IF ((icefrac(i)==0).OR.(icefrac(i)==1)) THEN |
---|
154 | dicefracdT(i) = 0. |
---|
155 | ENDIF |
---|
156 | |
---|
157 | ENDIF |
---|
158 | |
---|
159 | ! function of temperature used in CMIP6 physics |
---|
160 | IF (iflag_t_glace == 3) THEN |
---|
161 | liqfrac_tmp = (temp(i) - t_glace_min) / (t_glace_max - t_glace_min) |
---|
162 | liqfrac_tmp = MIN(MAX(liqfrac_tmp, 0.0), 1.0) |
---|
163 | icefrac(i) = 1.0 - liqfrac_tmp**exposant_glace |
---|
164 | IF ((icefrac(i) >0.) .AND. (liqfrac_tmp > 0.)) THEN |
---|
165 | dicefracdT(i) = exposant_glace * ((liqfrac_tmp)**(exposant_glace - 1.)) & |
---|
166 | / (t_glace_min - t_glace_max) |
---|
167 | ELSE |
---|
168 | dicefracdT(i) = 0. |
---|
169 | ENDIF |
---|
170 | ENDIF |
---|
171 | |
---|
172 | ! for iflag_t_glace .GE. 4, the liquid fraction depends upon temperature at cloud top |
---|
173 | ! and then decreases with decreasing height |
---|
174 | |
---|
175 | !with linear function of temperature at cloud top |
---|
176 | IF (iflag_t_glace == 4) THEN |
---|
177 | liqfrac_tmp = (temp(i) - t_glace_min) / (t_glace_max - t_glace_min) |
---|
178 | liqfrac_tmp = MIN(MAX(liqfrac_tmp, 0.0), 1.0) |
---|
179 | icefrac(i) = MAX(MIN(1., 1.0 - liqfrac_tmp * exp(-distcltop(i) / dist_liq)), 0.) |
---|
180 | dicefrac_tmp = - temp(i) / (t_glace_max - t_glace_min) |
---|
181 | dicefracdT(i) = dicefrac_tmp * exp(-distcltop(i) / dist_liq) |
---|
182 | IF ((liqfrac_tmp <=0) .OR. (liqfrac_tmp >= 1)) THEN |
---|
183 | dicefracdT(i) = 0. |
---|
184 | ENDIF |
---|
185 | ENDIF |
---|
186 | |
---|
187 | ! with CMIP6 function of temperature at cloud top |
---|
188 | IF ((iflag_t_glace == 5) .OR. (iflag_t_glace == 7)) THEN |
---|
189 | liqfrac_tmp = (temp(i) - t_glace_min) / (t_glace_max - t_glace_min) |
---|
190 | liqfrac_tmp = MIN(MAX(liqfrac_tmp, 0.0), 1.0) |
---|
191 | liqfrac_tmp = liqfrac_tmp**exposant_glace |
---|
192 | icefrac(i) = MAX(MIN(1., 1.0 - liqfrac_tmp * exp(-distcltop(i) / dist_liq)), 0.) |
---|
193 | IF ((liqfrac_tmp <=0) .OR. (liqfrac_tmp >= 1)) THEN |
---|
194 | dicefracdT(i) = 0. |
---|
195 | ELSE |
---|
196 | dicefracdT(i) = exposant_glace * ((liqfrac_tmp)**(exposant_glace - 1.)) / (t_glace_min - t_glace_max) & |
---|
197 | * exp(-distcltop(i) / dist_liq) |
---|
198 | ENDIF |
---|
199 | ENDIF |
---|
200 | |
---|
201 | ! with modified function of temperature at cloud top |
---|
202 | ! to get largere values around 260 K, works well with t_glace_min = 241K |
---|
203 | IF (iflag_t_glace == 6) THEN |
---|
204 | IF (temp(i) > t_glace_max) THEN |
---|
205 | liqfrac_tmp = 1. |
---|
206 | ELSE |
---|
207 | liqfrac_tmp = -((temp(i) - t_glace_max) / (t_glace_max - t_glace_min))**2 + 1. |
---|
208 | ENDIF |
---|
209 | liqfrac_tmp = MIN(MAX(liqfrac_tmp, 0.0), 1.0) |
---|
210 | icefrac(i) = MAX(MIN(1., 1.0 - liqfrac_tmp * exp(-distcltop(i) / dist_liq)), 0.) |
---|
211 | IF ((liqfrac_tmp <=0) .OR. (liqfrac_tmp >= 1)) THEN |
---|
212 | dicefracdT(i) = 0. |
---|
213 | ELSE |
---|
214 | dicefracdT(i) = 2 * ((temp(i) - t_glace_max) / (t_glace_max - t_glace_min)) / (t_glace_max - t_glace_min) & |
---|
215 | * exp(-distcltop(i) / dist_liq) |
---|
216 | ENDIF |
---|
217 | ENDIF |
---|
218 | |
