1 | MODULE lmdz_lscp |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
8 | SUBROUTINE lscp(klon, klev, dtime, missing_val, & |
---|
9 | paprs, pplay, temp, qt, qice_save, ptconv, ratqs, sigma_qtherm, & |
---|
10 | d_t, d_q, d_ql, d_qi, rneb, rneblsvol, & |
---|
11 | pfraclr, pfracld, & |
---|
12 | cldfraliq, sigma2_icefracturb, mean_icefracturb, & |
---|
13 | radocond, radicefrac, rain, snow, & |
---|
14 | frac_impa, frac_nucl, beta, & |
---|
15 | prfl, psfl, rhcl, qta, fraca, & |
---|
16 | tv, pspsk, tla, thl, iflag_cld_th, & |
---|
17 | iflag_ice_thermo, distcltop, temp_cltop, & |
---|
18 | tke, tke_dissip, & |
---|
19 | cell_area, & |
---|
20 | cf_seri, rvc_seri, u_seri, v_seri, & |
---|
21 | qsub, qissr, qcld, subfra, issrfra, gamma_cond, & |
---|
22 | ratio_qi_qtot, dcf_sub, dcf_con, dcf_mix, & |
---|
23 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, & |
---|
24 | dqvc_sub, dqvc_con, dqvc_mix, qsatl, qsati, & |
---|
25 | Tcontr, qcontr, qcontr2, fcontrN, fcontrP, dcf_avi, & |
---|
26 | dqi_avi, dqvc_avi, flight_dist, flight_h2o, & |
---|
27 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv, & |
---|
28 | qraindiag, qsnowdiag, dqreva, dqssub, dqrauto, & |
---|
29 | dqrcol, dqrmelt, dqrfreez, dqsauto, dqsagg, dqsrim, & |
---|
30 | dqsmelt, dqsfreez) |
---|
31 | |
---|
32 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
33 | ! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD) |
---|
34 | ! A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD) |
---|
35 | !-------------------------------------------------------------------------------- |
---|
36 | ! Date: 01/2021 |
---|
37 | !-------------------------------------------------------------------------------- |
---|
38 | ! Aim: Large Scale Clouds and Precipitation (LSCP) |
---|
39 | |
---|
40 | ! This code is a new version of the fisrtilp.F90 routine, which is itself a |
---|
41 | ! merge of 'first' (superrsaturation physics, P. LeVan K. Laval) |
---|
42 | ! and 'ilp' (il pleut, L. Li) |
---|
43 | |
---|
44 | ! Compared to the original fisrtilp code, lscp |
---|
45 | ! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.) |
---|
46 | ! -> consider always precipitation thermalisation (fl_cor_ebil>0) |
---|
47 | ! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T) |
---|
48 | ! -> option "oldbug" by JYG has been removed |
---|
49 | ! -> iflag_t_glace >0 always |
---|
50 | ! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always) |
---|
51 | ! -> rectangular distribution from L. Li no longer available |
---|
52 | ! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt) |
---|
53 | !-------------------------------------------------------------------------------- |
---|
54 | ! References: |
---|
55 | |
---|
56 | ! - Bony, S., & Emanuel, K. A. 2001, JAS, doi: 10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2 |
---|
57 | ! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y |
---|
58 | ! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3 |
---|
59 | ! - Jouhaud, et al. 2018. JAMES, doi:10.1029/2018MS001379 |
---|
60 | ! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046 |
---|
61 | ! - Touzze-Peifert Ludo, PhD thesis, p117-124 |
---|
62 | ! ------------------------------------------------------------------------------- |
---|
63 | ! Code structure: |
---|
64 | |
---|
65 | ! P0> Thermalization of the precipitation coming from the overlying layer |
---|
66 | ! P1> Evaporation of the precipitation (falling from the k+1 level) |
---|
67 | ! P2> Cloud formation (at the k level) |
---|
68 | ! P2.A.1> With the PDFs, calculation of cloud properties using the inital |
---|
69 | ! values of T and Q |
---|
70 | ! P2.A.2> Coupling between condensed water and temperature |
---|
71 | ! P2.A.3> Calculation of final quantities associated with cloud formation |
---|
72 | ! P2.B> Release of Latent heat after cloud formation |
---|
73 | ! P3> Autoconversion to precipitation (k-level) |
---|
74 | ! P4> Wet scavenging |
---|
75 | !------------------------------------------------------------------------------ |
---|
76 | ! Some preliminary comments (JBM) : |
---|
77 | |
---|
78 | ! The cloud water that the radiation scheme sees is not the same that the cloud |
---|
79 | ! water used in the physics and the dynamics |
---|
80 | |
---|
81 | ! During the autoconversion to precipitation (P3 step), radocond (cloud water used |
---|
82 | ! by the radiation scheme) is calculated as an average of the water that remains |
---|
83 | ! in the cloud during the precipitation and not the water remaining at the end |
---|
84 | ! of the time step. The latter is used in the rest of the physics and advected |
---|
85 | ! by the dynamics. |
---|
86 | |
---|
87 | ! In summary: |
---|
88 | |
---|
89 | ! Radiation: |
---|
90 | ! xflwc(newmicro)+xfiwc(newmicro) = |
---|
91 | ! radocond=lwcon(nc)+iwcon(nc) |
---|
92 | |
---|
93 | ! Notetheless, be aware of: |
---|
94 | |
---|
95 | ! radocond .NE. ocond(nc) |
---|
96 | ! i.e.: |
---|
97 | ! lwcon(nc)+iwcon(nc) .NE. ocond(nc) |
---|
98 | ! but oliq+(ocond-oliq) .EQ. ocond |
---|
99 | ! (which is not trivial) |
---|
100 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
101 | |
---|
102 | ! USE de modules contenant des fonctions. |
---|
103 | USE lmdz_cloudth, ONLY: cloudth, cloudth_v3, cloudth_v6, cloudth_mpc |
---|
104 | USE lmdz_lscp_tools, ONLY: calc_qsat_ecmwf, calc_gammasat |
---|
105 | USE lmdz_lscp_tools, ONLY: icefrac_lscp, icefrac_lscp_turb |
---|
106 | USE lmdz_lscp_tools, ONLY: fallice_velocity, distance_to_cloud_top |
---|
107 | USE lmdz_lscp_condensation, ONLY: condensation_lognormal, condensation_ice_supersat |
---|
108 | USE lmdz_lscp_poprecip, ONLY: poprecip_precld, poprecip_postcld |
---|
109 | |
---|
110 | ! Use du module lmdz_lscp_ini contenant les constantes |
---|
111 | USE lmdz_lscp_ini, ONLY: prt_level, lunout, eps |
---|
112 | USE lmdz_lscp_ini, ONLY: seuil_neb, niter_lscp, iflag_evap_prec, t_coup, DDT0, ztfondue, rain_int_min |
---|
113 | USE lmdz_lscp_ini, ONLY: ok_radocond_snow, a_tr_sca, cld_expo_con, cld_expo_lsc |
---|
114 | USE lmdz_lscp_ini, ONLY: iflag_cloudth_vert, iflag_rain_incloud_vol, iflag_t_glace, t_glace_min |
---|
115 | USE lmdz_lscp_ini, ONLY: coef_eva, coef_sub, cld_tau_lsc, cld_tau_con, cld_lc_lsc, cld_lc_con |
---|
116 | USE lmdz_lscp_ini, ONLY: iflag_bergeron, iflag_fisrtilp_qsat, iflag_vice, cice_velo, dice_velo |
---|
117 | USE lmdz_lscp_ini, ONLY: iflag_autoconversion, ffallv_con, ffallv_lsc, min_frac_th_cld |
---|
118 | USE lmdz_lscp_ini, ONLY: RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG |
---|
119 | USE lmdz_lscp_ini, ONLY: ok_poprecip |
---|
120 | USE lmdz_lscp_ini, ONLY: ok_ice_supersat, ok_unadjusted_clouds, iflag_icefrac |
---|
121 | USE lmdz_abort_physic, ONLY: abort_physic |
---|
122 | IMPLICIT NONE |
---|
123 | |
---|
124 | !=============================================================================== |
---|
125 | ! VARIABLES DECLARATION |
---|
126 | !=============================================================================== |
---|
127 | |
---|
128 | ! INPUT VARIABLES: |
---|
129 | !----------------- |
---|
130 | |
---|
131 | INTEGER, INTENT(IN) :: klon, klev ! number of horizontal grid points and vertical levels |
---|
132 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
133 | REAL, INTENT(IN) :: missing_val ! missing value for output |
---|
134 | |
---|
135 | REAL, DIMENSION(klon, klev + 1), INTENT(IN) :: paprs ! inter-layer pressure [Pa] |
---|
136 | REAL, DIMENSION(klon, klev), INTENT(IN) :: pplay ! mid-layer pressure [Pa] |
---|
137 | REAL, DIMENSION(klon, klev), INTENT(IN) :: temp ! temperature (K) |
---|
138 | REAL, DIMENSION(klon, klev), INTENT(IN) :: qt ! total specific humidity (in vapor phase in input) [kg/kg] |
---|
139 | REAL, DIMENSION(klon, klev), INTENT(IN) :: qice_save ! ice specific from previous time step [kg/kg] |
---|
140 | INTEGER, INTENT(IN) :: iflag_cld_th ! flag that determines the distribution of convective clouds |
---|
141 | INTEGER, INTENT(IN) :: iflag_ice_thermo! flag to activate the ice thermodynamics |
---|
142 | ! CR: if iflag_ice_thermo=2, ONLY convection is active |
---|
143 | LOGICAL, DIMENSION(klon, klev), INTENT(IN) :: ptconv ! grid points where deep convection scheme is active |
---|
144 | |
---|
145 | !Inputs associated with thermal plumes |
---|
146 | |
---|
147 | REAL, DIMENSION(klon, klev), INTENT(IN) :: tv ! virtual potential temperature [K] |
---|
148 | REAL, DIMENSION(klon, klev), INTENT(IN) :: qta ! specific humidity within thermals [kg/kg] |
---|
149 | REAL, DIMENSION(klon, klev), INTENT(IN) :: fraca ! fraction of thermals within the mesh [-] |
---|
150 | REAL, DIMENSION(klon, klev), INTENT(IN) :: pspsk ! exner potential (p/100000)**(R/cp) |
---|
151 | REAL, DIMENSION(klon, klev), INTENT(IN) :: tla ! liquid temperature within thermals [K] |
---|
152 | REAL, DIMENSION(klon, klev+1), INTENT(IN) :: tke !--turbulent kinetic energy [m2/s2] |
---|
153 | REAL, DIMENSION(klon, klev+1), INTENT(IN) :: tke_dissip !--TKE dissipation [m2/s3] |
---|
154 | |
---|
155 | ! INPUT/OUTPUT variables |
---|
156 | !------------------------ |
---|
157 | |
---|
158 | REAL, DIMENSION(klon, klev), INTENT(INOUT) :: thl ! liquid potential temperature [K] |
---|
159 | REAL, DIMENSION(klon, klev), INTENT(INOUT) :: ratqs, sigma_qtherm ! function of pressure that sets the large-scale |
---|
160 | |
---|
161 | ! INPUT/OUTPUT condensation and ice supersaturation |
---|
162 | !-------------------------------------------------- |
---|
163 | REAL, DIMENSION(klon, klev), INTENT(INOUT) :: cf_seri ! cloud fraction [-] |
---|
164 | REAL, DIMENSION(klon, klev), INTENT(INOUT) :: ratio_qi_qtot ! solid specific water to total specific water ratio [-] |
---|
