source: LMDZ6/branches/Amaury_dev/libf/phylmd/lmdz_lscp_tools.F90 @ 5151

Last change on this file since 5151 was 5144, checked in by abarral, 3 months ago

Put YOMCST.h into modules

File size: 28.6 KB
Line 
1MODULE lmdz_lscp_tools
2
3  IMPLICIT NONE
4
5CONTAINS
6
7  !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
8  SUBROUTINE FALLICE_VELOCITY(klon, iwc, temp, rho, pres, ptconv, velo)
9
10    ! Ref:
11    ! Stubenrauch, C. J., Bonazzola, M.,
12    ! Protopapadaki, S. E., & Musat, I. (2019).
13    ! New cloud system metrics to assess bulk
14    ! ice cloud schemes in a GCM. Journal of
15    ! Advances in Modeling Earth Systems, 11,
16    ! 3212–3234. https://doi.org/10.1029/2019MS001642
17
18    USE lmdz_lscp_ini, ONLY: iflag_vice, ffallv_con, ffallv_lsc
19    USE lmdz_lscp_ini, ONLY: cice_velo, dice_velo
20
21    IMPLICIT NONE
22
23    INTEGER, INTENT(IN) :: klon
24    REAL, INTENT(IN), DIMENSION(klon) :: iwc       ! specific ice water content [kg/m3]
25    REAL, INTENT(IN), DIMENSION(klon) :: temp      ! temperature [K]
26    REAL, INTENT(IN), DIMENSION(klon) :: rho       ! dry air density [kg/m3]
27    REAL, INTENT(IN), DIMENSION(klon) :: pres      ! air pressure [Pa]
28    LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv    ! convective point  [-]
29
30    REAL, INTENT(OUT), DIMENSION(klon) :: velo    ! fallspeed velocity of crystals [m/s]
31
32    INTEGER i
33    REAL logvm, iwcg, tempc, phpa, fallv_tun
34    REAL m2ice, m2snow, vmice, vmsnow
35    REAL aice, bice, asnow, bsnow
36
37    DO i = 1, klon
38
39      IF (ptconv(i)) THEN
40        fallv_tun = ffallv_con
41      ELSE
42        fallv_tun = ffallv_lsc
43      ENDIF
44
45      tempc = temp(i) - 273.15 ! celcius temp
46      iwcg = MAX(iwc(i) * 1000., 1E-3) ! iwc in g/m3. We set a minimum value to prevent from division by 0
47      phpa = pres(i) / 100.    ! pressure in hPa
48
49      IF (iflag_vice == 1) THEN
50        ! so-called 'empirical parameterization' in Stubenrauch et al. 2019
51        IF (tempc >= -60.0) THEN
52          logvm = -0.0000414122 * tempc * tempc * log(iwcg) - 0.00538922 * tempc * log(iwcg) &
53                  - 0.0516344 * log(iwcg) + 0.00216078 * tempc + 1.9714
54          velo(i) = exp(logvm)
55        else
56          velo(i) = 65.0 * (iwcg**0.2) * (150. / phpa)**0.15
57        endif
58
59        velo(i) = fallv_tun * velo(i) / 100.0 ! from cm/s to m/s
60
61      ELSE IF (iflag_vice == 2) THEN
62        ! so called  PSDM empirical coherent bulk ice scheme in Stubenrauch et al. 2019
63        aice = 0.587
64        bice = 2.45
65        asnow = 0.0444
66        bsnow = 2.1
67
68        m2ice = ((iwcg * 0.001 / aice) / (exp(13.6 - bice * 7.76 + 0.479 * bice**2) * &
69                exp((-0.0361 + bice * 0.0151 + 0.00149 * bice**2) * tempc)))   &
70                **(1. / (0.807 + bice * 0.00581 + 0.0457 * bice**2))
71
72        vmice = 100. * 1042.4 * exp(13.6 - (bice + 1) * 7.76 + 0.479 * (bice + 1.)**2) * exp((-0.0361 + &
73                (bice + 1.) * 0.0151 + 0.00149 * (bice + 1.)**2) * tempc) &
74                * (m2ice**(0.807 + (bice + 1.) * 0.00581 + 0.0457 * (bice + 1.)**2)) / (iwcg * 0.001 / aice)
75
76        vmice = vmice * ((1000. / phpa)**0.2)
77
78        m2snow = ((iwcg * 0.001 / asnow) / (exp(13.6 - bsnow * 7.76 + 0.479 * bsnow**2) * &
79                exp((-0.0361 + bsnow * 0.0151 + 0.00149 * bsnow**2) * tempc)))         &
80                **(1. / (0.807 + bsnow * 0.00581 + 0.0457 * bsnow**2))
81
82        vmsnow = 100. * 14.3 * exp(13.6 - (bsnow + .416) * 7.76 + 0.479 * (bsnow + .416)**2)&
83                * exp((-0.0361 + (bsnow + .416) * 0.0151 + 0.00149 * (bsnow + .416)**2) * tempc)&
84                * (m2snow**(0.807 + (bsnow + .416) * 0.00581 + 0.0457 * (bsnow + .416)**2)) / (iwcg * 0.001 / asnow)
85
86        vmsnow = vmsnow * ((1000. / phpa)**0.35)
87        velo(i) = fallv_tun * min(vmsnow, vmice) / 100. ! to m/s
88
89      ELSE
90        ! By default, fallspeed velocity of ice crystals according to Heymsfield & Donner 1990
91        velo(i) = fallv_tun * cice_velo * ((iwcg / 1000.)**dice_velo)
92      ENDIF
93    ENDDO
94
95  END SUBROUTINE FALLICE_VELOCITY
96  !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
97
98  !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
99  SUBROUTINE ICEFRAC_LSCP(klon, temp, iflag_ice_thermo, distcltop, temp_cltop, icefrac, dicefracdT)
100    !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
101
102    ! Compute the ice fraction 1-xliq (see e.g.