---|
219 | ! if temperature of cloud top <-40°C, |
---|
220 | IF (iflag_t_glace >= 4) THEN |
---|
221 | IF ((temp_cltop(i) <= temp_nowater) .AND. (temp(i) <= t_glace_max)) THEN |
---|
222 | icefrac(i) = 1. |
---|
223 | dicefracdT(i) = 0. |
---|
224 | ENDIF |
---|
225 | ENDIF |
---|
226 | |
---|
227 | ENDDO ! klon |
---|
228 | |
---|
229 | END SUBROUTINE ICEFRAC_LSCP |
---|
230 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
231 | |
---|
232 | SUBROUTINE ICEFRAC_LSCP_TURB(klon, dtime, temp, pplay, paprsdn, paprsup, qice_ini, snowcld, qtot_incl, cldfra, tke, tke_dissip, qliq, qvap_cld, qice, icefrac, dicefracdT, cldfraliq, sigma2_icefracturb, mean_icefracturb) |
---|
233 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
234 | ! Compute the liquid, ice and vapour content (+ice fraction) based |
---|
235 | ! on turbulence (see Fields 2014, Furtado 2016, Raillard 2025) |
---|
236 | ! L.Raillard (30/08/24) |
---|
237 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
238 | |
---|
239 | USE lmdz_lscp_ini, ONLY: prt_level, lunout |
---|
240 | USE lmdz_lscp_ini, ONLY: RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG, RV, RPI |
---|
241 | USE lmdz_lscp_ini, ONLY: seuil_neb, temp_nowater |
---|
242 | USE lmdz_lscp_ini, ONLY: tau_mixenv, lmix_mpc, naero5, gamma_snwretro, gamma_taud, capa_crystal |
---|
243 | USE lmdz_lscp_ini, ONLY: eps |
---|
244 | |
---|
245 | IMPLICIT NONE |
---|
246 | |
---|
247 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points |
---|
248 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
249 | |
---|
250 | REAL, INTENT(IN), DIMENSION(klon) :: temp !--temperature |
---|
251 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
252 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
253 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
254 | REAL, INTENT(IN), DIMENSION(klon) :: qtot_incl !--specific total cloud water content, in-cloud content [kg/kg] |
---|
255 | REAL, INTENT(IN), DIMENSION(klon) :: cldfra !--cloud fraction in gridbox [-] |
---|
256 | REAL, INTENT(IN), DIMENSION(klon) :: tke !--turbulent kinetic energy [m2/s2] |
---|
257 | REAL, INTENT(IN), DIMENSION(klon) :: tke_dissip !--TKE dissipation [m2/s3] |
---|
258 | |
---|
259 | REAL, INTENT(IN), DIMENSION(klon) :: qice_ini !--initial specific ice content gridbox-mean [kg/kg] |
---|
260 | REAL, INTENT(IN), DIMENSION(klon) :: snowcld |
---|
261 | REAL, INTENT(OUT), DIMENSION(klon) :: qliq !--specific liquid content gridbox-mean [kg/kg] |
---|
262 | REAL, INTENT(OUT), DIMENSION(klon) :: qvap_cld !--specific cloud vapor content, gridbox-mean [kg/kg] |
---|
263 | REAL, INTENT(OUT), DIMENSION(klon) :: qice !--specific ice content gridbox-mean [kg/kg] |
---|
264 | REAL, INTENT(OUT), DIMENSION(klon) :: icefrac !--fraction of ice in condensed water [-] |
---|
265 | REAL, INTENT(OUT), DIMENSION(klon) :: dicefracdT |
---|
266 | |
---|
267 | REAL, INTENT(OUT), DIMENSION(klon) :: cldfraliq !--fraction of cldfra which is liquid only |
---|
268 | REAL, INTENT(OUT), DIMENSION(klon) :: sigma2_icefracturb !--Temporary |
---|
269 | REAL, INTENT(OUT), DIMENSION(klon) :: mean_icefracturb !--Temporary |
---|
270 | |
---|