165 | REAL, DIMENSION(klon, klev), INTENT(INOUT) :: rvc_seri ! cloudy water vapor to total water vapor ratio [-] |
---|
166 | REAL, DIMENSION(klon, klev), INTENT(IN) :: u_seri ! eastward wind [m/s] |
---|
167 | REAL, DIMENSION(klon, klev), INTENT(IN) :: v_seri ! northward wind [m/s] |
---|
168 | REAL, DIMENSION(klon), INTENT(IN) :: cell_area ! area of each cell [m2] |
---|
169 | |
---|
170 | ! INPUT/OUTPUT aviation |
---|
171 | !-------------------------------------------------- |
---|
172 | REAL, DIMENSION(klon, klev), INTENT(IN) :: flight_dist ! Aviation distance flown within the mesh [m/s/mesh] |
---|
173 | REAL, DIMENSION(klon, klev), INTENT(IN) :: flight_h2o ! Aviation H2O emitted within the mesh [kg H2O/s/mesh] |
---|
174 | |
---|
175 | ! OUTPUT variables |
---|
176 | !----------------- |
---|
177 | |
---|
178 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_t ! temperature increment [K] |
---|
179 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_q ! specific humidity increment [kg/kg] |
---|
180 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_ql ! liquid water increment [kg/kg] |
---|
181 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_qi ! cloud ice mass increment [kg/kg] |
---|
182 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: rneb ! cloud fraction [-] |
---|
183 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: rneblsvol ! cloud fraction per unit volume [-] |
---|
184 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: pfraclr ! precip fraction clear-sky part [-] |
---|
185 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: pfracld ! precip fraction cloudy part [-] |
---|
186 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: cldfraliq ! liquid fraction of cloud [-] |
---|
187 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: sigma2_icefracturb ! Variance of the diagnostic supersaturation distribution (icefrac_turb) [-] |
---|
188 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: mean_icefracturb ! Mean of the diagnostic supersaturation distribution (icefrac_turb) [-] |
---|
189 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: radocond ! condensed water used in the radiation scheme [kg/kg] |
---|
190 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: radicefrac ! ice fraction of condensed water for radiation scheme |
---|
191 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: rhcl ! clear-sky relative humidity [-] |
---|
192 | REAL, DIMENSION(klon), INTENT(OUT) :: rain ! surface large-scale rainfall [kg/s/m2] |
---|
193 | REAL, DIMENSION(klon), INTENT(OUT) :: snow ! surface large-scale snowfall [kg/s/m2] |
---|
194 | REAL, DIMENSION(klon, klev + 1), INTENT(OUT) :: prfl ! large-scale rainfall flux in the column [kg/s/m2] |
---|
195 | REAL, DIMENSION(klon, klev + 1), INTENT(OUT) :: psfl ! large-scale snowfall flux in the column [kg/s/m2] |
---|
196 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: distcltop ! distance to cloud top [m] |
---|
197 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: temp_cltop ! temperature of cloud top [K] |
---|
198 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: beta ! conversion rate of condensed water |
---|
199 | |
---|
200 | ! fraction of aerosol scavenging through impaction and nucleation (for on-line) |
---|
201 | |
---|
202 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: frac_impa ! scavenging fraction due tu impaction [-] |
---|
203 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: frac_nucl ! scavenging fraction due tu nucleation [-] |
---|
204 | |
---|
205 | ! for condensation and ice supersaturation |
---|
206 | |
---|
207 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qsub !--specific total water content in sub-saturated clear sky region [kg/kg] |
---|
208 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qissr !--specific total water content in supersat region [kg/kg] |
---|
209 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qcld !--specific total water content in cloudy region [kg/kg] |
---|
210 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: subfra !--mesh fraction of subsaturated clear sky [-] |
---|
211 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: issrfra !--mesh fraction of ISSR [-] |
---|
212 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: gamma_cond !--coefficient governing the ice nucleation RHi threshold [-] |
---|
213 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dcf_sub !--cloud fraction tendency because of sublimation [s-1] |
---|
214 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dcf_con !--cloud fraction tendency because of condensation [s-1] |
---|
215 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dcf_mix !--cloud fraction tendency because of cloud mixing [s-1] |
---|
216 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqi_adj !--specific ice content tendency because of temperature adjustment [kg/kg/s] |
---|
217 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqi_sub !--specific ice content tendency because of sublimation [kg/kg/s] |
---|
218 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqi_con !--specific ice content tendency because of condensation [kg/kg/s] |
---|
219 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqi_mix !--specific ice content tendency because of cloud mixing [kg/kg/s] |
---|
220 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqvc_adj !--specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
---|
221 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqvc_sub !--specific cloud water vapor tendency because of sublimation [kg/kg/s] |
---|
222 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqvc_con !--specific cloud water vapor tendency because of condensation [kg/kg/s] |
---|
223 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqvc_mix !--specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
---|
224 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qsatl !--saturation specific humidity wrt liquid [kg/kg] |
---|
225 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qsati !--saturation specific humidity wrt ice [kg/kg] |
---|
226 | |
---|
227 | ! for contrails and aviation |
---|
228 | |
---|
229 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: Tcontr !--threshold temperature for contrail formation [K] |
---|
230 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qcontr !--threshold humidity for contrail formation [kg/kg] |
---|
231 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qcontr2 !--// (2nd expression more consistent with LMDZ expression of q) |
---|
232 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: fcontrN !--fraction of grid favourable to non-persistent contrails |
---|
233 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: fcontrP !--fraction of grid favourable to persistent contrails |
---|
234 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dcf_avi !--cloud fraction tendency because of aviation [s-1] |
---|
235 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqi_avi !--specific ice content tendency because of aviation [kg/kg/s] |
---|
236 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqvc_avi !--specific cloud water vapor tendency because of aviation [kg/kg/s] |
---|
237 | |
---|
238 | ! for POPRECIP |
---|
239 | |
---|
240 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] |
---|
241 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] |
---|
242 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqreva !--rain tendendy due to evaporation [kg/kg/s] |
---|
243 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
---|
244 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] |
---|
245 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] |
---|
246 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
---|
247 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
---|
248 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqsrim !--snow tendency due to riming [kg/kg/s] |
---|
249 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqsmelt !--snow tendency due to melting [kg/kg/s] |
---|
250 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqrmelt !--rain tendency due to melting [kg/kg/s] |
---|
251 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] |
---|
252 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] |
---|
253 | |
---|
254 | ! for thermals |
---|
255 | |
---|
256 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: cloudth_sth !--mean saturation deficit in thermals |
---|
257 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: cloudth_senv !--mean saturation deficit in environment |
---|
258 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: cloudth_sigmath !--std of saturation deficit in thermals |
---|
259 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: cloudth_sigmaenv !--std of saturation deficit in environment |
---|
260 | |
---|
261 | |
---|
262 | ! LOCAL VARIABLES: |
---|
263 | !---------------- |
---|
264 | REAL, DIMENSION(klon) :: qsl, qsi ! saturation threshold at current vertical level |
---|
265 | REAL :: zct, zcl, zexpo |
---|
266 | REAL, DIMENSION(klon, klev) :: ctot |
---|
267 | REAL, DIMENSION(klon, klev) :: ctot_vol |
---|
268 | REAL, DIMENSION(klon) :: zqs, zdqs |
---|
269 | REAL :: zdelta, zcor, zcvm5 |
---|
270 | REAL, DIMENSION(klon) :: zdqsdT_raw |
---|
271 | REAL, DIMENSION(klon) :: gammasat, dgammasatdt ! coefficient to make cold condensation at the correct RH and derivative wrt T |
---|
272 | REAL, DIMENSION(klon) :: Tbef, qlbef, DT ! temperature, humidity and temp. variation during lognormal iteration |
---|
273 | REAL :: num, denom |
---|
274 | REAL :: cste |
---|
275 | REAL, DIMENSION(klon) :: zpdf_sig, zpdf_k, zpdf_delta ! lognormal parameters |
---|