103    ! Doutriaux-Boucher & Quaas 2004, section 2.2.)
104    ! as a function of temperature
105    ! see also Fig 3 of Madeleine et al. 2020, JAMES
106    !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
107
108    USE lmdz_print_control, ONLY: lunout, prt_level
109    USE lmdz_lscp_ini, ONLY: t_glace_min, t_glace_max, exposant_glace, iflag_t_glace
110    USE lmdz_lscp_ini, ONLY: RTT, dist_liq, temp_nowater
111    USE lmdz_abort_physic, ONLY: abort_physic
112
113    IMPLICIT NONE
114
115    INTEGER, INTENT(IN) :: klon              ! number of horizontal grid points
116    REAL, INTENT(IN), DIMENSION(klon) :: temp              ! temperature
117    REAL, INTENT(IN), DIMENSION(klon) :: distcltop         ! distance to cloud top
118    REAL, INTENT(IN), DIMENSION(klon) :: temp_cltop        ! temperature of cloud top
119    INTEGER, INTENT(IN) :: iflag_ice_thermo
120    REAL, INTENT(OUT), DIMENSION(klon) :: icefrac
121    REAL, INTENT(OUT), DIMENSION(klon) :: dicefracdT
122
123    INTEGER i
124    REAL    liqfrac_tmp, dicefrac_tmp
125    REAL    Dv, denomdep, beta, qsi, dqsidt
126    LOGICAL ice_thermo
127
128    CHARACTER (len = 20) :: modname = 'lscp_tools'
129    CHARACTER (len = 80) :: abort_message
130
131    IF ((iflag_t_glace<2)) THEN !.OR. (iflag_t_glace.GT.6)) THEN
132      abort_message = 'lscp cannot be used if iflag_t_glace<2 or >6'
133      CALL abort_physic(modname, abort_message, 1)
134    ENDIF
135
136    IF (.NOT.((iflag_ice_thermo == 1).OR.(iflag_ice_thermo >= 3))) THEN
137      abort_message = 'lscp cannot be used without ice thermodynamics'
138      CALL abort_physic(modname, abort_message, 1)
139    ENDIF
140
141    DO i = 1, klon
142
143      ! old function with sole dependence upon temperature
144      IF (iflag_t_glace == 2) THEN
145        liqfrac_tmp = (temp(i) - t_glace_min) / (t_glace_max - t_glace_min)
146        liqfrac_tmp = MIN(MAX(liqfrac_tmp, 0.0), 1.0)
147        icefrac(i) = (1.0 - liqfrac_tmp)**exposant_glace
148        IF (icefrac(i) >0.) THEN
149          dicefracdT(i) = exposant_glace * (icefrac(i)**(exposant_glace - 1.)) &
150                  / (t_glace_min - t_glace_max)
151        ENDIF
152
153        IF ((icefrac(i)==0).OR.(icefrac(i)==1)) THEN
154          dicefracdT(i) = 0.
155        ENDIF
156
157      ENDIF
158
159      ! function of temperature used in CMIP6 physics
160      IF (iflag_t_glace == 3) THEN
161        liqfrac_tmp = (temp(i) - t_glace_min) / (t_glace_max - t_glace_min)
162        liqfrac_tmp = MIN(MAX(liqfrac_tmp, 0.0), 1.0)
163        icefrac(i) = 1.0 - liqfrac_tmp**exposant_glace
164        IF ((icefrac(i) >0.) .AND. (liqfrac_tmp > 0.)) THEN
165          dicefracdT(i) = exposant_glace * ((liqfrac_tmp)**(exposant_glace - 1.)) &
166                  / (t_glace_min - t_glace_max)
167        ELSE
168          dicefracdT(i) = 0.