271 | REAL, DIMENSION(klon) :: qzero, qsatl, dqsatl, qsati, dqsati !--specific humidity saturation values |
---|
272 | INTEGER :: i |
---|
273 | |
---|
274 | REAL :: qvap_incl, qice_incl, qliq_incl, qiceini_incl !--In-cloud specific quantities [kg/kg] |
---|
275 | REAL :: qsnowcld_incl |
---|
276 | !REAL :: capa_crystal !--Capacitance of ice crystals [-] |
---|
277 | REAL :: water_vapor_diff !--Water-vapour diffusion coefficient in air [m2/s] (function of T&P) |
---|
278 | REAL :: air_thermal_conduct !--Thermal conductivity of air [J/m/K/s] (function of T) |
---|
279 | REAL :: C0 !--Lagrangian structure function [-] |
---|
280 | REAL :: tau_mixingenv |
---|
281 | REAL :: tau_dissipturb |
---|
282 | REAL :: invtau_phaserelax |
---|
283 | REAL :: sigma2_pdf, mean_pdf |
---|
284 | REAL :: ai, bi, B0 |
---|
285 | REAL :: sursat_iceliq |
---|
286 | REAL :: sursat_env |
---|
287 | REAL :: liqfra_max |
---|
288 | REAL :: sursat_iceext |
---|
289 | REAL :: nb_crystals !--number concentration of ice crystals [#/m3] |
---|
290 | REAL :: moment1_PSD !--1st moment of ice PSD |
---|
291 | REAL :: N0_PSD, lambda_PSD !--parameters of the exponential PSD |
---|
292 | |
---|
293 | REAL :: rho_ice !--ice density [kg/m3] |
---|
294 | REAL :: cldfra1D |
---|
295 | REAL :: deltaz, rho_air |
---|
296 | REAL :: psati !--saturation vapor pressure wrt i [Pa] |
---|
297 | |
---|
298 | C0 = 10. !--value assumed in Field2014 |
---|
299 | rho_ice = 950. |
---|
300 | sursat_iceext = -0.1 |
---|
301 | !capa_crystal = 1. !r_ice |
---|
302 | qzero(:) = 0. |
---|
303 | cldfraliq(:) = 0. |
---|
304 | icefrac(:) = 0. |
---|
305 | dicefracdT(:) = 0. |
---|
306 | |
---|
307 | sigma2_icefracturb(:) = 0. |
---|
308 | mean_icefracturb(:) = 0. |
---|
309 | |
---|
310 | !--wrt liquid water |
---|
311 | CALL calc_qsat_ecmwf(klon, temp(:), qzero(:), pplay(:), RTT, 1, .FALSE., qsatl(:), dqsatl(:)) |
---|
312 | !--wrt ice |
---|
313 | CALL calc_qsat_ecmwf(klon, temp(:), qzero(:), pplay(:), RTT, 2, .FALSE., qsati(:), dqsati(:)) |
---|
314 | |
---|
315 | DO i = 1, klon |
---|
316 | |
---|
317 | rho_air = pplay(i) / temp(i) / RD |
---|
318 | !deltaz = ( paprsdn(i) - paprsup(i) ) / RG / rho_air(i) |
---|
319 | ! because cldfra is intent in, but can be locally modified due to test |
---|
320 | cldfra1D = cldfra(i) |
---|
321 | IF (cldfra(i) <= 0.) THEN |
---|
322 | qvap_cld(i) = 0. |
---|
323 | qliq(i) = 0. |
---|
324 | qice(i) = 0. |
---|
325 | cldfraliq(i) = 0. |
---|
326 | icefrac(i) = 0. |
---|
327 | dicefracdT(i) = 0. |
---|
328 | |
---|
329 | ! If there is a cloud |
---|
330 | ELSE |
---|
331 | IF (cldfra(i) >= 1.0) THEN |
---|
332 | cldfra1D = 1.0 |
---|
333 | END IF |
---|
334 | |
---|
335 | ! T>0°C, no ice allowed |
---|
336 | IF (temp(i) >= RTT) THEN |
---|
337 | qvap_cld(i) = qsatl(i) * cldfra1D |
---|
338 | qliq(i) = MAX(0.0, qtot_incl(i) - qsatl(i)) * cldfra1D |
---|
339 | qice(i) = 0. |
---|
340 | cldfraliq(i) = 1. |
---|
341 | icefrac(i) = 0. |
---|
342 | dicefracdT(i) = 0. |
---|
343 | |
---|
344 | ! T<-38°C, no liquid allowed |
---|
345 | ELSE IF (temp(i) <= temp_nowater) THEN |
---|
346 | qvap_cld(i) = qsati(i) * cldfra1D |
---|
347 | qliq(i) = 0. |
---|