276 | REAL, DIMENSION(klon) :: Zpdf_a, zpdf_b, zpdf_e1, zpdf_e2 ! lognormal intermediate variables |
---|
277 | REAL :: erf |
---|
278 | REAL, DIMENSION(klon) :: zfice_th |
---|
279 | REAL, DIMENSION(klon) :: qcloud, qincloud_mpc |
---|
280 | REAL, DIMENSION(klon) :: zrfl, zrfln |
---|
281 | REAL :: zqev, zqevt |
---|
282 | REAL, DIMENSION(klon) :: zifl, zifln, ziflprev |
---|
283 | REAL :: zqev0, zqevi, zqevti |
---|
284 | REAL, DIMENSION(klon) :: zoliq, zcond, zq, zqn |
---|
285 | REAL, DIMENSION(klon) :: zoliql, zoliqi |
---|
286 | REAL, DIMENSION(klon) :: zt |
---|
287 | REAL, DIMENSION(klon, klev) :: zrho |
---|
288 | REAL, DIMENSION(klon) :: zdz, iwc |
---|
289 | REAL :: zchau, zfroi |
---|
290 | REAL, DIMENSION(klon) :: zfice, zneb, znebprecip |
---|
291 | REAL :: zmelt, zrain, zsnow, zprecip |
---|
292 | REAL, DIMENSION(klon) :: dzfice |
---|
293 | REAL, DIMENSION(klon) :: zfice_turb, dzfice_turb |
---|
294 | REAL :: zsolid |
---|
295 | REAL, DIMENSION(klon) :: qtot, qzero |
---|
296 | REAL, DIMENSION(klon) :: dqsl, dqsi |
---|
297 | REAL :: smallestreal |
---|
298 | ! Variables for Bergeron process |
---|
299 | REAL :: zcp, coef1, DeltaT, Deltaq, Deltaqprecl |
---|
300 | REAL, DIMENSION(klon) :: zqpreci, zqprecl |
---|
301 | ! Variables precipitation energy conservation |
---|
302 | REAL, DIMENSION(klon) :: zmqc |
---|
303 | REAL :: zalpha_tr |
---|
304 | REAL :: zfrac_lessi |
---|
305 | REAL, DIMENSION(klon) :: zprec_cond |
---|
306 | REAL :: zmair |
---|
307 | REAL :: zcpair, zcpeau |
---|
308 | REAL, DIMENSION(klon) :: zlh_solid |
---|
309 | REAL, DIMENSION(klon) :: ztupnew |
---|
310 | REAL, DIMENSION(klon) :: zqvapclr, zqupnew ! for poprecip evap / subl |
---|
311 | REAL :: zm_solid ! for liquid -> solid conversion |
---|
312 | REAL, DIMENSION(klon) :: zrflclr, zrflcld |
---|
313 | REAL, DIMENSION(klon) :: d_zrfl_clr_cld, d_zifl_clr_cld |
---|
314 | REAL, DIMENSION(klon) :: d_zrfl_cld_clr, d_zifl_cld_clr |
---|
315 | REAL, DIMENSION(klon) :: ziflclr, ziflcld |
---|
316 | REAL, DIMENSION(klon) :: znebprecipclr, znebprecipcld |
---|
317 | REAL, DIMENSION(klon) :: tot_zneb, tot_znebn, d_tot_zneb |
---|
318 | REAL, DIMENSION(klon) :: d_znebprecip_clr_cld, d_znebprecip_cld_clr |
---|
319 | REAL, DIMENSION(klon, klev) :: velo |
---|
320 | REAL :: vr, ffallv |
---|
321 | REAL :: qlmpc, qimpc, rnebmpc |
---|
322 | REAL, DIMENSION(klon, klev) :: radocondi, radocondl |
---|
323 | REAL :: effective_zneb |
---|
324 | REAL, DIMENSION(klon) :: zdistcltop, ztemp_cltop |
---|
325 | REAL, DIMENSION(klon) :: zqliq, zqice, zqvapcl ! for icefrac_lscp_turb |
---|
326 | |
---|
327 | ! for condensation and ice supersaturation |
---|
328 | REAL, DIMENSION(klon) :: qvc, shear |
---|
329 | REAL :: delta_z |
---|
330 | !--Added for ice supersaturation (ok_ice_supersat) and contrails (ok_plane_contrails) |
---|
331 | ! Constants used for calculating ratios that are advected (using a parent-child |
---|
332 | ! formalism). This is not done in the dynamical core because at this moment, |
---|
333 | ! only isotopes can use this parent-child formalism. Note that the two constants |
---|
334 | ! are the same as the one use in the dynamical core, being also defined in |
---|
335 | ! dyn3d_common/infotrac.F90 |
---|
336 | REAL :: min_qParent, min_ratio |
---|
337 | |
---|
338 | INTEGER i, k, n, kk, iter |
---|
339 | INTEGER, DIMENSION(klon) :: n_i |
---|
340 | INTEGER ncoreczq |
---|
341 | INTEGER, DIMENSION(klon, klev) :: mpc_bl_points |
---|
342 | LOGICAL iftop |
---|
343 | |
---|
344 | LOGICAL, DIMENSION(klon) :: lognormale |
---|
345 | LOGICAL, DIMENSION(klon) :: keepgoing |
---|
346 | |
---|
347 | CHARACTER (len = 20) :: modname = 'lscp' |
---|
348 | CHARACTER (len = 80) :: abort_message |
---|
349 | |
---|
350 | |
---|
351 | !=============================================================================== |
---|
352 | ! INITIALISATION |
---|
353 | !=============================================================================== |
---|
354 | |
---|
355 | ! Few initial checks |
---|
356 | |
---|
357 | IF (iflag_fisrtilp_qsat < 0) THEN |
---|
358 | abort_message = 'lscp cannot be used with iflag_fisrtilp<0' |
---|
359 | CALL abort_physic(modname, abort_message, 1) |
---|
360 | ENDIF |
---|
361 | |
---|
362 | ! Few initialisations |
---|
363 | |
---|
364 | znebprecip(:) = 0.0 |
---|
365 | ctot_vol(1:klon, 1:klev) = 0.0 |
---|
366 | rneblsvol(1:klon, 1:klev) = 0.0 |
---|
367 | smallestreal = 1.e-9 |
---|
368 | znebprecipclr(:) = 0.0 |
---|
369 | znebprecipcld(:) = 0.0 |
---|
370 | mpc_bl_points(:, :) = 0 |
---|
371 | |
---|
372 | IF (prt_level>9) WRITE(lunout, *) 'NUAGES4 A. JAM' |
---|
373 | |
---|
374 | ! AA for 'safety' reasons |
---|
375 | zalpha_tr = 0. |
---|
376 | zfrac_lessi = 0. |
---|
377 | beta(:, :) = 0. |
---|
378 | |
---|
379 | ! Initialisation of variables: |
---|
380 | |
---|
381 | prfl(:, :) = 0.0 |
---|
382 | psfl(:, :) = 0.0 |
---|
383 | d_t(:, :) = 0.0 |
---|
384 | d_q(:, :) = 0.0 |
---|
385 | d_ql(:, :) = 0.0 |
---|
386 | d_qi(:, :) = 0.0 |
---|
387 | rneb(:, :) = 0.0 |
---|
388 | pfraclr(:, :) = 0.0 |
---|
389 | pfracld(:, :) = 0.0 |
---|
390 | cldfraliq(:, :) = 0. |
---|
391 | sigma2_icefracturb(:, :) = 0. |
---|
392 | mean_icefracturb(:, :) = 0. |
---|
393 | radocond(:, :) = 0.0 |
---|
394 | radicefrac(:, :) = 0.0 |
---|
395 | frac_nucl(:, :) = 1.0 |
---|
396 | frac_impa(:, :) = 1.0 |
---|
397 | rain(:) = 0.0 |
---|
398 | snow(:) = 0.0 |
---|
399 | zoliq(:) = 0.0 |
---|
400 | zfice(:) = 0.0 |
---|
401 | dzfice(:) = 0.0 |
---|
402 | zfice_turb(:) = 0.0 |
---|
403 | dzfice_turb(:) = 0.0 |
---|
404 | zqprecl(:) = 0.0 |
---|
405 | zqpreci(:) = 0.0 |
---|
406 | zrfl(:) = 0.0 |
---|
407 | zifl(:) = 0.0 |
---|
408 | ziflprev(:) = 0.0 |
---|
409 | zneb(:) = seuil_neb |
---|
410 | zrflclr(:) = 0.0 |
---|
411 | ziflclr(:) = 0.0 |
---|
412 | zrflcld(:) = 0.0 |
---|
413 | ziflcld(:) = 0.0 |
---|
414 | tot_zneb(:) = 0.0 |
---|
415 | tot_znebn(:) = 0.0 |
---|
416 | d_tot_zneb(:) = 0.0 |
---|
417 | qzero(:) = 0.0 |
---|
418 | zdistcltop(:) = 0.0 |
---|
419 | ztemp_cltop(:) = 0.0 |
---|
420 | ztupnew(:) = 0.0 |
---|
421 | |
---|
422 | distcltop(:, :) = 0. |
---|
423 | temp_cltop(:, :) = 0. |
---|
424 | |
---|
425 | !--Ice supersaturation |
---|
426 | gamma_cond(:, :) = 1. |
---|
427 | qissr(:, :) = 0. |
---|
428 | issrfra(:, :) = 0. |
---|
429 | dcf_sub(:, :) = 0. |
---|
430 | dcf_con(:, :) = 0. |
---|
431 | dcf_mix(:, :) = 0. |
---|
432 | dqi_adj(:, :) = 0. |
---|
433 | dqi_sub(:, :) = 0. |
---|
434 | dqi_con(:, :) = 0. |
---|
435 | dqi_mix(:, :) = 0. |
---|
436 | dqvc_adj(:, :) = 0. |
---|
437 | dqvc_sub(:, :) = 0. |
---|
438 | dqvc_con(:, :) = 0. |
---|
439 | dqvc_mix(:, :) = 0. |
---|
440 | fcontrN(:, :) = 0. |
---|
441 | fcontrP(:, :) = 0. |
---|
442 | Tcontr(:, :) = missing_val |
---|
443 | qcontr(:, :) = missing_val |
---|
444 | qcontr2(:, :) = missing_val |
---|
445 | dcf_avi(:, :) = 0. |
---|
446 | dqi_avi(:, :) = 0. |
---|
447 | dqvc_avi(:, :) = 0. |
---|
448 | qvc(:) = 0. |
---|
449 | shear(:) = 0. |
---|
450 | min_qParent = 1.e-30 |
---|
451 | min_ratio = 1.e-16 |
---|
452 | |
---|
453 | !-- poprecip |
---|
454 | qraindiag(:, :) = 0. |
---|
455 | qsnowdiag(:, :) = 0. |
---|
456 | dqreva(:, :) = 0. |
---|
457 | dqrauto(:, :) = 0. |
---|
458 | dqrmelt(:, :) = 0. |
---|
459 | dqrfreez(:, :) = 0. |
---|
460 | dqrcol(:, :) = 0. |
---|
461 | dqssub(:, :) = 0. |
---|
462 | dqsauto(:, :) = 0. |
---|
463 | dqsrim(:, :) = 0. |
---|
464 | dqsagg(:, :) = 0. |
---|
465 | dqsfreez(:, :) = 0. |
---|
466 | dqsmelt(:, :) = 0. |
---|
467 | zqupnew(:) = 0. |
---|
468 | zqvapclr(:) = 0. |
---|
469 | |
---|
470 | |
---|
471 | |
---|
472 | !c_iso: variable initialisation for iso |
---|
473 | |
---|
474 | |
---|
475 | !=============================================================================== |
---|
476 | ! BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM |
---|
477 | !=============================================================================== |
---|
478 | |
---|
479 | ncoreczq = 0 |
---|
480 | |
---|
481 | DO k = klev, 1, -1 |
---|
482 | |
---|
483 | IF (k<=klev - 1) THEN |
---|
484 | iftop = .FALSE. |
---|
485 | ELSE |
---|
486 | iftop = .TRUE. |
---|
487 | ENDIF |
---|
488 | |
---|
489 | ! Initialisation temperature and specific humidity |
---|
490 | ! temp(klon,klev) is not modified by the routine, instead all changes in temperature are made on zt |
---|
491 | ! at the end of the klon loop, a temperature incremtent d_t due to all processes |
---|
492 | ! (thermalization, evap/sub incoming precip, cloud formation, precipitation processes) is calculated |
---|
493 | ! d_t = temperature tendency due to lscp |
---|
494 | ! The temperature of the overlying layer is updated here because needed for thermalization |
---|
495 | DO i = 1, klon |
---|
496 | zt(i) = temp(i, k) |
---|
497 | zq(i) = qt(i, k) |
---|
498 | IF (.NOT. iftop) THEN |
---|
499 | ztupnew(i) = temp(i, k + 1) + d_t(i, k + 1) |
---|
500 | zqupnew(i) = qt(i, k + 1) + d_q(i, k + 1) + d_ql(i, k + 1) + d_qi(i, k + 1) |
---|
501 | !--zqs(i) is the saturation specific humidity in the layer above |
---|
502 | zqvapclr(i) = MAX(0., qt(i, k + 1) + d_q(i, k + 1) - rneb(i, k + 1) * zqs(i)) |
---|
503 | ENDIF |
---|
504 | !c_iso init of iso |
---|
505 | ENDDO |
---|
506 | |
---|
507 | !================================================================ |
---|
508 | ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) |
---|
509 | IF (ok_poprecip) THEN |
---|
510 | |
---|
511 | CALL poprecip_precld(klon, dtime, iftop, paprs(:, k), paprs(:, k + 1), pplay(:, k), & |
---|
512 | zt, ztupnew, zq, zmqc, znebprecipclr, znebprecipcld, & |
---|
513 | zqvapclr, zqupnew, & |
---|
514 | zrfl, zrflclr, zrflcld, & |
---|
515 | zifl, ziflclr, ziflcld, & |