169        ENDIF
170      ENDIF
171
172      ! for iflag_t_glace .GE. 4, the liquid fraction depends upon temperature at cloud top
173      ! and then decreases with decreasing height
174
175      !with linear function of temperature at cloud top
176      IF (iflag_t_glace == 4) THEN
177        liqfrac_tmp = (temp(i) - t_glace_min) / (t_glace_max - t_glace_min)
178        liqfrac_tmp = MIN(MAX(liqfrac_tmp, 0.0), 1.0)
179        icefrac(i) = MAX(MIN(1., 1.0 - liqfrac_tmp * exp(-distcltop(i) / dist_liq)), 0.)
180        dicefrac_tmp = - temp(i) / (t_glace_max - t_glace_min)
181        dicefracdT(i) = dicefrac_tmp * exp(-distcltop(i) / dist_liq)
182        IF ((liqfrac_tmp <=0) .OR. (liqfrac_tmp >= 1)) THEN
183          dicefracdT(i) = 0.
184        ENDIF
185      ENDIF
186
187      ! with CMIP6 function of temperature at cloud top
188      IF ((iflag_t_glace == 5) .OR. (iflag_t_glace == 7)) THEN
189        liqfrac_tmp = (temp(i) - t_glace_min) / (t_glace_max - t_glace_min)
190        liqfrac_tmp = MIN(MAX(liqfrac_tmp, 0.0), 1.0)
191        liqfrac_tmp = liqfrac_tmp**exposant_glace
192        icefrac(i) = MAX(MIN(1., 1.0 - liqfrac_tmp * exp(-distcltop(i) / dist_liq)), 0.)
193        IF ((liqfrac_tmp <=0) .OR. (liqfrac_tmp >= 1)) THEN
194          dicefracdT(i) = 0.
195        ELSE
196          dicefracdT(i) = exposant_glace * ((liqfrac_tmp)**(exposant_glace - 1.)) / (t_glace_min - t_glace_max) &
197                  * exp(-distcltop(i) / dist_liq)
198        ENDIF
199      ENDIF
200
201      ! with modified function of temperature at cloud top
202      ! to get largere values around 260 K, works well with t_glace_min = 241K
203      IF (iflag_t_glace == 6) THEN
204        IF (temp(i) > t_glace_max) THEN
205          liqfrac_tmp = 1.
206        ELSE
207          liqfrac_tmp = -((temp(i) - t_glace_max) / (t_glace_max - t_glace_min))**2 + 1.
208        ENDIF
209        liqfrac_tmp = MIN(MAX(liqfrac_tmp, 0.0), 1.0)
210        icefrac(i) = MAX(MIN(1., 1.0 - liqfrac_tmp * exp(-distcltop(i) / dist_liq)), 0.)
211        IF ((liqfrac_tmp <=0) .OR. (liqfrac_tmp >= 1)) THEN
212          dicefracdT(i) = 0.
213        ELSE
214          dicefracdT(i) = 2 * ((temp(i) - t_glace_max) / (t_glace_max - t_glace_min)) / (t_glace_max - t_glace_min) &
215                  * exp(-distcltop(i) / dist_liq)
216        ENDIF
217      ENDIF
218
219      ! if temperature of cloud top <-40°C,
220      IF (iflag_t_glace >= 4) THEN
221        IF ((temp_cltop(i) <= temp_nowater) .AND. (temp(i) <= t_glace_max)) THEN
222          icefrac(i) = 1.
223          dicefracdT(i) = 0.