348 | qice(i) = MAX(0.0, qtot_incl(i) - qsati(i)) * cldfra1D |
---|
349 | cldfraliq(i) = 0. |
---|
350 | icefrac(i) = 1. |
---|
351 | dicefracdT(i) = 0. |
---|
352 | |
---|
353 | ! MPC temperature |
---|
354 | ELSE |
---|
355 | ! Not enough TKE |
---|
356 | IF (tke_dissip(i) <= eps) THEN |
---|
357 | qvap_cld(i) = qsati(i) * cldfra1D |
---|
358 | qliq(i) = 0. |
---|
359 | qice(i) = MAX(0., qtot_incl(i) - qsati(i)) * cldfra1D |
---|
360 | cldfraliq(i) = 0. |
---|
361 | icefrac(i) = 1. |
---|
362 | dicefracdT(i) = 0. |
---|
363 | |
---|
364 | ! Enough TKE |
---|
365 | ELSE |
---|
366 | print*,"MOUCHOIRACTIVE" |
---|
367 | !--------------------------------------------------------- |
---|
368 | !-- ICE SUPERSATURATION PDF |
---|
369 | !--------------------------------------------------------- |
---|
370 | !--If -38°C< T <0°C and there is enough turbulence, |
---|
371 | !--we compute the cloud liquid properties with a Gaussian PDF |
---|
372 | !--of ice supersaturation F(Si) (Field2014, Furtado2016). |
---|
373 | !--Parameters of the PDF are function of turbulence and |
---|
374 | !--microphysics/existing ice. |
---|
375 | |
---|
376 | sursat_iceliq = qsatl(i) / qsati(i) - 1. |
---|
377 | psati = qsati(i) * pplay(i) / (RD / RV) |
---|
378 | |
---|
379 | !-------------- MICROPHYSICAL TERMS -------------- |
---|
380 | !--We assume an exponential ice PSD whose parameters |
---|
381 | !--are computed following Morrison&Gettelman 2008 |
---|
382 | !--Ice number density is assumed equals to INP density |
---|
383 | !--which is a function of temperature (DeMott 2010) |
---|
384 | !--bi and B0 are microphysical function characterizing |
---|
385 | !--vapor/ice interactions |
---|
386 | !--tau_phase_relax is the typical time of vapor deposition |
---|
387 | !--onto ice crystals |
---|
388 | |
---|
389 | qiceini_incl = qice_ini(i) / cldfra1D |
---|
390 | qsnowcld_incl = snowcld(i) * RG * dtime / (paprsdn(i) - paprsup(i)) / cldfra1D |
---|
391 | sursat_env = max(0., (qtot_incl(i) - qiceini_incl) / qsati(i) - 1.) |
---|
392 | IF (qiceini_incl > eps) THEN |
---|
393 | nb_crystals = 1.e3 * 5.94e-5 * (RTT - temp(i))**3.33 * naero5**(0.0264 * (RTT - temp(i)) + 0.0033) |
---|
394 | lambda_PSD = ((RPI * rho_ice * nb_crystals ) / (rho_air * (qiceini_incl + gamma_snwretro * qsnowcld_incl))) ** (1. / 3.) |
---|
395 | N0_PSD = nb_crystals * lambda_PSD |
---|
396 | moment1_PSD = N0_PSD / lambda_PSD**2 |
---|
397 | ELSE |
---|
398 | moment1_PSD = 0. |
---|
399 | ENDIF |
---|
400 | |
---|
401 | !--Formulae for air thermal conductivity and water vapor diffusivity |
---|
402 | !--comes respectively from Beard and Pruppacher (1971) |
---|
403 | !--and Hall and Pruppacher (1976) |
---|
404 | |
---|
405 | air_thermal_conduct = (5.69 + 0.017 * (temp(i) - RTT)) * 1.e-3 * 4.184 |
---|
406 | water_vapor_diff = 2.11 * 1e-5 * (temp(i) / RTT)**1.94 * (101325 / pplay(i)) |
---|
407 | |
---|
408 | bi = 1. / ((qsati(i) + qsatl(i)) / 2.) + RLSTT**2 / RCPD / RV / temp(i)**2 |
---|
409 | B0 = 4. * RPI * capa_crystal * 1. / (RLSTT**2 / air_thermal_conduct / RV / temp(i)**2 & |
---|
410 | + RV * temp(i) / psati / water_vapor_diff) |
---|
411 | |
---|