---|
516 | dqreva(:, k), dqssub(:, k) & |
---|
517 | ) |
---|
518 | |
---|
519 | !================================================================ |
---|
520 | ELSE |
---|
521 | |
---|
522 | ! -------------------------------------------------------------------- |
---|
523 | ! P1> Thermalization of precipitation falling from the overlying layer |
---|
524 | ! -------------------------------------------------------------------- |
---|
525 | ! Computes air temperature variation due to enthalpy transported by |
---|
526 | ! precipitation. Precipitation is then thermalized with the air in the |
---|
527 | ! layer. |
---|
528 | ! The precipitation should remain thermalized throughout the different |
---|
529 | ! thermodynamical transformations. |
---|
530 | ! The corresponding water mass should |
---|
531 | ! be added when calculating the layer's enthalpy change with |
---|
532 | ! temperature |
---|
533 | ! See lmdzpedia page todoan |
---|
534 | ! todoan: check consistency with ice phase |
---|
535 | ! todoan: understand why several steps |
---|
536 | ! --------------------------------------------------------------------- |
---|
537 | |
---|
538 | IF (iftop) THEN |
---|
539 | |
---|
540 | DO i = 1, klon |
---|
541 | zmqc(i) = 0. |
---|
542 | ENDDO |
---|
543 | |
---|
544 | ELSE |
---|
545 | |
---|
546 | DO i = 1, klon |
---|
547 | |
---|
548 | zmair = (paprs(i, k) - paprs(i, k + 1)) / RG |
---|
549 | ! no condensed water so cp=cp(vapor+dry air) |
---|
550 | ! RVTMP2=rcpv/rcpd-1 |
---|
551 | zcpair = RCPD * (1.0 + RVTMP2 * zq(i)) |
---|
552 | zcpeau = RCPD * RVTMP2 |
---|
553 | |
---|
554 | ! zmqc: precipitation mass that has to be thermalized with |
---|
555 | ! layer's air so that precipitation at the ground has the |
---|
556 | ! same temperature as the lowermost layer |
---|
557 | zmqc(i) = (zrfl(i) + zifl(i)) * dtime / zmair |
---|
558 | ! t(i,k+1)+d_t(i,k+1): new temperature of the overlying layer |
---|
559 | zt(i) = (ztupnew(i) * zmqc(i) * zcpeau + zcpair * zt(i)) & |
---|
560 | / (zcpair + zmqc(i) * zcpeau) |
---|
561 | |
---|
562 | ENDDO |
---|
563 | |
---|
564 | ENDIF |
---|
565 | |
---|
566 | ! -------------------------------------------------------------------- |
---|
567 | ! P2> Precipitation evaporation/sublimation/melting |
---|
568 | ! -------------------------------------------------------------------- |
---|
569 | ! A part of the precipitation coming from above is evaporated/sublimated/melted. |
---|
570 | ! -------------------------------------------------------------------- |
---|
571 | |
---|
572 | IF (iflag_evap_prec>=1) THEN |
---|
573 | |
---|
574 | ! Calculation of saturation specific humidity |
---|
575 | ! depending on temperature: |
---|
576 | CALL calc_qsat_ecmwf(klon, zt(:), qzero(:), pplay(:, k), RTT, 0, .FALSE., zqs(:), zdqs(:)) |
---|
577 | ! wrt liquid water |
---|
578 | CALL calc_qsat_ecmwf(klon, zt(:), qzero(:), pplay(:, k), RTT, 1, .FALSE., qsl(:), dqsl(:)) |
---|
579 | ! wrt ice |
---|
580 | CALL calc_qsat_ecmwf(klon, zt(:), qzero(:), pplay(:, k), RTT, 2, .FALSE., qsi(:), dqsi(:)) |
---|
581 | |
---|
582 | DO i = 1, klon |
---|
583 | |
---|
584 | ! if precipitation |
---|
585 | IF (zrfl(i) + zifl(i)>0.) THEN |
---|
586 | |
---|
587 | ! LudoTP: we only account for precipitation evaporation in the clear-sky (iflag_evap_prec>=4). |
---|
588 | ! c_iso: likely important to distinguish cs from neb isotope precipitation |
---|
589 | |
---|
590 | IF (iflag_evap_prec>=4) THEN |
---|
591 | zrfl(i) = zrflclr(i) |
---|
592 | zifl(i) = ziflclr(i) |
---|
593 | ENDIF |
---|
594 | |
---|
595 | IF (iflag_evap_prec==1) THEN |
---|
596 | znebprecip(i) = zneb(i) |
---|
597 | ELSE |
---|
598 | znebprecip(i) = MAX(zneb(i), znebprecip(i)) |
---|
599 | ENDIF |
---|
600 | |
---|
601 | IF (iflag_evap_prec>4) THEN |
---|
602 | ! Max evaporation not to saturate the clear sky precip fraction |
---|
603 | ! i.e. the fraction where evaporation occurs |
---|
604 | zqev0 = MAX(0.0, (zqs(i) - zq(i)) * znebprecipclr(i)) |
---|
605 | ELSEIF (iflag_evap_prec == 4) THEN |
---|
606 | ! Max evaporation not to saturate the whole mesh |
---|
607 | ! Pay attention -> lead to unrealistic and excessive evaporation |
---|
608 | zqev0 = MAX(0.0, zqs(i) - zq(i)) |
---|
609 | ELSE |
---|
610 | ! Max evap not to saturate the fraction below the cloud |
---|
611 | zqev0 = MAX(0.0, (zqs(i) - zq(i)) * znebprecip(i)) |
---|
612 | ENDIF |
---|
613 | |
---|
614 | ! Evaporation of liquid precipitation coming from above |
---|
615 | ! dP/dz=beta*(1-q/qsat)*sqrt(P) |
---|
616 | ! formula from Sundquist 1988, Klemp & Wilhemson 1978 |
---|
617 | ! LTP: evaporation only in the clear sky part (iflag_evap_prec>=4) |
---|
618 | |
---|
619 | IF (iflag_evap_prec==3) THEN |
---|
620 | zqevt = znebprecip(i) * coef_eva * (1.0 - zq(i) / qsl(i)) & |
---|
621 | * SQRT(zrfl(i) / max(1.e-4, znebprecip(i))) & |
---|
622 | * (paprs(i, k) - paprs(i, k + 1)) / pplay(i, k) * zt(i) * RD / RG |
---|
623 | ELSE IF (iflag_evap_prec>=4) THEN |
---|
624 | zqevt = znebprecipclr(i) * coef_eva * (1.0 - zq(i) / qsl(i)) & |
---|
625 | * SQRT(zrfl(i) / max(1.e-8, znebprecipclr(i))) & |
---|
626 | * (paprs(i, k) - paprs(i, k + 1)) / pplay(i, k) * zt(i) * RD / RG |
---|
627 | ELSE |
---|
628 | zqevt = 1. * coef_eva * (1.0 - zq(i) / qsl(i)) * SQRT(zrfl(i)) & |
---|
629 | * (paprs(i, k) - paprs(i, k + 1)) / pplay(i, k) * zt(i) * RD / RG |
---|
630 | ENDIF |
---|
631 | |
---|
632 | zqevt = MAX(0.0, MIN(zqevt, zrfl(i))) & |
---|
633 | * RG * dtime / (paprs(i, k) - paprs(i, k + 1)) |
---|
634 | |
---|
635 | ! sublimation of the solid precipitation coming from above |
---|
636 | IF (iflag_evap_prec==3) THEN |
---|
637 | zqevti = znebprecip(i) * coef_sub * (1.0 - zq(i) / qsi(i)) & |
---|
638 | * SQRT(zifl(i) / max(1.e-4, znebprecip(i))) & |
---|
639 | * (paprs(i, k) - paprs(i, k + 1)) / pplay(i, k) * zt(i) * RD / RG |
---|
640 | ELSE IF (iflag_evap_prec>=4) THEN |
---|
641 | zqevti = znebprecipclr(i) * coef_sub * (1.0 - zq(i) / qsi(i)) & |
---|
642 | * SQRT(zifl(i) / max(1.e-8, znebprecipclr(i))) & |
---|
643 | * (paprs(i, k) - paprs(i, k + 1)) / pplay(i, k) * zt(i) * RD / RG |
---|
644 | ELSE |
---|
645 | zqevti = 1. * coef_sub * (1.0 - zq(i) / qsi(i)) * SQRT(zifl(i)) & |
---|
646 | * (paprs(i, k) - paprs(i, k + 1)) / pplay(i, k) * zt(i) * RD / RG |
---|
647 | ENDIF |
---|
648 | |
---|
649 | zqevti = MAX(0.0, MIN(zqevti, zifl(i))) & |
---|
650 | * RG * dtime / (paprs(i, k) - paprs(i, k + 1)) |
---|
651 | |
---|
652 | ! A. JAM |
---|
653 | ! Evaporation limit: we ensure that the layer's fraction below |
---|
654 | ! the cloud or the whole mesh (depending on iflag_evap_prec) |
---|
655 | ! does not reach saturation. In this case, we |
---|
656 | ! redistribute zqev0 conserving the ratio liquid/ice |
---|
657 | |
---|
658 | IF (zqevt + zqevti>zqev0) THEN |
---|
659 | zqev = zqev0 * zqevt / (zqevt + zqevti) |
---|
660 | zqevi = zqev0 * zqevti / (zqevt + zqevti) |
---|
661 | ELSE |
---|
662 | zqev = zqevt |
---|
663 | zqevi = zqevti |
---|
664 | ENDIF |
---|
665 | |
---|
666 | |
---|
667 | ! New solid and liquid precipitation fluxes after evap and sublimation |
---|
668 | zrfln(i) = Max(0., zrfl(i) - zqev * (paprs(i, k) - paprs(i, k + 1)) & |
---|
669 | / RG / dtime) |
---|
670 | zifln(i) = Max(0., zifl(i) - zqevi * (paprs(i, k) - paprs(i, k + 1)) & |
---|
671 | / RG / dtime) |
---|
672 | |
---|
673 | |
---|
674 | ! vapor, temperature, precip fluxes update |
---|
675 | ! vapor is updated after evaporation/sublimation (it is increased) |
---|
676 | zq(i) = zq(i) - (zrfln(i) + zifln(i) - zrfl(i) - zifl(i)) & |
---|
677 | * (RG / (paprs(i, k) - paprs(i, k + 1))) * dtime |
---|
678 | ! zmqc is the total condensed water in the precip flux (it is decreased) |
---|
679 | zmqc(i) = zmqc(i) + (zrfln(i) + zifln(i) - zrfl(i) - zifl(i)) & |
---|
680 | * (RG / (paprs(i, k) - paprs(i, k + 1))) * dtime |
---|
681 | ! air and precip temperature (i.e., gridbox temperature) |
---|
682 | ! is updated due to latent heat cooling |
---|
683 | zt(i) = zt(i) + (zrfln(i) - zrfl(i)) & |
---|
684 | * (RG / (paprs(i, k) - paprs(i, k + 1))) * dtime & |
---|
685 | * RLVTT / RCPD / (1.0 + RVTMP2 * (zq(i) + zmqc(i))) & |
---|
686 | + (zifln(i) - zifl(i)) & |
---|
687 | * (RG / (paprs(i, k) - paprs(i, k + 1))) * dtime & |
---|
688 | * RLSTT / RCPD / (1.0 + RVTMP2 * (zq(i) + zmqc(i))) |
---|
689 | |
---|
690 | ! New values of liquid and solid precipitation |
---|
691 | zrfl(i) = zrfln(i) |
---|
692 | zifl(i) = zifln(i) |
---|
693 | |
---|
694 | ! c_iso here call_reevap that updates isotopic zrfl, zifl (in inout) |
---|
695 | ! due to evap + sublim |
---|
696 | |
---|
697 | IF (iflag_evap_prec>=4) THEN |
---|
698 | zrflclr(i) = zrfl(i) |
---|
699 | ziflclr(i) = zifl(i) |
---|
700 | IF(zrflclr(i) + ziflclr(i)<=0) THEN |
---|
701 | znebprecipclr(i) = 0.0 |
---|
702 | ENDIF |
---|
703 | zrfl(i) = zrflclr(i) + zrflcld(i) |
---|
704 | zifl(i) = ziflclr(i) + ziflcld(i) |
---|
705 | ENDIF |
---|
706 | |
---|
707 | ! c_iso duplicate for isotopes or loop on isotopes |
---|
708 | |
---|
709 | ! Melting: |
---|
710 | zmelt = ((zt(i) - RTT) / (ztfondue - RTT)) ! JYG |
---|
711 | ! precip fraction that is melted |
---|
712 | zmelt = MIN(MAX(zmelt, 0.), 1.) |
---|
713 | |
---|
714 | ! update of rainfall and snowfall due to melting |
---|
715 | IF (iflag_evap_prec>=4) THEN |
---|
716 | zrflclr(i) = zrflclr(i) + zmelt * ziflclr(i) |
---|
717 | zrflcld(i) = zrflcld(i) + zmelt * ziflcld(i) |
---|
718 | zrfl(i) = zrflclr(i) + zrflcld(i) |
---|
719 | ELSE |
---|
720 | zrfl(i) = zrfl(i) + zmelt * zifl(i) |
---|
721 | ENDIF |
---|
722 | |
---|
723 | |
---|
724 | ! c_iso: melting of isotopic precipi with zmelt (no fractionation) |
---|
725 | |
---|