224        ENDIF
225      ENDIF
226
227    ENDDO ! klon
228
229  END SUBROUTINE ICEFRAC_LSCP
230  !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
231
232  SUBROUTINE ICEFRAC_LSCP_TURB(klon, dtime, temp, pplay, paprsdn, paprsup, qice_ini, snowcld, qtot_incl, cldfra, tke, tke_dissip, qliq, qvap_cld, qice, icefrac, dicefracdT, cldfraliq, sigma2_icefracturb, mean_icefracturb)
233    !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
234    ! Compute the liquid, ice and vapour content (+ice fraction) based
235    ! on turbulence (see Fields 2014, Furtado 2016)
236    !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
237
238    USE lmdz_lscp_ini, ONLY: prt_level, lunout
239    USE lmdz_lscp_ini, ONLY: RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG, RV, RPI
240    USE lmdz_lscp_ini, ONLY: seuil_neb, temp_nowater
241    USE lmdz_lscp_ini, ONLY: tau_mixenv, lmix_mpc, naero5, gamma_snwretro, gamma_taud, capa_crystal
242    USE lmdz_lscp_ini, ONLY: eps
243
244    IMPLICIT NONE
245
246    INTEGER, INTENT(IN) :: klon              !--number of horizontal grid points
247    REAL, INTENT(IN) :: dtime             !--time step [s]
248
249    REAL, INTENT(IN), DIMENSION(klon) :: temp              !--temperature
250    REAL, INTENT(IN), DIMENSION(klon) :: pplay             !--pressure in the middle of the layer       [Pa]
251    REAL, INTENT(IN), DIMENSION(klon) :: paprsdn           !--pressure at the bottom interface of the layer [Pa]
252    REAL, INTENT(IN), DIMENSION(klon) :: paprsup           !--pressure at the top interface of the layer [Pa]
253    REAL, INTENT(IN), DIMENSION(klon) :: qtot_incl         !--specific total cloud water content, in-cloud content [kg/kg]
254    REAL, INTENT(IN), DIMENSION(klon) :: cldfra            !--cloud fraction in gridbox [-]
255    REAL, INTENT(IN), DIMENSION(klon) :: tke               !--turbulent kinetic energy [m2/s2]
256    REAL, INTENT(IN), DIMENSION(klon) :: tke_dissip        !--TKE dissipation [m2/s3]
257
258    REAL, INTENT(IN), DIMENSION(klon) :: qice_ini          !--initial specific ice content gridbox-mean [kg/kg]
259    REAL, INTENT(IN), DIMENSION(klon) :: snowcld
260    REAL, INTENT(OUT), DIMENSION(klon) :: qliq              !--specific liquid content gridbox-mean [kg/kg]
261    REAL, INTENT(OUT), DIMENSION(klon) :: qvap_cld          !--specific cloud vapor content, gridbox-mean [kg/kg]
262    REAL, INTENT(OUT), DIMENSION(klon) :: qice              !--specific ice content gridbox-mean [kg/kg]
263    REAL, INTENT(OUT), DIMENSION(klon) :: icefrac           !--fraction of ice in condensed water [-]
264    REAL, INTENT(OUT), DIMENSION(klon) :: dicefracdT
265
266    REAL, INTENT(OUT), DIMENSION(klon) :: cldfraliq         !--fraction of cldfra which is liquid only
267    REAL, INTENT(OUT), DIMENSION(klon) :: sigma2_icefracturb     !--Temporary
268    REAL, INTENT(OUT), DIMENSION(klon) :: mean_icefracturb      !--Temporary
269
270    REAL, DIMENSION(klon) :: qzero, qsatl, dqsatl, qsati, dqsati         !--specific humidity saturation values
271    INTEGER :: i
272
273    REAL :: qvap_incl, qice_incl, qliq_incl, qiceini_incl                !--In-cloud specific quantities [kg/kg]
274    REAL :: qsnowcld_incl
275    !REAL :: capa_crystal                                                 !--Capacitance of ice crystals  [-]
276    REAL :: water_vapor_diff                                             !--Water-vapour diffusion coefficient in air [m2/s] (function of T&P)
277    REAL :: air_thermal_conduct                                          !--Thermal conductivity of air [J/m/K/s] (function of T)
278    REAL :: C0                                                           !--Lagrangian structure function [-]
279    REAL :: tau_mixingenv
280    REAL :: tau_dissipturb
281    REAL :: invtau_phaserelax
282    REAL :: sigma2_pdf, mean_pdf
283    REAL :: ai, bi, B0
284    REAL :: sursat_iceliq
285    REAL :: sursat_env
286    REAL :: liqfra_max
287    REAL :: sursat_iceext
288    REAL :: nb_crystals                                                  !--number concentration of ice crystals [#/m3]
289    REAL :: moment1_PSD                                                  !--1st moment of ice PSD
290    REAL :: N0_PSD, lambda_PSD                                           !--parameters of the exponential PSD
291
292    REAL :: rho_ice                                                      !--ice density [kg/m3]
293    REAL :: cldfra1D
294    REAL :: deltaz, rho_air
295    REAL :: psati                                                        !--saturation vapor pressure wrt i [Pa]
296
297    C0 = 10.                                                  !--value assumed in Field2014
298    rho_ice = 950.
299    sursat_iceext = -0.1
300    !capa_crystal  = 1. !r_ice
301    qzero(:) = 0.
302    cldfraliq(:) = 0.
303    icefrac(:) = 0.
304    dicefracdT(:) = 0.
305
306    sigma2_icefracturb(:) = 0.
307    mean_icefracturb(:) = 0.
308
309    !--wrt liquid water
310    CALL calc_qsat_ecmwf(klon, temp(:), qzero(:), pplay(:), RTT, 1, .FALSE., qsatl(:), dqsatl(:))
311    !--wrt ice
312    CALL calc_qsat_ecmwf(klon, temp(:), qzero(:), pplay(:), RTT, 2, .FALSE., qsati(:), dqsati(:))
313
314    DO i = 1, klon
315
316      rho_air = pplay(i) / temp(i) / RD
317      !deltaz   = ( paprsdn(i) - paprsup(i) ) / RG / rho_air(i)
318      ! because cldfra is intent in, but can be locally modified due to test
319      cldfra1D = cldfra(i)
320      IF (cldfra(i) <= 0.) THEN
321        qvap_cld(i) = 0.