412 | invtau_phaserelax = (bi * B0 * moment1_PSD) |
---|
413 | |
---|
414 | ! Old way of estimating moment1 : spherical crystals + monodisperse PSD |
---|
415 | ! nb_crystals = rho_air * qiceini_incl / ( 4. / 3. * RPI * r_ice**3. * rho_ice ) |
---|
416 | ! moment1_PSD = nb_crystals * r_ice |
---|
417 | |
---|
418 | !----------------- TURBULENT SOURCE/SINK TERMS ----------------- |
---|
419 | !--Tau_mixingenv is the time needed to homogeneize the parcel |
---|
420 | !--with its environment by turbulent diffusion over the parcel |
---|
421 | !--length scale |
---|
422 | !--if lmix_mpc <0, tau_mixigenv value is prescribed |
---|
423 | !--else tau_mixigenv value is derived from tke_dissip and lmix_mpc |
---|
424 | !--Tau_dissipturb is the time needed turbulence to decay due to |
---|
425 | !--viscosity |
---|
426 | |
---|
427 | ai = RG / RD / temp(i) * (RD * RLSTT / RCPD / RV / temp(i) - 1.) |
---|
428 | IF (lmix_mpc > 0) THEN |
---|
429 | tau_mixingenv = (lmix_mpc**2. / tke_dissip(i))**(1. / 3.) |
---|
430 | ELSE |
---|
431 | tau_mixingenv = tau_mixenv |
---|
432 | ENDIF |
---|
433 | |
---|
434 | tau_dissipturb = gamma_taud * 2. * 2. / 3. * tke(i) / tke_dissip(i) / C0 |
---|
435 | |
---|
436 | !--------------------- PDF COMPUTATIONS --------------------- |
---|
437 | !--Formulae for sigma2_pdf (variance), mean of PDF in Furtado2016 |
---|
438 | !--cloud liquid fraction and in-cloud liquid content are given |
---|
439 | !--by integrating resp. F(Si) and Si*F(Si) |
---|
440 | !--Liquid is limited by the available water vapor trough a |
---|
441 | !--maximal liquid fraction |
---|
442 | |
---|
443 | liqfra_max = MAX(0., (MIN (1., (qtot_incl(i) - qiceini_incl - qsati(i) * (1 + sursat_iceext)) / (qsatl(i) - qsati(i))))) |
---|
444 | sigma2_pdf = 1. / 2. * (ai**2) * 2. / 3. * tke(i) * tau_dissipturb / (invtau_phaserelax + 1. / tau_mixingenv) |
---|
445 | mean_pdf = sursat_env * 1. / tau_mixingenv / (invtau_phaserelax + 1. / tau_mixingenv) |
---|
446 | cldfraliq(i) = 0.5 * (1. - erf((sursat_iceliq - mean_pdf) / (SQRT(2. * sigma2_pdf)))) |
---|
447 | IF (cldfraliq(i) .GT. liqfra_max) THEN |
---|
448 | cldfraliq(i) = liqfra_max |
---|
449 | ENDIF |
---|
450 | |
---|
451 | qliq_incl = qsati(i) * SQRT(sigma2_pdf) / SQRT(2. * RPI) * EXP(-1. * (sursat_iceliq - mean_pdf)**2. / (2. * sigma2_pdf)) & |
---|
452 | - qsati(i) * cldfraliq(i) * (sursat_iceliq - mean_pdf) |
---|
453 | |
---|
454 | sigma2_icefracturb(i) = sigma2_pdf |
---|
455 | mean_icefracturb(i) = mean_pdf |
---|
456 | !------------ SPECIFIC VAPOR CONTENT AND WATER CONSERVATION ------------ |
---|
457 | |
---|
458 | IF ((qliq_incl <= eps) .OR. (cldfraliq(i) <= eps)) THEN |
---|
459 | qliq_incl = 0. |
---|
460 | cldfraliq(i) = 0. |
---|
461 | END IF |
---|
462 | |
---|
463 | !--Specific humidity is the max between qsati and the weighted mean between |
---|
464 | !--qv in MPC patches and qv in ice-only parts. We assume that MPC parts are |
---|
465 | !--always at qsatl and ice-only parts slightly subsaturated (qsati*sursat_iceext+1) |
---|
466 | !--The whole cloud can therefore be supersaturated but never subsaturated. |
---|
467 | qvap_incl = MAX(qsati(i), (1. - cldfraliq(i)) * (sursat_iceext + 1.) * qsati(i) + cldfraliq(i) * qsatl(i)) |