726 | ! Latent heat of melting because of precipitation melting |
---|
727 | ! NB: the air + precip temperature is simultaneously updated |
---|
728 | zt(i) = zt(i) - zifl(i) * zmelt * (RG * dtime) / (paprs(i, k) - paprs(i, k + 1)) & |
---|
729 | * RLMLT / RCPD / (1.0 + RVTMP2 * (zq(i) + zmqc(i))) |
---|
730 | |
---|
731 | IF (iflag_evap_prec>=4) THEN |
---|
732 | ziflclr(i) = ziflclr(i) * (1. - zmelt) |
---|
733 | ziflcld(i) = ziflcld(i) * (1. - zmelt) |
---|
734 | zifl(i) = ziflclr(i) + ziflcld(i) |
---|
735 | ELSE |
---|
736 | zifl(i) = zifl(i) * (1. - zmelt) |
---|
737 | ENDIF |
---|
738 | |
---|
739 | ELSE |
---|
740 | ! if no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
741 | znebprecip(i) = 0. |
---|
742 | |
---|
743 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
---|
744 | |
---|
745 | ENDDO ! loop on klon |
---|
746 | |
---|
747 | ENDIF ! (iflag_evap_prec>=1) |
---|
748 | |
---|
749 | ENDIF ! (ok_poprecip) |
---|
750 | |
---|
751 | ! -------------------------------------------------------------------- |
---|
752 | ! End precip evaporation |
---|
753 | ! -------------------------------------------------------------------- |
---|
754 | |
---|
755 | ! Calculation of qsat, L/Cp*dqsat/dT and ncoreczq counter |
---|
756 | !------------------------------------------------------- |
---|
757 | |
---|
758 | qtot(:) = zq(:) + zmqc(:) |
---|
759 | CALL calc_qsat_ecmwf(klon, zt(:), qtot(:), pplay(:, k), RTT, 0, .FALSE., zqs(:), zdqs(:)) |
---|
760 | DO i = 1, klon |
---|
761 | zdelta = MAX(0., SIGN(1., RTT - zt(i))) |
---|
762 | zdqsdT_raw(i) = zdqs(i) * RCPD * (1.0 + RVTMP2 * zq(i)) / (RLVTT * (1. - zdelta) + RLSTT * zdelta) |
---|
763 | IF (zq(i) < 1.e-15) THEN |
---|
764 | ncoreczq = ncoreczq + 1 |
---|
765 | zq(i) = 1.e-15 |
---|
766 | ENDIF |
---|
767 | ! c_iso: do something similar for isotopes |
---|
768 | |
---|
769 | ENDDO |
---|
770 | |
---|
771 | ! -------------------------------------------------------------------- |
---|
772 | ! P2> Cloud formation |
---|
773 | !--------------------------------------------------------------------- |
---|
774 | |
---|
775 | ! Unlike fisrtilp, we always assume a 'fractional cloud' approach |
---|
776 | ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution |
---|
777 | ! is prescribed and depends on large scale variables and boundary layer |
---|
778 | ! properties) |
---|
779 | ! The decrease in condensed part due tu latent heating is taken into |
---|
780 | ! account |
---|
781 | ! ------------------------------------------------------------------- |
---|
782 | |
---|
783 | ! P2.1> With the PDFs (log-normal, bigaussian) |
---|
784 | ! cloud properties calculation with the initial values of t and q |
---|
785 | ! ---------------------------------------------------------------- |
---|
786 | |
---|
787 | ! initialise gammasat and qincloud_mpc |
---|
788 | gammasat(:) = 1. |
---|
789 | qincloud_mpc(:) = 0. |
---|
790 | |
---|
791 | IF (iflag_cld_th>=5) THEN |
---|
792 | ! Cloud cover and content in meshes affected by shallow convection, |
---|
793 | ! are retrieved from a bi-gaussian distribution of the saturation deficit |
---|
794 | ! following Jam et al. 2013 |
---|
795 | |
---|
796 | IF (iflag_cloudth_vert<=2) THEN |
---|
797 | ! Old version of Arnaud Jam |
---|
798 | |
---|
799 | CALL cloudth(klon, klev, k, tv, & |
---|
800 | zq, qta, fraca, & |
---|
801 | qcloud, ctot, pspsk, paprs, pplay, tla, thl, & |
---|
802 | ratqs, zqs, temp, & |
---|
803 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
804 | |
---|
805 | ELSEIF (iflag_cloudth_vert>=3 .AND. iflag_cloudth_vert<=5) THEN |
---|
806 | ! Default version of Arnaud Jam |
---|
807 | |
---|
808 | CALL cloudth_v3(klon, klev, k, tv, & |
---|
809 | zq, qta, fraca, & |
---|
810 | qcloud, ctot, ctot_vol, pspsk, paprs, pplay, tla, thl, & |
---|
811 | ratqs, sigma_qtherm, zqs, temp, & |
---|
812 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
813 | |
---|
814 | ELSEIF (iflag_cloudth_vert==6) THEN |
---|
815 | ! Jean Jouhaud's version, with specific separation between surface and volume |
---|
816 | ! cloud fraction Decembre 2018 |
---|
817 | |
---|
818 | CALL cloudth_v6(klon, klev, k, tv, & |
---|
819 | zq, qta, fraca, & |
---|
820 | qcloud, ctot, ctot_vol, pspsk, paprs, pplay, tla, thl, & |
---|
821 | ratqs, zqs, temp, & |
---|
822 | cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv) |
---|
823 | |
---|
824 | ELSEIF (iflag_cloudth_vert == 7) THEN |
---|
825 | ! Updated version of Arnaud Jam (correction by E. Vignon) + adapted treatment |
---|
826 | ! for boundary-layer mixed phase clouds |
---|
827 | CALL cloudth_mpc(klon, klev, k, mpc_bl_points, zt, zq, qta(:, k), fraca(:, k), & |
---|
828 | pspsk(:, k), paprs(:, k + 1), paprs(:, k), pplay(:, k), tla(:, k), & |
---|
829 | ratqs(:, k), qcloud, qincloud_mpc, zfice_th, ctot(:, k), ctot_vol(:, k), & |
---|
830 | cloudth_sth(:, k), cloudth_senv(:, k), cloudth_sigmath(:, k), cloudth_sigmaenv(:, k)) |
---|
831 | |
---|
832 | ENDIF |
---|
833 | |
---|
834 | DO i = 1, klon |
---|
835 | rneb(i, k) = ctot(i, k) |
---|
836 | rneblsvol(i, k) = ctot_vol(i, k) |
---|
837 | zqn(i) = qcloud(i) |
---|
838 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
839 | qvc(i) = rneb(i, k) * zqs(i) |
---|
840 | ENDDO |
---|
841 | |
---|
842 | ENDIF |
---|
843 | |
---|
844 | IF (iflag_cld_th <= 4) THEN |
---|
845 | |
---|
846 | ! lognormal |
---|
847 | lognormale(:) = .TRUE. |
---|
848 | |
---|
849 | ELSEIF (iflag_cld_th >= 6) THEN |
---|
850 | |
---|
851 | ! lognormal distribution when no thermals |
---|
852 | lognormale(:) = fraca(:, k) < min_frac_th_cld |
---|
853 | |
---|
854 | ELSE |
---|
855 | ! When iflag_cld_th=5, we always assume |
---|
856 | ! bi-gaussian distribution |
---|
857 | lognormale(:) = .FALSE. |
---|
858 | |
---|
859 | ENDIF |
---|
860 | |
---|
861 | DT(:) = 0. |
---|
862 | n_i(:) = 0 |
---|
863 | Tbef(:) = zt(:) |
---|
864 | qlbef(:) = 0. |
---|
865 | |
---|
866 | ! Treatment of non-boundary layer clouds (lognormale) |
---|
867 | ! condensation with qsat(T) variation (adaptation) |
---|
868 | ! Iterative resolution to converge towards qsat |
---|
869 | ! with update of temperature, ice fraction and qsat at |
---|
870 | ! each iteration |
---|
871 | |
---|
872 | ! todoan -> sensitivity to iflag_fisrtilp_qsat |
---|
873 | DO iter = 1, iflag_fisrtilp_qsat + 1 |
---|
874 | |
---|
875 | keepgoing(:) = .FALSE. |
---|
876 | |
---|
877 | DO i = 1, klon |
---|
878 | |
---|
879 | ! keepgoing = .TRUE. while convergence is not satisfied |
---|
880 | IF (((ABS(DT(i))>DDT0) .OR. (n_i(i) == 0)) .AND. lognormale(i)) THEN |
---|
881 | |
---|
882 | |
---|
883 | ! if not convergence: |
---|
884 | ! we calculate a new iteration |
---|
885 | keepgoing(i) = .TRUE. |
---|
886 | |
---|
887 | ! P2.2.1> cloud fraction and condensed water mass calculation |
---|
888 | ! Calculated variables: |
---|
889 | ! rneb : cloud fraction |
---|
890 | ! zqn : total water within the cloud |
---|
891 | ! zcond: mean condensed water within the mesh |
---|
892 | ! rhcl: clear-sky relative humidity |
---|
893 | !--------------------------------------------------------------- |
---|
894 | |
---|
895 | ! new temperature that only serves in the iteration process: |
---|
896 | Tbef(i) = Tbef(i) + DT(i) |
---|
897 | |
---|
898 | ! Rneb, qzn and zcond for lognormal PDFs |
---|
899 | qtot(i) = zq(i) + zmqc(i) |
---|
900 | |
---|
901 | END IF |
---|
902 | |
---|
903 | END DO |
---|
904 | |
---|
905 | ! Calculation of saturation specific humidity and ice fraction |
---|
906 | CALL calc_qsat_ecmwf(klon, Tbef(:), qtot(:), pplay(:, k), RTT, 0, .FALSE., zqs(:), zdqs(:)) |
---|
907 | CALL calc_gammasat(klon, Tbef(:), qtot(:), pplay(:, k), gammasat(:), dgammasatdt(:)) |
---|
908 | ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs |
---|
909 | zdqs(:) = gammasat(:) * zdqs(:) + zqs(:) * dgammasatdt(:) |
---|
910 | ! cloud phase determination |
---|
911 | IF (iflag_t_glace>=4) THEN |
---|
912 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
---|
913 | CALL distance_to_cloud_top(klon, klev, k, temp, pplay, paprs, rneb, zdistcltop, ztemp_cltop) |
---|
914 | END IF |
---|
915 | |
---|
916 | CALL icefrac_lscp(klon, zt(:), iflag_ice_thermo, zdistcltop(:), ztemp_cltop(:), zfice(:), dzfice(:)) |
---|
917 | |
---|
918 | !--AB Activates a condensation scheme that allows for |
---|
919 | !--ice supersaturation and contrails evolution from aviation |
---|
920 | IF (ok_ice_supersat) THEN |
---|
921 | |
---|
922 | !--Calculate the shear value (input for condensation and ice supersat) |
---|
923 | DO i = 1, klon |
---|
924 | !--Cell thickness [m] |
---|
925 | delta_z = (paprs(i, k) - paprs(i, k + 1)) / RG / pplay(i, k) * Tbef(i) * RD |
---|
926 | IF (iftop) THEN |
---|
927 | ! top |
---|
928 | shear(i) = SQRT(((u_seri(i, k) - u_seri(i, k - 1)) / delta_z)**2. & |
---|
929 | + ((v_seri(i, k) - v_seri(i, k - 1)) / delta_z)**2.) |
---|
930 | ELSE IF (k == 1) THEN |
---|
931 | ! surface |
---|
932 | shear(i) = SQRT(((u_seri(i, k + 1) - u_seri(i, k)) / delta_z)**2. & |
---|
933 | + ((v_seri(i, k + 1) - v_seri(i, k)) / delta_z)**2.) |
---|
934 | ELSE |
---|
935 | ! other layers |
---|
936 | shear(i) = SQRT((((u_seri(i, k + 1) + u_seri(i, k)) / 2. & |
---|
937 | - (u_seri(i, k) + u_seri(i, k - 1)) / 2.) / delta_z)**2. & |
---|
938 | + (((v_seri(i, k + 1) + v_seri(i, k)) / 2. & |
---|
939 | - (v_seri(i, k) + v_seri(i, k - 1)) / 2.) / delta_z)**2.) |
---|
940 | END IF |
---|
941 | END DO |
---|
942 | |
---|
943 | !--------------------------------------------- |
---|
944 | !-- CONDENSATION AND ICE SUPERSATURATION -- |
---|
945 | !--------------------------------------------- |
---|
946 | |
---|
947 | CALL condensation_ice_supersat(& |
---|
948 | klon, dtime, missing_val, & |
---|