322        qliq(i) = 0.
323        qice(i) = 0.
324        cldfraliq(i) = 0.
325        icefrac(i) = 0.
326        dicefracdT(i) = 0.
327
328        ! If there is a cloud
329      ELSE
330        IF (cldfra(i) >= 1.0) THEN
331          cldfra1D = 1.0
332        END IF
333
334        ! T>0°C, no ice allowed
335        IF (temp(i) >= RTT) THEN
336          qvap_cld(i) = qsatl(i) * cldfra1D
337          qliq(i) = MAX(0.0, qtot_incl(i) - qsatl(i)) * cldfra1D
338          qice(i) = 0.
339          cldfraliq(i) = 1.
340          icefrac(i) = 0.
341          dicefracdT(i) = 0.
342
343          ! T<-38°C, no liquid allowed
344        ELSE IF (temp(i) <= temp_nowater) THEN
345          qvap_cld(i) = qsati(i) * cldfra1D
346          qliq(i) = 0.
347          qice(i) = MAX(0.0, qtot_incl(i) - qsati(i)) * cldfra1D
348          cldfraliq(i) = 0.
349          icefrac(i) = 1.
350          dicefracdT(i) = 0.
351
352          ! MPC temperature
353        ELSE
354          ! Not enough TKE
355          IF (tke_dissip(i) <= eps)  THEN
356            qvap_cld(i) = qsati(i) * cldfra1D
357            qliq(i) = 0.
358            qice(i) = MAX(0., qtot_incl(i) - qsati(i)) * cldfra1D
359            cldfraliq(i) = 0.
360            icefrac(i) = 1.
361            dicefracdT(i) = 0.
362
363            ! Enough TKE
364          ELSE
365            !---------------------------------------------------------
366            !--               ICE SUPERSATURATION PDF
367            !---------------------------------------------------------
368            !--If -38°C< T <0°C and there is enough turbulence,
369            !--we compute the cloud liquid properties with a Gaussian PDF
370            !--of ice supersaturation F(Si) (Field2014, Furtado2016).
371            !--Parameters of the PDF are function of turbulence and
372            !--microphysics/existing ice.
373
374            sursat_iceliq = qsatl(i) / qsati(i) - 1.
375            psati = qsati(i) * pplay(i) / (RD / RV)
376
377            !-------------- MICROPHYSICAL TERMS --------------
378            !--We assume an exponential ice PSD whose parameters
379            !--are computed following Morrison&Gettelman 2008
380            !--Ice number density is assumed equals to INP density
381            !--which is a function of temperature (DeMott 2010)
382            !--bi and B0 are microphysical function characterizing
383            !--vapor/ice interactions
384            !--tau_phase_relax is the typical time of vapor deposition
385            !--onto ice crystals
386
387            qiceini_incl = qice_ini(i) / cldfra1D
388            qsnowcld_incl = snowcld(i) * RG * dtime / (paprsdn(i) - paprsup(i)) / cldfra1D
389            sursat_env = max(0., (qtot_incl(i) - qiceini_incl) / qsati(i) - 1.)
390            IF (qiceini_incl > eps) THEN
391              nb_crystals = 1.e3 * 5.94e-5 * (RTT - temp(i))**3.33 * naero5**(0.0264 * (RTT - temp(i)) + 0.0033)
392              lambda_PSD = ((RPI * rho_ice * nb_crystals * 24.) / (6. * (qiceini_incl + gamma_snwretro * qsnowcld_incl))) ** (1. / 3.)
393              N0_PSD = nb_crystals * lambda_PSD
394              moment1_PSD = N0_PSD / 2. / lambda_PSD**2
395            ELSE
396              moment1_PSD = 0.