---|
468 | |
---|
469 | IF (qvap_incl >= qtot_incl(i)) THEN |
---|
470 | qvap_incl = qsati(i) |
---|
471 | qliq_incl = qtot_incl(i) - qvap_incl |
---|
472 | qice_incl = 0. |
---|
473 | |
---|
474 | ELSEIF ((qvap_incl + qliq_incl) >= qtot_incl(i)) THEN |
---|
475 | qliq_incl = MAX(0.0, qtot_incl(i) - qvap_incl) |
---|
476 | qice_incl = 0. |
---|
477 | ELSE |
---|
478 | qice_incl = qtot_incl(i) - qvap_incl - qliq_incl |
---|
479 | END IF |
---|
480 | |
---|
481 | qvap_cld(i) = qvap_incl * cldfra1D |
---|
482 | qliq(i) = qliq_incl * cldfra1D |
---|
483 | qice(i) = qice_incl * cldfra1D |
---|
484 | icefrac(i) = qice(i) / (qice(i) + qliq(i)) |
---|
485 | dicefracdT(i) = 0. |
---|
486 | !PRINT*,'MPC turb' |
---|
487 | |
---|
488 | END IF ! Enough TKE |
---|
489 | |
---|
490 | END IF ! MPC temperature |
---|
491 | |
---|
492 | END IF ! cldfra |
---|
493 | |
---|
494 | ENDDO ! klon |
---|
495 | END SUBROUTINE ICEFRAC_LSCP_TURB |
---|
496 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
497 | |
---|
498 | |
---|
499 | SUBROUTINE CALC_QSAT_ECMWF(klon, temp, qtot, pressure, tref, phase, flagth, qs, dqs) |
---|
500 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
501 | ! Calculate qsat following ECMWF method |
---|
502 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
503 | USE lmdz_yoethf |
---|
504 | |
---|
505 | USE lmdz_yomcst |
---|
506 | |
---|
507 | IMPLICIT NONE |
---|
508 | INCLUDE "FCTTRE.h" |
---|
509 | |
---|
510 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
511 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature in K |
---|
512 | REAL, INTENT(IN), DIMENSION(klon) :: qtot ! total specific water in kg/kg |
---|
513 | REAL, INTENT(IN), DIMENSION(klon) :: pressure ! pressure in Pa |
---|
514 | REAL, INTENT(IN) :: tref ! reference temperature in K |
---|
515 | LOGICAL, INTENT(IN) :: flagth ! flag for qsat calculation for thermals |
---|
516 | INTEGER, INTENT(IN) :: phase |
---|
517 | ! phase: 0=depend on temperature sign (temp>tref -> liquid, temp<tref, solid) |
---|
518 | ! 1=liquid |
---|
519 | ! 2=solid |
---|
520 | |
---|
521 | REAL, INTENT(OUT), DIMENSION(klon) :: qs ! saturation specific humidity [kg/kg] |
---|
522 | REAL, INTENT(OUT), DIMENSION(klon) :: dqs ! derivation of saturation specific humidity wrt T |
---|
523 | |
---|
524 | REAL delta, cor, cvm5 |
---|
525 | INTEGER i |
---|
526 | |
---|
527 | DO i = 1, klon |
---|
528 | |
---|
529 | IF (phase == 1) THEN |
---|
530 | delta = 0. |
---|
531 | ELSEIF (phase == 2) THEN |
---|
532 | delta = 1. |
---|
533 | ELSE |
---|
534 | delta = MAX(0., SIGN(1., tref - temp(i))) |
---|
535 | ENDIF |
---|
536 | |
---|
537 | IF (flagth) THEN |
---|
538 | cvm5 = R5LES * (1. - delta) + R5IES * delta |
---|
539 | ELSE |
---|
540 | cvm5 = R5LES * RLVTT * (1. - delta) + R5IES * RLSTT * delta |
---|
541 | cvm5 = cvm5 / RCPD / (1.0 + RVTMP2 * (qtot(i))) |
---|
542 | ENDIF |
---|
543 | |
---|
544 | qs(i) = R2ES * FOEEW(temp(i), delta) / pressure(i) |
---|
545 | qs(i) = MIN(0.5, qs(i)) |
---|
546 | cor = 1. / (1. - RETV * qs(i)) |
---|
547 | qs(i) = qs(i) * cor |
---|
548 | dqs(i) = FOEDE(temp(i), delta, cvm5, qs(i), cor) |