949 | pplay(:, k), paprs(:, k), paprs(:, k + 1), & |
---|
950 | cf_seri(:, k), rvc_seri(:, k), ratio_qi_qtot(:, k), & |
---|
951 | shear(:), tke_dissip(:, k), cell_area(:), & |
---|
952 | Tbef(:), zq(:), zqs(:), gammasat(:), ratqs(:, k), keepgoing(:), & |
---|
953 | rneb(:, k), zqn(:), qvc(:), issrfra(:, k), qissr(:, k), & |
---|
954 | dcf_sub(:, k), dcf_con(:, k), dcf_mix(:, k), & |
---|
955 | dqi_adj(:, k), dqi_sub(:, k), dqi_con(:, k), dqi_mix(:, k), & |
---|
956 | dqvc_adj(:, k), dqvc_sub(:, k), dqvc_con(:, k), dqvc_mix(:, k), & |
---|
957 | Tcontr(:, k), qcontr(:, k), qcontr2(:, k), fcontrN(:, k), fcontrP(:, k), & |
---|
958 | flight_dist(:, k), flight_h2o(:, k), & |
---|
959 | dcf_avi(:, k), dqi_avi(:, k), dqvc_avi(:, k)) |
---|
960 | |
---|
961 | |
---|
962 | ELSE |
---|
963 | !--generalisedlognormal condensation scheme (Bony and Emanuel 2001) |
---|
964 | |
---|
965 | |
---|
966 | CALL condensation_lognormal(& |
---|
967 | klon, Tbef, zq, zqs, gammasat, ratqs(:, k), & |
---|
968 | keepgoing, rneb(:, k), zqn, qvc) |
---|
969 | |
---|
970 | |
---|
971 | ENDIF ! .NOT. ok_ice_supersat |
---|
972 | |
---|
973 | DO i = 1, klon |
---|
974 | IF (keepgoing(i)) THEN |
---|
975 | |
---|
976 | ! If vertical heterogeneity, change fraction by volume as well |
---|
977 | IF (iflag_cloudth_vert>=3) THEN |
---|
978 | ctot_vol(i, k) = rneb(i, k) |
---|
979 | rneblsvol(i, k) = ctot_vol(i, k) |
---|
980 | END IF |
---|
981 | |
---|
982 | |
---|
983 | ! P2.2.2> Approximative calculation of temperature variation DT |
---|
984 | ! due to condensation. |
---|
985 | ! Calculated variables: |
---|
986 | ! dT : temperature change due to condensation |
---|
987 | !--------------------------------------------------------------- |
---|
988 | |
---|
989 | IF (zfice(i)<1) THEN |
---|
990 | cste = RLVTT |
---|
991 | ELSE |
---|
992 | cste = RLSTT |
---|
993 | ENDIF |
---|
994 | |
---|
995 | ! LEA_R : check formule |
---|
996 | IF (ok_unadjusted_clouds) THEN |
---|
997 | !--AB We relax the saturation adjustment assumption |
---|
998 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
999 | IF (rneb(i, k) > eps) THEN |
---|
1000 | qlbef(i) = MAX(0., zqn(i) - qvc(i) / rneb(i, k)) |
---|
1001 | ELSE |
---|
1002 | qlbef(i) = 0. |
---|
1003 | ENDIF |
---|
1004 | ELSE |
---|
1005 | qlbef(i) = max(0., zqn(i) - zqs(i)) |
---|
1006 | ENDIF |
---|
1007 | |
---|
1008 | num = -Tbef(i) + zt(i) + rneb(i, k) * ((1 - zfice(i)) * RLVTT & |
---|
1009 | + zfice(i) * RLSTT) / RCPD / (1.0 + RVTMP2 * (zq(i) + zmqc(i))) * qlbef(i) |
---|
1010 | denom = 1. + rneb(i, k) * ((1 - zfice(i)) * RLVTT + zfice(i) * RLSTT) / cste * zdqs(i) & |
---|
1011 | - (RLSTT - RLVTT) / RCPD / (1.0 + RVTMP2 * (zq(i) + zmqc(i))) * rneb(i, k) & |
---|
1012 | * qlbef(i) * dzfice(i) |
---|
1013 | ! here we update a provisory temperature variable that only serves in the iteration |
---|
1014 | ! process |
---|
1015 | DT(i) = num / denom |
---|
1016 | n_i(i) = n_i(i) + 1 |
---|
1017 | |
---|
1018 | ENDIF ! end keepgoing |
---|
1019 | |
---|
1020 | ENDDO ! end loop on i |
---|
1021 | |
---|
1022 | ENDDO ! iter=1,iflag_fisrtilp_qsat+1 |
---|
1023 | |
---|
1024 | ! P2.3> Final quantities calculation |
---|
1025 | ! Calculated variables: |
---|
1026 | ! rneb : cloud fraction |
---|
1027 | ! zcond: mean condensed water in the mesh |
---|
1028 | ! zqn : mean water vapor in the mesh |
---|
1029 | ! zfice: ice fraction in clouds |
---|
1030 | ! zt : temperature |
---|
1031 | ! rhcl : clear-sky relative humidity |
---|
1032 | ! ---------------------------------------------------------------- |
---|
1033 | |
---|
1034 | |
---|
1035 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
---|
1036 | IF (iflag_t_glace>=4) THEN |
---|
1037 | CALL distance_to_cloud_top(klon, klev, k, temp, pplay, paprs, rneb, zdistcltop, ztemp_cltop) |
---|
1038 | distcltop(:, k) = zdistcltop(:) |
---|
1039 | temp_cltop(:, k) = ztemp_cltop(:) |
---|
1040 | ENDIF |
---|
1041 | |
---|
1042 | ! Partition function depending on temperature |
---|
1043 | CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop, ztemp_cltop, zfice, dzfice) |
---|
1044 | |
---|
1045 | ! Partition function depending on tke for non shallow-convective clouds |
---|
1046 | IF (iflag_icefrac >= 1) THEN |
---|
1047 | |
---|
1048 | CALL icefrac_lscp_turb(klon, dtime, Tbef, pplay(:, k), paprs(:, k), paprs(:, k + 1), qice_save(:, k), ziflcld, zqn, & |
---|
1049 | rneb(:, k), tke(:, k), tke_dissip(:, k), zqliq, zqvapcl, zqice, zfice_turb, dzfice_turb, cldfraliq(:, k), sigma2_icefracturb(:, k), mean_icefracturb(:, k)) |
---|
1050 | |
---|
1051 | ENDIF |
---|
1052 | |
---|
1053 | ! Water vapor update, Phase determination and subsequent latent heat exchange |
---|
1054 | DO i = 1, klon |
---|
1055 | ! Overwrite phase partitioning in boundary layer mixed phase clouds when the |
---|
1056 | ! iflag_cloudth_vert=7 and specific param is activated |
---|
1057 | IF (mpc_bl_points(i, k) > 0) THEN |
---|
1058 | zcond(i) = MAX(0.0, qincloud_mpc(i)) * rneb(i, k) |
---|
1059 | ! following line is very strange and probably wrong |
---|
1060 | rhcl(i, k) = (zqs(i) + zq(i)) / 2. / zqs(i) |
---|
1061 | ! water vapor update and partition function if thermals |
---|
1062 | zq(i) = zq(i) - zcond(i) |
---|
1063 | zfice(i) = zfice_th(i) |
---|
1064 | ELSE |
---|
1065 | ! Checks on rneb, rhcl and zqn |
---|
1066 | IF (rneb(i, k) <= 0.0) THEN |
---|
1067 | zqn(i) = 0.0 |
---|
1068 | rneb(i, k) = 0.0 |
---|
1069 | zcond(i) = 0.0 |
---|
1070 | rhcl(i, k) = zq(i) / zqs(i) |
---|
1071 | ELSE IF (rneb(i, k) >= 1.0) THEN |
---|
1072 | zqn(i) = zq(i) |
---|
1073 | rneb(i, k) = 1.0 |
---|
1074 | IF (ok_unadjusted_clouds) THEN |
---|
1075 | !--AB We relax the saturation adjustment assumption |
---|
1076 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
1077 | zcond(i) = MAX(0., zqn(i) - qvc(i)) |
---|
1078 | ELSE |
---|
1079 | IF (ok_unadjusted_clouds) THEN |
---|
1080 | !--AB We relax the saturation adjustment assumption |
---|
1081 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
1082 | zcond(i) = MAX(0., zqn(i) * rneb(i, k) - qvc(i)) |
---|
1083 | ELSE |
---|
1084 | zcond(i) = MAX(0.0, zqn(i) - zqs(i)) * rneb(i, k) |
---|
1085 | ENDIF |
---|
1086 | ENDIF |
---|
1087 | rhcl(i, k) = 1.0 |
---|
1088 | ELSE |
---|
1089 | zcond(i) = MAX(0.0, zqn(i) - zqs(i)) * rneb(i, k) |
---|
1090 | ! following line is very strange and probably wrong: |
---|
1091 | rhcl(i, k) = (zqs(i) + zq(i)) / 2. / zqs(i) |
---|
1092 | ! Overwrite partitioning for non shallow-convective clouds if iflag_icefrac>1 (icefrac turb param) |
---|
1093 | IF (iflag_icefrac >= 1) THEN |
---|
1094 | IF (lognormale(i)) THEN |
---|
1095 | zcond(i) = zqliq(i) + zqice(i) |
---|
1096 | zfice(i) = zfice_turb(i) |
---|
1097 | rhcl(i, k) = zqvapcl(i) * rneb(i, k) + (zq(i) - zqn(i)) * (1. - rneb(i, k)) |
---|
1098 | ENDIF |
---|
1099 | ENDIF |
---|
1100 | ENDIF |
---|
1101 | |
---|
1102 | ! water vapor update |
---|
1103 | zq(i) = zq(i) - zcond(i) |
---|
1104 | |
---|
1105 | ENDIF |
---|
1106 | |
---|
1107 | ! c_iso : routine that computes in-cloud supersaturation |
---|
1108 | ! c_iso condensation of isotopes (zcond, zsursat, zfice, zq in input) |
---|
1109 | |
---|
1110 | ! temperature update due to phase change |
---|
1111 | zt(i) = zt(i) + (1. - zfice(i)) * zcond(i) & |
---|
1112 | * RLVTT / RCPD / (1.0 + RVTMP2 * (zq(i) + zmqc(i) + zcond(i))) & |
---|
1113 | + zfice(i) * zcond(i) * RLSTT / RCPD / (1.0 + RVTMP2 * (zq(i) + zmqc(i) + zcond(i))) |
---|
1114 | END DO |
---|
1115 | |
---|
1116 | ! If vertical heterogeneity, change volume fraction |
---|
1117 | IF (iflag_cloudth_vert >= 3) THEN |
---|
1118 | ctot_vol(1:klon, k) = min(max(ctot_vol(1:klon, k), 0.), 1.) |
---|
1119 | rneblsvol(1:klon, k) = ctot_vol(1:klon, k) |
---|
1120 | END IF |
---|
1121 | |
---|
1122 | !--AB Write diagnostics and tracers for ice supersaturation |
---|
1123 | IF (ok_ice_supersat) THEN |
---|
1124 | CALL calc_qsat_ecmwf(klon, zt, qzero, pplay(:, k), RTT, 1, .FALSE., qsatl(:, k), zdqs) |
---|
1125 | CALL calc_qsat_ecmwf(klon, zt, qzero, pplay(:, k), RTT, 2, .FALSE., qsati(:, k), zdqs) |
---|
1126 | |
---|
1127 | DO i = 1, klon |
---|
1128 | |
---|
1129 | cf_seri(i, k) = rneb(i, k) |
---|
1130 | |
---|
1131 | IF (.NOT. ok_unadjusted_clouds) THEN |
---|
1132 | qvc(i) = zqs(i) * rneb(i, k) |
---|
1133 | END IF |
---|
1134 | IF (zq(i) > min_qParent) THEN |
---|
1135 | rvc_seri(i, k) = qvc(i) / zq(i) |
---|
1136 | ELSE |
---|
1137 | rvc_seri(i, k) = min_ratio |
---|
1138 | END IF |
---|
1139 | !--The MIN barrier is NEEDED because of: |
---|
1140 | !-- 1) very rare pathological cases of the lsc scheme (rvc = 1. + 1e-16 sometimes) |
---|
1141 | !-- 2) the thermal scheme does NOT guarantee that qvc <= qvap (or even qincld <= qtot) |
---|
1142 | !--The MAX barrier is a safeguard that should not be activated |
---|
1143 | rvc_seri(i, k) = MIN(MAX(rvc_seri(i, k), 0.), 1.) |
---|
1144 | |
---|
1145 | !--Diagnostics |
---|
1146 | gamma_cond(i, k) = gammasat(i) |
---|
1147 | IF (issrfra(i, k) < eps) THEN |
---|
1148 | issrfra(i, k) = 0. |
---|
1149 | qissr(i, k) = 0. |
---|
1150 | END IF |
---|
1151 | subfra(i, k) = 1. - cf_seri(i, k) - issrfra(i, k) |
---|
1152 | qsub(i, k) = zq(i) - qvc(i) - qissr(i, k) |
---|
1153 | IF (subfra(i, k) < eps) THEN |
---|
1154 | subfra(i, k) = 0. |
---|
1155 | qsub(i, k) = 0. |
---|
1156 | END IF |
---|
1157 | qcld(i, k) = qvc(i) + zcond(i) |
---|
1158 | IF (cf_seri(i, k) < eps) THEN |
---|
1159 | qcld(i, k) = 0. |
---|
1160 | END IF |
---|
1161 | END DO |
---|
1162 | END IF |
---|
1163 | |
---|
1164 | ! ---------------------------------------------------------------- |
---|
1165 | ! P3> Precipitation formation |
---|
1166 | ! ---------------------------------------------------------------- |