397            ENDIF
398
399            !--Formulae for air thermal conductivity and water vapor diffusivity
400            !--comes respectively from Beard and Pruppacher (1971)
401            !--and  Hall and Pruppacher (1976)
402
403            air_thermal_conduct = (5.69 + 0.017 * (temp(i) - RTT)) * 1.e-3 * 4.184
404            water_vapor_diff = 2.11 * 1e-5 * (temp(i) / RTT)**1.94 * (101325 / pplay(i))
405
406            bi = 1. / ((qsati(i) + qsatl(i)) / 2.) + RLSTT**2 / RCPD / RV / temp(i)**2
407            B0 = 4. * RPI * capa_crystal * 1. / (RLSTT**2 / air_thermal_conduct / RV / temp(i)**2  &
408                    + RV * temp(i) / psati / water_vapor_diff)
409
410            invtau_phaserelax = (bi * B0 * moment1_PSD)
411
412            !             Old way of estimating moment1 : spherical crystals + monodisperse PSD
413            !             nb_crystals = rho_air * qiceini_incl / ( 4. / 3. * RPI * r_ice**3. * rho_ice )
414            !             moment1_PSD = nb_crystals * r_ice
415
416            !----------------- TURBULENT SOURCE/SINK TERMS -----------------
417            !--Tau_mixingenv is the time needed to homogeneize the parcel
418            !--with its environment by turbulent diffusion over the parcel
419            !--length scale
420            !--if lmix_mpc <0, tau_mixigenv value is prescribed
421            !--else tau_mixigenv value is derived from tke_dissip and lmix_mpc
422            !--Tau_dissipturb is the time needed turbulence to decay due to
423            !--viscosity
424
425            ai = RG / RD / temp(i) * (RD * RLSTT / RCPD / RV / temp(i) - 1.)
426            IF (lmix_mpc > 0) THEN
427              tau_mixingenv = (lmix_mpc**2. / tke_dissip(i))**(1. / 3.)
428            ELSE
429              tau_mixingenv = tau_mixenv
430            ENDIF
431
432            tau_dissipturb = gamma_taud * 2. * 2. / 3. * tke(i) / tke_dissip(i) / C0
433
434            !--------------------- PDF COMPUTATIONS ---------------------
435            !--Formulae for sigma2_pdf (variance), mean of PDF in Furtado2016
436            !--cloud liquid fraction and in-cloud liquid content are given
437            !--by integrating resp. F(Si) and Si*F(Si)
438            !--Liquid is limited by the available water vapor trough a
439            !--maximal liquid fraction
440
441            liqfra_max = MAX(0., (MIN (1., (qtot_incl(i) - qiceini_incl - qsati(i) * (1 + sursat_iceext)) / (qsatl(i) - qsati(i)))))
442            sigma2_pdf = 1. / 2. * (ai**2) * 2. / 3. * tke(i) * tau_dissipturb / (invtau_phaserelax + 1. / tau_mixingenv)
443            mean_pdf = sursat_env * 1. / tau_mixingenv / (invtau_phaserelax + 1. / tau_mixingenv)
444            cldfraliq(i) = 0.5 * (1. - erf((sursat_iceliq - mean_pdf) / (SQRT(2. * sigma2_pdf))))
445            !IF (cldfraliq(i) .GT. liqfra_max) THEN
446            !    cldfraliq(i) = liqfra_max
447            !ENDIF
448
449            qliq_incl = qsati(i) * SQRT(sigma2_pdf) / SQRT(2. * RPI) * EXP(-1. * (sursat_iceliq - mean_pdf)**2. / (2. * sigma2_pdf))  &
450                    - qsati(i) * cldfraliq(i) * (sursat_iceliq - mean_pdf)
451
452            sigma2_icefracturb(i) = sigma2_pdf
453            mean_icefracturb(i) = mean_pdf
454            !------------ ICE AMOUNT AND WATER CONSERVATION  ------------
455
456            IF ((qliq_incl <= eps) .OR. (cldfraliq(i) <= eps)) THEN
457              qliq_incl = 0.
458              cldfraliq(i) = 0.
459            END IF
460
461            !--Choice for in-cloud vapor :
462            !--1.Weighted mean between qvap in MPC parts and in ice-only parts
463            !--2.Always at ice saturation
464            qvap_incl = MAX(qsati(i), (1. - cldfraliq(i)) * (sursat_iceext + 1.) * qsati(i) + cldfraliq(i) * qsatl(i))
465
466            IF (qvap_incl  >= qtot_incl(i)) THEN
467              qvap_incl = qsati(i)
468              qliq_incl = qtot_incl(i) - qvap_incl
469              qice_incl = 0.
470
471            ELSEIF ((qvap_incl + qliq_incl) >= qtot_incl(i)) THEN
472              qliq_incl = MAX(0.0, qtot_incl(i) - qvap_incl)
473              qice_incl = 0.
474            ELSE
475              qice_incl = qtot_incl(i) - qvap_incl - qliq_incl
476            END IF
477
478            qvap_cld(i) = qvap_incl * cldfra1D
479            qliq(i) = qliq_incl * cldfra1D
480            qice(i) = qice_incl * cldfra1D
481            icefrac(i) = qice(i) / (qice(i) + qliq(i))
482            dicefracdT(i) = 0.