---|
549 | |
---|
550 | END DO |
---|
551 | |
---|
552 | END SUBROUTINE CALC_QSAT_ECMWF |
---|
553 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
554 | |
---|
555 | |
---|
556 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
557 | SUBROUTINE CALC_GAMMASAT(klon, temp, qtot, pressure, gammasat, dgammasatdt) |
---|
558 | |
---|
559 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
560 | ! programme that calculates the gammasat parameter that determines the |
---|
561 | ! homogeneous condensation thresholds for cold (<0oC) clouds |
---|
562 | ! condensation at q>gammasat*qsat |
---|
563 | ! Etienne Vignon, March 2021 |
---|
564 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
565 | |
---|
566 | USE lmdz_lscp_ini, ONLY: iflag_gammasat, t_glace_min, RTT |
---|
567 | |
---|
568 | IMPLICIT NONE |
---|
569 | |
---|
570 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
571 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature in K |
---|
572 | REAL, INTENT(IN), DIMENSION(klon) :: qtot ! total specific water in kg/kg |
---|
573 | |
---|
574 | REAL, INTENT(IN), DIMENSION(klon) :: pressure ! pressure in Pa |
---|
575 | |
---|
576 | REAL, INTENT(OUT), DIMENSION(klon) :: gammasat ! coefficient to multiply qsat with to calculate saturation |
---|
577 | REAL, INTENT(OUT), DIMENSION(klon) :: dgammasatdt ! derivative of gammasat wrt temperature |
---|
578 | |
---|
579 | REAL, DIMENSION(klon) :: qsi, qsl, dqsl, dqsi |
---|
580 | REAL fcirrus, fac |
---|
581 | REAL, PARAMETER :: acirrus = 2.349 |
---|
582 | REAL, PARAMETER :: bcirrus = 259.0 |
---|
583 | |
---|
584 | INTEGER i |
---|
585 | |
---|
586 | CALL CALC_QSAT_ECMWF(klon, temp, qtot, pressure, RTT, 1, .FALSE., qsl, dqsl) |
---|
587 | CALL CALC_QSAT_ECMWF(klon, temp, qtot, pressure, RTT, 2, .FALSE., qsi, dqsi) |
---|
588 | |
---|
589 | DO i = 1, klon |
---|
590 | |
---|
591 | IF (temp(i) >= RTT) THEN |
---|
592 | ! warm clouds: condensation at saturation wrt liquid |
---|
593 | gammasat(i) = 1. |
---|
594 | dgammasatdt(i) = 0. |
---|
595 | |
---|
596 | ELSEIF ((temp(i) < RTT) .AND. (temp(i) > t_glace_min)) THEN |
---|
597 | |
---|
598 | IF (iflag_gammasat >= 2) THEN |
---|
599 | gammasat(i) = qsl(i) / qsi(i) |
---|
600 | dgammasatdt(i) = (dqsl(i) * qsi(i) - dqsi(i) * qsl(i)) / qsi(i) / qsi(i) |
---|
601 | ELSE |
---|
602 | gammasat(i) = 1. |
---|
603 | dgammasatdt(i) = 0. |
---|
604 | ENDIF |
---|
605 | |
---|
606 | ELSE |
---|
607 | |
---|
608 | IF (iflag_gammasat >=1) THEN |
---|
609 | ! homogeneous freezing of aerosols, according to |
---|
610 | ! Koop, 2000 and Karcher 2008, QJRMS |
---|
611 | ! 'Cirrus regime' |
---|
612 | fcirrus = acirrus - temp(i) / bcirrus |
---|
613 | IF (fcirrus > qsl(i) / qsi(i)) THEN |
---|
614 | gammasat(i) = qsl(i) / qsi(i) |
---|
615 | dgammasatdt(i) = (dqsl(i) * qsi(i) - dqsi(i) * qsl(i)) / qsi(i) / qsi(i) |
---|
616 | ELSE |
---|
617 | gammasat(i) = fcirrus |
---|
618 | dgammasatdt(i) = -1.0 / bcirrus |
---|
619 | ENDIF |
---|
620 | |
---|
621 | ELSE |
---|
622 | |
---|
623 | gammasat(i) = 1. |
---|
624 | dgammasatdt(i) = 0. |
---|
625 | |
---|
626 | ENDIF |
---|
627 | |
---|
628 | ENDIF |
---|
629 | |
---|