---|
1167 | |
---|
1168 | !================================================================ |
---|
1169 | IF (ok_poprecip) THEN |
---|
1170 | |
---|
1171 | DO i = 1, klon |
---|
1172 | zoliql(i) = zcond(i) * (1. - zfice(i)) |
---|
1173 | zoliqi(i) = zcond(i) * zfice(i) |
---|
1174 | END DO |
---|
1175 | |
---|
1176 | CALL poprecip_postcld(klon, dtime, paprs(:, k), paprs(:, k + 1), pplay(:, k), & |
---|
1177 | ctot_vol(:, k), ptconv(:, k), & |
---|
1178 | zt, zq, zoliql, zoliqi, zfice, & |
---|
1179 | rneb(:, k), znebprecipclr, znebprecipcld, & |
---|
1180 | zrfl, zrflclr, zrflcld, & |
---|
1181 | zifl, ziflclr, ziflcld, & |
---|
1182 | qraindiag(:, k), qsnowdiag(:, k), dqrauto(:, k), & |
---|
1183 | dqrcol(:, k), dqrmelt(:, k), dqrfreez(:, k), & |
---|
1184 | dqsauto(:, k), dqsagg(:, k), dqsrim(:, k), & |
---|
1185 | dqsmelt(:, k), dqsfreez(:, k) & |
---|
1186 | ) |
---|
1187 | |
---|
1188 | DO i = 1, klon |
---|
1189 | zoliq(i) = zoliql(i) + zoliqi(i) |
---|
1190 | IF (zoliq(i) > 0.) THEN |
---|
1191 | zfice(i) = zoliqi(i) / zoliq(i) |
---|
1192 | ELSE |
---|
1193 | zfice(i) = 0.0 |
---|
1194 | ENDIF |
---|
1195 | |
---|
1196 | ! calculation of specific content of condensates seen by radiative scheme |
---|
1197 | IF (ok_radocond_snow) THEN |
---|
1198 | radocond(i, k) = zoliq(i) |
---|
1199 | radocondl(i, k) = radocond(i, k) * (1. - zfice(i)) |
---|
1200 | radocondi(i, k) = radocond(i, k) * zfice(i) + qsnowdiag(i, k) |
---|
1201 | ELSE |
---|
1202 | radocond(i, k) = zoliq(i) |
---|
1203 | radocondl(i, k) = radocond(i, k) * (1. - zfice(i)) |
---|
1204 | radocondi(i, k) = radocond(i, k) * zfice(i) |
---|
1205 | ENDIF |
---|
1206 | ENDDO |
---|
1207 | |
---|
1208 | !================================================================ |
---|
1209 | ELSE |
---|
1210 | |
---|
1211 | ! LTP: |
---|
1212 | IF (iflag_evap_prec >= 4) THEN |
---|
1213 | |
---|
1214 | !Partitionning between precipitation coming from clouds and that coming from CS |
---|
1215 | |
---|
1216 | !0) Calculate tot_zneb, total cloud fraction above the cloud |
---|
1217 | !assuming a maximum-random overlap (voir Jakob and Klein, 2000) |
---|
1218 | |
---|
1219 | DO i = 1, klon |
---|
1220 | tot_znebn(i) = 1. - (1. - tot_zneb(i)) * (1 - max(rneb(i, k), zneb(i))) & |
---|
1221 | / (1. - min(zneb(i), 1. - smallestreal)) |
---|
1222 | d_tot_zneb(i) = tot_znebn(i) - tot_zneb(i) |
---|
1223 | tot_zneb(i) = tot_znebn(i) |
---|
1224 | |
---|
1225 | |
---|
1226 | !1) Cloudy to clear air |
---|
1227 | d_znebprecip_cld_clr(i) = znebprecipcld(i) - min(rneb(i, k), znebprecipcld(i)) |
---|
1228 | IF (znebprecipcld(i) > 0.) THEN |
---|
1229 | d_zrfl_cld_clr(i) = d_znebprecip_cld_clr(i) / znebprecipcld(i) * zrflcld(i) |
---|
1230 | d_zifl_cld_clr(i) = d_znebprecip_cld_clr(i) / znebprecipcld(i) * ziflcld(i) |
---|
1231 | ELSE |
---|
1232 | d_zrfl_cld_clr(i) = 0. |
---|
1233 | d_zifl_cld_clr(i) = 0. |
---|
1234 | ENDIF |
---|
1235 | |
---|
1236 | !2) Clear to cloudy air |
---|
1237 | d_znebprecip_clr_cld(i) = max(0., min(znebprecipclr(i), rneb(i, k) - d_tot_zneb(i) - zneb(i))) |
---|
1238 | IF (znebprecipclr(i) > 0) THEN |
---|
1239 | d_zrfl_clr_cld(i) = d_znebprecip_clr_cld(i) / znebprecipclr(i) * zrflclr(i) |
---|
1240 | d_zifl_clr_cld(i) = d_znebprecip_clr_cld(i) / znebprecipclr(i) * ziflclr(i) |
---|
1241 | ELSE |
---|
1242 | d_zrfl_clr_cld(i) = 0. |
---|
1243 | d_zifl_clr_cld(i) = 0. |
---|
1244 | ENDIF |
---|
1245 | |
---|
1246 | !Update variables |
---|
1247 | znebprecipcld(i) = znebprecipcld(i) + d_znebprecip_clr_cld(i) - d_znebprecip_cld_clr(i) |
---|
1248 | znebprecipclr(i) = znebprecipclr(i) + d_znebprecip_cld_clr(i) - d_znebprecip_clr_cld(i) |
---|
1249 | zrflcld(i) = zrflcld(i) + d_zrfl_clr_cld(i) - d_zrfl_cld_clr(i) |
---|
1250 | ziflcld(i) = ziflcld(i) + d_zifl_clr_cld(i) - d_zifl_cld_clr(i) |
---|
1251 | zrflclr(i) = zrflclr(i) + d_zrfl_cld_clr(i) - d_zrfl_clr_cld(i) |
---|
1252 | ziflclr(i) = ziflclr(i) + d_zifl_cld_clr(i) - d_zifl_clr_cld(i) |
---|
1253 | |
---|
1254 | ! c_iso do the same thing for isotopes precip |
---|
1255 | ENDDO |
---|
1256 | ENDIF |
---|
1257 | |
---|
1258 | |
---|
1259 | ! Autoconversion |
---|
1260 | ! ------------------------------------------------------------------------------- |
---|
1261 | |
---|
1262 | |
---|
1263 | ! Initialisation of zoliq and radocond variables |
---|
1264 | |
---|
1265 | DO i = 1, klon |
---|
1266 | zoliq(i) = zcond(i) |
---|
1267 | zoliqi(i) = zoliq(i) * zfice(i) |
---|
1268 | zoliql(i) = zoliq(i) * (1. - zfice(i)) |
---|
1269 | ! c_iso : initialisation of zoliq* also for isotopes |
---|
1270 | zrho(i, k) = pplay(i, k) / zt(i) / RD |
---|
1271 | zdz(i) = (paprs(i, k) - paprs(i, k + 1)) / (zrho(i, k) * RG) |
---|
1272 | iwc(i) = 0. |
---|
1273 | zneb(i) = MAX(rneb(i, k), seuil_neb) |
---|
1274 | radocond(i, k) = zoliq(i) / REAL(niter_lscp + 1) |
---|
1275 | radocondi(i, k) = zoliq(i) * zfice(i) / REAL(niter_lscp + 1) |
---|
1276 | radocondl(i, k) = zoliq(i) * (1. - zfice(i)) / REAL(niter_lscp + 1) |
---|
1277 | ENDDO |
---|
1278 | |
---|
1279 | DO n = 1, niter_lscp |
---|
1280 | |
---|
1281 | DO i = 1, klon |
---|
1282 | IF (rneb(i, k)>0.0) THEN |
---|
1283 | iwc(i) = zrho(i, k) * zoliqi(i) / zneb(i) ! in-cloud ice condensate content |
---|
1284 | ENDIF |
---|
1285 | ENDDO |
---|
1286 | |
---|
1287 | CALL fallice_velocity(klon, iwc(:), zt(:), zrho(:, k), pplay(:, k), ptconv(:, k), velo(:, k)) |
---|
1288 | |
---|
1289 | DO i = 1, klon |
---|
1290 | |
---|
1291 | IF (rneb(i, k)>0.0) THEN |
---|
1292 | |
---|
1293 | ! Initialization of zrain, zsnow and zprecip: |
---|
1294 | zrain = 0. |
---|
1295 | zsnow = 0. |
---|
1296 | zprecip = 0. |
---|
1297 | ! c_iso same init for isotopes. Externalisation? |
---|
1298 | |
---|
1299 | IF (zneb(i)==seuil_neb) THEN |
---|
1300 | zprecip = 0.0 |
---|
1301 | zsnow = 0.0 |
---|
1302 | zrain = 0.0 |
---|
1303 | ELSE |
---|
1304 | |
---|
1305 | IF (ptconv(i, k)) THEN ! if convective point |
---|
1306 | zcl = cld_lc_con |
---|
1307 | zct = 1. / cld_tau_con |
---|
1308 | zexpo = cld_expo_con |
---|
1309 | ffallv = ffallv_con |
---|
1310 | ELSE |
---|
1311 | zcl = cld_lc_lsc |
---|
1312 | zct = 1. / cld_tau_lsc |
---|
1313 | zexpo = cld_expo_lsc |
---|
1314 | ffallv = ffallv_lsc |
---|
1315 | ENDIF |
---|
1316 | |
---|
1317 | |
---|
1318 | ! if vertical heterogeneity is taken into account, we use |
---|
1319 | ! the "true" volume fraction instead of a modified |
---|
1320 | ! surface fraction (which is larger and artificially |
---|
1321 | ! reduces the in-cloud water). |
---|
1322 | |
---|
1323 | ! Liquid water quantity to remove: zchau (Sundqvist, 1978) |
---|
1324 | ! dqliq/dt=-qliq/tau*(1-exp(-qcin/clw)**2) |
---|
1325 | !......................................................... |
---|
1326 | IF ((iflag_cloudth_vert>=3).AND.(iflag_rain_incloud_vol==1)) THEN |
---|
1327 | |
---|
1328 | ! if vertical heterogeneity is taken into account, we use |
---|
1329 | ! the "true" volume fraction instead of a modified |
---|
1330 | ! surface fraction (which is larger and artificially |
---|
1331 | ! reduces the in-cloud water). |
---|
1332 | effective_zneb = ctot_vol(i, k) |
---|
1333 | ELSE |
---|
1334 | effective_zneb = zneb(i) |
---|
1335 | ENDIF |
---|
1336 | |
---|
1337 | IF (iflag_autoconversion == 2) THEN |
---|
1338 | ! two-steps resolution with niter_lscp=1 sufficient |
---|
1339 | ! we first treat the second term (with exponential) in an explicit way |
---|
1340 | ! and then treat the first term (-q/tau) in an exact way |
---|
1341 | zchau = zoliql(i) * (1. - exp(-dtime / REAL(niter_lscp) * zct & |
---|
1342 | * (1. - exp(-(zoliql(i) / effective_zneb / zcl)**zexpo)))) |
---|
1343 | ELSE |
---|
1344 | ! old explicit resolution with subtimesteps |
---|
1345 | zchau = zct * dtime / REAL(niter_lscp) * zoliql(i) & |
---|
1346 | * (1.0 - EXP(-(zoliql(i) / effective_zneb / zcl)**zexpo)) |
---|
1347 | ENDIF |
---|
1348 | |
---|
1349 | |
---|
1350 | ! Ice water quantity to remove (Zender & Kiehl, 1997) |
---|
1351 | ! dqice/dt=1/rho*d(rho*wice*qice)/dz |
---|
1352 | !.................................... |
---|
1353 | IF (iflag_autoconversion == 2) THEN |
---|
1354 | ! exact resolution, niter_lscp=1 is sufficient but works only |
---|
1355 | ! with iflag_vice=0 |
---|
1356 | IF (zoliqi(i) > 0.) THEN |
---|
1357 | zfroi = (zoliqi(i) - ((zoliqi(i)**(-dice_velo)) & |
---|
1358 | + dice_velo * dtime / REAL(niter_lscp) * cice_velo / zdz(i) * ffallv)**(-1. / dice_velo)) |
---|
1359 | ELSE |
---|
1360 | zfroi = 0. |
---|
1361 | ENDIF |
---|
1362 | ELSE |
---|
1363 | ! old explicit resolution with subtimesteps |
---|
1364 | zfroi = dtime / REAL(niter_lscp) / zdz(i) * zoliqi(i) * velo(i, k) |
---|
1365 | ENDIF |
---|
1366 | |
---|
1367 | zrain = MIN(MAX(zchau, 0.0), zoliql(i)) |
---|
1368 | zsnow = MIN(MAX(zfroi, 0.0), zoliqi(i)) |
---|
1369 | zprecip = MAX(zrain + zsnow, 0.0) |
---|
1370 | |
---|
1371 | ENDIF |
---|
1372 | |
---|
1373 | IF (iflag_autoconversion >= 1) THEN |
---|
1374 | ! debugged version with phase conservation through the autoconversion process |
---|
1375 | zoliql(i) = MAX(zoliql(i) - 1. * zrain, 0.0) |
---|
1376 | zoliqi(i) = MAX(zoliqi(i) - 1. * zsnow, 0.0) |
---|
1377 | zoliq(i) = MAX(zoliq(i) - zprecip, 0.0) |
---|
1378 | ELSE |
---|
1379 | ! bugged version with phase resetting |
---|
1380 | zoliql(i) = MAX(zoliq(i) * (1. - zfice(i)) - 1. * zrain, 0.0) |
---|
1381 | zoliqi(i) = MAX(zoliq(i) * zfice(i) - 1. * zsnow, 0.0) |
---|
1382 | zoliq(i) = MAX(zoliq(i) - zprecip, 0.0) |
---|
1383 | ENDIF |
---|
1384 | |
---|
1385 | ! c_iso: CALL isotope_conversion (for readibility) or duplicate |
---|
1386 | |
---|
1387 | radocond(i, k) = radocond(i, k) + zoliq(i) / REAL(niter_lscp + 1) |
---|