483            !PRINT*,'MPC turb'
484
485          END IF ! Enough TKE
486
487        END IF ! MPC temperature
488
489      END IF ! cldfra
490
491    ENDDO ! klon
492  END SUBROUTINE ICEFRAC_LSCP_TURB
493  !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
494
495
496  SUBROUTINE CALC_QSAT_ECMWF(klon, temp, qtot, pressure, tref, phase, flagth, qs, dqs)
497    !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
498    ! Calculate qsat following ECMWF method
499    !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
500    USE lmdz_yoethf
501    USE lmdz_fcttre, ONLY: foeew, foede, qsats, qsatl, dqsats, dqsatl, thermcep
502    USE lmdz_yomcst
503
504    IMPLICIT NONE
505
506    INTEGER, INTENT(IN) :: klon  ! number of horizontal grid points
507    REAL, INTENT(IN), DIMENSION(klon) :: temp     ! temperature in K
508    REAL, INTENT(IN), DIMENSION(klon) :: qtot     ! total specific water in kg/kg
509    REAL, INTENT(IN), DIMENSION(klon) :: pressure ! pressure in Pa
510    REAL, INTENT(IN) :: tref     ! reference temperature in K
511    LOGICAL, INTENT(IN) :: flagth     ! flag for qsat calculation for thermals
512    INTEGER, INTENT(IN) :: phase
513    ! phase: 0=depend on temperature sign (temp>tref -> liquid, temp<tref, solid)
514    !        1=liquid
515    !        2=solid
516
517    REAL, INTENT(OUT), DIMENSION(klon) :: qs      ! saturation specific humidity [kg/kg]
518    REAL, INTENT(OUT), DIMENSION(klon) :: dqs     ! derivation of saturation specific humidity wrt T
519
520    REAL delta, cor, cvm5
521    INTEGER i
522
523    DO i = 1, klon
524
525      IF (phase == 1) THEN
526        delta = 0.
527      ELSEIF (phase == 2) THEN
528        delta = 1.
529      ELSE
530        delta = MAX(0., SIGN(1., tref - temp(i)))
531      ENDIF
532
533      IF (flagth) THEN
534        cvm5 = R5LES * (1. - delta) + R5IES * delta
535      ELSE
536        cvm5 = R5LES * RLVTT * (1. - delta) + R5IES * RLSTT * delta
537        cvm5 = cvm5 / RCPD / (1.0 + RVTMP2 * (qtot(i)))
538      ENDIF
539
540      qs(i) = R2ES * FOEEW(temp(i), delta) / pressure(i)
541      qs(i) = MIN(0.5, qs(i))
542      cor = 1. / (1. - RETV * qs(i))
543      qs(i) = qs(i) * cor
544      dqs(i) = FOEDE(temp(i), delta, cvm5, qs(i), cor)
545
546    END DO
547
548  END SUBROUTINE CALC_QSAT_ECMWF
549  !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
550
551
552  !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
553  SUBROUTINE CALC_GAMMASAT(klon, temp, qtot, pressure, gammasat, dgammasatdt)
554
555    !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
556    ! programme that calculates the gammasat parameter that determines the
557    ! homogeneous condensation thresholds for cold (<0oC) clouds
558    ! condensation at q>gammasat*qsat
559    ! Etienne Vignon, March 2021
560    !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
561
562    USE lmdz_lscp_ini, ONLY: iflag_gammasat, t_glace_min, RTT
563
564    IMPLICIT NONE
565
566    INTEGER, INTENT(IN) :: klon                       ! number of horizontal grid points
567    REAL, INTENT(IN), DIMENSION(klon) :: temp         ! temperature in K
568    REAL, INTENT(IN), DIMENSION(klon) :: qtot         ! total specific water in kg/kg
569
570    REAL, INTENT(IN), DIMENSION(klon) :: pressure     ! pressure in Pa
571
572    REAL, INTENT(OUT), DIMENSION(klon) :: gammasat    ! coefficient to multiply qsat with to calculate saturation
573    REAL, INTENT(OUT), DIMENSION(klon) :: dgammasatdt ! derivative of gammasat wrt temperature
574
575    REAL, DIMENSION(klon) :: qsi, qsl, dqsl, dqsi
576    REAL  fcirrus, fac
577    REAL, PARAMETER :: acirrus = 2.349
578    REAL, PARAMETER :: bcirrus = 259.0
579
580    INTEGER i
581
582    CALL CALC_QSAT_ECMWF(klon, temp, qtot, pressure, RTT, 1, .FALSE., qsl, dqsl)
583    CALL CALC_QSAT_ECMWF(klon, temp, qtot, pressure, RTT, 2, .FALSE., qsi, dqsi)
584
585    DO i = 1, klon
586
587      IF (temp(i) >= RTT) THEN
588        ! warm clouds: condensation at saturation wrt liquid
589        gammasat(i) = 1.
590        dgammasatdt(i) = 0.