630 | END DO |
---|
631 | |
---|
632 | END SUBROUTINE CALC_GAMMASAT |
---|
633 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
634 | |
---|
635 | |
---|
636 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
637 | SUBROUTINE DISTANCE_TO_CLOUD_TOP(klon, klev, k, temp, pplay, paprs, rneb, distcltop1D, temp_cltop) |
---|
638 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
639 | |
---|
640 | USE lmdz_lscp_ini, ONLY: rd, rg, tresh_cl |
---|
641 | |
---|
642 | IMPLICIT NONE |
---|
643 | |
---|
644 | INTEGER, INTENT(IN) :: klon, klev !number of horizontal and vertical grid points |
---|
645 | INTEGER, INTENT(IN) :: k ! vertical index |
---|
646 | REAL, INTENT(IN), DIMENSION(klon, klev) :: temp ! temperature in K |
---|
647 | REAL, INTENT(IN), DIMENSION(klon, klev) :: pplay ! pressure middle layer in Pa |
---|
648 | REAL, INTENT(IN), DIMENSION(klon, klev + 1) :: paprs ! pressure interfaces in Pa |
---|
649 | REAL, INTENT(IN), DIMENSION(klon, klev) :: rneb ! cloud fraction |
---|
650 | |
---|
651 | REAL, INTENT(OUT), DIMENSION(klon) :: distcltop1D ! distance from cloud top |
---|
652 | REAL, INTENT(OUT), DIMENSION(klon) :: temp_cltop ! temperature of cloud top |
---|
653 | |
---|
654 | REAL dzlay(klon, klev) |
---|
655 | REAL zlay(klon, klev) |
---|
656 | REAL dzinterf |
---|
657 | INTEGER i, k_top, kvert |
---|
658 | LOGICAL bool_cl |
---|
659 | |
---|
660 | DO i = 1, klon |
---|
661 | ! Initialization height middle of first layer |
---|
662 | dzlay(i, 1) = Rd * temp(i, 1) / rg * log(paprs(i, 1) / paprs(i, 2)) |
---|
663 | zlay(i, 1) = dzlay(i, 1) / 2 |
---|
664 | |
---|
665 | DO kvert = 2, klev |
---|
666 | IF (kvert==klev) THEN |
---|
667 | dzlay(i, kvert) = 2 * (rd * temp(i, kvert) / rg * log(paprs(i, kvert) / pplay(i, kvert))) |
---|
668 | ELSE |
---|
669 | dzlay(i, kvert) = rd * temp(i, kvert) / rg * log(paprs(i, kvert) / paprs(i, kvert + 1)) |
---|
670 | ENDIF |
---|
671 | dzinterf = rd * temp(i, kvert) / rg * log(pplay(i, kvert - 1) / pplay(i, kvert)) |
---|
672 | zlay(i, kvert) = zlay(i, kvert - 1) + dzinterf |
---|
673 | ENDDO |
---|
674 | ENDDO |
---|
675 | |
---|
676 | DO i = 1, klon |
---|
677 | k_top = k |
---|
678 | IF (rneb(i, k) <= tresh_cl) THEN |
---|
679 | bool_cl = .FALSE. |
---|
680 | ELSE |
---|
681 | bool_cl = .TRUE. |
---|
682 | ENDIF |
---|
683 | |
---|
684 | DO WHILE ((bool_cl) .AND. (k_top <= klev)) |
---|
685 | ! find cloud top |
---|
686 | IF (rneb(i, k_top) > tresh_cl) THEN |
---|
687 | k_top = k_top + 1 |
---|
688 | ELSE |
---|
689 | bool_cl = .FALSE. |
---|
690 | k_top = k_top - 1 |
---|
691 | ENDIF |
---|
692 | ENDDO |
---|
693 | k_top = min(k_top, klev) |
---|
694 | |
---|
695 | !dist to top is dist between current layer and layer of cloud top (from middle to middle) + dist middle to |
---|
696 | !interf for layer of cloud top |
---|
697 | distcltop1D(i) = zlay(i, k_top) - zlay(i, k) + dzlay(i, k_top) / 2 |
---|
698 | temp_cltop(i) = temp(i, k_top) |
---|
699 | ENDDO ! klon |
---|
700 | |
---|
701 | END SUBROUTINE DISTANCE_TO_CLOUD_TOP |
---|
702 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
703 | |
---|
704 | END MODULE lmdz_lscp_tools |
---|
705 | |
---|
706 | |
---|