1388 | radocondl(i, k) = radocondl(i, k) + zoliql(i) / REAL(niter_lscp + 1) |
---|
1389 | radocondi(i, k) = radocondi(i, k) + zoliqi(i) / REAL(niter_lscp + 1) |
---|
1390 | |
---|
1391 | ENDIF ! rneb >0 |
---|
1392 | |
---|
1393 | ENDDO ! i = 1,klon |
---|
1394 | |
---|
1395 | ENDDO ! n = 1,niter |
---|
1396 | |
---|
1397 | ! Precipitation flux calculation |
---|
1398 | |
---|
1399 | DO i = 1, klon |
---|
1400 | |
---|
1401 | IF (iflag_evap_prec>=4) THEN |
---|
1402 | ziflprev(i) = ziflcld(i) |
---|
1403 | ELSE |
---|
1404 | ziflprev(i) = zifl(i) * zneb(i) |
---|
1405 | ENDIF |
---|
1406 | |
---|
1407 | IF (rneb(i, k) > 0.0) THEN |
---|
1408 | |
---|
1409 | ! CR&JYG: We account for the Wegener-Findeisen-Bergeron process in the precipitation flux: |
---|
1410 | ! If T<0C, liquid precip are converted into ice, which leads to an increase in |
---|
1411 | ! temperature DeltaT. The effect of DeltaT on condensates and precipitation is roughly |
---|
1412 | ! taken into account through a linearization of the equations and by approximating |
---|
1413 | ! the liquid precipitation process with a "threshold" process. We assume that |
---|
1414 | ! condensates are not modified during this operation. Liquid precipitation is |
---|
1415 | ! removed (in the limit DeltaT<273.15-T). Solid precipitation increases. |
---|
1416 | ! Water vapor increases as well |
---|
1417 | ! Note that compared to fisrtilp, we always assume iflag_bergeron=2 |
---|
1418 | |
---|
1419 | zqpreci(i) = (zcond(i) - zoliq(i)) * zfice(i) |
---|
1420 | zqprecl(i) = (zcond(i) - zoliq(i)) * (1. - zfice(i)) |
---|
1421 | zcp = RCPD * (1.0 + RVTMP2 * (zq(i) + zmqc(i) + zcond(i))) |
---|
1422 | coef1 = rneb(i, k) * RLSTT / zcp * zdqsdT_raw(i) |
---|
1423 | ! Computation of DT if all the liquid precip freezes |
---|
1424 | DeltaT = RLMLT * zqprecl(i) / (zcp * (1. + coef1)) |
---|
1425 | ! T should not exceed the freezing point |
---|
1426 | ! that is Delta > RTT-zt(i) |
---|
1427 | DeltaT = max(min(RTT - zt(i), DeltaT), 0.) |
---|
1428 | zt(i) = zt(i) + DeltaT |
---|
1429 | ! water vaporization due to temp. increase |
---|
1430 | Deltaq = rneb(i, k) * zdqsdT_raw(i) * DeltaT |
---|
1431 | ! we add this vaporized water to the total vapor and we remove it from the precip |
---|
1432 | zq(i) = zq(i) + Deltaq |
---|
1433 | ! The three "max" lines herebelow protect from rounding errors |
---|
1434 | zcond(i) = max(zcond(i) - Deltaq, 0.) |
---|
1435 | ! liquid precipitation converted to ice precip |
---|
1436 | Deltaqprecl = -zcp / RLMLT * (1. + coef1) * DeltaT |
---|
1437 | zqprecl(i) = max(zqprecl(i) + Deltaqprecl, 0.) |
---|
1438 | ! iced water budget |
---|
1439 | zqpreci(i) = max (zqpreci(i) - Deltaqprecl - Deltaq, 0.) |
---|
1440 | |
---|
1441 | ! c_iso : mv here condensation of isotopes + redispatchage en precip |
---|
1442 | |
---|
1443 | IF (iflag_evap_prec>=4) THEN |
---|
1444 | zrflcld(i) = zrflcld(i) + zqprecl(i) & |
---|
1445 | * (paprs(i, k) - paprs(i, k + 1)) / (RG * dtime) |
---|
1446 | ziflcld(i) = ziflcld(i) + zqpreci(i) & |
---|
1447 | * (paprs(i, k) - paprs(i, k + 1)) / (RG * dtime) |
---|
1448 | znebprecipcld(i) = rneb(i, k) |
---|
1449 | zrfl(i) = zrflcld(i) + zrflclr(i) |
---|
1450 | zifl(i) = ziflcld(i) + ziflclr(i) |
---|
1451 | ELSE |
---|
1452 | zrfl(i) = zrfl(i) + zqprecl(i) & |
---|
1453 | * (paprs(i, k) - paprs(i, k + 1)) / (RG * dtime) |
---|
1454 | zifl(i) = zifl(i) + zqpreci(i) & |
---|
1455 | * (paprs(i, k) - paprs(i, k + 1)) / (RG * dtime) |
---|
1456 | ENDIF |
---|
1457 | ! c_iso : same for isotopes |
---|
1458 | |
---|
1459 | ENDIF ! rneb>0 |
---|
1460 | |
---|
1461 | ENDDO |
---|
1462 | |
---|
1463 | ! LTP: limit of surface cloud fraction covered by precipitation when the local intensity of the flux is below rain_int_min |
---|
1464 | ! if iflag_evap_prec>=4 |
---|
1465 | IF (iflag_evap_prec>=4) THEN |
---|
1466 | |
---|
1467 | DO i = 1, klon |
---|
1468 | |
---|
1469 | IF ((zrflclr(i) + ziflclr(i)) > 0.) THEN |
---|
1470 | znebprecipclr(i) = min(znebprecipclr(i), max(zrflclr(i) / & |
---|
1471 | (MAX(znebprecipclr(i), seuil_neb) * rain_int_min), ziflclr(i) / (MAX(znebprecipclr(i), seuil_neb) * rain_int_min))) |
---|
1472 | ELSE |
---|
1473 | znebprecipclr(i) = 0.0 |
---|
1474 | ENDIF |
---|
1475 | |
---|
1476 | IF ((zrflcld(i) + ziflcld(i)) > 0.) THEN |
---|
1477 | znebprecipcld(i) = min(znebprecipcld(i), max(zrflcld(i) / & |
---|
1478 | (MAX(znebprecipcld(i), seuil_neb) * rain_int_min), ziflcld(i) / (MAX(znebprecipcld(i), seuil_neb) * rain_int_min))) |
---|
1479 | ELSE |
---|
1480 | znebprecipcld(i) = 0.0 |
---|
1481 | ENDIF |
---|
1482 | ENDDO |
---|
1483 | |
---|
1484 | ENDIF |
---|
1485 | |
---|
1486 | ENDIF ! ok_poprecip |
---|
1487 | |
---|
1488 | ! End of precipitation formation |
---|
1489 | ! -------------------------------- |
---|
1490 | |
---|
1491 | |
---|
1492 | ! Calculation of cloud condensates amount seen by radiative scheme |
---|
1493 | !----------------------------------------------------------------- |
---|
1494 | |
---|
1495 | ! Calculation of the concentration of condensates seen by the radiation scheme |
---|
1496 | ! for liquid phase, we take radocondl |
---|
1497 | ! for ice phase, we take radocondi if we neglect snowfall, otherwise (ok_radocond_snow=true) |
---|
1498 | ! we recalculate radocondi to account for contributions from the precipitation flux |
---|
1499 | ! TODO: for the moment, we deactivate this option when ok_poprecip=.TRUE. |
---|
1500 | |
---|
1501 | IF ((ok_radocond_snow) .AND. (k < klev) .AND. (.NOT. ok_poprecip)) THEN |
---|
1502 | ! for the solid phase (crystals + snowflakes) |
---|
1503 | ! we recalculate radocondi by summing |
---|
1504 | ! the ice content calculated in the mesh |
---|
1505 | ! + the contribution of the non-evaporated snowfall |
---|
1506 | ! from the overlying layer |
---|
1507 | DO i = 1, klon |
---|
1508 | IF (ziflprev(i) /= 0.0) THEN |
---|
1509 | radocondi(i, k) = zoliq(i) * zfice(i) + zqpreci(i) + ziflprev(i) / zrho(i, k + 1) / velo(i, k + 1) |
---|
1510 | ELSE |
---|
1511 | radocondi(i, k) = zoliq(i) * zfice(i) + zqpreci(i) |
---|
1512 | ENDIF |
---|
1513 | radocond(i, k) = radocondl(i, k) + radocondi(i, k) |
---|
1514 | ENDDO |
---|
1515 | ENDIF |
---|
1516 | |
---|
1517 | ! caculate the percentage of ice in "radocond" so cloud+precip seen by the radiation scheme |
---|
1518 | DO i = 1, klon |
---|
1519 | IF (radocond(i, k) > 0.) THEN |
---|
1520 | radicefrac(i, k) = MIN(MAX(radocondi(i, k) / radocond(i, k), 0.), 1.) |
---|
1521 | ENDIF |
---|
1522 | ENDDO |
---|
1523 | |
---|
1524 | ! ---------------------------------------------------------------- |
---|
1525 | ! P4> Wet scavenging |
---|
1526 | ! ---------------------------------------------------------------- |
---|
1527 | |
---|
1528 | !Scavenging through nucleation in the layer |
---|
1529 | |
---|
1530 | DO i = 1, klon |
---|
1531 | |
---|
1532 | IF(zcond(i)>zoliq(i) + 1.e-10) THEN |
---|
1533 | beta(i, k) = (zcond(i) - zoliq(i)) / zcond(i) / dtime |
---|
1534 | ELSE |
---|
1535 | beta(i, k) = 0. |
---|
1536 | ENDIF |
---|
1537 | |
---|
1538 | zprec_cond(i) = MAX(zcond(i) - zoliq(i), 0.0) * (paprs(i, k) - paprs(i, k + 1)) / RG |
---|
1539 | |
---|
1540 | IF (rneb(i, k)>0.0.AND.zprec_cond(i)>0.) THEN |
---|
1541 | |
---|
1542 | IF (temp(i, k) >= t_glace_min) THEN |
---|
1543 | zalpha_tr = a_tr_sca(3) |
---|
1544 | ELSE |
---|
1545 | zalpha_tr = a_tr_sca(4) |
---|
1546 | ENDIF |
---|
1547 | |
---|
1548 | zfrac_lessi = 1. - EXP(zalpha_tr * zprec_cond(i) / zneb(i)) |
---|
1549 | frac_nucl(i, k) = 1. - zneb(i) * zfrac_lessi |
---|
1550 | |
---|
1551 | ! Nucleation with a factor of -1 instead of -0.5 |
---|
1552 | zfrac_lessi = 1. - EXP(-zprec_cond(i) / zneb(i)) |
---|
1553 | |
---|
1554 | ENDIF |
---|
1555 | |
---|
1556 | ENDDO |
---|
1557 | |
---|
1558 | ! Scavenging through impaction in the underlying layer |
---|
1559 | |
---|
1560 | DO kk = k - 1, 1, -1 |
---|
1561 | |
---|
1562 | DO i = 1, klon |
---|
1563 | |
---|
1564 | IF (rneb(i, k)>0.0.AND.zprec_cond(i)>0.) THEN |
---|
1565 | |
---|
1566 | IF (temp(i, kk) >= t_glace_min) THEN |
---|
1567 | zalpha_tr = a_tr_sca(1) |
---|
1568 | ELSE |
---|
1569 | zalpha_tr = a_tr_sca(2) |
---|
1570 | ENDIF |
---|
1571 | |
---|
1572 | zfrac_lessi = 1. - EXP(zalpha_tr * zprec_cond(i) / zneb(i)) |
---|
1573 | frac_impa(i, kk) = 1. - zneb(i) * zfrac_lessi |
---|
1574 | |
---|
1575 | END IF |
---|
1576 | |
---|
1577 | END DO |
---|
1578 | |
---|
1579 | END DO |
---|
1580 | |
---|
1581 | ! Outputs: |
---|
1582 | !------------------------------- |
---|
1583 | ! Precipitation fluxes at layer interfaces |
---|
1584 | ! + precipitation fractions + |
---|
1585 | ! temperature and water species tendencies |
---|
1586 | DO i = 1, klon |
---|
1587 | psfl(i, k) = zifl(i) |
---|
1588 | prfl(i, k) = zrfl(i) |
---|
1589 | pfraclr(i, k) = znebprecipclr(i) |
---|
1590 | pfracld(i, k) = znebprecipcld(i) |
---|
1591 | d_ql(i, k) = (1 - zfice(i)) * zoliq(i) |
---|
1592 | d_qi(i, k) = zfice(i) * zoliq(i) |
---|
1593 | d_q(i, k) = zq(i) - qt(i, k) |
---|
1594 | ! c_iso: same for isotopes |
---|
1595 | d_t(i, k) = zt(i) - temp(i, k) |
---|
1596 | END DO |
---|
1597 | |
---|
1598 | END DO |
---|
1599 | |
---|
1600 | |
---|
1601 | ! Rain or snow at the surface (depending on the first layer temperature) |
---|
1602 | DO i = 1, klon |
---|
1603 | snow(i) = zifl(i) |
---|
1604 | rain(i) = zrfl(i) |
---|
1605 | ! c_iso final output |
---|
1606 | ENDDO |
---|
1607 | |
---|
1608 | IF (ncoreczq>0) THEN |
---|
1609 | WRITE(lunout, *)'WARNING : ZQ in LSCP ', ncoreczq, ' val < 1.e-15.' |
---|
1610 | ENDIF |
---|
1611 | |
---|
1612 | END SUBROUTINE lscp |
---|
1613 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
1614 | |
---|
1615 | END MODULE lmdz_lscp |
---|