591
592      ELSEIF ((temp(i) < RTT) .AND. (temp(i) > t_glace_min)) THEN
593
594        IF (iflag_gammasat >= 2) THEN
595          gammasat(i) = qsl(i) / qsi(i)
596          dgammasatdt(i) = (dqsl(i) * qsi(i) - dqsi(i) * qsl(i)) / qsi(i) / qsi(i)
597        ELSE
598          gammasat(i) = 1.
599          dgammasatdt(i) = 0.
600        ENDIF
601
602      ELSE
603
604        IF (iflag_gammasat >=1) THEN
605          ! homogeneous freezing of aerosols, according to
606          ! Koop, 2000 and Karcher 2008, QJRMS
607          ! 'Cirrus regime'
608          fcirrus = acirrus - temp(i) / bcirrus
609          IF (fcirrus > qsl(i) / qsi(i)) THEN
610            gammasat(i) = qsl(i) / qsi(i)
611            dgammasatdt(i) = (dqsl(i) * qsi(i) - dqsi(i) * qsl(i)) / qsi(i) / qsi(i)
612          ELSE
613            gammasat(i) = fcirrus
614            dgammasatdt(i) = -1.0 / bcirrus
615          ENDIF
616
617        ELSE
618
619          gammasat(i) = 1.
620          dgammasatdt(i) = 0.
621
622        ENDIF
623
624      ENDIF
625
626    END DO
627
628  END SUBROUTINE CALC_GAMMASAT
629  !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
630
631
632  !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
633  SUBROUTINE DISTANCE_TO_CLOUD_TOP(klon, klev, k, temp, pplay, paprs, rneb, distcltop1D, temp_cltop)
634    !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
635
636    USE lmdz_lscp_ini, ONLY: rd, rg, tresh_cl
637
638    IMPLICIT NONE
639
640    INTEGER, INTENT(IN) :: klon, klev                !number of horizontal and vertical grid points
641    INTEGER, INTENT(IN) :: k                        ! vertical index
642    REAL, INTENT(IN), DIMENSION(klon, klev) :: temp  ! temperature in K
643    REAL, INTENT(IN), DIMENSION(klon, klev) :: pplay ! pressure middle layer in Pa
644    REAL, INTENT(IN), DIMENSION(klon, klev + 1) :: paprs ! pressure interfaces in Pa
645    REAL, INTENT(IN), DIMENSION(klon, klev) :: rneb  ! cloud fraction
646
647    REAL, INTENT(OUT), DIMENSION(klon) :: distcltop1D  ! distance from cloud top
648    REAL, INTENT(OUT), DIMENSION(klon) :: temp_cltop     ! temperature of cloud top
649
650    REAL dzlay(klon, klev)
651    REAL zlay(klon, klev)
652    REAL dzinterf
653    INTEGER i, k_top, kvert
654    LOGICAL bool_cl
655
656    DO i = 1, klon
657      ! Initialization height middle of first layer
658      dzlay(i, 1) = Rd * temp(i, 1) / rg * log(paprs(i, 1) / paprs(i, 2))
659      zlay(i, 1) = dzlay(i, 1) / 2
660
661      DO kvert = 2, klev
662        IF (kvert==klev) THEN
663          dzlay(i, kvert) = 2 * (rd * temp(i, kvert) / rg * log(paprs(i, kvert) / pplay(i, kvert)))
664        ELSE
665          dzlay(i, kvert) = rd * temp(i, kvert) / rg * log(paprs(i, kvert) / paprs(i, kvert + 1))
666        ENDIF
667        dzinterf = rd * temp(i, kvert) / rg * log(pplay(i, kvert - 1) / pplay(i, kvert))
668        zlay(i, kvert) = zlay(i, kvert - 1) + dzinterf
669      ENDDO
670    ENDDO
671
672    DO i = 1, klon
673      k_top = k
674      IF (rneb(i, k) <= tresh_cl) THEN
675        bool_cl = .FALSE.
676      ELSE
677        bool_cl = .TRUE.
678      ENDIF
679
680      DO WHILE ((bool_cl) .AND. (k_top <= klev))
681        ! find cloud top
682        IF (rneb(i, k_top) > tresh_cl) THEN
683          k_top = k_top + 1
684        ELSE
685          bool_cl = .FALSE.
686          k_top = k_top - 1
687        ENDIF
688      ENDDO
689      k_top = min(k_top, klev)
690
691      !dist to top is dist between current layer and layer of cloud top (from middle to middle) + dist middle to
692      !interf for layer of cloud top
693      distcltop1D(i) = zlay(i, k_top) - zlay(i, k) + dzlay(i, k_top) / 2
694      temp_cltop(i) = temp(i, k_top)
695    ENDDO ! klon
696
697  END SUBROUTINE DISTANCE_TO_CLOUD_TOP
698  !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
699
700END MODULE lmdz_lscp_tools
701
702
Note: See TracBrowser for help on using the repository browser.